

DU-05162-001_v04

DOCUMENT CHANGE HISTORY

Version | Date Authors Description of Change
01 August 26, 2010 SS, RG, AL, Initial release.
RP, VS

02 October 29, 2010 | SS, VS Corrected path (note the additional 3.2)
specified in section entitled, “Running the
Compute Visual Profiler”.

03 March 05, 2011 SR, SS Added Kernel Analysis feature.
Updated current features to incorporate new
Ul.

04 May 3, 2011 SS, SR, VS Added the command line profile document,

“Compute_Profiler.txt” to this User Guide as
a separate chapter entitled, “Command Line
Profiler”.
Note: Compute_Profiler.txt will not be
supported as a separate document.

o Added description of the new analysis
feature under a separate chapter entitled,
“Compute Application Analysis™.

Compute Visual Profiler

DU-05162-001_v04 | ii

()Y Y VA 1= 1

(CT=] 0 ST = g =T P 1
INStallation and SETUP ...ovviiiii ettt e, 2
LT L 2
T 2

1Y = T2 2
Running the Compute Visual Profiler...........oooimiii e 2
WINOOWS . . ettt et e et ettt e 2
] 3
1= Lo 1T 3

S T 0 3
CUDA™ and OpenCL™ SUPPOIteeeeee e 4
Compute Visual Profiler Files and Settings.iiiiiiiiiiii i eeeeeeeeeeeees 5
Compute Visual Profiler USAgecoueiiei et eaaas 7
Graphical User Interface (GUI) ata GlanCeoovvviiiiiiiiiiiii e 7
SeSSION Frame (Lett) 9
Workspace Frame (RIGNT) ... e 9
OULPUL Frame (BOTLOM) ..ottt ettt e e e e eeeeeee e e eaaaas 13
EXPIOring @ Saved ProJECT e et 14
Creating a NeW ProJeCT. ...ttt eeeeeeennnnnas 15
Compute Visual Profiler Graphical User Interface (GUI)ocoiieieenainnnn. 16
=TT = o T I = P 16
Bl e e 17
New Project Dialog BOXt e et e 18
B2 [0 18
RS2 0] Y= 1 0 19
SESSION TAD . et 20
Profiler Counters Tab ... 21

(0 1 a1 @] o) 1 o 1T I o 22
VBV L ettt ettt et eaaaaaaaas 23
SUMMaArY Table ... 24
Kernel Table ... et e 25
MEMCOPY TabIE. .. e 25

GPU Time Summary plotot 25

GPU Time Height plot ...t e e 25

GPU Time Width plot. ..ot e e 25
CompParisOn PlOt. s 26

] 1 0 < 26

Compute Visual Profiler DU-05162-001_v04 | iii

Options->Session View Settings Dialog BOXovviiiiiiiiiiiiiiiiiiiiiiiieaen 27

Profiler Table Tabh ..o e 28
Summary Table Tab ... et 29
SUMMANY PlOt Tab .. e eeeeas 30

Height Plot Tab e 30

LAY o 1 (o 1= o 31
Default View Settings Dialog BOXcovveiiiiieiii e 32
LT T [32
= 1 33
7= U 1 To] o = U 34

e LT K oTo] [o | €1 ¢ 11] o 1 34
Profile TOOIDar GrOUP. ...t e nees 34
TSR (o] g T oY] Lo T €1 o 11 o 34
View Options TOOIDAr GrOUPt e e e e e e eaneees 35
Compute Application ANalysSIS ..o 36
Context Level ANAlYSISottt 37
Kernel Level ANalYSiS ettt 38
Limiting Factor Identification Tab........ ..o 38
Instruction Throughput Analysis Tabcoeriii e eeeee 39
Memory Throughput Analysis Tab ... e 40
OCCUPANCY ANAIYSIS ..ttt ettt ettt e e et e e e e e e e e e e aaaaananannn 41
SESSION LEVEI ANAIYSIS ...ttt ettt ettt et 42
DEVICE LeVel ANaAlYSIS ... e 43
Compute Visual Profiler Tables ... 44
Profiler OULPUL Table.....ooo ettt eeaanneees 44
Profiler Table Context Sensitive MenUcoooiiiiiiiii e 46
SUMMANY TablE ettt et 46
Compute Visual Profiler PIOtS ... e 47
GPU Time SUumMmary PIOT ... e e 48
Device Level Summary PlOt. i et eeeaaas 49
Session Level SUMmMary PIOt ... e 50
GPU Time Helght Plot ... et naas 51
GPU Time Width POt ...ttt e eaeeaeeaeas 52
Profiler Counter Bar PlOt. ... oo 53
Profiler Output Table Column Bar PIOt ... 53
Comparison SUMMary PlOt s 54
L0101 7N o I - T 57
Compute Visual Profiler COUNters ... e 59
Interpreting CouNter ValUES ... et aees 59
Profiler Counters for a Single Multiprocessor (SM)cvviiiiiiii i, 60

Compute Visual Profiler DU-05162-001_v04 | iv

Profiler counters for all multiprocessors in @ TPCo i 60

NOrMaliZed COUNTEE VAIUES ...ttt et e ettt e e e e e e e e e e e e 61
o) {1 L= SO0 11 g} 1= 62
Supported Derived StatiStiCS. . .ouur i 69
CommaNd LINE Profiler ... e et ea e eneenn 75
Command Line Profiler CONTIOl et e e e e e e aeeans 75
Command Line Profiler Configurationcoiiiiiiiiii et 76
Command Line Profiler OptionScoiie e ee e 76
Command Line Profiler COUNTEIS ...ttt ettt et ettt ae e eaaaeanans 79
Command Line Profiler OULPUL ... eaeeeaaaees 82

Compute Visual Profiler DU-05162-001_v04 | v

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24:
Figure 25:
Figure 26:
Figure 27:

WEICOME SCIEEN ...t aeaas 3
Compute Visual Profiler GUI ... e 8
Session Properties- Project Relatedcovviiiiiiiii i 10
Session Properties- COUNTENSt e eaneees 11
Session Properties- Selected OpLioNnsoevviiiiiiiiiiii i 12
Displaying Tables and Plots for a Saved Project.........c..coovvviiiiiiiiinn... 14
Compute Visual Profiler Menu Bar and Toolbar.........ccccovviiiiiiiiiinnn.... 16
File PUl DOWN MENU ...t et e eneees 17
File->New Project Dialog BOX.......ueeiieeiiiiiiiiiii e 18
Session PUll DOWN MENU ...t eneees 18
Session->Session settings->Session (tab)cccoviiiiiiiiiii i 19
Session->Session settings->Profiler Counters (tab) ..., 21
Session->Session settings->Other Options (tab)cccoviiiiiiiiiiiiin... 22
VIeW PUIl DOWN MENU ...ttt et ettt aaeeeeees 23
Options PUll DOWN MENUt eeee e 26
Options->Session View Settings Dialogovvviiiiiiiiiiiiiiiiiciiiieiiiaaan 27
Options->Session View Settings->Profiler Table Tab..............ccoooonie.L. 28
Options->Session View Settings->Summary Table Tab.......................... 29
Height PIOt OPLIONS ... e e e e e enee e 30
Width POt OptioNsS ...t e e eeeeeeennanas 31
Window PUll DOWN MENU ... et ea s 32
Help PUll DOWN MENU ...\ e et et et e e e e annee e 33
JLIC0 0] | o T= Ll [] 0 3 34
Context Level ANAlYSiSueiii e e 37
Limiting Factor Identification tab............oooiiiiiiiii e 38
Instruction Throughput Analysis tab ... 39
Memory Throughput ANalysisccoeiiiiiiii e eeean 40

Compute Visual Profiler DU-05162-001_v04 | vi

Figure 28:
Figure 29:
Figure 30:
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.

Kernel Occupancy ANalysSiScoeeiieiiiiiii e 41
Session Level ANalySiSo e 42
Device Level ANalysSis ... e 43
SUMMANY PIOT ..o et 48
Device Level Summary PIOt ... e 49
Session Level Summary PIOt ... 50
GPU Time Height Plot. ... 51
GPU Time Width Plot ... e 52
Profiler Counter PIOT. 53
Profiler Output Column PIOT ..o e 53
SBIECTE DBVICE . . . ettt ettt e 54
Select Column Screen for Comparison Summary Plotoo.... 55
Comparison SUMMary PIOt ... 56

(O 1 AN 2N = I N 7= U < 57

Compute Visual Profiler DU-05162-001_v04 | vii

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

NVIDIA® CUDA™ and OpenCL™ Terminologyccceeeueeieieieaaanannnn. 5

Profiler OUtpUt Tableoooiii e ceeeeea 44
Kernel Options COIUMNS ... e e 45
memcopy Options COIUMNS 45
SUMMaANY Table .o e 46
Profiler COUNTEYS e e e aneee s 63
Supported Derived STatiStiCS.ueer e 70
Command Line Profiler Optionscooiiiiiiii e 77
Command Line Profiler COUNtErsSooeiiiiiii i 79

Compute Visual Profiler DU-05162-001_v04 | viii

OVERVIEW

This document is intended for users of Compute Visual Profiler for NVIDIA® CUDA™
technology. Compute Visual Profiler is a graphical user interface based profiling tool
that can be used to measure performance and find potential opportunities for
optimization in order to achieve maximum performance from NVIDIA® GPUs.

Compute Visual Profiler provides metrics in the form of plots and counter values
presented in tables and as graphs. It tracks events with hardware counters on signals in
the chip; this is explained in detail in the chapter entitled, “Compute Visual Profiler
Counters.” This document should be used in conjunction with the CUDA C Programming
Best Practices Guide from NVIDIA.

Note that in CUDA version 3.1 onwards, NVIDIA’s CUDA Visual Profiler and OpenCL
Visual Profiler have been integrated into a single application called-Compute Visual
Profiler.

Compute Visual Profiler 4.0 provides a new analysis feature that provides performance
analysis of the application based on the profiling data. The feature also provides various
optimization hints to improve application performance. This is described in further
detail in the section entitled, “Compute Application Analysis”.

GETTING STARTED

In order to run Compute Visual Profiler you need the following:

» CUDA compatible NVIDIA graphics card
» NVIDIA CUDA Toolkit, and
» NVIDIA Display Driver (latest version)

Refer to the Getting Started Guide for your operating system for help with installation.

Compute Visual Profiler DU-05162-001_v04 | 1

Overview

Installation and Setup

Windows

If you do not have Microsoft Visual C++ 2008 or Microsoft Visual C++ 2008
Redistributable Package installed you will need to install the Microsoft Visual C++ 2008
Redistributable Package by running vcredist_x86.exe available under the
"<CudaToolkitDir>\computeprof\bin" directory.

Note that if the correct versions of Microsoft Visual C++ DLLs are not available when
you run Compute Visual Profiler, the following error is displayed:

Application failed to start because side-by-side configuration is
incorrect.

Linux

The installation is part of the CUDA toolkit installation. The files are installed under
"<CudaToolkitDir>/computeprof" where <CudaToolkitDir> is the directory
under which the CUDA Toolkit is installed.

Setup LD_LIBRARY PATH to include the ComputeVisualProfiler bin directory:
> export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<CudaToolkitDir>/computeprof/bin

MacOS X

The installation is part of the CUDA toolkit installation. The files are installed under
"<CudaToolkitDir>\computeprof" where <CudaToolkitDir> is the directory
under which the CUDA Toolkit is installed.

Running the Compute Visual Profiler

Windows

To run the Compute Visual Profiler, go to:

Start—>All Programs—>NVIDIA Corporation—>CUDA Toolkit—>3.2->Compute Visual Profiler

Sample pre-run projects and online help are available as follows:

» Directory containing sample Compute Visual Profiler projects:
<CudaToolkitDir>\computeprof\projects

» Directory containing files for online help and user documentation:
<CudaToolkitDir>\computeprof\doc

Compute Visual Profiler DU-05162-001_v04 | 2

Overview

Linux
><CudaToolkitDir>/computeprof/bin/computeprof &

MacOS X

From Finder run:
"<CudaToolkitDir>\computeprof\computeprof.app"

Xterm

From Terminal run:
"<CudaToolkitDir>\computeprof\computeprof.app\Contents\MacOS\compu
teprof”

When Visual Profiler is launched, a welcome screen (shown in Figure 1) is displayed.

‘o Welcome to Compute Visual Pmﬂler|M

Project Session
[Recent "J l Profile application... I
| @open.. | | Import CSV... |

| :] Create... | [I|

|7: Showy this dialog on startup

Close

Figure 1. Welcome Screen

This dialog box allows first time users to navigate Visual Profiler more effectively. It
allows you to:

» Open recently saved projects.
» Open projects that are <CudaToolkitDir>\computeprof\projects folder

» Import previously saved .csv data from previous profiler runs
Click on Help to go directly to online help information about Compute Visual Profiler.

For future launches of the Compute Visual Profiler, this dialog box may be disabled by
un-checking the “Show this dialog on startup” check box.

Compute Visual Profiler DU-05162-001_v04 | 3

Overview

CUDA™ AND OPENCL™ SUPPORT

The Compute Visual Profiler supports profiling for both NVIDIA CUDA™ and
OpenCL™ applications. The Session settings dialog box shows options in the CUDA
terminology. Most of the options are common and supported for both CUDA and
OpenCL except for the following;:

» dynsmemperblock
The kernel option ‘dynsmemperblock’ is supported only for CUDA. The warning
NV_Warning: Ignoring the invalid profiler config option: dynsmemperblock is
displayed after each profiling run if this option is selected for OpenCL.

» localworkgroupsize
The kernel option ‘localworkgroupsize” is valid only for OpenCL. If this option is
selected for a CUDA program a column ‘localblocksize” is added to the Profiler
Table, but this column is hidden by default.

