
Numerical algorithms for low-rank matrix completion
problems

Marie Michenková
Seminar for Applied Mathematics,

Department of Mathematics,
Swiss Federal Institute of Technology Zurich,

Switzerland

May 30, 2011

We consider a problem of recovering low-rank data matrix from sampling of its entries.
Suppose that we observe m entries selected uniformly at random from an n1×n2 matrix
M . One can hope that when enough entries are revealed (O(nrlogn)), it is possible
to recover the matrix exactly. We downloaded eight solvers implemented in Matlab for
low-rank matrix completion and tested them on different problems. The report includes
brief description of the solvers used (based on the original papers) and results of the
experiment carried out.

1 Definition of low - rank matrix completion problem

We will use the following definition of a matrix completion problem. Suppose that M ∈
Rn1×n2 and let Ω be a subset of [n1]× [n2] of revealed entries of M . Then we want to find
a solution of the following problem

minimize rank(X)
subject to Xij = Mij (i, j) ∈ Ω.

(1)

In words, we are looking for a matrix of the lowest rank whose entries in set Ω correspond
to the entries of M . Let us define a projector PΩ(·) : Rn1×n2 → Rn1×n2 as follows

(PΩ(A))ij =

{
Aij if (i, j) ∈ Ω.
0 otherwise.

(2)

Using projector (2), problem (1) can be rewritten as

(P0) :
minimize rank(X)
subject to PΩ(X) = PΩ(M).

However, (P0) is an NP-hard problem and has to be relaxed for real computations.

1

One can approximate (P0) by the ‘tightest’ convex problem

(P1) :
minimize ||X||∗
subject to PΩ(X) = PΩ(M),

where ‖·‖∗ denotes the nuclear norm (the sum of the singular values). The ‘tightest’ in
this sense means that the unit nuclear ball {X : ‖X‖∗ ≤ 1} is the convex hull of the set
of rank-one matrices with spectral norm bounded by one, i.e. {X : rank(X), ‖X‖ ≤ 1}.
Under slightly stronger assumptions than for the uniqueness of the matrix recovery, for
random matrices, the problem (P1) has the same solution as (P0) with probability close
to 1. See [4] for more details.

One can also approximate (P0) by

(P2) :
minimize ‖PΩ(X)− PΩ(M)‖F
subject to rank(X) ≤ r.

This approximation is based on an a priori knowledge of the rank and already assumes
that the revealed entries are corrupted by Gaussian noise.

The report is organized as follows. Algorithms based on the relaxation (P1) are listed
in section 2, algorithms based on (P2) in section 3 and 4. Section 5 includes results of
experiments and some remarks on the implementation.

2 Algorithms based on nuclear norm minimization

In this section, we will consider solvers for the constrained convex problem (P1). We
included a convex programming package and solvers based on Lagrangian, penalty, and
augmented Lagrangian method.

2.1 Convex programming package cvx (cvx)

Problem (P1) can be solved ‘directly’ using some convex programming package. We used
cvx [7]. Using cvx, (P1) can be easily implemented as

ind = find(M);

cvx_begin

variable X(size(M));

minimize(norm_nuc(X));

subject to

M(ind) == X(ind);

cvx_end

where M(ind) == X(ind) means equality up to some tolerance, which can be set by
cvx_precision(‘level’). The package is very reliable. The following table shows the
computation time on author’s desktop computer for different sizes of matrices (square)
with sampling ratio 0.8, i.e. 80% of the entries were revealed.

2

Problem cvx
n r SR time

20 2 0.80 0.8 s
50 5 0.80 36.9 s
80 8 0.80 542.3 s

We see that if we want to solve the convex problem (P1) using cvx, the computation is
costly and we are only able to solve problems up to size of approximately 100×100. Since
this is not sufficient for ‘real problems’, problem (P1) is usually relaxed further in some
sense.

2.2 Soft-thresholding operator

For the algorithms based on nuclear-norm minimization, it will be useful to define so-
called soft-thresholding operator. Let A ∈ Rn1×n2 be a matrix of rank r with the following
SVD

A = UΣV T , U ∈ Rn1×r,Σ = diag({σi}ri=1) ∈ Rr×r, V ∈ Rn2×r.

For each τ > 0 we define the soft-thresholding operator Dτ (·):

Dτ (A) ≡ UDτ (Σ)V T ,where Dτ (Σ) = diag({(σi − τ)+}ri=1).

This operator is also often called singular value shrinkage operator. If many of the singular
values of A are below the threshold τ , the rank of Dτ (A) is considerably lower than that
of A. Authors ins [3] proved that for all τ > 0

Dτ (A) = arg min
B

{
τ ||B||∗ +

1

2
‖B − A‖2

F

}
.

2.3 A Singular Value Thresholding Algorithm (SVT)

SVT algorithm introduced in [3] is based on the following iteration. Fix τ > 0 and
positive step sizes {δk}. Starting with Y 0 = 0, repeat{

Xk = Dτ (Y k−1)
Y k = Y k−1 + δkPΩ(M −Xk)

(3)

until a stopping criterion is reached. Important is that {Xk} have low rank (according
to results presented in [3] empirically nondecreasing with k) and the auxiliary matrices
{Y k} are sparse. Only few (depending on τ) singular values and corresponding singular
values are needed in each iteration. These are computed iteratively using PROPACK
[9]. However, PROPACK can compute only a given number of largest singular values.
To use this package, we have to determine the number sk of singular values of Y k−1

to be computed at the k-th iteration. Authors suggest the following procedure. Let
rk−1 = rank(Xk−1) Set sk = rk−1 + 1 and compute the first sk singular values of Y k−1.
If some of the computed singular values are already smaller than τ , then sk is a right
choice. Otherwise, increment sk by a predefined integer l repeatedly until some of the
singular values falls below τ . Authors choose l = 5.

3

It can be shown that for 0 < inf δk ≤ sup δk < 2, the sequence {Xk} in (3) converges
to the solution of the following problem

minimize fτ (X) ≡ τ ||X||∗ + 1
2
‖X‖2

F

subject to PΩ(M −X) = 0.
(4)

For τ large enough, (4) is intuitively close to the problem (P1). It can be shown, that the
solution to (4) converges to the solution to (P1) with minimal Frobenius norm as τ →∞.
But on the other side τ →∞ slows down the convergence considerably.

The theory above can be extended to the problems with more general constraints,
which could be useful for recovering matrices, where some of the entries are contaminated
by noise. Algorithm (3) can be also viewed as a Lagrange multiplier algorithm (in this
case known as Uzawa’s algorithm) applied to the problem (4).

The following parameters can be adjusted: Shrinkage level τ , choose τ = 5n, which
should provide that on average, the value of τ ||X||∗ is about 10 times larger than the
value of 1

2
‖X‖2

F . Step sizes {δk}, choose δk ≡ δ = 1.2n1n2

m
instead of too conservative

0 < δ < 2. Stopping criterion is standard,

‖PΩ(Xk −M)‖F
‖PΩ(M)‖F

≤ Tol. (5)

Noise level Eps relaxes the constraints PΩ(M − X) = 0, so that they are of the form
|Xij −Mij| ≤ Eps ∀(i, j) ∈ Ω.

