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Abstract

Principal component analysis (PCA) is a widely used tool for data analysis and dimension reduction in
applications throughout science and engineering. However, the principal components (PCs) can sometimes
be difficult to interpret, because they are linear combinations of all the original variables. To facilitate
interpretation, sparse PCA produces modified PCs with sparse loadings, i.e. loadings with very few non-
zero elements. In this paper, we propose a new sparse PCA method, namely sparse PCA via regularized SVD
(sPCA-rSVD). We use the connection of PCA with singular value decomposition (SVD) of the data matrix
and extract the PCs through solving a low rank matrix approximation problem. Regularization penalties
are introduced to the corresponding minimization problem to promote sparsity in PC loadings. An efficient
iterative algorithm is proposed for computation. Two tuning parameter selection methods are discussed.
Some theoretical results are established to justify the use of sPCA-rSVD when only the data covariance
matrix is available. In addition, we give a modified definition of variance explained by the sparse PCs.
The sPCA-rSVD provides a uniform treatment of both classical multivariate data and high-dimension-low-
sample-size (HDLSS) data. Further understanding of sPCA-rSVD and some existing alternatives is gained
through simulation studies and real data examples, which suggests that sPCA-rSVD provides competitive
results.
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1. Introduction

Principal component analysis (PCA) has been widely used in many applications as a feature
extraction and dimension reduction tool as well illustrated in Jolliffe [11]. Suppose X is an n × p

data matrix with rank(X) = r , which records p variables on n observations. PCA sequentially
finds unit vectors v1, . . . , vr that maximize the variance of Xv under the constraint that vi+1 is
orthogonal to v1, . . . , vi . Such vectors are called principal component (PC) loadings, and the Xvi’s
are the corresponding PCs. The idea of dimension reduction using PCA is that the first few PCs
might retain most of the variation in the data. Interpretation of PCs is useful, especially when the
variables have physical meanings, for example, in microarray data each variable corresponds to a
specific gene. However, PCs are usually linear combinations of all the original variables and their
loadings are typically non-zero. This often makes it difficult to interpret the PCs without using
subjective judgment, especially when p is large as frequently encountered in modern statistical
applications.

To ease this drawback of PCA, various proposals have been introduced in the literature. Jol-
liffe [10] described several rotation techniques that are helpful for interpreting PCs. Jolliffe and
Uddin [13] proposed SCoT to successively find linear combinations that maximize a criterion
which balances variance and some simplicity measure. Vines [17] considered simple compo-
nents, whose loadings are restricted to only integers such as 0, 1 and −1. Another group of
methods, referred to as sparsePCA methods, aims at finding loading vectors with many zero
components, thus increasing interpretability of PCs by reducing the number of explicitly used
variables. Cadima and Jolliffe [2] described a simple thresholding approach, which artificially
sets regular PC loadings to zero if their absolute values are below a certain threshold. Jolliffe
et al. [12] proposed SCoTLASS, which applies the lasso penalty [16] on the loadings in a PCA op-
timization problem. More recently, Zou et al. [20] reformulated PCA as a regression-type problem,
and proposed SPCA which achieves sparseness by imposing the lasso penalty on the regression
coefficients.

In this paper, we provide a new approach to achieve sparse PCA, making use of the close
connection between PCA and singular value decomposition (SVD) that PCA can be computed
via the SVD of the data matrix X. Without loss of generality, assume the columns of X are
centered. Suppose rank(X) = r and let the SVD of X be

X = UDVT ,

where U = [u1, . . . , ur ], V = [v1, . . . , vr ] and D = diag{d1, . . . , dr}. The columns of U are
orthonormal, so are the columns of V. The singular values are assumed to be ordered so that
d1 �d2 � · · · �dr > 0. Then, the columns of Z = UD are the PCs, and the columns of V are the
corresponding loadings.

To motivate our approach, we need to look at SVD from the viewpoint of low rank approximation
of matrices. For an integer l�r , define

X(l) ≡
l∑

k=1

dkukvT
k .

Then, X(l) is the closest rank-l matrix approximation to X [4]. Here the term “closest” simply
means that X(l) minimizes the squared Frobenius norm between X and an arbitrary rank-l matrix
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X∗, where the Frobenius norm is defined as

‖X − X∗‖2
F = tr{(X − X∗)(X − X∗)T }.

Suppose, for example, we seek the best rank-one matrix approximation of X under the Frobenius
norm. Note that any n × p rank-one matrix can be written as ũ̃vT , where ũ is a norm-1 n-vector
and ṽ is a p-vector. The problem can be formulated as the following optimization problem:

minũ,̃v‖X − ũ̃vT ‖2
F . (1)

Then the low rank approximation property of SVD implies that the solution is

ũ = u1, ṽ = d1v1.

The subsequent pairs (uk, dkvk), k > 1, provide best rank one approximations of the correspond-
ing residual matrices. For example, d2u2vT

2 is the best rank one approximation of X − d1u1vT
1 .

To obtain sparse loadings, we impose regularization penalties on ṽ in the optimization problem
(1), and refer to our approach as sparse PCA via regularized SVD, or sPCA-rSVD for short.
The key of our proposal is the observation that the optimization problem (1) is connected to least
squares regressions. For a fixed ũ, the optimal ṽ is the least squares coefficient vector of regressing
the columns of X on ũ. Introducing sparsity on ṽ in such a context is a familiar variable selection
problem in regression. Thus many existing variable selection techniques using regularization
penalties [16,3,5] are readily applicable.

The benefit of imposing sparsity-inducing penalties on ṽ in the optimization (1) is two-fold.
First, the resulting PC loading vector is made sparse so that those negligible variables will not
appear in the corresponding PC, therefore the PCs obtained are more interpretable. Meanwhile,
since the left-out variables are negligible, the sparse PC won’t suffer much in terms of the variance it
explains. Second, when a covariance matrix has sparse eigenvectors, by using the sparsity-inducing
penalties, sPCA-rSVD is statistically more efficient than the standard PCA in extracting the PCs,
as illustrated using simulated examples in Sections 3.2 and 3.3. This is similar to regression
problems with irrelevant regressors, where variable selection improves statistical efficiency.

We propose an iterative algorithm for computation of sPCA-rSVD. The algorithm only involves
simple linear regression and componentwise thresholding rules; hence it enjoys nice properties
such as easy implementation and efficient computation. We define the degree of sparsity of a PC
as the number of zero components in the corresponding loading vector. The degree of sparsity
naturally serves as the tuning parameter of the method. Two approaches are proposed to select
the “optimal” degree of sparsity, one cross validation approach, and one ad hoc approach that is
useful when the sample size is small or only the data covariance matrix is available. Different
degree of sparsity is allowed for different loading vectors in our framework.