The type of session—CUDA or OPENCL, is shown within square parentheses after the

session name:
Context_0 [CUDA] or Context_1 [OPENCL]

The column names in the Profiler Table or the summary table for a context are displayed
based on the compute language for the context. In the CUDA context, CUDA
terminology is used and in the OpenCL context OpenCL terminology is used.

A project can consist of sessions containing a mix of CUDA program profiling sessions
and OpenCL program profiling sessions. To distinguish such projects from old projects,
a new project file extension .cvp is used. Support for old projects is provided and you
can open an old CUDA project (file extension “.cpj’) or an old OpenCL project (file
extension “.oclpj’). However, when you save existing .cpj or .oclpj projects the old
projects are saved in the new format with the .cvp file extension.

Compute Visual Profiler DU-05162-001_v04 | 4

Overview

Table 1 shows how CUDA terminology maps to OpenCL™ terminology:

Table 1. NVIDIA® CUDA™ and OpenCL™ Terminology

CUDA Term OpenCL™ Term
Thread Work-item
Thread block or CTA Work-group
(Cooperative Thread Array)

Grid size Range size
Shared memory Local memory
Local memory Private memory

COMPUTE VISUAL PROFILER FILES AND SETTINGS

Profiling is automatically enabled by Compute Visual Profiler at the start of the
application. For a long running application profiling can be interactively enabled or
disabled while the application is running. Profiling can be enabled or disabled before
launching the application either using the main menu option, tool bar option or through
the checkbox on the Session settings dialog. After the application is launched and it is
running profiling can be enabled or disabled using the main menu option or the tool bar
option. The width plot shows idle time gaps on the time line for the periods when
profiling is disabled.

Each program run is referred to as a session. It is recommended that you save profiling
data for multiple sessions for useful analysis of your program. A group of sessions is
called a project.

Compute Visual Profiler saves the following files:

» Compute Visual Profiler project file:
<project-name>.cvp

» Compute Visual Profiler data file for a context in a session:
<project-name> <session-name>_ Context_<context-number>.csv

» CUDA API trace data:
<project-name>_<session-name>_Context_<context-number>._trc

Compute Visual Profiler DU-05162-001_v04 | 5

Overview

The following list of Compute Visual Profiler settings are saved across different
Compute Visual Profiler sessions.

Last opened project path

Method Colors

Recent files list

Recent programs

Recent work Dirs

Show Output window

Demangle Method Names

Main Window/Size

Main Window/Maximized

Global view dialog box/Size

Session view dialog box/Size
Horizontal Splitter/Sizes

Vertical Splitter/Sizes

Profiler Table/Hide Zero Columns
Summary Table/Show Average
Summary Plot/Average

Displayed Summary Plot/Percentage
Displayed Height Plot/Fit in window
Height Plot/Show CPU Time

Height Plot/Show Legend

Height Plot/Use global scale

Width Plot/Enable time stamp
Width Plot/Fit in window

Width Plot/Maximum bar width
Width Plot/Show CPU Time

Width Plot/Show legend

Width Plot/Start time stamp at zero
Width Plot/Type

vV V. vV vV vV vV vV VvV vV VvV vV v vV Vv vV v vV Vv Vv Vv vV Vv vV Vv VY

On Windows, these settings are saved in the system registry at the location:
HKEY_CURRENT_USER\ Software \NVIDIA Corporation\ computeprof

On Linux systems these settings are saved to the file: $HOME/ . conTig/NVIDIA
Corporation/computeprof.conf

Compute Visual Profiler DU-05162-001_v04 | 6

Overview

The Compute Visual Profiler Help cache is saved in the folder shown below:

» Windows: C:\Documents and Settings\<username>\Local
Settings\Application Data\NVIDIA Corporation\computeprof

» Linux: $HOME/ . local/share/data/NVIDIA Corporation/computeprof

There is a separate sub-directory for each version.

COMPUTE VISUAL PROFILER USAGE

A brief overview of the graphical user interface (GUI) is included to help explore saved
sample projects and to create new projects for profiling.

Graphical User Interface (GUI) at a Glance

Figure 2 shows the graphical user interface after you launch Compute Visual Profiler
and open an existing project. Sample projects are available in the projects folder under
the computeprof folder.

A project, saved as a .cvp file, may contain multiple sessions. Multiple sessions can be
saved in a single project file and analyzed at a later point in time. Counter data is saved
in .csv files and trace data is stored in the .trc files.

Compute Visual Profiler DU-05162-001_v04 | 7

Overview

- — - =
Dee DOQE B R E R s i &
Sessions 5 x O | summry Table ()
|+ matrixMult [Tem Timestamp Method GPU Time CPU Time Occupancy oridsize blocksize gl request gstrequest shated load shared store sm cta launches Beanch -
+ Device 0 | TypeSM Rurcl TypeSM Rurcl TypeSM Rurc2 TypeSM Run2 TypeSM Rund TypeSM Rurcd
Context 0 [CLIDA] la o memcpyHIoD 3LE4 9152
[gt 7 10368 memepyHioD 15744 6588
*iDeeip) 3 246576 matrieMul 208 18568 D& [510] [6161] 320 n 3200 320 4 274
L metm(;‘TlLe::lﬂrr[;:Ui\l 4 15221 matrikMul 19.488 38776 0a33 [5 100 [16 16 1] 30 2 3200 320 4 224
« Device.d 5 291835 matrixhul 15712 35232 a3 [5 101 [16 16 1] EFu] a2 3200 320 4 224
Context 0 1CUDA] 6 4076 mabMul 15296 33024 083 (5100 (61611 32 2 3200 320 4 24
« cclMatrixMul 7 545321 matiMul 19328 41512 0833 510 (16161 320 32 3200 320 4 2
4 Device:0 8 610712 matroMul 182 47172 0833 510 (6161 32 2 3200 320 4 2
Context 0 [OPENCL] e 721057 matrikMul 1952 41784 0833 5100 (6161 320 2 3200 320 4 2]
Context_| [DRENCL] 110 71460 matrxMul 18232 3664 0833 5100 (6161 320 2 3200 320 4 24 L
11 84917 matraMil 19456 311 0813 5100 (6161 32 2 3200 320 4 2 1
12 100657 rratrikhdul 19648 31536 0833 5 10] [16 16 1] v} a2 3200 330 4)
13 114990 matiMul 1904 416 0833 5100 [6161 320 2 3200 320 4 224
14 124687 matisMid 19516 411 0233 510 (6161 320 2 3200 320 4 24
15 1403 matroMul 19436 24857 083 G0 (6161 320 2 3200 320 4 24
|16 158792 matrikhul 1936 247.24 083z [5 100 [16 16 1] 30 2 3200 320 4 224
17 174878 matrixhul 15168 33552 0g3z [5 101 [16 16 1] 320 2 3200 320 4 4
18 190003 matrcMul 1968 35704 0833 5100 (6161 32 32 3200 320 4]
19 205016 matrieMul 19584 33176 0833 510 (16161 320 32 3200 320 4 M
20 224283 matreMul 19328 44184 0833 510 (16161 32 2 3200 320 4 b+
21 243945 matrixMul 192 6048 0833 5100 (6161 320 32 3200 320 4 24
22 263281 matrxMid 19584 239656 0833 [510] (6161 320 32 3200 30 4 24
23 3508 matrixMil 19136 #4436 0833 510 (6161 32 32 3200 320 4 24
24 300527 matrMil 19808 44968 0813 5100 [6161 30 2 3200 320 4 24
25 319701 matreMid 19584 3554 0833 510 (6161 320 2 3200 20 4 24
26 335901 matrixMul 19456 45456 0833 510] [6161] 320 2 3200 320 4 24
127 34991 matrixhul 19.232 4334 [iE:EE) [5 107 [16 16 1] 3 a2 3200 320 4 224
28 363910 matriMul 1936 93024 0833 [510] [16161] 3 2 3200 20 4 24 -
Rl | L
Output LE]
Read AF1 troce data for context #0, Number of AFls=1671 -

mstroult - Devics,_) - Contass_D [CUIDA] : Profier tabla column "dynamic shared memery per biock' having all 7ero values & hidden.

mstrodult - Device_0 - Contast_0 [CUDA] : Profler table columa "stresm if’ having 8l zero values is hidden.

Fruabriult - Divics,_) - Context_D [CUDA] : Probdur tabla column Tocal block sise’ having all sero valuns s hidden.

mistrodult - Device_0 - Context_9 [CUDA] : Profiler table column ‘Tocal load Trpe:5M Run; i’ heving 2l zero vabees is hidden,

mgtroesult - Device_0 - Context_0 [CUDA] : Profler table column focal store Type:SM Run:1' having all 2ero values o hidden.

istroMult - Devics,_) - Contast_0 [CLIDA] : Proféer tabla coiumn T1 local kisd hit Type:5M Run:3” hawing all 7ero vakoes s hidden,

mstridult - Deice_0 - Contest_0 [CUDA] @ Profler table cofumn 1 local load miss Type:SM Run:3' having all tero values = hidden. -

Figure 2. Compute Visual Profiler GUI

Compute Visual Profiler DU-05162-001_v04 | 8

Overview

Session Frame (Left)

A session is associated with a program run. A group of sessions is called a project. The
frame on the left lists all the sessions in the current project as a tree with three levels:

>

Sessions at the top level

Session profiles a CUDA program run with certain options; profiled data capture
from this run is then presented as tables, counters, graphs, and plots. The default
session names (Sessionl, Session2 etc.) may be customized by right-clicking on the
default Session name and selecting Rename.

Devices under a session at the second level

Device corresponds to each physical GPU in the system. For multi-GPU systems
multiple devices are displayed. The Device which is a child of a Session is named as
Device_< device_number >, with device_number starting at 0, for example:
Device 0.

Contexts under a device at the third level

Context corresponds to a CUDA context which in turn is analogous to a CPU
process. For a multi-context application, multiple contexts can be seen under the
device tab. The Context which is a child of a Device is named as
Context_<context_number> [CUDA| OPENCL] with context_number starting at 0
for example: Context_0 [CUDA] or Context_1 [OPENCL].

The type of session- CUDA or OPENCL is shown within square parentheses.

Right-clicking on a session item in the tree view (left frame) displays the following
context sensitive menu items related to customizing the session:

>
>
>

>

Rename: Rename the current session.
Delete: Delete the current session.

Copy settings to current: Copy settings for the current session as the session settings
to be used for a new profiling session.

Session level summary plot: Displays the GPU Ultilization Plot.

Workspace Frame (Right)

Session

When a session is selected in the tree view in the left frame, the right frame displays a
summary of the information related to the session.

Project and device related information is displayed as shown in Figure 3.

Compute Visual Profiler DU-05162-001_v04 | 9

Overview

Froject name : transpose
Project location : CifUsers/alandge/Desktop
Session name : Sessionl

Program location : "C:/ProgramData/NVIDIA Corporation/NVIDIA GPU Computing SDK/C/bin/win64/Release/transpose.exe”
Working directory : C:\ProgramData\NVIDIA Corporation\NVIDIA GPU Computing SDK\C\bin\win64\Release

Arguments : —-noprompt

Session time 16 Aug 2010 18:42:25

Normalized Counter : false

Number of devices : 1

Device |[Device Name
Device_0 |GeForce GTX 480

Selected counters : 28

Figure 3. Session Properties- Project Related

In addition, counter information and selected options are displayed as shown in Figure 4
and Figure 5 respectively.

Compute Visual Profiler DU-05162-001_v04 | 10

Selected counters ;32

|sm cta launched

|branch

|r:|ivergent branch

|Ioca| load

|I ocal store

|g|d request

|gst request

|shared load

|shared store

I1 local load hit

|I1 local load miss

|I1 local store hit

|I1 local store miss

I1 global load hit

|I1 global load miss

|warps launched

|threads launched

|instructicrns issued

|instructi0ns executed

|active cycles

|active Warps

|uncached global load transaction

|g|c=ba| store transaction

|I1 shared bank conflict

|I2 read queries

|I2 write queries

|I2 read misses

|I2 write misses

|tex cache queries

|tex cache misses

|r:|ram reads

||:I ram writes

Figure 4. Session Properties- Counters

Compute Visual Profiler

Overview

DU-05162-001_v04 | 11

Overview

Selected options : 9

|grir:| size
tthread block size
|dynamic shared memory per block

|static shared memory per block

|registers per thread

|mem transfer size

|stream id

!hust mem transfer type

|I|:|cal block size

Figure 5. Session Properties- Selected Options

Device

When a device is selected in the tree view (left frame), the right frame displays a
summary of the information related to the device. The following information is
displayed:

» Device name

» Number of Contexts

» Table listing: Context | Type | Number of rows

Right-clicking on a Device (level below Session) item in the tree view displays the Device
Summary Plot.

Context

Right-clicking on a context item (level below device) in the tree view displays the
following context sensitive menu items:

Summary table (See section entitled, “Summary Table”)
Kernel table (See section entitled, “Kernel Table”)

Memcopy table (See section entitled, “Memcopy Table”)

GPU time summary plot (See section entitled, ”GPU Time Summary Plot”)
GPU time height plot (See section entitled, ”GPU Time Height Plot”)

GPU time width plot (See section entitled, ”GPU Time Width Plot”)
Comparison summary Plot (See section entitled, ”Comparison Summary Plot”)
CUDA API Trace (See section entitled, “CUDA API Trace”)

vV V. vV v v v v P

The workspace to the right of the tree view frame contains tabbed windows for each
session, each device in a session and for each context for a device. The different
windows for each context are shown as different tabs:

Compute Visual Profiler DU-05162-001_v04 | 12

Overview

Profiler Output table
Summary table

Kernel table

Memcopy table

GPU Time height plot
GPU Time width plot
GPU Time Summary Plot
Profiler counter plot
Column plot
Comparison Summary plot
CUDA API Trace

vV vV vV vV vV Vv vV v v Vv Vv

Right-clicking on the table headers of the Profiler Output table and Summary table
allows you to customize the columns displayed.