2.4 An Accelerated Proximal Gradient Algorithm (APGL)

APGL introduced in [14] solves the following nuclear norm regularized linear least squares
problem

min
X∈Rn1×n2

Fλ(X) ≡ 1

2
‖A(X)− b‖2

2 + λ||X||∗, (6)

where λ is a given regularization parameter. For A ∼ PΩ and b ∼ PΩ(M), problem (6)
corresponds to the minimization problem

min
X∈Rn1×n2

Fλ(X) ≡ λ||X||∗ +
1

2
‖PΩ(M −X)‖2

F , (7)

which is just a penalty method applied to our original constrained convex problem (P1).
Fλ(Z) can be locally approximated as a quadratic function

Qτ (X,Z) ≡ 1

2
‖PΩ(Z −M)‖2

F + 〈PΩ(Z −M), X − Z〉+
τ

2
‖X − Z‖2

F + λ||X||∗

=
τ

2
‖X − Y ‖2

F + λ||X||∗ +
1

2
‖PΩ(Z −M)‖2

F −
1

2τ
‖PΩ(Z −M)‖2

F , (8)

where τ is the Lipschitz constant for the gradient of PΩ (i.e. τ = 1), and Y = Z +
1
τ
PΩ(M −Z). Algorithm suggested in [14] is then based on the minimization of function

(8) over X:

Xk = arg min
X∈Rn1×n2

Qτ (X,Z
k−1) = arg min

X∈Rn1×n2

τ

2
‖X − Y k−1‖2

F + λ||X||∗, (9)

4

where Y k−1 = Zk−1 + 1
τk
PΩ(M − Zk−1). There is a natural choice of Zk = Xk in (9) but

the authors suggest taking Zk = Xk + tk−1−1
tk

(Xk − Xk−1) instead. The algorithm then
looks as follows. Starting with X0 = X−1 ∈ Rn1×n2 and t0 = t−1 = 1, repeat

Zk = Xk + tk−1−1
tk

(Xk −Xk−1)
Y k = Zk + 1

τk
PΩ(M − Zk),where τk = 1

Xk+1 = D λ
τk

(Y k)

tk+1 =
1+
√

1+4(tk)2

2

(10)

until a stopping criterion is reached.
Authors suggest three techniques to accelerate the algorithm (10):

• It is too conservative to set τk ≡ 1. To accelerate the convergence, it is desirable to
take a smaller value. We can use linesearch-like technique to find a smaller τk that
still satisfies inequality (14) in [14]. Second advantage of this approach is that the
smaller is τk, the lower is rank(Xk+1).

• λ is usually chosen to a moderately small number, which means that we have to
compute almost entire SVD in each step. Authors suggest computing a sequence
of approximate solutions for decreasing sequence of {λ0, λ1, . . . , λl = λ}, where we
take the solution computed with λi−1 as a starting value for the algorithm with λi.

• For APG without any acceleration technique, the iterates Xk are not low-rank,
but the singular values will usually separate into two clusters with distant means.
To achieve low-rank iterative in each step of APG, the authors suggest discarding
singular values from the second cluster.

The only parameter that has to be specified is the constrain level λ. The authors
suggest choosing λ = 10−4λ0, where λ0 = ‖PΩ(M)‖F . After each step of the algorithm
(10) we evaluate two inequalities

‖Xk −Xk−1‖F
max{‖Xk‖F , 1}

≤ Tol

|‖PΩ(M −Xk)‖F − ‖PΩ(M −Xk−1)‖F |
max{‖M‖F , 1}

≤ 5× Tol.

If at least one of them is satisfied, we stop the computation. One can also adjust param-
eters used for D λ

τk

(·).

2.5 The Augmented Lagrange Multiplier Method (ALM)

To solve problem (P1), ALM introduced in [11] uses method of augmented Lagrange
multipliers for problems of the form of

minimize f(X) ≡ ||X||∗
subject to PΩ(M)−X − E = 0.

(11)

5

where PΩ(E) = 0 is enforced directly in each step of the algorithm. The partial augmented
Lagrangian of problem (11) then takes form of

L(X,E, Y, µ) = ||X||∗ + 〈Y,PΩ(M)−X − E〉+
µ

2
‖PΩ(M)−X − E‖2

F (12)

We can minimize directly (12) similarly as for SVT, i.e. minimize over (X,E) simul-
taneously. This will lead to so-called Exact ALM Method. But the authors suggest
minimizing just once over X and then over E in each step. This method is called Inexact
ALM Method:

Xk = Dµ−1
k−1

(PΩ(M)− Ek−1 + µ−1
k−1Y

k−1)

Ek = PΩC (Xk)
Y k = Y k−1 + µk−1PΩ(M −Xk)
µk = ρµk−1.

(13)

Note that PΩC (Y k−1) = 0 throughout the iteration. The order of variables in the min-
imization procedure is not essential, but according to the authors provides numerically
a small decrease of iterations. Implementation of this algorithm uses PROPACK, which
means that the number of required singular values has to be provided in the first step
of each iteration. This is a challenging task for algorithm (13), because the ranks of Xk

may oscillate. Authors adopted the truncation strategy from APGL. The ranks of Xk

then should become monotonically increasing, stable at the true rank.
Solver uses standard stopping criterion (5). Parameters (µ0 and ρ) are set in the main

function directly.

2.6 Other solvers

We add brief review of some other algorithms minimizing the nuclear norm.
Fixed point continuation with approximate SVD (FPCA). This method min-

imizes the same function (7) as APGL but in the approximate version, SVD is computed
using a fast Monte Carlo algorithm. See [12] for more details.

The alternating splitting augmented Lagrangian method (ASALM). This
method solves the following nuclear norm and l1-norm minimization problem:

min
X,F
||X||∗ + ‖F‖1, subject to PΩ(M)−X − E − F = 0, ‖PΩ(E)‖F ≤ δ, (14)

where F corresponds to impulsive noise (sparse but large) and E corresponds to Gaussian
noise. Problem (14) is solved by minimizing the following unconstrained problem

L(X,F,E, Y, µ) = ||X||∗+ 〈Y,PΩ(M)−X −F −E〉+ µ

2
‖PΩ(M)−X − F − E‖2

F (15)

similarly as in Inexact ALM. Authors suggest minimizing first over E than over F and
at last over X. See [13] for more details. Convergence of this algorithm is not proven.
The authors suggested a variant of ASALM (VASALM), which minimizes over E and
updates Y using the new E and then minimizes parallel extended functions over F and
X (new parameter η is introduced, for η = 1 these functions correspond to the ones in
ASALM) and than updates Y once again. Convergence of this algorithm was proven,
but numerically is slower than the convergence of ASALM. Authors in [5] suggest using
ASALM as a prediction step and a Gaussian back substitution procedure as a correction
step. This should ensure convergence while preserving the advantages of ASALM.

6

3 Algorithms Based on the Minimization on Grass-

mann Manifold

In this section we will consider solvers solving (P2) by minimizing a function F on a Grass-
mann manifold. We included three solvers minimizing different functions on Gr(r, n).

3.1 OPTSPACE

Algorithm known as OptSpace introduced in [8] is based on minimization of the following
cost function

F (U, V) ≡ min
S∈Rr×r

1

2
‖PΩ(M − USV T)‖2

F , (16)

where U ∈ Rn1×r and V ∈ Rn2×r are orthogonal matrices, normalized as UTU = n2I
and V TV = n1I, and λ ∈ [0, 1]. Obviously, rank(USV T) ≤ r. Minimizing F (U, V) is
a difficult task, since it is a non-convex function, but according to the authors the SVD
of PΩ(M) gives a good initial guess. Algorithm OptSpace consists of the following four
main steps:

1. trimming (output M̃)

2. estimating the rank of M from the SVD of M̃ (output r̂)

3. rank-r̂ projection of M̃ (output U0, S0, V0)

4. minimizing F (·, ·) through gradient descent algorithm

Trimming is a procedure that sets 0 to all overrepresented rows and columns (in the
code only some entries are set to zero). Here overrepresented means that number of
entries in the row/column is more than twice larger than the average value. Otherwise
singular vectors can concentrate along the overrepresented rows and columns and will
not provide any useful information about the unrevealed entries of M . Let us denote the
trimmed matrix M̃ .

Rank estimation is based on the SVD of M̃ . Authors use two estimators and choose
the maximum of both results.

Rank-r̂ projection consists of rescaling of the singular values and singular vectors
of M̃ . Let M̃ have the following SVD M̃ =

∑min(n1,n2)
i=1 uiσiv

T
i , U0 =

√
n1[u1, . . . , ur̂],

V0 =
√
n2[v1, . . . , vr̂] and S0 =

√
(n1n2)

m
diag(σ1, . . . , σr̂).

Then we start gradient descent algorithm on the Grassmann manifold for the function
F (U, V) with initial guess (U0, V0), where Xk = UkSkV

T
k . After each step we find optimal

Sk for computed (Uk, Vk) solving a least squares problem. Standard stopping criterion
(5) is used.