In addition to proposing sPCA-rSVD, we give a new definition of variance explained by the
sparse PCs. This is necessary since for sparse PCA, the loading vectors need not be orthogonal
and the PCs need not be uncorrelated, which makes the conventional definition too optimistic. We
fix the problem of the conventional definition by using the viewpoint of dimension reduction. Our
definition of the variance explained by the sparse PCs can be used to select the tuning parameters
specifying sparsity, or to select the number of important PCs.

In this paper, we also prove that our sPCA-rSVD procedure still applies when only the co-
variance matrix is available, because it depends on the data through the Gram matrix XT X. The
sPCA-rSVD handles both “long” data matrices where n�p and “fat” matrices where n < p or
even n>p in a unified way. Standard PCA in classical multivariate analysis usually deals with
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the “long” data matrices. The “fat” matrices are high-dimension-low-sample-size (HDLSS) data
objects [15]. HDLSS has rapidly become a common feature of data encountered in many diverse
fields such as text categorization, medical imaging and microarray gene expression analysis, and
is outside the domain of classical multivariate analysis.

The rest of the paper is organized as follows. We present the methodological details of our
sPCA-rSVD procedure in Section 2. Section 2.1 gives the optimization criterion that leads to sparse
PCA; Section 2.2 describes an efficient iterative algorithm for computation; Section 2.3 proposes a
modified definition of the variance explained by the sparse PCs; Section 2.4 discusses extraction of
sparse PC loadings when only the covariance matrix of the data is available; Section 2.5 provides
methods for tuning parameter selection. Further understanding of the proposed method, mainly
through simulation studies, is provided in Section 3. Sections 4 and 5 compare the proposed
procedure with SPCA and simple thresholding, respectively. Section 6 illustrates the proposed
method using some real data examples. We end the paper with some discussion in Section 7 and
technical proofs in Appendix A.

2. Sparse PCA via regularized SVD

This section describes in detail our sPCA-rSVD procedure. We focus our presentation on the
procedure extracting the first sparse PC loading vector. Subsequent loading vectors can be obtained
by applying the same procedure to the residual matrices of the sequential matrix approximations.

2.1. A penalized sum-of-squares criterion

Suppose uvT with ‖v‖ = 1 is the best rank-one approximation of the data matrix X. Then
u is the first PC and v is the corresponding loading vector. For a given u, elements of v are the
regression coefficients by regressing the columns of X on u. To achieve sparseness on v, we
propose to employ some regularization penalties in these regressions that promote shrinkage and
sparsity on the regression coefficients.

However, the loading vector v is typically constrained to have unit length to make the rep-
resentation unique. This constraint makes direct application of a penalty on v inappropriate. To
overcome this difficulty, we rewrite uvT = ũ̃vT , where ũ and ṽ are re-scaled versions of u and v
such that ũ has unit length and ṽ is free of any scale constraint, and then perform shrinkage on
ṽ through some regularization penalty. After a sparse ṽ is obtained, we define the corresponding
sparse loading vector as v = ṽ/‖̃v‖.

The precise formulation of our idea is the following. For a given n×p data matrix X, we find an
n-vector ũ with ‖̃u‖ = 1 and a p-vector ṽ that minimize the following penalized sum-of-squares
criterion,

‖X − ũ̃vT ‖2
F + P�(̃v), (2)

where ‖X − ũ̃vT ‖2
F = tr{(X − ũ̃vT )(X − ũ̃vT )T } = ∑n

i=1
∑p

j=1 (xij − ũi ṽj )
2 is the squared

Frobenius norm, P�(̃v) = ∑p

j=1 p�(|ṽj |) is a penalty function and ��0 is a tuning parameter.
Denote the solution of the optimization problem as u∗ and v∗. Then the unit length PC loading
vector is v = v∗/‖v∗‖.

Here, for simplicity, the penalty function remains the same for different components of ṽ. It is a
straightforward extension to allow different components of ṽ to use different penalty functions. We
shall consider the soft thresholding (or L1 or lasso) penalty [16], the hard thresholding penalty [3],
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and the smoothly clipped absolute deviation (SCAD) penalty [5]. Selection of the tuning parameter
� is an important question in practice, and will be addressed later in Section 2.5.

2.2. An iterative algorithm

This subsection provides an iterative algorithm to minimize (2) with respect to ũ and ṽ under the
constraint ‖̃u‖ = 1. First consider the problem of optimizing over ũ for a fixed ṽ. The minimizing
ũ can be obtained according to Lemma A.1.

Lemma 1. For a fixed ṽ, the ũ that minimizes (2) and satisfies ‖̃u‖ = 1 is ũ = Xṽ/‖Xṽ‖.

Next we discuss optimization over ṽ for a fixed ũ. Since P�(̃v) = ∑
j p�(|ṽj |), the minimiza-

tion criterion (2) can be rewritten as

∑
i

∑
j

(xij − ũi ṽj )
2 +

∑
j

p�(|ṽj |) =
∑
j

{∑
i

(xij − ũi ṽj )
2 + p�(|ṽj |)

}
. (3)

Therefore, we can optimize over individual components of ṽ separately. Expanding the squares
and observing that

∑
i ũ2

i = 1, we obtain∑
i

(xij − ũi ṽj )
2 =

∑
i

x2
ij − 2

∑
i

xij ũi ṽj +
∑

i

ũ2
i ṽ

2
j =

∑
i

x2
ij − 2(XT ũ)j ṽj + ṽ2

j .

Hence, the optimal ṽj minimizes ṽ2
j − 2(XT ũ)j ṽj + p�(|ṽj |) and depends on the form of p�(·).

For the three penalties mentioned in Section 2.1, the expression of the optimal ṽj can be obtained
by repeatedly applying Lemma 2. The proof of the lemma is easy and thus omitted.

Lemma 2. Let �̂ be the minimizer of �2 − 2y� + p�(|�|).
1. For the soft thresholding penalty p�(|�|) = 2�|�|,

�̂ = hsoft
� (y) = sign(y)(|y| − �)+;

2. For the hard thresholding penalty p�(|�|) = �2I (|�| �= 0),

�̂ = hhard
� (y) = I (|y| > �)y;

3. For the SCAD penalty

p�(|�|)=2�|�|I (|�|��) − �2 − 2a�|�| + �2

(a − 1)
I (�<|�|�a�) + (a + 1)�2I (|�| > a�),

�̂ = hSCAD
� (y) =

⎧⎪⎪⎨
⎪⎪⎩

sign(y)(|y| − �)+ for |y|�2�;
{(a − 1)y − sign(y)a�}/(a − 2) for 2� < |y|�a�;
y for |y| > a�,

where a > 2 is another tuning parameter. We fix a = 3.7 following the recommendation
in Fan and Li [5].
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According to Lemma 2, the minimizer of (3) is obtained by applying a thresholding rule h� to
the vector XT ũ componentwise. We shall denote ṽ = h�(XT ũ) with the understanding that the
rule h�(·) is applied componentwise.