Go to the Profiler Output (or Summary) Table >Right-click on any cell table header.

The following options are displayed:
» Hide
» Hide zero columns

» Show all columns

Output Frame (Bottom)

The Output frame displays at the bottom of the Compute Visual Profiler GUI screen
(Figure 1). The Output frame contains standard error information and any status
messages associated with the Compute program (CUDA or OpenCL program) you are
running.

Compute Visual Profiler DU-05162-001_v04 | 13

Overview

Exploring a Saved Project

This example illustrates how you can explore the various sessions and view settings and
options to obtain the tables and plots of your choice. Several sample projects are
available in the <CudaToolkitDir>\computeprof\projects folder when the CUDA toolkit

and SDK are installed.

1. Open the project saved in the projects folder
(<CudaToolkitDir>\computeprof\projects) using the main menu option File->Open.
The Profiler Output table is displayed.

2. Right-click Session1->Device_0->Context_0 in the session tree to display the various
tables and plots available (See Figure 6.)

Sessions 8 x | Profiler Output |:J_|

4 Sessionl GPU Timéstamp
4 Device 0
Context_0 [CUP** =
T gy Summary table

4 Device 0 @ Kernel table
Context_0 [CU| @ Memcopy Table

GPU time summary plot
GPU time height plot
GPU time width plot

iUEE W

Comparison summary plot ...

E
=
=
I
L
1
T

Figure 6. Displaying Tables and Plots for a Saved Project

Select settings for a new session by using the main menu option Session->Session
settings.

Browse and select the Compute program to profile.
Change the working directory if it is different from the program directory.

Execute the Compute program by clicking Launch in the Session settings dialog box.
If the Compute program is correctly executed the profiler output is displayed.
Compare the profiler output for Sessionl and Session2.

Right-click on the appropriate row or column in the profiler output or summary
table for a session to try the Profiler counter plot and Column plot.

Exit Compute Visual Profiler using the main menu option File>Exit from the main
menu.

Compute Visual Profiler DU-05162-001_v04 | 14

Overview

Creating a New Project

Profiling is automatically enabled by Compute Visual Profiler. Use the following
procedure to create a new project and display the various tables and plots of your
choice.

1. Open the project (.cvp file) using main menu option File->New or Click on the File
Open Project icon in the toolbar .

2. Select the project name and project directory where the project files will be saved.

3. Select the session settings through the dialog box. See section entitled, “Session” for
details.

4. Browse and select the Compute program to profile.
5. Change the working directory if it is different from the program directory.

6. Click on Session settings on the Session menu. Select options for maximum program
execution time, profiler counters, kernel and memory transfer options using the
tabbed options.

See Figure 11, Figure 12, and Figure 13 for details on the Session->Session settings
tabs.

7. Execute the Compute program by clicking the Start button of the Session settings
dialog box or through the main menu option Session->Start. If the Compute
program executes correctly, the profiler output is displayed.

8. Right-click on Session1->Device_0->Context_0 to display the summary table in the
session tree.

9. Choose the Summary table option or use the Summary table toolbar option.

10. Right-click on Session1->Device_0->Context_0 in the session tree and choose the
GPU Time Summary Plot option to display the GPU Time summary plot. You may
also use the GPU Time Summary Plot toolbar option. The Profiler Output and GPU
Time Summary plot windows can be viewed by scrolling, resizing and or
repositioning.

11. Save the project by using the main menu option File->Save or the toolbar icon.

12. Exit Compute Visual Profiler using the main menu option File>Exit from the main
menu.

Compute Visual Profiler DU-05162-001_v04 | 15

COMPUTE VISUAL PROFILER GRAPHICAL
USER INTERFACE (GUI)

MAIN MENU BAR

Figure 7 shows the main toolbar for the CUDA™ Compute Visual Profiler.

Most operations can be conducted using the File pull down menu or the toolbar situated
right below the Menu bar.

The Menu bar consists of the main menu options: File, Session, View, Options, Window,
and Help. See the description below for details on the menu options.

The Toolbar icons fall into four main groups: File, Profile, Session View Settings, and
Tables and Plots. They provide options for file and project management, session
settings, and the various output formats.

M transpose - Compute Visual Profiler - [Sessionl - Device_0 - Context_0 [CUDA])

4 File Session View Ophions Window F'Fll:'

Dol POE P ARREOEES

|Sessions & x | Profiler Output ﬂ[
File Toolbar P“’f’::‘,:-ﬂmmar I
Graup ik Session View
Table and Plot Opti
s and Plot Options

Figure 7. Compute Visual Profiler Menu Bar and Toolbar

Compute Visual Profiler DU-05162-001_v04 | 16

Compute Visual Profiler Graphical User Interface (GUI)

File

On the main menu->Click on File. Figure 8. shows the File pull down menu.

[E] Session View Options Window H
0 New.. Ctrl+N
= Open. Ctrl+0O
i Save Ctrl+S

Save As..,
Close
Delete...

Import ...
Export Profiler Output Data...

1 matrixMul.cvp

2 transpose.cvp

Exit Ctrl+Q

Figure 8. File Pull Down Menu

The File toolbar group consists of the following self-explanatory options:

>

New : Creates a new project. The New project dialog box is opened to choose the
project name and project directory. On OK the Session settings dialog box is opened.

Open : Opens an existing project. The Open project dialog box is opened to select the
profiler project to be opened. On Open the project data for all sessions is loaded and
the profiler data table is displayed.

Save : Saves the current project. The profiler data for the current open project is
saved to the disk.

Save As : Saves the current project as a new project. The project name and directory
can be selected. The profiler data for the current open project is saved to the disk.

Close : Closes the current project. The current open project is closed. All profiler
session data is deleted from memory and all open windows are closed.

Delete : Deletes the project. File dialog box is opened to select the project. It deletes
the selected project file (.cvp) and related data files(.csv) files.

Import: Imports Compute Visual Profiler output in comma-separated format (CSV).
A new session is created in the current project and imported data is loaded.

Export: Exports Compute Visual Profiler output for the current session to a file in the
comma-separated format (CSV).

List of recently opened profiler projects.

Exit: Exits the Compute Visual Profiler program.

Compute Visual Profiler DU-05162-001_v04 | 17

Compute Visual Profiler Graphical User Interface (GUI)

New Project Dialog Box

The File->New project dialog box has two boxes as shown in Figure 9.

&8

' =

@4 New project | ¥

Project Name:

Project location: C:;’CUDPqumputeprof [I]

Figure 9. File->New Project Dialog Box

» Project Name: Name of the profiler project.

» Project location: Directory where the project files are saved.

Session

On the main menu->Click on Session
Figure 10 shows the Session pull down menu.

Session | View Options Window

[Session settings ..
|&| Disable Profiling
'@ Launch Application

Analyze profiler counters
Analyze Occupancy

Global Memaory Throughput

Copy settings to current

Figure 10. Session Pull Down Menu

The Session menu consists of:

> Session settings: Change session settings.

» Disable Profiling: Option to disable profiling.

Compute Visual Profiler DU-05162-001_v04 | 18

Compute Visual Profiler Graphical User Interface (GUI)

» Global Memory Throughput: Display overall application level global memory read
throughput, global memory write throughput and overall global memory
throughput.

» Rename: Rename the current session.
Delete: Delete the current session. This is same as the Session context menu Delete
option.

» Copy settings to current: Copy settings for the current session as the session settings
to be used for a new profiling session.

Session settings

As shown in Figure 11, the Session setting dialog has three tabs:

> Session
» Profiler Counters
» Other Options

@y Session settings ‘ M

Session Profiler Counters | Other Options |

Session Name: Sessionl

Launch: nputing SDK/C/bin/win64/Release/transpose.exe" - G
Working Directory: NVIDIA GPU Computing SDK\C\bin\win64\Release - E
Arguments: --noprompt -
Max Execution Time: 30 Secs

Enable profiling at application launch
"] cupa API trace

Launch H Cancel ” Ok

Figure 11. Session->Session settings->Session (tab)

Compute Visual Profiler DU-05162-001_v04 | 19

Compute Visual Profiler Graphical User Interface (GUI)

Session Tab

On the main menu->Click on Session->Click on Session settings—>Click on the Session
tab

Using this tab customizes your session; the following options are available:
» Session Name: Name of the profiler session. By default a new session name is chosen
(Sessionl, Session?2 ...). This can be changed by the user.
» Launch: Select the Compute program to be profiled.

» Working Directory: Select the working directory to be used for running the Compute
program.

» Arguments: Command line arguments to be passed to the Compute program.
e Multiple command line arguments should be separated by one or more spaces.
o Arguments containing spaces should be enclosed within double quotes.

e Double quotes can be used within an argument; there is no need to use a backslash
followed by double quote.

e Each backslash is replaced by two backslash characters and there is no other
special handling for backslash.

» Max. execution time (in seconds): Select maximum time to wait for Compute
program execution completion. After this cutoff time the program is aborted.

» Run in separate window: This option is useful for console applications which accept
some keyboard input. In this case the Compute program is run from a separate
window. The standard output and standard error for the Compute program is
shown in this separate window.

Note: Currently this option is supported only on Linux and a new xterm window is
opened.

» CUDA API trace: This option is used to collect CUDA driver API call information.

Note: Currently this option is not supported on MacOS X.

Compute Visual Profiler DU-05162-001_v04 | 20

Compute Visual Profiler Graphical User Interface (GUI)

Profiler Counters Tab

On the main menu->Click on Session->Click on Session settings—> Click on the Profiler
Counters tab

Profiler Counters are logically grouped based on their functions. Since only a few of the
selected profiler counters can be collected for a single program run - the Compute
program should be run multiple times.

“.4 Session settings ‘ M
| Session Profiler Counters Other Options

Device: ID . GeForce GTX 480 v|

a 7] An

- D Memaory transactions
- D Cache

; D Instructions
> \:| Profiler Triggers

Launch H Cancel H Ok

Figure 12. Session->Session settings->Profiler Counters (tab)

Using this tab, customize the profile counters of interest; the following options are
available:

» Device: Selection of a device in this option displays the list of counters that are
supported on that device. The user can then select the desired counters from this list.
If device 0 is selected in device selection then only profiler counters supported on
device 0 are listed for selection. If multi-device option is selected then all the
counters supported on all devices (device 0, device 1...) are selected. In this case
device specific counters are ignored for contexts which are run on other devices. The
following warning message is displayed in the output window:

NV_Warning: Ignoring the invalid profiler config option:
gld_incoherent.

Note: Selecting a device from the Session tab does not run the program on the
device selected; the user has to handle the device selection in the program.

Compute Visual Profiler DU-05162-001_v04 | 21

Compute Visual Profiler Graphical User Interface (GUI)

» You can select or de-select all counters by using the Select All Counters check box.

You can also select any sub-set of specific counters using the check boxes for each
counter.

» You can enable or disable normalization of counter values by using the Normalize
counters check box.

Profiler counters are available only with CUDA toolkit version 1.1 or later.

Other Options Tab

On the main menu->Click on Session—>Click on Session settings—>Click on the Other
Options tab

@& Session settings ‘ M

| Session | Profiler Counters | Other Options |

a [An
@ Timestamp
II| stream id
mem transfer size
host mem transfer type
- IE Kernel options

Launch H Cancel ” Ok

Figure 13. Session->Session settings->Other Options (tab)

Using this tab, customize other metrics of interest for the session; the following options
are available:

» Timestamp: Enable option to include time stamps for kernel/method launching. GPU
timestamp is the time when a method starts execution on the GPU. GPU timestamps
are shifted in origin, to make the minimum GPU timestamp zero, across all devices
and all contexts in a session.

» Stream id: Enable option to include stream id for kernel/method. This feature is
available only with CUDA toolkit version 1.1 or later.

Compute Visual Profiler DU-05162-001_v04 | 22

Compute Visual Profiler Graphical User Interface (GUI)

» Memory Transfer Size: It is to be enabled for describing the size of memory transfer.
It outputs the total size in bytes at the Memcopy table when profiling was done with
this option enabled.

» Host Memory Transfer Type: It specifies if the host memory from/to which data is
transferred, is pageable or page-locked.

» Kernel Options: This is a group of the following options:

e Grid Size : It is to be enabled to get dimensions of grid in terms of blocks (3
dimensional) in Kernel table.

e Thread Block Size: It is to be enabled to get dimensions of a block in terms of
threads (3 dimensional).

e Dynamic shared memory size: It is to be enabled to get Dynamic shared memory
size.

e Static shared memory size: It is to be enabled to get Static shared memory size.

o Register per thread: It is to be enabled to get Register count per thread.

e Local Block Size: If workgroupsize has been specified by the user, this option
would be 1, otherwise it would be O(used only for OpenCL.)

View

On the main menu-> Click on View
Figure 14 shows the View pull down menu.

Summary table
Kernel table

Memcopy Table

GPU time summary plot
GPU time height plot
GPU time width plot

Comparison summary plot ...

Devices *
Startup...

Session Window
Output Window

Figure 14. View Pull Down Menu

Compute Visual Profiler DU-05162-001_v04 | 23

Compute Visual Profiler Graphical User Interface (GUI)

Summary Table

For a selected context in the left frame (Sessions tree view):

On the main menu-> Click on View-> Click on Summary table

The summary table for the selected context within the current session is displayed in the
right frame. The rows in the table are sorted in decreasing order of total GPU time and
memcopy is shown as the last row.