3.2 Space Evolution and Transfer (SET)

Assume that we are able to guess the rank r of our unknown matrix M . The aim
of the algorithm called SET introduced in [6] is to find a matrix which satisfies (P2).
This algorithm is similar to algorithm OptSpace. However, in SET the rank has to be

7

defined a priori. Another difference is that OptSpace minimizes over columns and rows
(U and V) simultaneously, while SET minimizes only over columns. SET is based on the
minimization of the following function

F (U) ≡ min
W∈Rr×n2

‖PΩ(M − UW)‖2
F , (17)

where U ∈ Rn1×r is an orthonormal matrix. Concerning that rank(M) = r and no noise
is added, the minimum value of F (·) is zero. Note that F (U) can be defined column-wise
as

F (U) =

n2∑
j=1

min
wj∈Rr

‖PΩ,j(Mj)− PΩ,j(Uwj)‖F︸ ︷︷ ︸
Fj(U)

, (18)

where PΩ,j is restriction of PΩ to the j-th column. The algorithm consists of the following
three main steps. Starting with a random orthonormal matrix U repeat

1. subspace transfer

2. subspace evolution

3. find optimal W,

until a stopping criterion is reached.
Subspace evolution is based on the gradient descent algorithm on Grassmann manifold

(or similar technique, where the direction H is rank-one matrix created from the first
singular triplet of the gradient). Subspace evolution part is designed to search for the
minimizer of function F (·) along the geodesic curve defined by starting point U0 (output
of previous iteration) and ‘direction’ −H. Subspace transfer was introduced because
function F (·) is generally not convex and the subspace evolution may not converge to the
global minimum of the function, when one encounters ‘barriers’. These can appear, when
the individual atomic functions Fj imply different directions. This can block the search
procedure from reaching the global optimum. The authors devised heuristic procedure for
detecting such barriers and transferring the current estimate U from one side of barrier
to another. The technique is described in [6] section III.E and III.F. W is then the
corresponding least squares solution. Standard stopping criterion (5) is used.

3.3 Grassmannian Rank-One Update Subspace Estimation (GROUSE)

Algorithm GROUSE introduced in [2] is based on the minimization of the cost function
(17), but this cost function is optimized one column at a time. The authors use function
F̄ (·, ·) defined as follows

F̄ (U, i) = min
a
‖PΩ,i(Mi − Ua)‖2. (19)

Gradient of (19) can be expressed as

∇F̄ = −2rwT ,

8

where w is the corresponding least-squares solution, i.e. w = arg mina ‖PΩ,i(Mi − Ua)‖,
and r is residual vector, i.e. r = PΩ,i(Mi − Uw). The entire algorithm looks as follows.
Given a set of step sizes {ηi} and an orthogonal matrix U0, for i = 1, . . . , n2, repeat

w = arg mina ‖PΩ,i(Mi − Ua)‖2

p = Uiw
r = PΩ,i(Mi − p)
Ui+1 = Ui +

(
sin(‖r‖‖p‖ηi) r

‖r‖ + (cos(‖r‖‖p‖ηi)− 1) p
‖p‖

)
wT

‖w‖ ,

(20)

where p ≡ Uw and the last step of the algorithm corresponds to the step of length η
in the direction −∇F̄ . The update rule consist only of a rank-one modification of the
current subspace basis U . The authors do not suggest any particular choice of step size.
Number of outer cycles (how many times is (20) repeated) can be set. One can also
determine the initial matrix U0.

3.4 Other solvers

Atomic decomposition for minimum rank approximation (ADMiRA) This
method is based on atomic decomposition of the matrix M , i.e.

M =
∑
j

αjψj, (21)

where ψj are rank-one matrices. The aim is then to maximize the norm of the projection
PΨ(·) over all subspaces spanned by a subset with at most r atoms ψj:

Ψ̂ ≡ arg max
Ψ

{
‖PΨ(PΩ(M − X̂))‖F ; |Ψ| ≤ r

}
, (22)

where X̂ is our current approximation of X. The algorithm adjusts X̂ and Ψ̂ alternatively.
See [10] for more details.

4 A Low-rank Matrix Fitting Algorithm (LMaFit)

In this section we will mention a special type of method for solving (P2), which is not
based on minimization on Grassmannian manifold. It is based on the minimization of
the following type

minU,V,Z
1
2
‖Z − UV ‖2

F

subject to PΩ(Z) = PΩ(M),
(23)

where U ∈ Rn1×r, V ∈ Rr×n2 and Z ∈ Rn1×n2 . Rank approximation r is adjusted
dynamically in every step. Z is introduced for computational purpose. Since this problem
is not convex, we decided to include the algorithm in the same section as Grassmannian
based methods.

For solving (23) authors in [15] suggest minimizing separately overX, Y and Z. Where
for X and Y they use successive over-relaxation method applied to normal equations.
Minimization over Z is trivial. This method may not converge to the global minimum
but authors proved convergence to a stationary point.

9

The nonlinear SOR scheme reads (using Zω ≡ ωZ + (1− ω)UV)
Uk+1 = Zk

ω(V k)T

V k+1 = ((Uk+1)TUk+1)†(Uk+1)TZk
ω

Zk+1 = PΩ(M) + PΩC (Uk+1V k+1).
(24)

Algorithm (24) is implemented as follows
Uk+1 = orth(Zk

ω(V k)T)
V k+1 = (Uk+1)TZk

ω

Zk+1 = PΩ(M) + PΩC (Uk+1(V k+1)),
(25)

where the first step is computed via QR-decomposition, which is more stable than using
normal equations. Parameter ω is adjusted in every step using the following procedure. If
the new residual is greater or equal than then previous one, compute (Uk+1, V k+1, Zk+1)
once again from (Uk, V k, Zk) using ω = 1. If not, accept the the new triplet. If the ratio
between current and previous residual is small enough (i.e. smaller than some γ̄ < 1)
than keep the ω, otherwise increase the ω. See chapter 2 of [15] for more details.

There are implemented two heuristics for rank adjustment: decreasing (recommended
for well-conditioned problems) and increasing (recommended for problems where clear-cut
rank is not available). Decreasing heuristics is based on comparison of diagonal entries of
R-factor in QR decomposition of X. Increasing strategy increases rank by some integer
κ whenever the procedure stagnates. As a default the decreasing is used. Starting rank
has to be determined.

The standard stopping criterion (5) is used. One can use another linear solver (own or
implemented) for normal equation instead of using QR decomposition (which is default).
Initial rank has to be provided.

5 Numerical experiments

All the experiment were conducted and timed on the same workstation with an AMD
Phenom II (2.8 GHz) processor that has 4 cores and 7.6 GB memory under Linux with
Matlab 7.10.0 (R2010a).

5.1 Packages/Solvers

Codes for SVT, APGL, Inexact ALM (IALM), OptSpace, SET and GROUSE were down-
loaded from http://perception.csl.uiuc.edu/matrix-rank/. Code for LMaFit was
downloaded from http://lmafit.blogs.rice.edu/. Code for Exact ALM (EALM) was
implemented by the author using code of IALM as a template.

5.2 General setting

If not specified, we generated matrix M of rank r by sampling two matrices of sizes n1×r
and n2 × r with i.i.d. Gaussian entries and setting M = MLM

T
R . We sampled m entries

at random. ‘SR’ corresponds to the sampling ratio, i.e. m
n1n2

. Noise was drawn from

normal distribution and level of noise corresponds to ‖PΩ(noise)‖F
‖PΩ(M)‖F

. We averaged over 5

10

samples. The effectivity of the solver was measured by ‖M−X‖F
‖M‖F

. The value of stopping

criterion was set to 10−4 and matrix was considered recovered if ‖M−X‖F‖M‖F
≤ 10−3.