The above discussion leads to an iterative procedure for minimizing (2).

Algorithm 1. sPCA-rSVD Algorithm
1. Initialize: Apply the standard SVD to X and obtain the best rank-one approximation of X

as su∗v∗T where u∗ and v∗ are unit vectors. Set ṽold = sv∗ and ũold = u∗.
2. Update:

(a) ṽnew = h�(XT ũold);
(b) ũnew = Xṽnew/‖Xṽnew‖.

3. Repeat Step 2 replacing ũold and ṽold by ũnew and ṽnew until convergence.
4. Standardize the final ṽnew as v = ṽnew/‖̃vnew‖, the desired sparse loading vector.

Setting � = 0 in the above algorithm, Step 2a reduces to ṽnew = XT ũold and the algorithm
becomes the well-known alternating least-squares algorithm for calculating SVD [7]. Penalty
functions other than the three discussed above can also be used under the current framework,
where we only need to modify the thresholding rule in Step 2a of Algorithm 1 accordingly. The
computation cost of each iteration of our algorithm is O(np).

The algorithm is developed for fixed �. We could introduce tuning parameter selection in
Step 2a using, for example, the cross validation criterion in Section 2.5. However, we prefer to
use the degree of sparsity of the loading vector as the tuning parameter for two reasons. First, the
interpretation is easy. More importantly, the parameter selection can then be performed outside
the iteration loop, which is a major computational advantage. Note that, in Step 2a, setting the
degree of sparsity to be j (1�j �p−1) is equivalent to setting � ∈ [|XT ũold|(j), |XT ũold|(j+1)

)
,

where |XT ũold|(j) is the jth order statistic of |XT ũold|.
The iterative procedure of the sPCA-rSVD algorithm is defined for one-dimensional vectors

ũ and ṽ, and can be used to obtain the first sparse loading vector v1. Subsequent sparse loading
vectors vi (i > 1) can be obtained sequentially via rank-one approximation of residual matrices.
Our framework allows different degree of sparsity for different vi’s by using different tuning
parameters. However, the orthogonality among the vi’s is lost, a nice property enjoyed by standard
PCA. Several other sparse PCA procedures lose this property as well, which is the price one pays
for easy interpretation of the results.

We want to comment that it is possible to extract the first k PCs together using the best rank-k
approximation formulation of the penalized least squares criterion. Tuning parameter selection
would be much more involved, however. We leave this extension for future research.

2.3. Adjusted variance explained by PCs

In standard PCA, the PCs are uncorrelated and their loadings are orthogonal. These properties
are lost in sparse PCA [10,13,12]. In this subsection we provide a modified definition of the
variance explained by the PCs in response to the loss of these properties. An earlier proposal of
the adjusted variance by Zou et al. [20] successfully takes into account the possible correlation
between the sparse PCs, but the lack of orthogonality of the loadings is not addressed.

Let Vk = [v1, . . . , vk] be the matrix of the first k sparse loading vectors. As in standard
PCA, define the ith PC as ui = Xvi and the variance it accounts for is then defined as ‖ui‖2.
Denote the matrix of the first k PCs as Uk = [u1, . . . , uk]. Standard PCA calculates the total
variance explained by the first k PCs as tr

(
UT

k Uk

) = ∑
i ‖ui‖2. Application of these concepts in
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sparse PCA has two problems. First, the vi’s may not be orthogonal, which means that information
contents of these vi’s may overlap. Second, calculation of the total variance as the sum of individual
variance is too generous if the PCs are correlated. Below we offer a new definition of variance
explained by the PCs from the viewpoint of dimension reduction.

The ith PC ui is the projection of the data matrix onto the ith loading vector vi . When the loading
vectors are not orthogonal, we should not consider separate projection of the data matrix onto
each of the first k loading vectors. Instead, we consider the projection of X onto the k-dimensional
subspace spanned by the k loading vectors as Xk = XVk

(
VT

k Vk

)−1VT
k . We generally define the

total variance explained by the first k PCs as tr
(
XT

k Xk

)
, which can be easily calculated using the

SVD of Xk . If the loading vectors are orthogonal as in the standard PCA, the above definitions
reduce to the conventional definitions: in particular, Xk = UkVT

k , and the total variance explained
simplifies to tr

(
UT

k Uk

)
.

The above discussion suggests that the PC loading vectors might be better named PC basis
vectors. These basis vectors span a sequence of nested subspaces that the data matrix can be
projected onto. The following theorem suggests that the newly defined variance increases as
additional basis vectors are added, and is bounded above by the total variance in the data matrix
X, which is calculated as tr

(
XT X

)
.

Theorem 1. tr
(
XT

k Xk

)
� tr

(
XT

k+1Xk+1
)

� tr
(
XT X

)
.

To deal with the correlation among PCs, in calculating the added variance explained by an
additional PC, the variance accountable by the previous PCs should be adjusted for. Define the
adjusted variance of the kth PC as tr

(
XT

k Xk

) − tr
(
XT

k−1Xk−1
)
. According to Theorem A.1, the

adjusted variance is always non-negative. We also define the cumulative percentage of explained
variance (CPEV) by the first k PCs as tr

(
XT

k Xk

)
/tr

(
XT X

)
. It is valued between 0 and 1 as a

consequence of Theorem A.1. Below in Section 2.5.2, the CPEV is used in an ad hoc procedure
for selecting the degree of PC sparsity. The CPEV can also be used in a screeplot to determine
the number of important PCs.

2.4. Sparse PCs and the sample covariance matrix

This subsection discusses computation of sparse PCA when only the sample covariance matrix
is available. We show that our sparse loading vectors depend on the data matrix X only through
the Gram matrix XT X, and so is the total variance explained by the first k PCs. Since the Gram
matrix is the sample covariance matrix up to a scaling constant, an immediate conclusion of this
subsection is that our sparse PCA is well-defined using only the sample covariance matrix.

Lemma 3. Suppose ũ1 and ṽ1 minimizes (2) with ‖̃u‖ = 1. Then ṽ1 minimizes

− 2‖Xṽ‖ + ‖̃v‖2 + P�(̃v) (4)

and ũ1 = Xṽ1/‖Xṽ1‖.