The summary table has the following columns:

e Method: method name.

o #Calls: number of calls.

e GPU usec: total GPU time in micro seconds.

e CPU usec: total CPU time in micro seconds (column is hidden by default.)
¢ %GPU time: Percentage of total GPU time across all methods.

e Cumulative count column for each available profiler counter (columns are hidden
by default.)

e Derived statistics:

0 glob mem read throughput
glob mem write throughput
glob mem overall throughput
gld efficiency
gst efficiency
instruction throughput
retire ipc
active warps/active cycles
11 gld hit rate
texture hit rate %

O O 0O O o o o o o

For a description of the derived statistics please refer to the section entitled “Supported
Derived Statistics”.

Compute Visual Profiler DU-05162-001_v04 | 24

Compute Visual Profiler Graphical User Interface (GUI)

Kernel Table

For a selected context in the left frame (Sessions tree view):

On the main menu- Click on View- Click on Kernel table

The Kernel table with the following properties is displayed:

e method: method name

e #calls: number of times the kernel is called
e Grid Size (x,y,z dimensions)

e Thread Block Size (x,y,z dimensions)

e Dynamic Shared Memory per Block

e Static Shared Memory per Block

e Registers per Thread

Memcopy Table

On the main menu-> Click on View—> Click on Memcopy Table

The memcopy table with the following properties is displayed:
e Method

e #calls
e Host mem transfer type

e Memory Transfer Size

GPU Time Summary plot

On the main menu-> Click on View—> Click on GPU time summary plot

The GPU time summary plot for the current session is displayed. This is same as
selecting the GPU Time Summary plot option from the Session context menu.

GPU Time Height plot

On the main menu-> Click on View—> Click on GPU time height plot

The GPU time height plot for the selected context in the current session is displayed.
This is same as selecting the GPU time height plot option from the Session context
menu.

GPU Time Width plot
On the main menu-> Click on View-> Click on GPU time width plot

The GPU time width plot for the selected context in the current session is displayed. This
is same as selecting the GPU time width plot option from the Session context menu.

Compute Visual Profiler DU-05162-001_v04 | 25

Compute Visual Profiler Graphical User Interface (GUI)

Comparison plot

For a selected context in the current session:

On the main menu-> Click on View-> Click on Comparison summary plot

Options

On the main menu-> Click on Options. Figure 15 shows the Options pull down menu.

Window Help

B Session View Settings ...
Default View Settings ...

Method Display Options ’
Height Plot 4
Plot Colors v

Session Windows Layout Setting...

Environment Variable Settings...

Figure 15. Options Pull Down Menu

The Options menu consists of:

> Session view settings: Change session view settings for the current session.
» Default view settings: Change the default view settings to be used for new sessions.
» Method Display Options: One of the following options to display method names :
e Use Full Name : Full Mangled name is displayed.
e Use Base Name : Only base name is displayed.
e Use Base Name with Suffix : Full Mangled name with suffix is displayed.
» Height plot: Change global GPU time height plot options.

e Use Global Scale: Enable/Disable option to use a common global scale across
multiple sessions.

» Plot Colors: Select colors for plots.

e Method Colors: Pop ups a color dialog box which can be used to select colors used
for different methods in plots. The colors are saved on application exit and so they
can be used across Compute Visual Profiler sessions.

Compute Visual Profiler DU-05162-001_v04 | 26

Compute Visual Profiler Graphical User Interface (GUI)

» Session Windows Layout Setting: Change settings for display of multiple session
windows. The choices are:

o Maximize
e Cascade
e Tiles

» Environment Variable Settings: Change environment variable settings used by the
Compute program.

Options->Session View Settings Dialog Box

On the main menu-> Click on Options—> Click on Session View Settings

This dialog box can be invoked using the main menu option Options->Session View
Settings or the toolbar. This dialog box allows the changing of settings for the different
views for the current session. There is a separate tab for different views. The dialog box
is opened with the tab corresponding to the current view. Only tabs for currently created
views can be selected.

“4 Session View Settings - [matrixMult - Device_0 - Context_0 [ﬂé]
Profiler Table | Summary Table | Summary Plot | Height Plot | Width Plot |

Method Display Options: ’Use Base Mame With Suffix v] I:‘ Show Average Data

Column Shown Column Hidden

Compute Visual Profiler

#Calls & active cycles b
%GPU time active warps | |
active warps/active cycle |z branch :‘
glob mem overall throughj| CPU time s
glob mem read throughpu— dram reads

glob mem write throughpt dram writes

GPU time gld request

I;I Tlri_!it.r_nl_ﬁa_%_l - N global store transaction 4

OK l [Cancel] l Apply
Figure 16. Options->Session View Settings Dialog

DU-05162-001_v04 | 27

Compute Visual Profiler Graphical User Interface (GUI)

Profiler Table Tab

On the main menu- Click on Options—> Click on Session View Settings—> Select the
Profiler Table tab

F |
“ey Session View Settings - [Sessionl - Device_0 - Context 0 [CUDA]] @lﬂ_hl

Profiler Table Summary Table | Summary Plot | Height Plot | Width Plot |

E‘ Hide All Zero Counters

Column Shown Column Hidden

GPU Time - idivergent branch Type:SM Run:4 -
GPU Timestamp dynamic shared memeory per block
grid size 11 local load hit Type:SM Run:2

m

gst request Type:SM Run:l | ‘ 11 local load miss Type:SM Run:3
host mem transfer type ' 11 local stare hit Type:SM Run:3
instructions executed Type:SM Run: 11 local store miss Type:SM Run:d —

[|

instructions issued Type:SM Run:5 local block size
11 global load hit Type:SM Run:d ~ local load Type:SM Run:1 -
4 | 1 | P < 1l | P

[OK] ’ Cancel I [Apply

Figure 17. Options->Session View Settings->Profiler Table Tab

Customize the Profiler table output using the following options:
» Hide All Zero Counters: Enable /disable hiding of counter columns having all zero
values. This is enabled by default.

» Columns Shown: Lists columns which are to be shown. Can select and move
columns from hidden list to shown list using <<.

» Columns Hidden: Lists columns which are to be hidden. Can select and move
columns from shown list to hidden list using >>.

Compute Visual Profiler DU-05162-001_v04 | 28

Compute Visual Profiler Graphical User Interface (GUI)

Summary Table Tab

On the main menu- Click on Options—> Click on Session View Settings—> Select the
Summary Table tab

Customize the Summary table output using the following options:

@ Session View Settings - [matrixMult - Device 0 - Context O ... lM

Profiler Table | Summary Table | Summary Plot | Height Plot | width Plot |

Method Display Cptions: lUse Base Mame With Suffix v] D Show Average Data

Column Shown Column Hidden

#Calls & active cycles -
%GPU time active warps | |
active warps/active cycle |= branch |:|

CPU time i

glob mem read throughpu— - dram reads
=

glob mem overall throughj

glob mem write throughpt dram writes

GPU time gld request

11 nld hit rate 8. ” global store transaction

b I I : ¢ P Ve il ol Yon L M P ¥ + il
0K I [Cancel] ’ Apply

Figure 18. Options->Session View Settings->Summary Table Tab

» Method Display Options: One of the following options to display method names :
e Use Full Name: Full Mangled name is displayed.
e Use Base Name: Only base name is displayed.
¢ Use Base Name with suffix: Full Mangled name with suffix is displayed.

» Show Average Data: Enable/Disable showing average data values. When this option
is disabled the sum total across all the calls for a method are shown. When this
option is enabled the total value is divided by the number of times the method is
called and this average value for a method is displayed. This option is disabled by
default.

» Column Shown: Lists columns which are to be shown. Can select and move columns
from hidden list to shown list using <<.

» Column Hidden: Lists columns which are to be hidden. Can select and move
columns from shown list to hidden list using >>. The CPU usec and all counter
columns are hidden by default.

Compute Visual Profiler DU-05162-001_v04 | 29

Compute Visual Profiler Graphical User Interface (GUI)

Summary Plot Tab

On the main menu- Click on Options—> Click on Session View Settings—> Select the
Summary Plot tab

Customize the Summary plot using the following options:

>

Method Display Options: One of the following options to display method names :
¢ Use Full Name: Full Mangled name is displayed.

¢ Use Base Name: Only base name is displayed.

e Use Base Name with suffix: Full Mangled name with suffix is displayed.

Percentage Displayed: Enable/disable displaying percentage values. When this
option is disabled total values are shown. This option is enabled by default.
Average Displayed: Enable/disable using average data values. When this option is
disabled total values are used. This option is disabled by default.

Timestamp based Total: Enable/disable calculation of total using initial and final
timestamps. If enabled, one extra bar showing GPU Idle with total no of method
calls is presented in a different color.

Height Plot Tab

On the main menu-> Click on Options—> Click on Session View Settings—> Select the
Height Plot tab

@y Session View Settings - [Sessionl - Device 0 - Context 0 [CUDA]] M

Profiler Table | Summary Table | Summary Plot | Height Flot Width Plot

Height Zoom /| Show Legend
1 2] [W] Fit In Window (X Axis)
] show CPU Time

|___| Show Configuration

[

oK H Cancel H Apply

Figure 19. Height Plot Options

Compute Visual Profiler DU-05162-001_v04 | 30

Compute Visual Profiler Graphical User Interface (GUI)

Customize the Height plot using the following options:

» Show legend: Enable/Disable display of GPU Time plot legend

» Fit in window: Enable/Disable option to fit the GPU plot in the window. When fit is
enabled multiple bars can overlap.

» Show CPU Time: Enable/Disable option to show CPU time.

Show Configuration: Enable/Disable option to show the plot configuration in the plot
view.

Width Plot Tab

On the main menu-> Click on Options—> Click on Session View Settings—> Select the
Width Plot tab

@y Session View Settings - [Sessionl - Device_0 - Context 0 [CUDA]] M
| Profiler Table | Summary Table | Summary Plot Height Plot | Width Plot
@ Enable Time Stamp ’:l Show CPU Time D Fit In Window
Show Legend @ Start Timestamp At Zero D Show Configuration
Maximum Bar Width Height Options
i n = Fixed height -
Split Options
Mo split -
oK I [Cancel] | Apply

Figure 20. Width Plot Options

Customize the Width plot using the following options:

Enable Time Stamp: Enable/Disable option to use time stamps.
Show CPU Time: Enable/Disable option to show CPU time.

Fit in window: Enable/Disable option to fit the plot in the window.
Show legend: Enable/Disable display of GPU Time plot legend.

Start Timestamp at Zero.

vV v v v v Vv

Show Configuration.

Compute Visual Profiler DU-05162-001_v04 | 31

Compute Visual Profiler Graphical User Interface (GUI)

» Max Bar Width: Maximum width of a bar in pixels. For this option the plot display is
immediately updated and so one can interactively choose an appropriate value.

» Height Options: Choose option to use for bar height.
» Split Options- choose between No Split or Show all devices.

e No Split: A single horizontal group of bars is displayed. Even in case of multiple
streams or multiple devices the data is displayed in a single group.

e Split on Device: In case of multiple devices one separate horizontal group of bars is
displayed for each device.

e Split on Stream: In case of multiple devices one separate horizontal group of bars is
displayed for each stream.

Apply and OK change the view properties temporarily and permanently, respectively.

Default View Settings Dialog Box

On the main menu- Click on Options—>Select Default View Settings

The Default View Settings dialog box allows you to change the default settings which are
used for subsequent new session views. The tabs displayed in this window are similar to
the tabs displayed in the Options->Session View Settings dialog box (see Figure 16,
Figure 17, and Figure 18.)

Window

On the main menu-> Click on Window. Figure 21 shows the Window pull down menu.

Close Ctrl+F4
Close All

Tile
Cascade

Figure 21. Window Pull Down Menu

The Window menu consists of the following self-explanatory window-related options
for the right frame:

» Close: Close active window

» Close All: Close all open windows

» Tile: Tile all open windows
>

Cascade: Cascade all open windows

Compute Visual Profiler DU-05162-001_v04 | 32

Compute Visual Profiler Graphical User Interface (GUI)

Help

On the main menu-> Click on Help
Figure 22 shows the Help pull down menu.

(v

: Compute Visual Profiler Help F1
System Info

About Compute Visual Profiler

Figure 22. Help Pull Down Menu

The Help menu consists of:
» Compute Visual Profiler Help: Shows the Help for Compute Visual Profiler.

Note: This is currently not supported on Mac OS
» System Info: Shows the Host system machine configuration information.

» About Compute Visual Profiler: Display Compute Visual Profiler program version
and copyright information.

Compute Visual Profiler DU-05162-001_v04 | 33

Compute Visual Profiler Graphical User Interface (GUI)

MAIN TOOLBAR

The first row in the top frame shows the main menu options:
File, Session, View, Options, Window, and Help.

As illustrated in Figure 23, the second row in the top frame has four groups of toolbar
icons.

DR IEQ D RARRENAEEE

Sessions 8 X | Profiler Qutput [£J

Figure 23. Toolbar Icons

File Toolbar Group

File toolbar group has the following three icons (listed from left to right):

» Create a new project: The behavior is same as the File->New menu option.
» Open an existing project: The behavior is same as the File->Open menu option.

» Save the current project: The behavior is same as the File->Save menu option.

Profile Toolbar Group

Profile toolbar group has the following three icons (listed from left to right):

» Session settings: The behavior is same as the Session->Session settings menu option
» Launch/Abort application: Abort the program.