5.3 Experiments

Experiment 1. In this experiment we want to demonstrate, how reliable the algorithms
are for small matrices. We set maximum number of iterations to 50 and the size of the
matrix to 25 × 25. For each pair (m, r) (number of revealed entries and rank) we re-
peated the following procedure 5 times. We constructed matrix of rank r with m entries
revealed and solved each problem by cvx, IALM, SVT, OptSpace, LMaFit and APGL.
We used rank estimator form OptSpace to determine the rank for OptSpace a LMaFit.
We obtained figure 1. We use abbreviation ‘DoF’ for the number of degrees of freedom
for each r. Shade corresponds to the percentage of successful recoveries. We can see
that even for such a small number of iterations, IALM performs very well (very close to
cvx). SVT would definitely need much larger number of iterations to perform reasonably.
OptSpace has problems with almost full matrices - the rank is not determined correctly
(the guess is high) and when we solve LS problem, corresponding matrix is extremely
ill-conditioned. LMaFit faces similar problems as OptSpace because it uses the same rank
estimator. At the moment we do not have explanation for the behavior of APGL, which
performs comparably to cvx for higher ranks, but very poorly for low-rank matrices. The
stopping criterion starts to stagnate after a few iterations. We decided to test OptSpace
and LMaFit also for the case when the correct rank is given. Obviously, we get better
results, see table 2. For OptSpace we observe better performance for matrices with lower
sampling ratio and we get rid of the leak on the right-hand side, but the shape of the
light part stays almost the same. For LMaFit we got a very considerable improvement,
mainly for higher-rank matrices. To compare IALM, OptSpace and LMaFit, we decided
to plot the difference between IALM, OptSpace and LMaFit, both for the estimated and
the given rank. We observe, that generally it is more secure to use IALM, when the
rank is not known. When the rank is known, it is in most cases advisable to use LMaFit
instead of OptSpace or IALM. Results are shown in table 3.

Experiment 2. In this experiment we compared the solvers by recovering matrices of
size 50 and 200. We set maximum number of iterations to 100 and maximum number of
inner iterations for EALM to 50. We used different ranks, percentage of entries known
and level of the noise. For the solvers based on the minimization on Grassmann manifold
and for LMaFit we used the rank of the matrix as a direct input. We observed that
the noise level generally does not have a big influence on the precision of the results.
However, noise level equal to the required precision can slow down the computation, e.g.
by OptSpace. IALM, EALM, OptSpace, and LMaFit preformed the best. OptSpace was
faster than EALM and IALM in computation with small matrices. Sometimes, especially
when only few entries are known, it might be useful to use EALM, which was the most
reliable, instead of IALM. But in many cases, IALM is comparable to EALM and is faster.
SVT would need more iterations to converge, but even the unsuccessful iterations took
longer than the successful ones by IALM or Optspace. APGL performed considerably
worse than IALM. Since SET is not meant for this type of tasks, it did not perform well.
GROUSE was considerably faster than OptSpace for matrices with more entries reveled

11

when the noise approached the required precision. Results are shown in table 1.

Experiment 3. The third experiment compares IALM and EALM separately. Now we
set the maximum number of inner iterations in EALM to 50 and the maximum number
of outer iterations to 200. We wanted to demonstrate the dependence of the number of
covered problems on the percentage of entries known. One can see, that EALM is more
reliable for matrices with few entries revealed. Results are shown in table 2.

Experiment 4. This experiment compares IALM and EALM for different level of noise
when enough entries are known. We observed that the computation time both for IALM
and EALM remains the same for different values of noise. Results are shown in table 3.

Experiment 5. Now we compare IALM, LMaFit, OptSpace, the three solvers based on
different relaxation that performed the best in experiment 2, for larger matrices. LMaFit
and Optspace were provided the exact rank. LMaFit and IALM achieved the required
precision. OptSpace was much slower and sometimes even less reliable. Results are shown
in table 4.

Experiment 6. Sixth experiment uses IALM and LMaFit to solve matrix completion
problem with large matrices. Since IALM uses very slow subroutine to project the fac-
tors U and V to Ω, we tried to substitute this one by the subroutine from LMaFit, this
solver will be called IALM proj. LMaFit was tested both with exact rank provided and
rank randomly adjusted up to ±25%. Maximum number of iterations was set to 100.
By changing the projection subroutine we saved up to 30% of the computation time of
IALM. When LMaFit is not given the exact rank it becomes much slower and less reli-
able. Results are shown in table 5.

Experiment 7. In this experiment we tested all the solvers on matrices with decaying
singular values. Singular vectors were drawn from normal distribution orthonormalized
by built-in function orth The first singular value was set to one. We used different slopes
for singular values (in semi-logarithmical scale). Maximum number of iterations was set
to 500. We averaged over 3 samples. We see that cvx was able to recover all the matrices.
Most of the solvers perform reasonably when the decay is not too steep. Only APGL was
able to keep the close-to-required error for all slopes. Results are shown in table 6.

Experiment 8. We decided to test the efficiency of different implementations of the pro-
jection onto Ω. We took projections from IALM, SVT and LMaFit. All of them project
product of two orthonormal matrices onto Ω without multiplying them. As mentioned
already in experiment 6, projection used by IALM is extremely slow and makes the whole
computation costly. Full results are shown in table 7.

Experiment 9. Since the only rank estimator for incomplete data is provided in
OptSpace, we decided to use IALM, which is able to determine the rank very quickly, as
the second estimator. If the rank estimation in IALM stagnates for 5 iterations, we take

12

this rank as our final rank estimation. We compared the estimators in the following way.
We sampled different matrices with noise and let OptSpace and IALM estimate the rank
of the complete data. The rank was considered as recovered if the estimate was within
the range (0.75r, 1.25r). IALM based estimator performed slightly better (for matrices
with few entries). Results are shown in table 8.

Experiment 10. In this experiment we decided to test how trimming in OptSpace
works. We constructed a matrix of size 500× 500 of rank 3 with overdetermined last 20
columns and computed right singular vectors and singular values of both trimmed and
untrimmed matrix. We got the plot 4. In this case trimming prevented the right singular
vectors from being concentrated in last few entries. One can also easily estimate the rank
from singular values computed after trimming. Unfortunately, it is not always the case.

Experiment 11. We wanted to improve the implementation ofgetOptS in OptSpace,
i.e. the function that computes the LS solution S and which is the most costly opera-
tion in the computation. We avoided multiplying two rectangular matrices by using the
projection onto Ω from LMaFit. The improvement is reasonable mainly for very sparse
matrices, however the computation time is still not comparable to IALM or LMaFit. Full
results are shown in table 9.

Experiment 12. In the following experiment we wanted to learn how fast the methods
converge. We decided to plot a few convergence curves. Since the convergence is extremely
problem dependent (especially for matrices with very low sampling ratio), this is not a
rigorous way how to test the solvers. However, we decided to include the plots in this
report for illustration. In the first part we tested LMaFit, IALM, APGL, OptSpace,
EALM, SVT, and GROUSE for random matrix of size 100× 100, rank 10, and sampling
ratios 0.3, 0.4, and 0.5. The plots are produced in the following way. We set our step
to 10 iterations, maximal number of iterations to 300 and maximal time to 5 s and
stopping criterion to 10−16. For each solver we compute 5 times the first 10 iterations
of the algorithm and take the shortest computation time. Then we compute first 20
iterations in the same way, then 30, 40, etc. The computation is terminated when the
maximal time or the maximal number of iterations is reached or when the relative error
falls bellow 10−7. Rank is given as an input to LMaFit, OptSpace, GROUSE. The curves
are plotted in the upper row of figure 5. The dots correspond to one step of computation,
i.e. 10 iterations. We see that for these matrices, LMaFit with exact rank is much
faster than the other algorithms. For higher sampling ratio, it is advantageous to use
IALM than EALM, but in the first case, IALM does not converge. APGL with default
setting reaches relatively quickly a reasonable relative error, but then starts to stagnate.
It is possible that this could be avoided using some other parameters for acceleration
techniques. Concerning the time, OptSpace is not very fast (not optimal implementation
in Matlab) but in some cases needs less iterations than LMaFit or IALM to achieve the
same relative error. EALM needs only a few steps to achieve a good approximation but
in every step needs to compute a SVD several times (maximal number of inner iterations
was set to 10 to reduce the time demands of one step). It is a very reliable method but
should be substituted by IALM for ‘easy’ problems. SVT both needs many iterations
to converge (if it converges) and every iterations is time demanding. GROUSE in this

13

case achieves a good approximation in a few first steps but then starts to stagnate very
quickly and do not reach a reasonable approximation of the original matrix

We carried out the same experiment for large matrices of size 1000×1000 with rank 10
and different sampling ratios. In this experiment we tested only LMaFit, IALM, APGL
and OptSpace. Plots can be found in the lower row of figure 5. We observe a similar
behavior for the problems with higher sampling ratio, but in the first case, where none of
the methods converge we noticed a difference between nuclear norm based methods and
determined-rank based methods.