Lemma 3 suggests that ṽ1 depends on the data matrix X only through XT X, or the corresponding
sample covariance matrix; hence the first sparse loading vector v1 = ṽ1/‖̃v1‖ has the same
property. Theorem 2 shows that the same conclusion holds for the first k loading vectors.
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Theorem 2. The first k sparse loading vectors v1, . . . , vk obtained using the sPCA-rSVD proce-
dure depend on X only through XT X.

The next theorem shows that the variance explained by the first k PCs also depends on X only
through XT X.

Theorem 3. The variance tr
(
XT

k Xk

)
depends on X only through XT X.

Theorems 2 and 3 suggest that the sparse loading vectors and the adjusted variance ex-
plained depend on the data matrix only through its sample covariance matrix. This implies that
our procedure still applies in scenarios where only the sample covariance matrix is available,
as is the case in the pitprops application (Section 6.1). Suppose S is the sample covariance
matrix, one can arbitrarily choose a pseudo-data matrix X such that XT X = nS. A natural
candidate of X is the square-root matrix of nS, which can be obtained via an eigen decompo-
sition of nS. Another choice of X is the triangular matrix from the Cholesky decomposition
of nS.

2.5. Tuning parameter selection

2.5.1. K-fold cross validation (CV)
In the following discussion, we use the degree of sparsity as the tuning parameter.

Algorithm 2. K-fold CV Tuning Parameter Selection
1. Randomly group the rows of X into K roughly equal-sized groups, denoted as X1, . . . , XK ;
2. For each j ∈ {0, 1, 2, . . . , p − 1, p}, do the following:

(a) For k = 1, . . . , K , let X−k be the data matrix X leaving out Xk . Apply Algorithm 1
on X−k to derive the loading vector v−k(j). Then project Xk onto v−k(j) to obtain the
projection coefficients as uk(j) = Xkv−k(j);

(b) Calculate the K-fold CV score defined as

CV(j) =
K∑

k=1

∑nk

i=1

∑p

l=1{xk
il − uk

i (j)v−k
l (j)}2

nkp
, (5)

where nk is the number of rows of Xk , and uk
i and v−k

l are, respectively, the ith and lth
elements of uk and v−k;

3. Select the degree of sparsity as j0 = argminj {CV(j)}.
In practice, K is usually chosen to be 5 or 10 for computational efficiency. The case where

K = n is known as leave-one-out CV, which can be computationally expensive for moderate to
large data. We use K = 5 in our simulation studies.

2.5.2. An ad hoc approach
The CV approach is not suitable when only the sample covariance matrix is available. We

propose here an ad hoc approach to select the tuning parameter as an alternative.
The degrees of sparsity are sequentially selected for the first k sparse loading vectors. Suppose

the tuning parameters for the first k−1 loading vectors are selected and the corresponding loadings
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are v1, . . . , vk−1. The proposed ad hoc procedure for selecting the tuning parameter for the kth
sparse loading vector is as follows:

Algorithm 3. Ad Hoc Tuning Parameter Selection
1. For each j ∈ {0, 1, 2, . . . , p − 1, p},

(a) Derive the kth loading vector vk(j) using Algorithm 1;
(b) Calculate the CPEV by the first k PCs as described in Section 2.3;

2. Plot CPEV as a function of j and select the degree of sparsity j0 as the largest j such that
CPEV does not drop too much (for example, less than 5% or 10%) from its peak value at
j = 0.

Our experience shows that this ad hoc approach works reasonably well. See Sections 3.4 and 6.1
for examples of its application. Obviously application of our ad hoc approach requires experience
and personal judgment, similar to using the screeplot in deciding on the number of important PCs
in standard PCA.

3. Synthetic examples

3.1. Data generation from a sparse PCA model

A straightforward way to evaluate a sparse PCA procedure is to apply it to data whose covariance
matrix actually has sparse eigenvectors. We describe here a general scheme to generate such data.
Suppose we want to generate data from Rp such that the q (q < p) leading eigenvectors of the
covariance matrix � are sparse. Denote the first q eigenvectors as v1, . . . , vq , which are specified
to be sparse and orthonormal. The remaining p − q eigenvectors are not specified to be sparse.
Denote the positive eigenvalues of � in decreasing order as c1, . . . , cp.

We first need to generate the other q − p orthonormal eigenvectors of �. To this end, form a
full-rank matrix V∗ = [v1, . . . , vq, v∗

q+1, . . . , v∗
p], where v1, . . . , vq are the pre-specified sparse

eigenvectors and v∗
q+1, . . . , v∗

p are arbitrary. For example, the vectors v∗
q+1, . . . , v∗

p can be ran-
domly drawn from U(0, 1); if V∗ is not of full-rank for one random draw, we can draw another
set of vectors. Then, we apply the Gram–Schmidt orthogonalization method to V∗ to obtain an
orthogonal matrix V = [v1, . . . , vq, vq+1, . . . , vp], which is actually the matrix Q from the QR
decomposition of V∗. Given the orthogonal matrix V, we form the covariance matrix � using the
following eigen decomposition expression,

� = c1v1vT
1 + c2v2vT

2 + c3v3vT
3 + · · · + cpvpvT

p = VCVT ,

where C = diag{c1, . . . , cp} is the eigenvalue matrix. The first q eigenvectors of � are the pre-
specified sparse vectors v1, . . . , vq . To generate data from the covariance matrix �, let Z be a
random draw from N(0, Ip) and X = VC1/2Z, then cov(X) = �, as desired.

3.2. Comparison of the soft, hard and SCAD thresholding

Example 1. We consider a covariance matrix with two specified sparse leading eigenvectors.
The data are in R10 and generated as X ∼ N(0, �1). Let

ṽ1 = (1, 1, 1, 1, 0, 0, 0, 0, 0.9, 0.9)T , ṽ2 = (0, 0, 0, 0, 1, 1, 1, 1, −0.3, 0.3)T .
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Table 1
(Example 1) Comparison of PCA and sparse PCA methods: median angles between the extracted loading vectors and the
truth, percentages of correctly/incorrectly identified zero loadings

Method v1 v2

Median Correct Incorrect Median Correct Incorrect
angle (%) (%) angle (%) (%)

n = 30
PCA 15.05 0.17 0.00 28.83 0.00 1.00
sPCA-rSVD-soft 10.86 92.50 5.00 17.06 71.25 19.17
sPCA-rSVD-hard 7.50 90.50 6.33 17.14 70.50 19.67
sPCA-rSVD-SCAD 11.39 92.00 5.33 15.78 71.50 19.17
Simple 8.10 90.75 6.17 24.41 66.50 22.33
SPCA (k = 2) 13.71 91.50 5.83 28.94 67.75 21.67
SPCA (k = 1) 28.24 80.25 13.17

n = 300
PCA 4.80 1 0 8.21 0.75 0.00
sPCA-rSVD-soft 2.48 100 0 5.54 98.00 1.50
sPCA-rSVD-hard 2.19 100 0 4.20 98.25 1.17
sPCA-rSVD-SCAD 2.19 100 0 4.54 98.00 1.33
Simple 2.48 100 0 5.88 95.50 3.00
SPCA (k = 2) 4.11 100 0 9.95 97.25 2.17
SPCA (k = 1) 7.71 100 0