» Enable/Diasable profiling: The behavior is same as the Session->Start menu option

Session Toolbar Group

The Session toolbar group has the following four icons (listed from left to right)

Summary table: The behavior is same as the View->Summary table menu option
Summary plot: The behavior is same as the View->Summary plot menu option
Kernel table: The behavior is same as the View->Kernel table menu option.

Memcopy table: The behavior is same as the View->memcopy table menu option.

vV v v v Vv

GPU time height plot: The behavior is same as the View->GPU time height plot menu
option

Compute Visual Profiler DU-05162-001_v04 | 34

Compute Visual Profiler Graphical User Interface (GUI)

» GPU time width plot: The behavior is same as the View—> GPU time width plot menu
option
» CUDA API trace: The behavior is same as the View->CUDA API trace table menu

option

View Options Toolbar Group
» Session view settings: The behavior is same as the Options—>Session View Settings

menu option

Note that in order to customize your working environment you may enable or disable
certain toolbar buttons. Right-click anywhere on toolbar for a pop-up that allows you to
enable/disable toolbar buttons that fall under the File and Profiler toolbar category.

Compute Visual Profiler DU-05162-001_v04 | 35

COMPUTE APPLICATION ANALYSIS

The Visual Profiler contains a powerful analysis feature that provides performance
analysis of the application at the context level, kernel level, session level and device
level.

Compute Visual Profiler DU-05162-001_v04 | 36

Compute Application Analysis

CONTEXT LEVEL ANALYSIS

An analysis of GPU utilization for the CUDA context is carried out at this level and
appropriate hints are provided, for example, usage of streams to improve overlap
between kernel execution and memory copies.

» Click on the context in Sessions tree to get context level analysis in the analysis

window.
a2y convolutionSeparable - Compute Visual Profiler - [Sessionl - Device 0 - Context_0 [CUDA]] @E&J
@ File Session View Options Window Help (-] =] %]
De® II. O E RARSooEE
Sessions Profiler Output [7] | Summary Table (3 |
4 Method #Calls GPU time (us) %GPU time
4 Device 0
Context 0 [CUDA] 1 convolutionColumnsKernel 17 36779.9 18.66
2 convelutionRowsKernel 17 28356.7 14.38
3 memcpyHtaD 2 36702.5 18.62
4 memcpyDicH 1 92119.9 46.73

¥ | sessionlzDevice 0=Context_0

=

Analy sis

Hint(s)

*Kernel time = 33.05 % of total GPU time

* Memary copy time = 65.4 % of total GPU time

¢ kernel taking maximum time = convolutionColumnsKernel (13, 7% of total GPU
time)

* Memaory copy taking maximum time = memcpyDtoH (45. 7% of total GPU time)

*There is no time owverlap between memory copies and kernels on GPU

* Double click on the kernel name in the Summary Table to analyze the
kernel

* Consider using multiple streams and asynchronous memary copies to overlap
memary copy & kernel execution

* Consider using page-ocked memory to attain higher bandwidth between host and
device memary. Qveruse of pinned memory should be avoided as it may reduce
overall system performance.
Refer to the "Page-Locked Host Memory™ section in the "CUDA C Runtime” chapter
of the CUDA C Programming Guide for more details.

Figure 24: Context Level Analysis

Compute Visual Profiler

DU-05162-001_v04 | 37

Compute Application Analysis

KERNEL LEVEL ANALYSIS

To view the kernel analysis for any kernel, double click the kernel name in the summary
table. A new pop up window analyzes that particular kernel in greater detail as
mentioned below:

Limiting Factor Identification Tab

42 convolutionColumnsKemnel analysis - [Sessiond - Device 0 - Context 0] IE'M
File View
Analysis (4

Analysis for kernel convolutionColumnsKernel on device GeForce GTX 480

Summary profiling information for the kernek
Mumber of calls: 17

Minimum GPU time(us): 1652.45

Maximum GPU time{us): 1653.60

Average GPU time(us): 1653.03

GPU time (%): 17.386

Grid size: [192 48 1]

Block size: [16 8 1]

Limiting Factor

Achieved Instruction Per Byte Ratios 7,70 (Balanced Instruction Per Byte Ratio: 4.51)
Achieved Qccupancy: 0.66 { Theoretical Qccupancy: 0,67)

IPC: 1.56 { Maximum IPC: 2)

Achieved global memary throughput: 45.08 { Peak global memory throughput{GE/s): 112.00)

Hint(s)

* The achieved instructions per byte ratio for the kernel is greater than the balanced instruction per byte ratio for the device.
Hence, the kernel is likely compute bound. For details, dick on Instruction Throughput Analysis,

Factors that may affect analysis

* The counters of type SM are collected only for 1 multiprocessor in the chip and the values are extrapolated to get the
behavior of entire GPU assuming equal work distribution. This may result in some inaccuracy in the analysis in some cases.

* The counters for some derived stats are collected in different runs of application. This may cause some inaccuracy in the
derived statistics as the blocks scheduled on each multiprocessor may be different for each run and for some applications
the behaviar changes for each run.

* The derived statistics instruction per byte ratio and IPC assume that all instructions are single predsion floating point
instructions, If the application uses double precision floating point instructions then the limiting factor predicted here may be

incorrect,
[] Show all columns
Limiting Factor : = 3 ; : z :
Identification GPU Timestamp (us) GPU Time (us) instructions issued active warps *
Type:SM Run:7 Type:SM Run| _
Memory Throughput |1 38718 1652.96 1361195 27380312 i_
Analysi
i 2 419896 1652.86 1359208 27316806
Instruction throughput | 3 449074 1652.93 1359381 27372609
Analysis 4 470249 1652.96 1359365 27396901
5 495419 1653.09 1361669 27338841
Dcmpancy A,I"IE]YSIS =4 CwWith 4L£Cc4cC 4447 ATILCATIC 2
L — T — P

Figure 25: Limiting Factor Identification tab

Compute Visual Profiler DU-05162-001_v04 | 38

Compute Application Analysis

» Limiting Factor Identification — In the Analysis window, this default tab displays
important statistics for the kernel for example the min/max/avg gpu time for kernel
at each call and block/grid dimensions amongst others. It shows

e The performance limiting factor for the kernel which indicates if the application is
more compute bound or memory bandwidth bound.

e The key parameters for example IPC (Instructions per Cycle), Memory throughput
and occupancy of the kernel and compares them with the corresponding peak
values for that device which helps in identifying the limiting factor for the kernel.

Instruction Throughput Analysis Tab

4 convolutionColumnsKernel analysis - [Sessiond - Device_0 - Context_0] |E|E|ﬂ_h]
File View
Analysis B X

Instruction Throughput Analysis for kernel convolutionColumnsKernel on device GeForce GTX 480

s IPC: 1.56
* Maximum IPC: 2
* Divergent branches(%%): 0.00
* Control flow divergence(%%): 0.03
* Replayed Instructions(%:): 29.65
Global memory replay(%e): 0.00
Local memaory replays(%s): 0.00
Shared bank conflict replay(3t): 26.38
* Shared memory bank conflict per shared memory instruction(%:): 99,90

m

Hint(s) ,

* The kernel is compute bound, to reduce instruction count
elnderstand the instruction mix, as single predsion floating point, double predision floating peint, int, mem,
transcendentals, etc, have different throughputs. Use double predision arithmetic only when required (E.g.
floating point literals without an f suffix { 34.7) are interpreted as double precision as per C standard);
oTry using arithmetic intrinsic functions.
oTry using compiler flags(-ftz=true, -prec-div=false, -prec-sgrt=false etc) to get higher performance, but may
result in some precision loss;
Refer to the “Arithmetic Instructions™ section in the "Performance Guidelines” chapter of the CUDA C Programming Guide
for more details.
* Shared memory bank conflicts are high which causes serialization of threads within a warp. Shared memaory bank
conflicts can be reduced by =

olsing appropriate padding for data stored in shared memory so that each thread in a warp accesses data from a
different bank;
oRearranging data in shared memary, thus changing access pattern;
Refer to the “Shared Memory™ section in the Performance Guidelines” chapter of the CUDA C Programming Guide for
more details.

Factors that may affect analysis

o 7] show all columns
Limiting Factor =
Identification GPU Timestamp (us) GPU Time (us) shared load shared store -
Type:SM Run:d Type:SM Run:d ||
Memory Throughput |1 38718 1652.96 334560 24600
Analysi
=i 2 4198956 1652.86 334560 24600
Instruction throughput 3 445074 1652.93 334560 24600
Analysis 4 470249 1652.96 334560 24600
5 495419 1653.09 334560 24600
Occupancy Analysis || . concn - sccaac Aaacen Aacnn 25
4 [l b

Figure 26: Instruction Throughput Analysis tab

Compute Visual Profiler DU-05162-001_v04 | 39

Compute Application Analysis

» Instruction Throughput Analysis — Gives instruction throughput analysis. It tries to
identify the amount of divergence and serialization in the kernel by analyzing

control flow divergence and the reasons for instructions replayed. It also gives hints

to reduce serialization and improve IPC.

Memory Throughput Analysis Tab

i

* Kernel requested global memory read throughput{GB/s): 28.49
* Kernel requested global memory write throughput({GB/s): 22.84
* Kernel requested global memory throughput{GB/fs): 51.32

| 1 cache read throughput{GE/s); 25.43
*| 1 cache global hit ratio (3&): 0.00

* Texture cache memory throughput{GE/s); 0.00
* Texture cache hit rate(%:): 0.00
*| 2 cache texture memory read throughput{GE/s): 0.00

* | 2 cache global memary read throughput{GB/s): 28.43
* | 2 cache global memary write throughput{GE/s): 22.84
¢ | 2 cache global memary throughput{GB/s): 51.26

*| 2 cache read hit ratio{%6): 11.21

* | 2 cache write hit ratio{%G): -0.00

* | ocal memory bus traffic(36): 0.00

* Global memory excess load(%6): -0.21
* Global memory excess store(%:): 0.00

* pchieved global memory read throughput{GB/s): 25.24
* pchieved global memory write throughput{GE/s): 22.84
¢ Achieved global memory throughput{GE/s); 43.08

* Peak global memory throughput{GE/s): 112.00

Hint{s)

ory throughput, try to

o Rl | e o S T Ry (ol BrACRRL o SRR Sl Pt DY et STy 8,

* The achieved global memory throughput is low compared to the pesk global memory throughput, To achieve
closer to peak global mem

48 convolutionColumnsKernel analysis - [Sessiond - Device 0 - Context 0] =RUEN X |
File View

Analysis B o
Memory Throughput Analysis for kernel convolutionColumnsKernel on device GeForce GTX 480 i

m

[] shaw all columns
Limiting Factor =
Identification GPU Timestamp (us) GPU Time (us) dynamic shared memory per block -
{bytes) |=
Mermory Throughput |1 38718 1652.96] |_
Analysi
el 2 419896 1652.86 0
Instruction throughput 3 445074 1652.93]
Analysis 4 470249 1652.96 0
5 4954189 1653.09 i
Occupancy Analysis £ _CoWnen T 1ccadic n =
4 | b

Figure 27: Memory Throughput Analysis

Compute Visual Profiler

DU-05162-001_v04 | 40

Compute Application Analysis

» Memory Throughput Analysis - Gives memory throughput analysis. This gives

derived statistics at all the levels in memory hierarchy for example throughput at
each level L1 cache, L2 cache, Texture cache and global memory, the hit ratio, and
extra memory fetched/store due to coalescing issues. It also provides hints about
how to increase the memory throughput and remove some other issues in kernel like
register spilling.

Occupancy Analysis

48 convolutionColumnsKernel analysis - [Sessiond - Device_0 - Context_0] LE'E‘ﬂ_hJ
File | View
Analysis (4

Kernel Occupancy Analysis

Kernel details : Grid size: 192 x 48 x 1, Block size: 16 x 8 x 1

Register Ratio =1 (32768 [32758) [29 registers per thread]

Shared Memary Ratio =0.34375 (41472 f 49152) [5184 bytes per Block]
Active Blocks per 5M =g/8

Active threads per SM = 1024/ 1536

Potential Occupancy =0.666667 (32/43)

Achieved occupancy = 0.666667 (on 15 5Ms)

QOccupancy limiting factor = Reqgisters

(] Show all columns
Limiting Factor r = ; — :
Identification GPU Timestamp (us) GPU Time (us) grid size thread block size dy
(b _|
Memory Throughput |1 38718 1652.96 [192 48 1] [16 8 1] o8
Analysi
EVEE 2 419896 1652.86 [192 48 1] [16 & 1] 0
Instruction throughput |3 | 445074 1652.93 [192 48 1] [16 8 1] 0
Anialysis 4 470249 1652.96 [192 48 1] [16 & 1]]
5 495419 1653.09 [192 48 1] [16 8 1] 0
Dcmpancy malygs [[T Vol e | 4L£Cc 4cC Man a0 41 o o 141 L4} &
¢ eanean. 2z "

Figure 28: Kernel Occupancy Analysis

» Occupancy Analysis — This gives the theoretical kernel occupancy and identifies the

limiting factor for occupancy. It is calculated using the static parameters of the
kernel like launch configuration, shared memory, and register usage.

» The table shown in kernel analysis window displays derived statistics and raw

counters for each call for the kernel for respective analysis tab. Clicking Show all
columns displays all the columns that are available in the profiler table for that
kernel.

» Use File->Export table to export the profiler table in csv format, filtered for the

kernel.

Compute Visual Profiler DU-05162-001_v04 | 41

Compute Application Analysis

SESSION LEVEL ANALYSIS

» Click on the Session name in the Sessions tree. This displays the session level
analysis in the analysis window.