Experiment 13. We decided to test LMaFit, APGL,IALM, and OptSpace also on real
problems. We carried out the experiments with the same data sets as the authors of [14]
in section 4.4. Detailed information about the data sets and setting can be found in [14]
or on the corresponding web pages. In our case, entries were chosen at random. Maximal
number of iterations was set to 100 and stopping criterion to 10−3. As an rank estimator
we used IALM. Estimated error was then computed using the originally revealed entries
(see [14] for more details). Regarding the estimated error achieved, we do not observe
any big difference among the solvers. Computation time corresponds to our expectations
based on the results of previous experiments Results are shown in table 10.

Experiment 14. Since all of the nuclear-norm based solvers needs to compute a (partial)
SVD in each iteration, we tried to compare two packages for partial SVD implemented in
Matlab. All solvers which we included use PROPACK [9]. We compared PROPACK with
another package based on Lanczos bidiagonalization implemented in Matlab - IRLBA [1].
We tested the two packages on different types of sparse matrices. We used matrices from
previous experiment (Jester and MovieLens), random low-rank matrices (both from two
factors and with decaying eigenvalues with slope 0.5) and then two matrices from Matrix
Market. We computed first 3-times-more-than-required largest singular values of each
matrix using Matlab built-in function svds and used these values as a reference. We set
the tolerance to 10−16 for PROPACK and 10−8 to achieve (experimentally) approximately
the same error in most cases. Than we ran 5 times both functions and took the shortest
time from each five. Table 11 shows the times and euclidean norm of the difference
between our reference singular values and computed ones. We see that IRLBA can be
considerably faster when we want to compute only a few largest singular values but
might become inefficient when more singular values are needed. IRLBA totally failed in
computing the SVD of the two matrices from Matrix Market. For matrix ‘west2021’

this can be easily treated using lower tolerance in IRLBA. For matrix ‘west2021’ we
will not get better results even if we set the tolerance to machine precision.The last few
singular values will be still to far from the reference ones. Obtained results can be found
in table 11.

References

[1] James Baglama, Lothar Reichel: IRLBA. Available from
http://www.math.uri.edu/~jbaglama/.

14

[2] Laura Balzano, Robert Nowak and Benjamin Recht: Online Identification and Track-
ing of Subspaces from Highly Incomplete Data. http://arxiv.org/abs/1006.4046v1,
2010.

[3] Jian-Feng Cai, Emmanuel J. Candès, and Zuowei Shen: A Singular Value Threshold-
ing Algorithm for Matrix Completion. http://arxiv.org/abs/0810.3286, 2008.

[4] Emmanuel J. Candès and Benjamin Recht: Exact Matrix Completion via Convex
Programming. Foundations of Computational Mathematics, 2009.

[5] Bingsheng He, Min Tao, and Xiaoming Yuan: Alternating Direction
Method with Gaussian Back Substitution for Separable Convex Programming.
http://www.optimization-online.org/DB_HTML/2010/12/2871.html, 2011.

[6] Wei Dai, Olgica Milenkovic and Ely Kerman: Subspace Evolution and Transfer (SET)
for Low-Rank Matrix Completion. http://arxiv.org/abs/1006.2195, 2010.

[7] Michael Grant and Stephen Boyd: cvx Users’ Guide for cvx version 1.21.
http://cvxr.com/cvx/cvx_usrguide.pdf, 2011.

[8] Raghunandan H. Keshavan and Sewoong Oh: OPTSPACE: A gradi-
ent Descent Algorithm on the Grassmann Manifold fo Matrix Completion.
http://arxiv.org/abs/0910.5260v2, 2009.

[9] Rasmus Munk Larsen: PROPACK - Software for large and sparse SVD calculations.
Available from http://sun.stanford.edu/~rmunk/PROPACK/.

[10] Kiryung Lee and Yoram Bresler: ADMiRA: Atomic decomposition for minimum
rank approximation. IEEE Transactions on Information Theory, 2010.

[11] Zhouchen Lin, Minming Chen, and Lequin Wu: The Augmented Lagrange Multiplier
Method for Exact Recovery of Corrupted Low-Rank Matrices. UIUC Technical Report
UILU-ENG-09-2215, November 2009.

[12] Shiqian Ma, Donald Goldfarb, and Lifeng Chen: Fixed Point and Bregman Iterative
Methods for Matrix Rank Minimization. http://arxiv.org/abs/0905.1643v2, 2009.

[13] Min Tao and Xiaoming Yuan: Recovering Low-Rank and Sparse Components of
Matrices from Incomplete and Noisy Observations. SIAM J. Optim, 2011.

[14] Kim Chuan Toh and Sangwoon Yun: An Accelerated Proximal Gradient Algorithm
for Nuclear Norm Regularized Least Squares Problems. Pacific J. Optimization, 6
(2010), pp. 615–640.

[15] Zaiwen Wen, Wotao Yin, and Yin Zhang: Solving a Low-Rank Factorization
Model for Matrix Completion by a Nonlinear Successive Over-Relaxation Algorithm.
http://www.optimization-online.org/DB_HTML/2010/03/2581.html, 2010.

15

Figure 1: Recovery of full matrices of size 25 × 25 form sampling of their entries. Maximum
number of iterations was set to 50. Code experiment1.m

16

Figure 2: Recovery of full matrices of size 25 × 25 from sampling of their entries. Maximum
number of iterations was set to 50. Exact rank was given as an input. Code experiment1a.m

Figure 3: Comparison of IALM, OptSpace and LMaFit. First line corresponds to the rank
estimator from OptSpace, second to the correct rank given directly. Lighter shade corresponds
to advantage of the first mentioned solver, e.g. in the first picture, roughly speaking, IALM
performs better than OptSpace.