The first two eigenvectors of �1 are then chosen to be

v1 = ṽ1/‖̃v1‖ = (0.422, 0.422, 0.422, 0.422, 0, 0, 0, 0, 0.380, 0.380)T ,

v2 = ṽ2/‖̃v2‖ = (0, 0, 0, 0, 0.489, 0.489, 0.489, 0.489, −0.147, 0.147)T ,

both of which have a degree of sparsity of 4. The 10 eigenvalues of �1 are, respectively, 200, 100,
50, 50, 6, 5, 4, 3, 2 and 1. The first two eigenvectors explain about 70% of the total variance.

We simulate 100 data sets of size n = 30 and 300, respectively, with the covariance matrix
being �1. For each simulated data set, the first two sparse loading vectors are calculated using
the sPCA-rSVD procedures with the soft, hard and SCAD thresholding rules; the procedures are
referred as sPCA-rSVD-soft, sPCA-rSVD-hard and sPCA-rSVD-SCAD, respectively. To facilitate
later comparison with simple thresholding and SPCA, for which there is no automatic way of
selecting the degree of sparsity of the PC loading vectors, the true degree of sparsity is used when
applying the sPCA-rSVD procedures (referred to as the oracle methods below).

Table 1 reports the medians of the angles between the extracted loading vectors and the corre-
sponding truth for each procedure, as well as the percentages of correctly/incorrectly identified
zero loadings for the loading vectors. All the sPCA-rSVD procedures appear to perform reason-
ably well and give comparable results. Comparing with standard PCA, sPCA-rSVD results in
smaller median angles, which suggests that sparsity does improve statistical efficiency.

The three sPCA-rSVD procedures have also been applied to the simulated data sets using the
tuning parameters selected by the CV approach. The results are summarized in Table 2. Comparing
with the results in Table 1, we see that the CV methods perform almost as good as the oracle
methods for v1, and slightly worse for v2.
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Table 2
(Example 1) Five-fold CV tuning parameter selection: median angles between the extracted loading vectors and the truth,
percentages of correctly/incorrectly identified zero loadings

Method v1 v2

Median Correct Incorrect Median Correct Incorrect
angle (%) (%) angle (%) (%)

n = 30
sPCA-rSVD-soft 11.91 45.00 2.33 23.28 46.50 12.50
sPCA-rSVD-hard 10.89 62.25 2.33 25.15 52.25 18.17
sPCA-rSVD-SCAD 10.68 45.25 2.50 22.40 43.25 12.83

n = 300
sPCA-rSVD-soft 2.95 69.00 0.00 6.09 44.00 1.17
sPCA-rSVD-hard 2.83 83.25 0.00 7.47 67.50 2.67
sPCA-rSVD-SCAD 2.83 74.75 0.00 5.90 57.25 1.33

Table 3
(Example 2) HDLSS simulation with n = 50 and p = 500: median angles between the extracted loading vectors and the
truth, percentages of correctly/incorrectly identified zero loadings

Method v1 v2

Median Correct Incorrect Median Correct Incorrect
angle (%) (%) angle (%) (%)

PCA 19.69 5.79 0.10 20.39 4.60 0.20
sPCA-rSVD-soft 1.36 99.59 20.00 1.66 99.59 20.00
sPCA-rSVD-hard 1.21 99.59 20.00 1.53 99.59 20.00
sPCA-rSVD-SCAD 1.21 99.59 20.00 1.53 99.59 20.00
sPCA-rSVD-soft-CV 1.82 98.97 12.20 1.95 98.89 13.00
sPCA-rSVD-hard-CV 1.98 98.98 11.70 2.14 98.95 11.40
sPCA-rSVD-SCAD-CV 2.05 98.85 10.30 1.85 98.88 11.90
SPCA (k = 2) 4.95 99.63 18.00 6.21 99.63 18.00
SPCA (k = 1) 44.21 99.43 28.00

3.3. High-dimension-low-sample-size (HDLSS) settings

Example 2. The data are in Rp with p = 500 and generated as X ∼ N(0, �2). Let ṽ1 and ṽ2 be
two 500-dimensional vectors such that ṽ1k = 1, k = 1, . . . , 10, and ṽ1k = 0, k = 11, . . . , 500;
and ṽ2k = 0, k = 1, . . . , 10, ṽ2k = 1, k = 11, . . . , 20, and ṽ2k = 0, k = 21, . . . , 500. The
first two eigenvectors of �2 are chosen to be v1 = ṽ1/‖̃v1‖ and v2 = ṽ2/‖̃v2‖. To make these
two eigenvectors dominate, we let the eigenvalues be c1 = 400, c2 = 300 and ck = 1 for
k = 3, . . . , 500. The simulation scheme of Section 3.1 is used to generate data.

We simulate 100 data sets of size n = 50 with �2 being the covariance matrix. The sPCA-rSVD-
soft/hard/SCAD procedures are applied to these HDLSS data sets with the degree of sparsity being
specified as the truth (the oracle method) or by the five-fold CV. The results are summarized in
Table 3. The three thresholding rules have comparable performance. The sPCA-rSVD procedures
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Table 4
(Example 3) Comparison of PCA and sPCA-rSVD-hard

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 CPEV

PC1 PCA −0.100 −0.100 −0.100 −0.099 0.400 0.400 0.400 0.400 0.400 0.401 60.3
sPCA-rSVD-hard 0 0 0 0 0.415 0.415 0.415 0.414 0.395 0.395 59.3

PC2 PCA 0.482 0.482 0.482 0.482 0.132 0.131 0.131 0.132 −0.023 −0.022 99.7
sPCA-rSVD-hard 0.5 0.5 0.5 0.5 0 0 0 0 0 0 98.5

with five-fold CV give almost as good results as with the oracle method. The effectiveness of in-
troducing sparsity is apparent in improving statistical efficiency of extracting the PCs as evidenced
in direct comparison with standard PCA.

3.4. An ad hoc approach to sparsity degree selection

We use the synthetic example in Zou et al. [20] to illustrate our ad hoc approach to sparsity
degree selection.