%z ConvolutionSeparable - Compute Visual Profiler - [Session2] EI@
@y File Session View Options Window Help - || & =
Del DRQ ARRE 0 0 = &
Sessions &F X || Properties
4 Sessionl -
- Project name : ConvolutionSeparable
4 Device 0
< Project location 1D fTest
Context_0 [CUDA] ’ 2
4 Session? Session name : Session2 =
4 Device 0 Program location @ "C:/ProgramData/MVIDIA Corparation/MNVIDIA GPU Computing

SDK 4.0/C binfwina4/Release fconvolutionSeparable. exe”

Context 0 [CUDA] Working directory : C:/ProgramData/MVIDIA Corporation/MNVIDIA GPU Computing

SDK 4.0/C binfwina4/Release
Arguments ! —noprompt
Session time : 04 Feb 2011 16:52:15

Mormalized Counter : false

Mumber of devices : 1

|pevice |Device Name
bevice_ﬂ EEFDrce GTX 480

Selected counters 1 44

bm cta launched
branch
Hivergent branch

Session2

h X

* GeForce GTX 480 utilization = 100.00% {172513.00/172513.00)

Analysis

Figure 29: Session Level Analysis

» It shows GPU utilization for all the GPUs for that session and provides suitable
optimization hints.

Compute Visual Profiler DU-05162-001_v04 | 42

Compute Application Analysis

DEVICE LEVEL ANALYSIS

» Click on the device in the Sessions tree. This displays device level analysis the
analysis window.

“zy ConvolutionSeparable - Compute Visual Profiler - [Session2 - Device_0] EI@
7z File Session View Options Window Help - ||
=] I — ——
Dol IEd RARE @ @ = &
Sessions & X | Properties
4 Sessionl
4 Device 0 Device_0 : GeForce GTX 480
Context 0 [CUDA] Mumber of contexts : 1
4 Session?
4 |Device 0 [Context |[Type/ [Number of rows
Context_0 [CUDA] [Context_0/|CUDA/E7
X sgession2:Device 0 [GeForce GTX 480)
=
*Kernel ime = 37.52 % of total GPU time
z * Memory copy time = 60.6 % of total GPU time
= * There is no time overlap between memory copies and kernels in GPU
g
Ready

Figure 30: Device Level Analysis

» It shows GPU utilization for the device by showing the distribution of GPU time
over kernel execution and memory copy and it also gives the overlap time between

memory copy and kernel execution. It also provides suitable hints towards
improving the application performance.

Compute Visual Profiler DU-05162-001_v04 | 43

COMPUTE VISUAL PROFILER TABLES

PROFILER OUTPUT TABLE

Whenever a CUDA program is run with profiling enabled, Compute Visual Profiler
produces a Profiler Output table by default. Table 2 shows the composition of a Profiler

output table.
Table 2. Profiler Output Table
Columns for Columns for
kernel memcopy Columns for
GPU options options Profile
Timestamp Method GPU Time CPU Time Stream Id (See Table 3) | (See Table 4) Counters

Profiler Output Table columns are described below:

» GPU Timestamp: Start time stamp.

» Method: GPU Method name. This is either memcpy* for memory copies or the name
of a GPU kernel. Memory copies have a suffix that describes the type of a memory

Compute Visual Profiler

transfer, e.g. memcpyDToHasync means an asynchronous transfer from Device

memory to Host memory.
GPU Time: Execution time for the method on the GPU.
CPU Time: Sum of GPU time and CPU overhead to launch the GPU Method. At the
driver generated data level, the CPU Time is only the CPU overhead to launch the

Method for non-blocking Methods. For blocking methods it is the sum of GPU time
and CPU overhead. All kernel launches by default are non-blocking. But if any of the

DU-05162-001_v04 | 44

Compute Visual Profiler Tables

profiler counters are enabled kernel launches are blocking. Asynchronous memory
copy requests in different streams are non-blocking.

» Stream Id : Identification number for the stream

» Kernel Options Columns: The columns are described as follows:

Table 3 shows the columns that are displayed for kernel methods.

Table 3. Kernel Options Columns
Profiler GridSize Thread Block Size | Dyn smem Sta smem Reg per
Occupancy Counters [X,Y, Z] [X,Y, Z] per block per block thread

e Occupancy : Occupancy is the ratio of the number of active warps per
multiprocessor to the maximum number of active warps.

o Profiler counters: Refer to the Interpreting Profiler Counters section for a list of
counters supported.

e GridSize[X, Y, Z]: Number of blocks in the grid along dimensions X, Y and Z
displayed as [num_blocks_X, num_blocks_Y, num_blocks_Z] in a single column.

e Block size[X, Y, Z]: Number of threads in a block along dimensions X, Y, and Z
displayed as [num_threads_X, num_threads_Y, num_threads_Z] in a single
column.

e dyn smem per block: Dynamic shared memory size per block in bytes.
e sta smem per block: Static shared memory size per block in bytes.

o reg per thread: Number of registers per thread.

Table 4 shows the columns that are displayed for memcopy options.

Table 4. memcopy Options Columns

Method #Calls Host mem transfer type

Compute Visual Profiler DU-05162-001_v04 | 45

Compute Visual Profiler Tables

Profiler Table Context Sensitive Menu

Right-clicking anywhere in the Profiler Output table window brings up a menu with the

following options:

» Profiler counter plot: Display the profiler counter plot for the method in the current

ToOw.

Column plot: Display the column plot for the current column.

Export: Export the profiler data to a CSV format file.

» Copy: Copy the selected table cells to the clipboard.

SUMMARY TABLE

The Summary table menu is described in the section entitled, “Summary Table”.

A typical summary table is shown in Table 5. See the section entitled, “Summary Table
Tab” on how to select columns to be displayed.

Table 5. Summary Table
glob mem glob mem glob mem
read write overall Warps 11 global
GPU CPU %GPU | throughput | throughput | throughput | instruction | retired per load hit
Method | Calls usec usec time (GB/s) (GB/s) (GB/s) throughput ipc cycle rate

Compute Visual Profiler

DU-05162-001_v04 | 46

COMPUTE VISUAL PROFILER PLOTS

For a selected context in the left frame (Sessions tree view):

On the main menu-> Click on View
Various plots supported by the Compute Visual Profiler are displayed. Compute Visual

Profiler supports the following plots:
» Summary plot

e GPU time summary plot

e Device level summary plot

e Session level summary plot
GPU time height plot

GPU Time Width plot
Comparison Summary plot
CUDA API Trace

vV v v Vv

Compute Visual Profiler DU-05162-001_v04 | 47

Compute Visual Profiler Plots

GPU Time Summary Plot

For a selected context in the left frame (Sessions tree view):

On the main menu-> Click on View-> Click on GPU time summary plot

The Summary profiling data bar plot has one bar for each method. The bars are sorted in
decreasing GPU time and the bar length is proportional to cumulative GPU time for a
method

Gpu Time Summary Plot

GPU Time (Total)
0.00% 3.02%

6.05% 9.07% 12.09% 15.12% 18.14% 21.16%

memcpyDtoH (16)
transposeNaive (102)
transposeCoalesced (102)
transposeDiagenal (102)
copySharedMem (102)
transposeMoBankConflicts (102)
transposeCoarseGrained (102)
transposeFineGrained (102)
copy (102)

memcpyHtoD (1)

0.00% 3.02% 6.05% 0.07% 12.00% 15.12% 18.14% 21.16%

Figure 31. Summary Plot

Compute Visual Profiler DU-05162-001_v04 | 48

Compute Visual Profiler Plots

Device Level Summary Plot

For a selected device in the left frame (Sessions tree view):

On the main menu-> Click on View- Click on Device level summary plot

Device Level Summary Plot

GPU Time { Total)

0.00% 9.99% 19.98% 29.97% 39.95% 49.94% 59.93% 69.92%

Gpu Idle (833)

memcpyDtoH (16)

transposeMaive (102)
transposeCoalesced (102)
transposeDiagonal (102)
copySharedMem (102)
transposeMoBankConflicts (102)
transposeCoarseGrained (102)
transposeFineGrained (102)
copy [102)
memcpyHtoD (1)

0.00% 9.99% 19.98% 29.97% 39.05% 49.94% 58.93% £9.92%

Figure 32. Device Level Summary Plot
The Device level summary plot has one bar for each method. Bars are sorted in

decreasing GPU time. The bar length is proportional to the cumulative GPU time for a
method across all contexts for a device.

Compute Visual Profiler DU-05162-001_v04 | 49

Compute Visual Profiler Plots

Session Level Summary Plot

For a selected session in the left frame (Sessions tree view):

On the main menu-> Click on View- Click on Session level summary plot

Session Level Summary Plot

GdJu Utilization Percentage Value
0.00

16.56 33.11 49.67 66.23 82.78 99.34

Device_0 (GeForce GTX 480)
Device_1 (GeForce 9500 GT)

0.00 16.56 33.11 49.67 66.23 82.78 99.34

Figure 33. Session Level Summary Plot

The Session level summary plot has one bar for each device used. The bar length is
proportional to GPU utilization which is the proportion of time that GPU spent on the
execution of a particular method to the total time interval from GPU start to end. The

values are presented in percentage format.

Compute Visual Profiler DU-05162-001_v04 | 50

Compute Visual Profiler Plots

GPU Time Height Plot

For a selected context in the left frame (Sessions tree view):

On the main menu-> Click on View- Click on GPU time height plot

Height Plot
m memcpyDtoH 68102
= memcpyHtoD
= memset32_aligned1D 6538454
m= testkernel-0
= testKernel-1 595854
m testkernel-10
= testkernel-11 S
= testkernel-2 510764
mm testkernel-3
= testkernel-4 46820
= testkernel-5
= testKernel-6 42563
= testkernel-7
m testkernel-8 HH
m testkernel-9 34050
20704
25538
21281 Method : me-ﬁcayDth
Method Number : 35
170254 GPU Time : 68101.82
CPU Time : 68101.82
G 12769
P
u
8512
T
i
i 42564
e
0 — S N B
1) 101 151 201 231 301 351 401
Method Number

Figure 34. GPU Time Height Plot

The GPU time height plot is a bar diagram in which the height of each bar is
proportional to the GPU time for a method; a different bar color is assigned for each
method. The width of each bar is fixed and the bars are displayed in the order in which
the methods are executed. When the Fit In Window (Options->Session View
Settings—>Click on Height Plot tab->Check Fit In Window box) option is enabled the
display is adjusted so as to fit all the bars in the displayed window width. In this case
bars for multiple methods can overlap. The overlapped bars are displayed in decreasing
order of height so that all the different bars are visible. When the Show CPU Time

Compute Visual Profiler DU-05162-001_v04 | 51

Compute Visual Profiler Plots

option (Options—>Session View Settings—>Click on Height Plot tab—>Check the Show CPU
Time box) is enabled the CPU time is shown as a bar in a different color on top of the
GPU time bar. The height of this bar is proportional to the difference of CPU time and
GPU time for the method.

A legend which shows the color assignment for different methods is displayed if the
Show Legend box is checked.

The plot can customized as described in the section entitled, “Height Plot Tab”; the
dialog box with options is shown in Figure 19.

GPU Time Width Plot

For a selected context in the left frame (Sessions tree view):

On the main menu-> Click on View-> Click on GPU time width plot

Width Plot

= Copy

= copySharedMem

m memcpyDtoH

m memcpyHtoD

= transposeCoalesced

m transposeCoarseGrained
= transposeDiagonal

= transposeFineGrained

mm transposeNaive

= transposeNoBankConflicts

il 12377 24735 37133 49510 61888 74266 86643 99021
GFU Time

Figure 35. GPU Time Width Plot

The GPU time width plot is a bar diagram in which the width of each bar is proportional
to the GPU time for a method. A different bar color is assigned for each method. A
legend which shows the color assignment for different methods is displayed. The bars
are displayed in the order in which the methods are executed. When time stamps are
enabled the bars are positioned based on the time stamp. The height of each bar is based
on the option chosen.

Compute Visual Profiler DU-05162-001_v04 | 52

Compute Visual Profiler Plots

The plot can customized as described in the section entitled, “Width Plot Tab”; the
dialog box with options is shown in Figure 20.

Profiler Counter Bar Plot

Go to the Profiler Output Tab —>Right-click on any cell in the Profiler Table except cells
in the Method column - Select Profiler Counter Plot

Profiler Counter Plot

Profiler counters For method - matrizMul: 3
0,00%. 5.48% 10.96%: 16.44% 21.92% 27.40%: 32.858% 35.36%: 43.84%

branch

gld request

gsk request

sm cka launched
local store
divergent branch
local load

I T T T T T T T T
0.00%: 5.48%: 10.96% 16, 44% 21.92% ZT.40%: 32.88% 38, 36%s 45, 84%s

Figure 36. Profiler Counter Plot

The Profiler Counter bar plot displays profiler counter values for a GPU Method from
the profiler output table or the summary table. There is one bar for each profiler counter.
Bars are sorted in decreasing profiler counter value. The bar length is proportional to
profiler counter value.

Profiler Output Table Column Bar Plot

Go to the Profiler Output Tab - Right-click on any cell in the Profiler Table—>Select
Column Plot

Column (CPU Time) Plot

Column - CPU Time
0.00% 12.33% 24.67% 37.00% 49.33% 61.67% 74.00% 86.33% 98.66%
binomialOptionskernel:6
memset32_aligned1D:3
memset32_aligned1D:1
memcpyDtoH:7
memcpyHtoD:5
memset32_aligned1D:2
memset32_aligned1D:4

0.00% 12.33% 24.67% 37.00% 49.33% 61.67% 74.00% 86.33% 98.56%

Figure 37. Profiler Output Column Plot

Compute Visual Profiler DU-05162-001_v04 | 53

Compute Visual Profiler Plots

The Profiler output table column plot displays a bar graph of the selected column of
values from the profiler output table or summary table. There is one bar for each row in
the table. Bars are sorted in decreasing column value. The bar length is proportional to
column value. Figure 37 displays the CPU time since a cell on the CPU time was
selected.