17

P
ro

b
le

m
IA

L
M

S
V

T
O

p
tS

p
a
ce

A
P

G
L

E
A

L
M

S
E

T
G

R
O

U
S
E

L
M

a
F

it
n

r
S

R
n

o
is

e
so

lv
ed

ti
m

e
so

lv
ed

ti
m

e
so

lv
ed

ti
m

e
so

lv
ed

ti
m

e
so

lv
ed

ti
m

e
so

lv
ed

ti
m

e
so

lv
ed

ti
m

e
so

lv
ed

ti
m

e

5
0

1
0
.2

0
0
e+

0
0

6
0

%
0
.6

s
0

%
0
.6

s
1
0
0

%
0
.1

s
0

%
0
.6

s
1
0
0

%
1
.7

s
0

%
3
.5

s
0

%
0
.3

s
1
0
0

%
0
.0

s
5
0

1
0
.2

0
1
e-

0
7

6
0

%
0
.5

s
0

%
0
.6

s
1
0
0

%
0
.1

s
0

%
0
.6

s
1
0
0

%
1
.7

s
0

%
3
.5

s
0

%
0
.3

s
1
0
0

%
0
.0

s
5
0

1
0
.2

0
1
e-

0
4

6
0

%
0
.6

s
0

%
0
.6

s
1
0
0

%
0
.1

s
0

%
0
.6

s
1
0
0

%
1
.8

s
0

%
3
.5

s
0

%
0
.3

s
1
0
0

%
0
.0

s
5
0

1
0
.4

0
0
e+

0
0

1
0
0

%
0
.1

s
1
0
0

%
0
.7

s
1
0
0

%
0
.0

s
0

%
0
.4

s
1
0
0

%
0
.8

s
8
0

%
1
.9

s
4
0

%
0
.3

s
1
0
0

%
0
.0

s
5
0

1
0
.4

0
1
e-

0
7

1
0
0

%
0
.1

s
1
0
0

%
0
.7

s
1
0
0

%
0
.0

s
0

%
0
.4

s
1
0
0

%
0
.8

s
8
0

%
2
.0

s
4
0

%
0
.3

s
1
0
0

%
0
.0

s
5
0

1
0
.4

0
1
e-

0
4

1
0
0

%
0
.2

s
1
0
0

%
0
.8

s
1
0
0

%
0
.0

s
0

%
0
.4

s
1
0
0

%
0
.9

s
8
0

%
1
.9

s
4
0

%
0
.3

s
1
0
0

%
0
.0

s
5
0

1
0
.7

0
0
e+

0
0

1
0
0

%
0
.1

s
1
0
0

%
0
.8

s
1
0
0

%
0
.0

s
1
0
0

%
0
.2

s
1
0
0

%
0
.4

s
2
0

%
1
.3

s
1
0
0

%
0
.3

s
1
0
0

%
0
.0

s
5
0

1
0
.7

0
1
e-

0
7

1
0
0

%
0
.1

s
1
0
0

%
0
.8

s
1
0
0

%
0
.0

s
1
0
0

%
0
.2

s
1
0
0

%
0
.4

s
2
0

%
1
.3

s
1
0
0

%
0
.3

s
1
0
0

%
0
.0

s
5
0

1
0
.7

0
1
e-

0
4

1
0
0

%
0
.1

s
1
0
0

%
0
.8

s
1
0
0

%
0
.0

s
1
0
0

%
0
.3

s
1
0
0

%
0
.5

s
2
0

%
1
.3

s
1
0
0

%
0
.3

s
1
0
0

%
0
.0

s
5
0

5
0
.4

0
0
e+

0
0

0
%

0
.3

s
0

%
0
.9

s
0

%
0
.4

s
0

%
0
.8

s
1
0
0

%
2
.2

s
0

%
1
8
.7

s
0

%
0
.3

s
6
0

%
0
.1

s
5
0

5
0
.4

0
1
e-

0
7

0
%

0
.3

s
0

%
0
.8

s
0

%
0
.6

s
0

%
0
.9

s
1
0
0

%
2
.2

s
0

%
1
8
.7

s
0

%
0
.3

s
6
0

%
0
.0

s
5
0

5
0
.4

0
1
e-

0
4

0
%

0
.3

s
0

%
0
.8

s
0

%
0
.4

s
0

%
0
.8

s
1
0
0

%
2
.3

s
0

%
1
8
.5

s
0

%
0
.3

s
6
0

%
0
.0

s
5
0

5
0
.7

0
0
e+

0
0

1
0
0

%
0
.2

s
2
0

%
0
.9

s
1
0
0

%
0
.2

s
1
0
0

%
0
.4

s
1
0
0

%
0
.6

s
0

%
8
.6

s
2
0

%
0
.3

s
1
0
0

%
0
.0

s
5
0

5
0
.7

0
1
e-

0
7

1
0
0

%
0
.2

s
2
0

%
0
.9

s
1
0
0

%
0
.2

s
1
0
0

%
0
.3

s
1
0
0

%
0
.6

s
0

%
8
.7

s
2
0

%
0
.3

s
1
0
0

%
0
.0

s
5
0

5
0
.7

0
1
e-

0
4

1
0
0

%
0
.2

s
2
0

%
0
.9

s
1
0
0

%
0
.5

s
1
0
0

%
0
.4

s
1
0
0

%
0
.6

s
0

%
8
.7

s
2
0

%
0
.3

s
1
0
0

%
0
.0

s
2
0
0

4
0
.2

0
0
e+

0
0

1
0
0

%
0
.5

s
0

%
3
.1

s
1
0
0

%
0
.4

s
0

%
1
.0

s
1
0
0

%
2
.1

s
0

%
4
9
.5

s
8
0

%
1
.2

s
1
0
0

%
0
.1

s
2
0
0

4
0
.2

0
1
e-

0
7

1
0
0

%
0
.5

s
0

%
3
.1

s
1
0
0

%
0
.4

s
0

%
1
.0

s
1
0
0

%
2
.1

s
0

%
4
9
.9

s
8
0

%
1
.2

s
1
0
0

%
0
.1

s
2
0
0

4
0
.2

0
1
e-

0
4

1
0
0

%
0
.6

s
0

%
3
.0

s
1
0
0

%
1
.4

s
0

%
0
.9

s
1
0
0

%
2
.2

s
0

%
4
9
.4

s
8
0

%
1
.2

s
1
0
0

%
0
.1

s
2
0
0

4
0
.4

0
0
e+

0
0

1
0
0

%
0
.2

s
1
0
0

%
2
.7

s
1
0
0

%
0
.3

s
8
0

%
0
.7

s
1
0
0

%
1
.5

s
6
0

%
3
3
.7

s
1
0
0

%
1
.3

s
1
0
0

%
0
.0

s
2
0
0

4
0
.4

0
1
e-

0
7

1
0
0

%
0
.2

s
1
0
0

%
2
.7

s
1
0
0

%
0
.3

s
8
0

%
0
.7

s
1
0
0

%
1
.5

s
6
0

%
3
3
.8

s
1
0
0

%
1
.3

s
1
0
0

%
0
.1

s
2
0
0

4
0
.4

0
1
e-

0
4

1
0
0

%
0
.3

s
1
0
0

%
3
.0

s
1
0
0

%
1
.9

s
8
0

%
0
.7

s
1
0
0

%
1
.7

s
6
0

%
3
3
.5

s
1
0
0

%
1
.3

s
1
0
0

%
0
.0

s
2
0
0

4
0
.7

0
0
e+

0
0

1
0
0

%
0
.2

s
1
0
0

%
2
.3

s
1
0
0

%
0
.3

s
1
0
0

%
0
.6

s
1
0
0

%
1
.0

s
4
0

%
2
3
.3

s
1
0
0

%
1
.5

s
1
0
0

%
0
.0

s
2
0
0

4
0
.7

0
1
e-

0
7

1
0
0

%
0
.2

s
1
0
0

%
2
.3

s
1
0
0

%
0
.3

s
1
0
0

%
0
.5

s
1
0
0

%
1
.0

s
4
0

%
2
3
.5

s
1
0
0

%
1
.5

s
1
0
0

%
0
.0

s
2
0
0

4
0
.7

0
1
e-

0
4

1
0
0

%
0
.2

s
1
0
0

%
2
.6

s
1
0
0

%
2
.4

s
1
0
0

%
0
.6

s
1
0
0

%
1
.1

s
4
0

%
2
2
.8

s
1
0
0

%
1
.5

s
1
0
0

%
0
.0

s
2
0
0

2
0

0
.4

0
0
e+

0
0

1
0
0

%
2
.2

s
0

%
4
5
.8

s
1
0
0

%
2
8
.7

s
0

%
1
4
.7

s
1
0
0

%
4
.8

s
0

%
2
3
8
.7

s
0

%
2
.8

s
1
0
0

%
0
.2

s
2
0
0

2
0

0
.4

0
1
e-

0
7

1
0
0

%
2
.2

s
0

%
4
5
.7

s
1
0
0

%
2
7
.6

s
0

%
1
4
.3

s
1
0
0

%
4
.8

s
0

%
2
3
9
.1

s
0

%
2
.8

s
1
0
0

%
0
.1

s
2
0
0

2
0

0
.4

0
1
e-

0
4

1
0
0

%
2
.3

s
0

%
4
5
.7

s
1
0
0

%
2
9
.4

s
0

%
1
4
.1

s
1
0
0

%
4
.9

s
0

%
2
3
9
.9

s
0

%
2
.8

s
1
0
0

%
0
.1

s
2
0
0

2
0

0
.7

0
0
e+

0
0

1
0
0

%
0
.5

s
1
0
0

%
5
.8

s
1
0
0

%
1
0
.0

s
1
0
0

%
1
.1

s
1
0
0

%
2
.4

s
0

%
8
4
.7

s
1
0
0

%
3
.6

s
1
0
0

%
0
.1

s
2
0
0

2
0

0
.7

0
1
e-

0
7

1
0
0

%
0
.5

s
1
0
0

%
5
.8

s
1
0
0

%
9
.8

s
1
0
0

%
1
.1

s
1
0
0

%
2
.4

s
0

%
8
4
.3

s
1
0
0

%
3
.5

s
1
0
0

%
0
.0

s
2
0
0

2
0

0
.7

0
1
e-

0
4

1
0
0

%
0
.5

s
1
0
0

%
5
.8

s
1
0
0

%
3
5
.5

s
1
0
0

%
1
.1

s
1
0
0

%
2
.5

s
0

%
8
4
.1

s
1
0
0

%
3
.6

s
1
0
0

%
0
.1

s

T
ab

le
1:

C
om

p
ar

is
on

of
th

e
so

lv
er

s
fo

r
m

at
ri

ce
s

of
si

ze
50
×

50
an

d
20

0
×

20
0

w
it

h
d

iff
er

en
t

ra
n

k
s,

sa
m

p
li

n
g

ra
ti

o
,

a
n

d
a
d

d
ed

n
o
is

e.
M

a
x
im

u
m

n
u

m
b

er
of

it
er

at
io

n
s

w
as

se
t

to
10

0.
M

ax
im

u
m

n
u

m
b

er
of

in
n

er
it

er
at

io
n

s
fo

r
E

A
L

M
to

50
.