Example 3. Ten variables are generated as follows:

Xi = Vj + �i , �i ∼ N(0, 1), i = 1, . . . , 10,

with j = 1 for i = 1, . . . , 4, j = 2 for i = 5, . . . , 8, j = 3 for i = 9, 10, and the three hidden
factors V1, V2 and V3 are created as:

V1 ∼ N(0, 290), V2 ∼ N(0, 300), V3 = −0.3V1 + 0.925V2 + �, � ∼ N(0, 300).

The �’s and the V’s are independent. We sample 5000 data points from the ten-dimensional
distribution, instead of using the exact covariance matrix as done by Zou et al. [20]. Note that in
this example the true covariance matrix does not have sparse loading vectors (Table 4). Sparse
PCA extracts some sparse basis vectors to best approximate the original data.

There are essentially two underlying factors, V1 and V2, that are nearly equally important.
Standard PCA suggests that the first two PCs explain about 99.7% of the total variance (Table 4).
Zou et al. [20] argued that the number of zero elements should be 6 for both loading vectors;
however, the first two sparse PCs then only explain about 80.3% of the variance. Under this
specification, our procedure generates similar results as SPCA (not shown).

We now use the ad hoc approach (Section 2.5.2) along with sPCA-rSVD-hard to select the
“optimal” degree of sparsity. Fig. 1 plots the CPEV as a function of the degree of sparsity for
the first two PCs, which suggests that the degree of sparsity is 4 and 6, respectively, different
from the suggestion of Zou et al. The two leading sparse PCs explain about 98.5% of the total
variance, slightly less than the corresponding 99.7% obtained by the standard PCA. The extracted
PC loadings are reported in Table 4. According to Fig. 1, it is perceivable to argue that the
sparsity for PC2 is 4 as well, thus increasing the CPEV to 99.6%, almost the same as the standard
PCA.
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Fig. 1. (Example 3) Plot of CPEV as functions of sparsity. The degrees of sparsity of the two loadings are suggested to be
4 and 6, respectively.

4. sPCA-rSVD-soft vs. SPCA

This section provides some remarks on two sparse PCA methods: our sPCA-rSVD-soft and
SPCA of Zou et al. [20]. Both approaches relate PCA to regression problems, and then employ a
lasso (L1) penalty to produce sparsity, as well as some iterative algorithm for computation.

Despite these similarities, there are major differences between the two approaches. First of all,
they solve different optimization problems. As we discussed in Section 2.3, to get the first loading
vector, sPCA-rSVD solves

min
ṽ

{−2‖Xṽ‖ + ‖̃v‖2 + �|̃v|1},

while the same argument yields that SPCA solves

min
ṽ

{−2‖XT Xṽ‖ + ‖Xṽ‖2 + �‖̃v‖2 + �1 |̃v|1}.

The objective functions of the two optimization problems are different.
The difference in computational algorithm is also significant. Operationally, SPCA solves the

following optimization problem:

(Â, B̂) = argmin
A,B

n∑
i=1

‖xi − ABT xi‖2 + �
k∑

j=1

‖�j‖2 +
k∑

j=1

�1,j‖�j‖1

s.t. AT A = Ik×k,

where A = [�1, . . . , �k] and B = [�1, . . . , �k] with k being the number of PCs to be extracted.
This problem can be solved by alternating optimization over A and B. For a fixed A, the optimal
B is obtained by solving the following elastic net problem [19],

�̂j = argmin
�j

‖Y ∗
j − X�j‖2 + �‖�j‖2 + �1,j‖�j‖1,

where Y ∗
j = X�j . This problem can be solved using the LARS-EN algorithm. For a fixed B, the

optimal A can be obtained by minimizing
∑n

i=1 ‖xi − ABT xi‖2 = ‖X − XBAT ‖2, subject to
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Table 5
Computing time (in s) for Example 1 with 100 simulated data sets

sPCA-rSVD-soft sPCA-rSVD-hard sPCA-rSVD-SCAD SPCA (k = 1) SPCA (k = 2)

n = 30 1.36 1.06 1.75 13.00 142.50
n = 300 1.77 1.61 1.85 10.32 60.40

AT A = Ik×k . This is a Procrustes problem, and the solution is provided by considering the SVD,
XT XB = UDVT , and setting Â = UVT . Zou et al. [20] also developed the gene expression arrays
SPCA algorithm to boost the computation for p?n data.

The iterative algorithm in sPCA-rSVD-soft involves somewhat simpler building blocks, in-
cluding simple linear regression and componentwise thresholding rules. This simplicity makes
sPCA-rSVD-soft much easier to implement. The sPCA-rSVD-soft is also computationally less
expensive since there is no need to perform an SVD in each iteration (Table 5). The sPCA-rSVD
procedure treats both n > p and p?n cases in a unified manner.

We now discuss some numerical comparison of SPCA and sPCA-rSVD-soft. Both procedures
are applied to the simulated data sets in Examples 1 and 2. Since SPCA does not have an au-
tomatic procedure for tuning parameter selection, we let the number of zero loadings equal to
its true value for each loading vector. SPCA is implemented with k = 1 and 2, respectively,
and generates different results (Tables 1 and 3). The sPCA-rSVD-soft does a better job than
SPCA, especially the SPCA with k = 1. From boxplots of the estimated loadings (not shown
here), we also observe that SPCA results in larger bias and variance when estimating the non-
zero loadings. It is not well understood why the performance of SPCA appears to be sensitive
to the choice of k. The sPCA-rSVD-soft does not have this problem since the PCs are extracted
sequentially.

To get some idea of the computing cost of various sparse PCA procedures, Table 5 reports the
CPU time used in producing the results in Example 1. The sPCA-rSVD seems to be computa-
tionally more efficient than SPCA. The fact that SPCA takes longer time to run for n = 30 than
n = 300 is due to more iterations needed for algorithm convergence.

5. sPCA-rSVD-hard vs. simple thresholding

Simple thresholding is an ad hoc approach that sets zero the loadings whose absolute val-
ues below a certain threshold. Although frequently used in practice, simple thresholding can
be potentially misleading in several aspects [2]. Our sPCA-rSVD-hard procedure also sets zero
the loadings with small absolute values via the hard thresholding rule. In spite of its similarity
to simple thresholding, sPCA-rSVD-hard works very well in simulated examples (Sections 3.2
and 3.3), and does not have the shortcomings of the simple thresholding discussed by Cadima
and Jolliffe [2]. According to Table 1, while the performance of estimating v1 is comparable,
sPCA-rSVD-hard improves over the simple thresholding for v2.