Comparison Summary Plot

The Comparison Summary plot can be used to compare GPU time summary data for
two sessions: a base session and a compare session. The base session is the session with
respect to which comparison is done. The other session which is selected for comparison
is called the compare Session.

As shown in Figure 38, the dialog box Select Device of Compare Session is presented for
selecting the device on which the sessions are compared, if multiple devices are present.

Note that in case of a single device the Select Device of Compare Session dialog box will
not appear.

Select the device—>Click on OK.

ey Select Session @I_g—hj

Session List

SessionZ

Sessionl

Sessiond

0K] [Cancel

Figure 38. Select Device

Compute Visual Profiler DU-05162-001_v04 | 54

Compute Visual Profiler Plots

Next, a dialog box as shown in Figure 39, allows you to select the columns that may be
used for comparison.

@y Select Column |i|—;:+hj‘

Column List

#Calls

GPU time

CPU time

%GPU time

branch

sm cta launched
divergent branch
instructions issued
instructions executed
warps launched
threads launched
active warps

active cycles

retire ipc

active warps/active cycle

0K J [Cancel

Figure 39. Select Column Screen for Comparison Summary Plot

Figure 40 shows the Comparison Summary Plot. Selected columns for matching kernels
from the two sessions are grouped together. For each matched kernel from the compare
session, a percentage increment or decrement with respect to base session is displayed at
the right end of the bar. In addition to the matched pairs, the unmatched kernels’
column values are shown. At the bottom of the plot two bars with total column values
for the two sessions are shown.

If multiple contexts exist, a context selection dialog is presented along with a column
selection dialog. Based on these selections, the comparison summary plot is displayed.
The plot groups matching methods from two contexts (chosen from base and compare
sessions) and plots the values of the selected columns together. In addition, non-
matching methods are plotted separately. Finally the total values are compared at the
bottom.

Compute Visual Profiler DU-05162-001_v04 | 55

Compute Visual Profiler Plots

mm Session3 : Device_0 : Context_0 Comparison Summary Plot
= Session4 : Device_0 : Context_0
GPUfime
930 7861 11791 15722 19652 23583 27513

omsosrsan) I —
(1) +0.0

memset32_aligned1D (4) 5
(4} [+0.14%

memcpyHtoD (1)
(1)]-1.03%

memcpyDtoH (1)
(1

—

+2.DD% T T T T T T T
0 3930 7861 11791 15722 19652 23383 27513
GPU time

Total of : GPU time

27767.2c
27776.19 +0.03%

Figure 40. Comparison Summary Plot

Compute Visual Profiler DU-05162-001_v04 | 56

Compute Visual Profiler Plots

CUDA API Trace

Figure 41 shows a sample CUDA API Trace view.

API Trace View
m Driver API
= matrixMul
= memcpyDtoH
= memecpyHtoD
GPU Time
q 21|594 43|189 64?‘84 863?8) 129|568
Methods
APIs
21594 43|189 64:7'84 865?8 1D?=9?3 129568
GFU Time

Figure 41. CUDA API Trace

The CUDA API trace helps the user to understand the CPU side overhead for CUDA
driver API calls and specifically to understand the overhead involved for each kernel
launch and memory transfer request.. Capturing of CUDA Driver API calls can be
enabled by selecting API trace in the Session settings dialog.

To view CUDA API Trace for a context:

On the main menu- Click on View = Select CUDA API trace
Or,

Go to the left frame Sessions tree view = Right-click on context—->Select CUDA API
trace

The API trace view displays two horizontal rows of bars. The top row of bars shows the
GPU methods and the bottom row of bars shows the CUDA driver API functions. Each
GPU method or APl is represented by a bar with a width proportional to the time of
execution. The bars are displayed in time order along the horizontal direction based on
the start time. A different color is assigned to each GPU method and all APIs are shown
in the same color. Consult the legend for the color used for different GPU methods and
for APIs.

Compute Visual Profiler DU-05162-001_v04 | 57

Compute Visual Profiler Plots

The attributes for a GPU method or an API can be viewed by pointing the cursor on the
bar. The following attributes are displayed for a CUDA driver API:

APl name: Name of CUDA driver API function

Context ID: GPU context ID

Thread ID: CPU thread ID

Process ID: CPU process ID

Stream ID: GPU steam ID

Return value: API call return value

Start time stamp: Start time of an API call in micro seconds

vV vV v v v v Vv .Yy

Time duration: Time duration for execution of a API in micro seconds

Compute Visual Profiler DU-05162-001_v04 | 58

COMPUTE VISUAL PROFILER COUNTERS

INTERPRETING COUNTER VALUES

Counter values obtained from the Compute Visual Profiler are not the same as numbers
obtained by inspecting kernel code. Compute Visual Profiler values are best used to
identify relative performance differences between un-optimized and optimized code.
For example, if for the initial version of the program the profiler reports N non-coalesced
global loads, it is easy to see if the optimized code produces less than N non-coalesced
loads. In most cases, the goal is to make N go to O, so the counter value is useful for
tracking progress toward this goal.

Performance counter values represent events within a thread warp; they do not
correspond to individual thread activity. For example, a divergent branch within a
thread warp will increment the divergent_branch counter by one. Therefore the final
counter value contains information for all divergent branches in all warps. In addition,
the profiler can only target one of the multiprocessors in the GPU, so the counter values
will not correspond to the total number of warps launched for a particular kernel. For
this reason, when using the performance counter options in the profiler the user should
always launch enough threads blocks to ensure that the target multiprocessor is given a
consistent percentage of the total work. In practice for consistent results, it is best to
launch at least 2 times as many blocks as there are multiprocessors in the device on
which you are profiling.

Note that the counter values for the same application can be different across different
runs even on the same setup since it depends on the number of thread blocks which are
executed on each multiprocessor. For consistent results it is best to have number of
blocks for each kernel launched to be at least equal to or a multiple of the total number
of multiprocessors on a compute device. In other words when profiling the grid
configuration should be chosen such that all the multiprocessors are uniformly loaded
i.e. the number of blocks launched on each multiprocessor is same and also the amount

Compute Visual Profiler DU-05162-001_v04 | 59

Compute Visual Profiler Counters

of work of interest per block is the same. This will result in better accuracy of
extrapolated counts, such as memory and instruction throughput, and will also provide
more consistent results from one run to the next run.

In every application run only a few counter values can be collected. The number of
counters depends on the specific counters selected. Compute Visual Profiler executes the
application multiple times to collect all the counter values. Note that in case the number
blocks in a kernel is less than or not a multiple of the number of multiprocessors the
counters values across multiple runs will not be consistent.

Refer to the Best Practices Guides for CUDA and OpenCL for further details.

PROFILER COUNTERS FOR A SINGLE
MULTIPROCESSOR (SM)

These counter values are a cumulative count for all thread blocks which were run on
multiprocessor zero. Note that the multiprocessor single-instruction multi-thread unit
(SIMT) creates, manages, schedules, and executes threads in groups of 32 threads called
warps. These counters are incremented by one for each warp.

PROFILER COUNTERS FOR ALL MULTIPROCESSORS
IN A TPC

Profiler counter values for all multiprocessors in a Texture Processing Cluster (TPC) are
a cumulative count for all thread blocks which were run on multiprocessors within TPC
zero. There are two multiprocessors per TPC on compute devices with compute
capability less than 1.3, there are three multiprocessors per TPC on compute devices
with compute capability 1.3 and one multiprocessor per TPC on compute devices with
compute capability 2.0. The number of multiprocessors per TPC is not dependent on
compute capability.

A coalesced access is said to occur when simultaneous global memory accesses by
threads in a half-warp, during the execution of a single read or write instruction, can be
combined into a single memory transaction of 32, 64, or 128 bytes.

If the global memory access by all threads of a half-warp does not fulfill the coalescing
requirements it is called a non-coalesced access and a separate memory transaction is
issued for each thread and throughput is significantly reduced. The coalescing
requirements on devices with compute capability 1.2 and higher are different from

Compute Visual Profiler DU-05162-001_v04 | 60

Compute Visual Profiler Counters

devices with compute capability 1.0 or 1.1. Refer to the CUDA C Programming Guide for
details. The profiler counters related to global memory count the number of global
memory accesses or memory transactions and they are not per warp. They provide
counts for all global memory requests initiated by warps running on a TPC.

NORMALIZED COUNTER VALUES

When the "Normalize Counters" option is selected (see Figure 12) all counter values are
normalized and per block counts are shown. This option is currently supported only for
compute devices with compute capability less than 2.0.

For single multiprocessor counters the counter value is divided by the number of thread
blocks which were run on multiprocessor 0. The profiler counter "sm_cta_launched"
is used to count thread blocks which were run on multiprocessor 0.

For TPC counters the counter value is divided by the number of thread blocks which
were run on TPC 0. The profiler counter "cta_launched" is used to count thread blocks
which were run on multiprocessors in TPC 0.

The counter value is set to zero in the following cases:

» The number of blocks launched on the multiprocessor(s) being profiled is zero. This
can happen when the number of blocks launched for a kernel is less than the total
number of multiprocessors on a compute device.

» The counter value is less than the number of blocks launched on the
multiprocessor(s) being profiled. The normalized fractional value less than one is
truncated to zero.

If any counter value is set to zero a warning is displayed at the end of the application
profiling.

Enabling the "Normalize Counters" option results in the following:

» more number of application runs are required to collect all counter values as
compared to when the option is disabled.

» the"cta_launched" and "sm_cta_launched" columns are not shown in the
profiler table.

Compute Visual Profiler DU-05162-001_v04 | 61

Compute Visual Profiler Counters

PROFILER COUNTERS

Table 6 lists the profiler counters supported for different multiprocessor configurations
and compute capabilities.

The "Type" column specifies one of the following types of counters:

» SM: Streaming Multiprocessor
Counters of this type provide accumulated values for all thread blocks which were
run on multiprocessor zero.

» TPC: Texture Processing Cluster
Counters of this type provide accumulated values for all thread blocks which were
run on multiprocessors within TPC 0.

» FB: Frame Buffer for GPU DRAM or Device Memory
DRAM and L2 cache counters are categorized as FB type counters. Counters of this
type provide accumulated values for all instances of the unit available on the GPU.
e.g. the L2 counters provide accumulated values for all the L2 cache units and
DRAM counters provide accumulated values for all the DRAM units available on the
GPU. When values of these counters are compared with the SM counter values, the
SM counter values need to be extrapolated for the total number of thread blocks for
the kernel.
e.g. ((128 * ‘11 global load miss’ * “grid size”)/’sm cta launched’) should be
approximately equal to (‘12 read requests” * 32) assuming uniform work load across
all the multiprocessors.

» SW: Counter values obtained by performing code instrumentation on the device
code
SW counters include the counters that count different sizes of memory requests in
the kernel. Since these counters are collected for all thread blocks of the kernel, when
values of these counters are compared with the SM counter values, SM counter
values should be extrapolated for the total number of thread blocks for the kernel.
e..g. (‘gld inst 8bit’ + 2 * “gld inst 16bit" + 4 * "gld inst 32bit’ + 8 * “gld inst 64bit’ + 16 *
‘gld inst 128bit") should be approximately equal to ((128 * (11_global_load_hit +
11_global_load_miss) * “grid size’) / "sm cta launched’) if the memory access pattern
is coalesced and assuming uniform work load across all multiprocessors.

In addition to the Compute Visual Profiler, a command line profiling tool called the
Compute Command Line Profiler is also supported for compute application profiling.
Both tools support similar counters with slightly different nomenclature.

Compute Visual Profiler DU-05162-001_v04 | 62

Compute Visual Profiler Counters

Profiler counters for the command line profiler are indicated in a different font
(Courier) in Table 6 below.

High level counters supported only in the Visual Profiler are computed in terms of the
command line profiler low level counters. Formulas (in Courier font) for such high

level counters are listed in the “Description” column in Table 6 below.

Details regarding the command line profiler low level counters are provided in Table 9
in the section entitled, “Command Line Profiler Counters”.

Table 6.