C
o
d

e
e
x
p
e
r
i
m
e
n
t
2
.
m

18

Problem EALM IALM
n r SR noise error time error time

50 5 0.40 1e-07 4.8e-04 2.18 s 5.1e-01 0.30 s
50 5 0.50 1e-07 2.9e-04 1.10 s 7.3e-02 0.46 s
50 5 0.60 1e-07 2.0e-04 0.81 s 2.4e-04 0.32 s

Table 2: Comparison of EALM and IALM for matrices with different percentage of the entries
known. Code experiment3.m

Problem EALM IALM
n r SR noise error time error time

50 5 0.60 0e+00 2.0e-04 0.81 s 2.4e-04 0.31 s
50 5 0.60 1e-07 2.0e-04 0.81 s 2.4e-04 0.30 s
50 5 0.60 1e-04 1.3e-04 0.84 s 1.4e-04 0.35 s

Table 3: Comparison of EALM and IALM for matrices with different noise level. Code
experiment4.m

Problem IALM LMaFit OptSpace
n r SR noise error time error time error time

1000 10 0.05 0e+00 3.9e-04 10.78 s 6.5e-04 0.69 s 1.5e-03 72.06 s
1000 10 0.05 1e-07 3.9e-04 10.84 s 6.5e-04 0.68 s 1.5e-03 67.83 s
1000 10 0.05 1e-04 2.7e-04 11.67 s 6.5e-04 0.64 s 1.5e-03 57.05 s
1000 20 0.10 0e+00 2.8e-04 9.32 s 2.6e-04 1.71 s 2.8e-04 247.35 s
1000 20 0.10 1e-07 2.8e-04 9.31 s 2.6e-04 1.68 s 2.8e-04 267.68 s
1000 20 0.10 1e-04 1.9e-04 9.98 s 1.8e-04 1.80 s 2.9e-04 266.67 s

Table 4: Comparison of IALM, LMaFit and OptSpace for larger matrices. Exact rank was
provided to OptSpace and LMaFit. Code experiment5.m

Problem IALM IALM proj LMaFit LMaFit ex.rank
n r SR noise error time error time error time error time

1000 2 0.02 1e-04 1.8e-04 8.60 s 1.8e-04 5.50 s 5.0e-04 0.11 s 5.0e-04 0.09 s
1000 2 0.05 1e-04 4.7e-05 2.17 s 4.7e-05 1.54 s 5.8e-05 0.07 s 5.8e-05 0.09 s
1000 5 0.05 1e-04 1.2e-04 3.23 s 1.2e-04 2.27 s 1.1e-04 0.23 s 1.1e-04 0.22 s
5000 10 0.02 1e-04 1.0e-04 58.46 s 1.0e-04 28.22 s 9.3e-05 2.71 s 9.3e-05 2.70 s
5000 10 0.05 1e-04 4.3e-05 69.45 s 4.3e-05 51.22 s 3.6e-05 4.14 s 3.6e-05 4.16 s
5000 25 0.02 1e-04 6.9e-01 3741.77 s 6.9e-01 3055.67 s 4.6e-02 15.81 s 2.0e-03 15.42 s
5000 25 0.05 1e-04 7.8e-05 119.76 s 7.8e-05 83.26 s 5.1e-03 36.65 s 8.6e-05 12.56 s

Table 5: Comparison of IALM, LMaFit for large matrices. IALM with original projection onto
Ω and with projection taken from LMaFit. Code experiment6.m

Problem IALM SVT OptSpace APGL EALM SET GROUSE LMaFit cvx
n r SR slope error error error error error error error error error

30 3 0.80 -0.1 9.8e-05 4.5e-02 7.8e-05 2.3e-03 1.1e-04 3.9e-03 9.8e-01 1.4e-04 8.5e-10
30 3 0.80 -0.2 9.7e-05 6.1e-02 7.7e-05 2.3e-03 8.5e-05 4.9e-03 9.8e-01 1.2e-04 2.4e-09
30 3 0.80 -0.5 3.2e-01 1.1e-01 5.1e-02 2.2e-03 3.2e-01 7.7e-03 9.7e-01 1.5e-04 1.0e-08
30 3 0.80 -1.0 1.0e-01 1.0e-01 1.0e-02 1.5e-03 1.0e-01 9.4e-03 9.7e-01 2.5e-01 2.1e-08
30 3 0.80 -2.0 1.0e-02 2.3e-02 1.0e-02 8.3e-04 1.0e-02 1.1e-02 9.7e-01 2.7e-01 2.5e-09

Table 6: Comparison of the solvers for matrices with decaying singular values. No noise was
added. ‘slope’ denotes the distance between two neighboring singular values in logarithmical
scale. Code experiment7.m

19

Problem IALM SVT LMaFit
n r SR time time time

500 5 0.01 1.5e-02 s 1.6e-03 s 9.8e-05 s
2000 20 0.01 1.0e+00 s 7.0e-03 s 5.5e-03 s
10000 100 0.01 1.4e+03 s 3.3e+00 s 7.0e-01 s

Table 7: Efficiency of the different methods of projection onto set Ω. Code
test project omega.m

Problem OptSpace IALM
n r SR noise recovered recovered

200 4 0.10 1e-04 30 % 90 %
200 4 0.25 1e-04 100 % 100 %
200 4 0.40 1e-04 100 % 100 %
200 10 0.10 1e-04 0 % 0 %
200 10 0.25 1e-04 60 % 100 %
200 10 0.40 1e-04 100 % 100 %
1000 20 0.10 1e-04 100 % 100 %
1000 20 0.25 1e-04 100 % 100 %
1000 20 0.40 1e-04 100 % 100 %
1000 50 0.10 1e-04 0 % 0 %
1000 50 0.25 1e-04 100 % 100 %
1000 50 0.40 1e-04 100 % 100 %

Table 8: Efficiency of the rank estimators. The rank was considered as recovered if the estimate
was within the range (0.75r, 1.25r). Code test rank est.m

Problem original new
n r SR time time % saved

50 1 0.10 0.000 s 0.000 s 23 %
50 1 0.20 0.000 s 0.000 s 16 %
50 1 0.50 0.000 s 0.000 s 8 %
50 5 0.10 0.002 s 0.002 s 30 %
50 5 0.20 0.002 s 0.002 s 25 %
50 5 0.50 0.003 s 0.002 s 23 %
200 4 0.10 0.004 s 0.001 s 69 %
200 4 0.20 0.005 s 0.002 s 57 %
200 4 0.50 0.007 s 0.005 s 30 %
200 20 0.10 0.151 s 0.069 s 54 %
200 20 0.20 0.186 s 0.104 s 44 %
200 20 0.50 0.280 s 0.213 s 24 %
500 10 0.10 0.179 s 0.051 s 71 %
500 10 0.20 0.217 s 0.096 s 56 %
500 10 0.50 0.329 s 0.231 s 30 %
500 50 0.10 10.420 s 4.064 s 61 %
500 50 0.20 13.452 s 6.853 s 49 %
500 50 0.50 21.412 s 15.586 s 27 %

Table 9: Comparison of the computation time of the original getoptS (computes the least
squares solution S in OptSpace) and getoptS with the projection taken from LMaFit. Code
test getoptS.m

20

Figure 4: Trimming procedure implemented in OptSpace. Matrix 500× 500 of rank 3 with 20
overdetermined columns. Code OptSpace test.m

21

F
ig

u
re

5:
C

on
ve

rg
en

ce
cu

rv
es

fo
r

m
at

ri
ce

s
of

d
iff

er
en

t
si

ze
an

d
sa

m
p

li
n

g
ra

ti
o

(o
n

ly
on

e
m

at
ri

x
fo

r
ea

ch
se

tt
in

g
).