We think the difference is due to the way the thresholding is applied: sPCA-rSVD-hard applies
hard thresholding on the loading vectors sequentially in an iterative manner; while simple thresh-
olding extracts all the loadings first before applying hard thresholding. Therefore, the sparsity of
the earlier PCs is not taken into account by simple thresholding when estimating the latter ones.
Such a problem is avoided in sPCA-rSVD-hard. Moreover, the sequential extraction allows sPCA-
rSVD-hard to take into account the relationship between the variables, while simple thresholding
fails to do so.
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Table 6
(Example 3) Illustration of the instability of simple thresholding

Simple sPCA-rSVD-hard

X1 0 0 0 0 0 0
X2 0 0 0 0 0 0
X3 0 0 0 0 0 0
X4 0 0 0 0 0 0
X5 0 0.494 0.491 0 0.499 0.5
X6 0.500 0 0 0 0.500 0.5
X7 0.499 0 0 0.499 0.500 0.5
X8 0 0.493 0.491 0.500 0.500 0.5
X9 0.500 0.506 0.508 0.500 0 0
X10 0.501 0.507 0.509 0.501 0 0

The first loading vector is extracted to have 6 zero components.

We now use Example 3 in Section 3.4 to further understand the difference. In the course of
following Zou et al.’s suggestion to extract the first loading vector with 6 zero components,
one shortcoming of simple thresholding is identified: its instability as a result of high correla-
tion among the original variables. As we change random seed and simulate a new data matrix,
the selection changes dramatically among X5–X10. These variables are highly correlated due
to the high correlation between the underlying factors V2 and V3. Table 6 presents the load-
ings for five simulated data sets, and one can see the instability of simple thresholding clearly.
For example, for the first data set, simple thresholding leaves out X5 and X8 while including
X9 and X10. The result is rather misleading because X5–X8 are essentially the same, which
should appear together. On the other hand, sPCA-rSVD-hard always selects these four vari-
ables, and the loadings remain very stable among the simulations. Table 6 also reports the av-
erage loading vector produced by sPCA-rSVD-hard, which is the same as the one obtained by
SPCA.

6. Real examples

6.1. Pitprops data

Jeffers [9] used the pitprops data to illustrate the difficulty of interpreting PCs, which have 180
observations and 13 variables. The correlation matrix of the pitprops data has been used repeatedly
in the literature to illustrate various sparse PCA methods [12,20]. Following the literature, below
we apply our sPCA-rSVD approaches to the pitprops data to extract the first six sparse PC loading
vectors.

Since the data matrix is a correlation matrix, we apply our procedure to its square-root matrix as
justified by the discussion in Section 2.4. The ad hoc parameter selection procedure in Section 2.5.2
is used to select the tuning parameters. Below we present the result from sPCA-rSVD-soft. The
CPEV selection plot is in Fig. 2, with the subjectively selected degree of sparsity marked for
each PC, which are 6, 11, 9, 6, 11 and 10, respectively. Table 7 reports the loading vectors
by PCA and sparse PCA. The loadings from sPCA-rSVD-soft are much more sparse than the
regular loadings, yet still account for nearly the same amount of variance (84.5% vs. 87.0%).
See Zou et al. [20] for sparse PC loadings obtained by simple thresholding, SCoTLASS and
SPCA.
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Fig. 2. (Pitprops data) CPEV plot for sPCA-rSVD-soft with selected degrees of sparsity marked.

Table 7
(Pitprops data) Loadings of the first six PCs by PCA and sPCA-rSVD-soft

Variable PCA sPCA-rSVD-soft

PC1 PC2 PC3 PC4 PC5 PC6 PC1 PC2 PC3 PC4 PC5 PC6

x1 −0.404 0.218 −0.207 0.091 −0.083 0.120 −0.449 0 0 −0.114 0 0
x2 −0.406 0.186 −0.235 0.103 −0.113 0.163 −0.460 0 0 −0.102 0 0
x3 −0.124 0.541 0.141 −0.078 0.350 −0.276 0 −0.707 0 0 0 0
x4 −0.173 0.456 0.352 −0.055 0.356 −0.054 0 −0.707 0 0 0 0
x5 −0.057 −0.170 0.481 −0.049 0.176 0.626 0 0 0.550 0 0 −0.744
x6 −0.284 −0.014 0.475 0.063 −0.316 0.052 −0.199 0 0.546 −0.176 0 0
x7 −0.400 −0.190 0.253 0.065 −0.215 0.003 −0.399 0 0.366 0 0 0
x8 −0.294 −0.189 −0.243 −0.286 0.185 −0.055 −0.279 0 0 0.422 0 0
x9 −0.357 0.017 −0.208 −0.097 −0.106 0.034 −0.380 0 0 0 0 0
x10 −0.379 −0.248 −0.119 0.205 0.156 −0.173 −0.407 0 0 0.283 0.231 0
x11 0.011 0.205 −0.070 −0.804 −0.343 0.175 0 0 0 0 −0.973 0
x12 0.115 0.343 0.092 0.301 −0.600 −0.170 0 0 0 −0.785 0 0.161
x13 0.113 0.309 −0.326 0.303 0.080 0.626 0 0 −0.515 −0.265 0 −0.648

Sparsity 0 0 0 0 0 0 6 11 9 6 11 10
CPEV 32.5 50.7 65.2 73.7 80.7 87.0 30.6 45.0 59.0 70.0 78.5 84.5

The degrees of sparsity of PCs are selected according to Fig. 2.

6.2. NCI60 cell line data

Microarray gene expression data are usually HDLSS data, where the expression levels of
thousands of genes are measured simultaneously over a small number of samples. The problem
of gene selection is of great interest to identify subsets of “intrinsic” or “disease” genes which are
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Fig. 3. (NCI60 data) Plot of PEV as a function of number of non-zero loadings for the first PC.

biologically relevant to certain outcomes, such as cancer types, and to use the subsets for further
studies, such as to classify cancer types. Several gene selection methods in the literature build
upon PCA (or SVD), such as gene-shaving [8] and meta-genes [18].

We use sparse PCA as a gene selection method and investigate the performance of various sparse
PCA methods using the NCI60 cell line data, available athttp://discoer.nci.nih.gov/,
where measurements were made using two platforms, cDNA and Affy. There are 60 common
biological samples measured on each of the two platforms with 2267 common genes. Benito et al.
[1] proposed to use DWD [15] as a systematic bias adjustment method to eliminate the platform
effect of the NCI60 data. Thus, the processed data have p = 2267 genes and n = 120 samples.
The first PC explains about 21% of the total variance.