C
o
d

e
c
o
n
v
c
u
r
v
e
s
s
m
a
l
l
.
m

an
d
c
o
n
v
c
u
r
v
e
s
l
a
r
g
e
.
m

22

P
ro

b
le

m
A

P
G

L
IA

L
M

E
A

L
M

L
M

a
F

it

d
a
ta

n
1

n
2

n
n
z
(
A

)
n

1
n

2

|Ω
|

n
1
n

2
e
rr

o
r

N
M

A
E

ra
n
k

ti
m

e
e
rr

o
r

N
M

A
E

ra
n
k

ti
m

e
e
rr

o
r

N
M

A
E

ra
n
k

ti
m

e
e
rr

o
r

N
M

A
E

ra
n
k

ti
m

e

j
e
s
t
e
r
-
1

2
4
9
8
3

1
0
0

0
.7

2
0
.1

4
8
.6

e
-0

1
1
.6

e
-0

1
9
1

3
5
.8

9
s

7
.9

e
-0

1
1
.5

e
-0

1
1
0
0

2
2
.8

9
s

9
.3

e
-0

1
1
.9

e
-0

1
1

2
3
6
.4

7
s

8
.9

e
-0

1
1
.8

e
-0

1
1
0
0

0
.2

4
s

j
e
s
t
e
r
-
2

2
3
5
0
0

1
0
0

0
.7

3
0
.1

5
8
.5

e
-0

1
1
.6

e
-0

1
9
1

3
3
.8

9
s

8
.0

e
-0

1
1
.5

e
-0

1
1
0
0

2
4
.9

4
s

9
.1

e
-0

1
1
.9

e
-0

1
1

2
1
6
.4

4
s

8
.9

e
-0

1
1
.8

e
-0

1
1
0
0

0
.1

9
s

j
e
s
t
e
r
-
3

2
4
9
3
8

1
0
0

0
.2

5
0
.0

5
8
.9

e
-0

1
1
.7

e
-0

1
8
1

2
7
.0

2
s

9
.8

e
-0

1
2
.0

e
-0

1
2

2
8
.0

5
s

1
.3

e
+

0
0

2
.6

e
-0

1
2

3
8
1
.3

3
s

1
.2

e
+

0
0

2
.3

e
-0

1
1
0

1
.3

6
s

M
o
v
i
e
L
e
n
s
_
s
m
a
l
l

9
4
3

1
6
8
2

0
.0

6
0
.0

3
2
.5

e
-0

1
1
.7

e
-0

1
6

1
0
.3

8
s

2
.6

e
-0

1
1
.9

e
-0

1
1

3
.5

3
s

2
.5

e
-0

1
1
.8

e
-0

1
1

2
3
.5

9
s

2
.7

e
-0

1
1
.5

e
-0

1
3
6

1
.1

3
s

M
o
v
i
e
L
e
n
s
_
l
a
r
g
e

6
0
4
0

3
7
0
6

0
.0

4
0
.0

2
2
.4

e
-0

1
1
.7

e
-0

1
6

1
6
1
.4

5
s

2
.4

e
-0

1
1
.8

e
-0

1
1

2
0
.8

9
s

2
.4

e
-0

1
1
.8

e
-0

1
1

1
4
3
.0

6
s

2
.3

e
-0

1
1
.5

e
-0

1
7
1

1
3
.5

0
s

T
ab

le
10

:
C

om
p

ar
is

on
of

th
e

so
lv

er
s

fo
r

re
al

p
ro

b
le

m
s

-
J
es

te
r

(j
ok

es
ra

ti
n

gs
)

an
d

M
ov

ie
L

en
s

(m
ov

ie
ra

ti
n

g
s)

.
H

er
e
A

co
rr

es
p

o
n

d
s

to
th

e
m

at
ri

x
w

h
ic

h
is

av
ai

la
b

le
(a

ll
ra

n
k
in

gs
th

at
ar

e
st

or
ed

)
an

d
Ω

to
th

e
se

t
of

en
tr

ie
s

th
at

ar
e

u
se

d
fo

r
co

m
p

u
ta

ti
o
n

.
C

o
d

e
e
x
p
e
r
i
m
e
n
t
r
e
a
l
.
m

23

Problem PROPACK IRLBA
name size error time multipl error time multipl

jester-1 24983× 100
#sv=20 7.2e-12 0.80 s 138 1.7e-11 0.85 s 164
#sv=50 9.7e-12 1.29 s 200 1.9e-11 2.63 s 362
#sv=90 1.0e-11 1.30 s 200 1.3e-11 1.67 s 202
MovieLens_small 943× 1682
#sv=1 1.1e-13 0.01 s 20 2.3e-13 0.01 s 18
#sv=5 1.2e-12 0.02 s 50 9.8e-13 0.02 s 50
#sv=10 1.5e-12 0.04 s 68 1.1e-12 0.03 s 78
#sv=20 1.6e-12 0.08 s 130 1.5e-12 0.08 s 164
MovieLens_large 6040× 3706
#sv=1 1.4e-12 0.08 s 20 1.1e-12 0.07 s 18
#sv=5 1.7e-12 0.17 s 44 2.8e-12 0.22 s 56
#sv=10 4.0e-12 0.25 s 62 5.8e-12 0.29 s 72
#sv=20 4.4e-12 0.53 s 120 5.3e-12 0.63 s 146
random sparse 1000× 1000
#sv=1 6.4e-14 0.02 s 66 5.0e-14 0.01 s 66
#sv=3 1.4e-13 0.02 s 72 1.6e-13 0.02 s 88
#sv=10 1.3e-13 0.05 s 152 2.4e-13 0.05 s 234
random sparse 10000× 10000
#sv=10 5.1e-12 2.28 s 358 6.8e-12 2.79 s 528
#sv=30 9.8e-12 1.81 s 324 1.1e-11 1.80 s 280
#sv=100 1.1e-11 33.00 s 1324 1.3e-11 74.94 s 3858
decaying sparse 1000× 1000
#sv=1 1.0e-17 0.01 s 42 6.9e-18 0.01 s 30
#sv=3 2.9e-17 0.02 s 60 6.1e-17 0.01 s 76
#sv=10 7.5e-17 0.04 s 140 6.9e-17 0.04 s 180
decaying sparse 10000× 10000
#sv=10 1.1e-16 1.06 s 182 1.1e-16 1.21 s 228
#sv=30 1.7e-16 2.54 s 344 2.2e-16 3.76 s 574
#sv=100 2.0e-16 16.70 s 872 2.9e-16 29.09 s 1548
abb313 313× 176
#sv=10 4.1e-14 0.03 s 140 3.4e-14 0.01 s 108
#sv=50 8.5e-14 0.11 s 268 2.2e+00 0.05 s 170
#sv=100 7.9e-14 0.10 s 268 1.8e+00 0.17 s 252
west2021 2021× 2021
#sv=10 6.1e-09 0.32 s 304 1.8e-08 0.17 s 552
#sv=50 1.8e-08 0.13 s 202 1.8e-08 0.08 s 134
#sv=100 1.8e-08 0.56 s 402 5.9e-01 0.24 s 258

Table 11: Comparison of two Matlab packages for partial SVD. The first three matrices are
taken from the previous experiment. Next four are low-rank random, of ranks 3, 30, 3, and
30 respectively, with sampling ratio 0.01. Last three are sparse matrices from Matrix Market.
‘#sv’ is number of singular values. ‘Error’ corresponds to the euclidean norm of the difference
between the reference singular values and the computed ones. ‘Time’ is the shortest time of
five identical computations. ‘Multipl’ expresses the number of multiplications of kind ‘y = Ax’
or ‘y = ATx’. Code IRLBA PROPACK.m

24