We apply our sPCA-rSVD procedures on the processed data to extract the first sparse PC. Fig. 3
plots the percentage of explained variance (PEV) as a function of number of non-zero loadings.
As one can see, the PEV curves for sPCA-rSVD-soft/SCAD are very similar, both of which are
consistently below the curve for sPCA-rSVD-hard. This suggests that, using the same number
of genes, the sparse PC from sPCA-rSVD-hard always explains more variance. According to
the sPCA-rSVD-hard curve, using as few as 200 to 300 genes, the sparse PC can account for
17–18% of the total variance. Compared with the 21%, explained by the standard PC, the cost is
affordable. Simple thresholding and SPCA are also applied to this data set, and their PEV curves
are similar to the sPCA-rSVD-hard/soft curves, respectively. Note that such similarities may not
hold in general as shown in previous sections.

7. Discussion

Zou et al. [20] remarked that a good sparse PCA method should (at least) possess the following
properties: without any sparsity constraint, the method reduces to PCA; it is computationally
efficient for both small p and large p data; it avoids misidentifying important variables. We have
developed a new sparse PCA procedure based on regularized SVD that have all these properties.
Moreover, our procedure is statistically more efficient than standard PCA if the data are actu-
ally from a sparse PCA model (Tables 1 and 3). Our general framework allows using different
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penalties. In addition to the soft/hard thresholding and SCAD penalties that we have consid-
ered, one can apply the Bridge penalty [6] or the hybrid penalty that combines the L0 and L1
penalties [14].

When the soft thresholding penalty is used, our procedure has similarities to the SPCA of Zou
et al. [20]. On the other hand, as we have shown in Section 4, the two approaches exhibit major
differences. It appears that our sPCA-rSVD procedure is more efficient, both statistically and
computationally. One attractive feature of the sPCA-rSVD procedure is its simplicity. It can be
viewed as a simple modification—adding a thresholding step—of the alternating least squares
algorithm for computing SVD. There is no need to apply the sophisticated LARS-EN algorithm
and solve a Procrustes problem during each iteration.

When the hard thresholding penalty is used, our procedure has similarities to the often-used sim-
ple thresholding approach. Our procedure can be roughly described as “iterative componentwise
simple thresholding.” It shares the simplicity of the simple thresholding; furthermore, through iter-
ation and sequential PC extraction, it avoids misidentification of “underlying” important variables
possibly masked by high correlation, a serious drawback of simple thresholding.

Appendix A.

Lemma A.1. Let ṽ′ = ṽ/‖̃v‖ and Ṽ = [̃v′; ṽ⊥] be a p × p orthogonal matrix. Then we have

‖X − ũ̃vT ‖2
F = ‖XṼ − ũ̃vT Ṽ‖2

F = ‖[Xṽ′; Xṽ⊥] − [̃u‖̃v‖; 0]‖2
F

= ‖Xṽ′ − ũ‖̃v‖‖2 + ‖Xṽ⊥‖2
F

= ‖̃v‖2‖Xṽ/‖̃v‖2 − ũ‖2 + ‖Xṽ⊥‖2
F .

Thus, for a fixed ṽ, minimization of (2) reduces to minimization of ‖Xṽ/‖̃v‖2 − ũ‖2. On the
other hand, we have that minũ:‖̃u‖=1 ‖� − ũ‖ is solved by ũ = �/‖�‖. In fact, ‖� − ũ‖2 =
‖�‖2 +1−2〈�, ũ〉, since ‖̃u‖ = 1. By the Cauchy–Schwarz inequality, 〈�, ũ〉�‖�‖, with equality
if and only if ũ = c �. Hence, ‖̃u‖ = 1 implies that c = 1/‖�‖. Combining all these, we obtain
Lemma A.1.

Theorem A.1. Let Hk = Vk

(
VT

k Vk

)−1
VT

k and denote the ith row of X as xT
i . The projection

of xi onto the linear space spanned by the first k sparse PCs is Hkxi . It is easily seen that
tr

(
XT

k Xk

) = ∑n
i=1 ‖Hkxi‖2 and tr

(
XT X

) = ∑n
i=1 ‖xi‖2. Since ‖Hkxi‖�‖Hk+1xi‖�‖xi‖,

the desired result follows.

Lemma A.2. Simple calculation yields

‖X − ũ̃vT ‖2
F = tr(XXT ) − 2̃vT XT ũ + ‖̃u‖2‖̃v‖2.

Thus, minimization of (2) is equivalent to minimization of

− 2̃vT XT ũ + ‖̃u‖2‖̃v‖2 + P�(̃v). (6)

According to Lemma A.1, for a fixed ṽ, the minimizer of (6) is ũ = Xṽ/‖Xṽ‖, which in turn
suggests that minimizing (6) is equivalent to minimizing −2‖Xṽ‖ + ‖̃v‖2 + P�(̃v).

Theorem A.2. According to our procedure, ṽ1 is the minimizer of (6) and ũ1 = Xṽ1/‖Xṽ1‖.
Lemma A.2 shows that ṽ1 depends on X only through XT X. Our procedure derives the sparse
loading vectors sequentially. Form the residual matrix X1 = X − ũ1̃vT

1 = X
(
I − ṽ1̃vT

1 /‖Xṽ1‖
)
.
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The second sparse loading vector ṽ2 is the minimizer of (6) with X replaced by X1.Thus, ṽ2 depends
on X1 only through XT

1 X1 = (
I − ṽ1̃vT

1 /‖Xṽ1‖
)

XT X
(
I − ṽ1̃vT

1 /‖Xṽ1‖
)
, which implies that ṽ2

depends on X only through XT X. Moreover,

ũ2 = X1̃v2/‖X1̃v2‖ = X
(
I − ṽ1̃vT

1 /‖Xṽ1‖
)

ṽ2/‖X1̃v2‖.
By induction, we can show that the residual matrix Xk−1 of the first k − 1 PCs is

Xk−1 = X
k−1∏
i=1

(
I − ṽi ṽT

i /‖Xi−1̃vi‖
)

,

where X0 ≡ X. Furthermore, ṽk depends on X only through XT X, and

ũk = Xk−1̃vk/‖Xk−1̃vk‖ = X
k−1∏
i=1

(
I − ṽi ṽT

i /‖Xi−1̃vi‖
)

ṽk/‖Xk−1̃vk‖.

As a result, v1, . . . , vk depend on X only through XT X.

Theorem A.3. Let Vk = [v1, . . . , vk] be the loading matrix of the first k loading vectors. Then,

as discussed in Section 2.3, the corresponding projection is Xk = XVk

(
VT

k Vk

)−1
VT

k ≡ XHk .
It follows that

tr
(

XT
k Xk

)
= tr

(
XkXT

k

)
= tr

(
XH2

kXT
)

= tr
(

XT XHk

)
.

According to Theorem A.2, Hk depends on X only through XT X, so does tr
(
XT

k Xk

)
.
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