Profiler Counters

Visual Profiler Counter
Name

Command Line
Profiler Counter

Description

Type

SM= Streaming
Multiprocessor

TPC=Texture
Processing Cluster

FB =Frame Buffer

Compute Capability Support
Y= Yes
N= No

Name (GPU DRAM or 1.0 | 1.1 | 1.2 | 1.3 | 2.0 2.1
Device Memory)
SW= Software
Branch Number of branches taken by threads
branch executing a kernel. This counter is
incremented by one if at least one thread
in a warp takes the branch. Note that SM Y Y Y Y Y Y
barrier instructions (__syncThreads()) also
get counted as branches.
divergent branch Number of divergent branches within a
divergent._branch warp. This counter is incremented by one if
- at least one thread in a warp diverges (that
is, follows a different execution path) via a SM Y Y Y Y Y Y
data dependent conditional branch. The
counter is incremented by one at each
point of divergence in a warp.
instructions Number of instructions executed. M Y y y v N N
instructions
warp serialize If two addresses of a memory request fall
warp_serialize in the same memory bank, there is a bank
- conflict and the access has to be serialized. M y y y y N N
This counter gives the number of thread
warps that serialize on address conflicts to
either shared or constant memory.
sm cta launched Number of threads blocks launched on a M Y y y v v v
sm cta_launched multiprocessor.
gld uncoalesced Number of non-coalesced global memory TPC Y v N N N N
gld_iincoherent loads.
gld coalesced Number of coalesced global memory loads.
TPC Y Y N N N N
gld_coherent

Compute Visual Profiler

DU-05162-001_v04 | 63

Compute Visual Profiler Counters

Type Compute Capability Support
SM= Streaming Y= Yes
Visual Profiler Counter Multiprocessor N= No
Name TPC=Texture
command Line Description Processing Cluster
Profiler Counter FB =Frame Buffer
Name (GPU DRAM or 10|11 |12]13]|20 2.1
Device Memory)
SW= Software
gld request Number of global memory load requests.
gld_request On devices with compute capability 1.3
- enabling this counter will result in TPC N N y y y y
increased counts for the "instructions" and
"branch” counter values if they are also
enabled in the same application run.
gld 32 byte Number of 32 byte global memory load
gld 32b transactions; incremented by 1 for each 32 TPC N N Y Y N N
- byte transaction.
gld 64 byte Number of 64 byte global memory load
gld 64b transactions; incremented by 1 for each 64 TPC N N Y Y N N
- byte transaction.
gld 128 byte Number of 128 byte global memory load
gld 128b transactions; incremented by 1 for each TPC N N Y Y N N
- 128 byte transaction.
gst coalesced Number of coalesced global memory stores.
gst_coherent TPC Y Y N N N N
gst request Number of global memory store requests.
gst_reguest On devices with compute capability 1.3
- enabling this counter will result in TPC N N y y y y
increased counts for the "instructions" and
"branch" counter values if they are also
enabled in the same application run.
gst 32 byte Number of 32 byte global memory store
gst 32b transactions; incremented by 2 for each 32 TPC N N Y Y N N
- byte transaction.
gst 64 byte Number of 64 byte global memory store
gst 64b transactions; incremented by 4 for each 64 TPC N N Y Y N N
- byte transaction.
gst 128 byte Number of 128 byte global memory store
gst 128b transactions; incremented by 8 for each TPC N N Y Y N N
- 128 byte transaction.
local load Number of local memory load transactions.
local load Each local load request will generate one
- transaction irrespective of the size of the TPC Y Y Y Y Y Y
transaction.
local store Number of local memory store transactions;
local store incremented by 2 for each 32-byte
- transaction, by 4 for each 64-byte
transaction and by 8 for each 128-byte
transaction for compute devices having TPC Y Y Y Y Y Y
compute capability 1.x. It is incremented
by 1 irrespective of the size of the
transaction for compute devices having
compute capability 2.0.

Compute Visual Profiler

DU-05162-001_v04 | 64

Compute Visual Profiler Counters

Type Compute Capability Support
SM= Streaming Y= Yes
Visual Profiler Counter Multiprocessor N= No
Name TPC=Texture
command Line Description Processing Cluster
Profiler Counter FB =Frame Buffer
Name (GPU DRAM or 1.0 1.1|1.2| 1.3 | 2.0 2.1
Device Memory)
SW= Software
cta launched Number of threads blocks launched on a
cta lau | TPC. TPC Y Y Y Y N N
texture cache hit Number of texture cache hits.
e re hit TPC Y Y Y Y N N
texture cache miss Number of texture cache misses.
B miss TPC Y Y Y Y N N
prof triggers There are 8 such triggers that user can
prcrf_tr!gger_OO - _proflle. T_hose are generic and can be TPC y v y y y y
prof_trigger 07 inserted in any place of the code to collect
- - the related information.
shared load/ Number of executed shared load M N N N N Y v
shared load instructions per warp on a multiprocessor.
shared store/ Number of executed shared store M N N N N v v
shared_store instructions per warp on a multiprocessor.
instructions issued Number of instructions issued including
replays.
This is calculated as:
inst_issued SM N N N N Y Y
OR
(inst_issuedl O + 2*inst _issued2 0 +
inst_issuedl 1 + Z*inst_issued2 1)
instructions executed Number of instructions executed, do not M N N N N Y v
inst executed include replays.
threads instruction Number of instructions executed by all
executed threads. This does not include replays. For
each instruction it increments by the
number of threads in the warp that execute
the instruction.
This is calculated as: M N N N N Y Y
(thread_inst _executed O +
thread_inst executed 1
[+ thread iInst executed 2 +
thread_inst executed 3])
warps launched Number of warps launched on a M N N N N Y v
warps_launched multiprocessor.
threads launched Number of threads launched on a
threads launched multiprocessor. M N N N N Y Y
active cycles Number of cycles a multiprocessor has at
active cycles least one active warp. M N N N N Y Y
active warps Accumulated number of active warps per
active warps cycle. For every cycle it increments by the
number of active warps in the cycle which SM N N N N Y Y
can be in the range 0 to 48.

Compute Visual Profiler

DU-05162-001_v04 | 65

Compute Visual Profiler Counters

Type

Compute Capability Support

SM= Streaming Y= Yes
Visual Profiler Counter Multiprocessor N= No
Name TPC=Texture
command Line Description Processing Cluster
Profiler Counter FB =Frame Buffer
Name (GPU DRAM or 1.0 1.1|1.2| 1.3 | 2.0 2.1
Device Memory)
SW= Software
11 global load hit Number of global load hits in L1 cache.
- SM N N N N Y Y
11 global_load hit
11 global load miss Number of global load misses in L1 cache.
_ SM N N N N Y Y
11_global_load miss
11 local load hit Number of local load hits in L1 cache.
. SM N N N N Y Y
11 _local_load hit
11 local load miss Number of local load misses in L1 cache
- SM N N N N Y Y
11 local load miss
11 local store hit Number of local store hits in L1 cache. M N N N N Y v
11 local_store hit
11 local store miss Number of local store misses in L1 cache.
_ SM N N N N Y Y
11 _local_store miss
11 shared bank conflicts | Number of shared bank conflicts.
11 shared bank SM N N N N Y Y
conflicts
uncached global load Number of uncached global load
transaction transactions; incremented by 1 per
uncached global _load | transaction. Transaction size can be SM N N N N Y Y
global store transaction | Number of global store transactions;
global_store transac | incremented by 1 per transaction. SM N N N N \% Y
tion - Transaction size can be 32/64/128 bytes.
12 read requests Number of read requests from L1 to L2
cache; incremented by 1 for each 32-byte
access.
This is calculated as: FB N N N N Y Y
12 _subp0_read sector_queries [+
12 _subpl read sector_queries]
12 read texture Number of read requests from texture
requests cache to L2 cache; incremented by 1 for
each 32-byte access. - N N N N v v
This is calculated as:
12 _subp0_read tex sector_queries [+
12 _subpl read tex sector_gueries]
12 write requests Number of write requests from L1 to L2
cache; incremented by 1 for each 32-byte
access.
FB N N N N Y Y

This is calculated as:
12_subp0 write sector_queries [+
12_subpl write sector_queries]

Compute Visual Profiler

DU-05162-001_v04 | 66

Compute Visual Profiler Counters

Visual Profiler Counter
Name

Command Line
Profiler Counter
Name

Description

Type

SM= Streaming
Multiprocessor

TPC=Texture
Processing Cluster

FB =Frame Buffer
(GPU DRAM or
Device Memory)

SW= Software

Compute Capability Support
Y= Yes
N= No

1.0 { 1.1 | 1.2 | 1.3 | 2.0 2.1

12 read misses

Number of read misses in L2 cache;

incremented by 1 for each 32-byte access.

This is calculated as:
12_subp0_read sector_misses [+
12_subpl read sector_misses]

FB

12 write misses

Number of write misses in L2 cache;

incremented by 1 for each 32-byte access.

This is calculated as:
12_subp0 write sector_misses [+
12 _subpl write_sector_misses]

FB

dram reads

Number of read requests to DRAM;

incremented by 1 for each 32-byte access.

This is calculated as:
(fb_subp0_read sectors +
b _subpl read sectors)
OR

(f0_subp0_read sectors +
TH0_subpl read sectors +
bl subp0 read sectors +
bl subpl read sectors)

FB

dram writes

Number of write requests to DRAM,;

incremented by 1 for each 32-byte access.

This is calculated as:
(fb_subp0 write_sectors +
b _subpl write sectors)
OR

(fb0_subp0 write_sectors +
TH0_subpl write_sectors +
bl subp0 write sectors +
bl subpl write sectors)

FB

tex cache requests

Number of texture cache requests;

incremented by 1 for each 32-byte access.

This is calculated as:
tex0_cache sector_queries [+
tex1_cache sector_queries]

SM

tex cache misses

Number of texture cache misses;

incremented by 1 for each 32-byte access.

This is calculated as:
tex0_cache sector_misses [+
texl _cache sector_misses]

SM

gld instruction 8bit
gld_inst 8bit

Total number of 8-bit global load
instructions that are executed by all the
threads across all thread blocks.

SW

Compute Visual Profiler

DU-05162-001_v04 | 67

Compute Visual Profiler Counters

Type Compute Capability Support
SM= Streaming Y= Yes
Visual Profiler Counter Multiprocessor N= No
Name TPC=Texture
command Line Description Processing Cluster
Profiler Counter FB =Frame Buffer
Name (GPU DRAM or 1.0 1.1|1.2| 1.3 | 2.0 2.1
Device Memory)
SW= Software
gld instruction 16bit Total number of 16-bit global load
gld_inst_16bit instructions that are executed by all the SW N [N N N Y Y
- threads across all thread blocks.
gld instruction 32bit Total number of 32-bit global load
gld_inst_32bit instructions that are executed by all the SwW N [N N N Y Y
- threads across all thread blocks.
gld instruction 64bit Total number of 64-bit global load
gld_inst_64bit instructions that are executed by all the SwW N [N N N Y Y
- threads across all thread blocks.
gld instruction 128bit Total number of 128-bit global load
gld_inst_128bit instructions that are executed by all the SwW N [N N N Y Y
-7 threads across all thread blocks.
gst instruction 8bit Total number of 8-bit global store
gst_inst_8bit instructions that are executed by all the SW N [N N N Y Y
- threads across all thread blocks.
gst instruction 16bit Total number of 16-bit global store
gst_inst_16bit instructions that are executed by all the SwW N [N N N Y Y
- threads across all thread blocks.
gst instruction 32bit Total number of 32-bit global store
gst_inst_32bit instructions that are executed by all the SwW N [N N N Y Y
- threads across all thread blocks.
gst instruction 64bit Total number of 64-bit global store
gst_inst_64bit instructions that are executed by all the SwW N [N N N Y Y
-7 threads across all thread blocks.
gst instruction 128bit Total number of 128-bit global store
gst_inst_128bit instructions that are executed by all the SW N [N N N Y Y
- threads across all thread blocks.

Compute Visual Profiler

DU-05162-001_v04 | 68

SUPPORTED DERIVED STATISTICS

Visual Profiler supports derived statistics for different multiprocessor configurations
and compute capabilities. A description of the statistics that are derived from the
profiler counter values is provided in Table 7. The Compute Capability columns provide
theoretical valid ranges for the derived statistics.

» *indicates that the range for this derived statistic varies from one device to another
and depends on factors such as memory bus width and memory clock.

» NA indicates that the derived statistic is not available for the specific compute
capability.

Note: The derived statistics displayed in the Summary Table as well as in the
Analysis window of the Kernel Analysis feature for a particular kernel are the
average values taken over all the invocations of that kernel.

Compute Visual Profiler DU-05162-001_v04 | 69

Table 7.

Supported Derived Statistics

Supported Derived Statistics

Derived Statistic

Description

Compute Capability

1.0

1.1 (1.2 |1.3 |2.0

2.1

glob mem read throughput

Global memory read throughput in gigabytes per second.
For compute capability < 2.0 this is calculated as:
(((gld_32*32) + (gld_64*64) + (gld_128*128)) * TPC) /
(gputime * 1000)

For compute capability >= 2.0 this is calculated as:
((DRAM reads) * 32) / (gputime * 1000)

This derived statistic is also shown as ‘Achieved global
memory read throughput (GB/s)’ in the kernel analysis
window for Fermi.

*

* * * *

glob mem write throughput

Global memory write throughput in gigabytes per second.
For compute capability < 2.0 this is calculated as:
(((gst_32*32) + (gst_64*64) + (gst_128*128)) * TPC) /
(gputime * 1000)

For compute capability >= 2.0 this is calculated as:
((DRAM wrrites) * 32) / (gputime * 1000)

This derived statistic is also shown as ‘Achieved global
memory write throughput (GB/s)’ in the kernel
analysis window for Fermi.

glob mem overall
throughput

Global memory overall throughput in gigabytes per
second. This is calculated as:

Global memory read throughput + Global memory write
throughput

This derived statistic is also shown as ‘Achieved global
memory throughput (GB/s)’ in the kernel analysis
window for Fermi.

gld efficiency

Global load efficiency

NA

NA 0-1 0-1 NA

NA

gst efficiency

Global store efficiency

NA

NA 0-1 0-1 NA

NA

instruction throughput

This is the ratio of achieved instruction rate to peak
single issue instruction rate. The achieved instruction
rate is calculated using the profiler counter
“instructions”.

The peak instruction rate is calculated based on the GPU
clock speed.

In the case of instruction dual-issue coming into play,
this ratio shoots up to greater than 1.

This is calculated as:

(instructions) / (gpu_time * clock_frequency)

0-1

0-1 0-1 0-1 NA

NA

active warps/active cycles

The average number of warps that are active on a
multiprocessor per cycle. This is calculated as:

(active warps) / (active cycles).

NA

NA NA NA 0-48

0-48

11 gld hit rate

This is calculated as:

100 * (11 global load hit count) /7 ((I1 global load hit
count) + (11 global load miss count))

NA

NA NA NA 0-100

0-100

texture hit rate %

This is calculated as:

100 * (tex_cache_requests - tex_cache_misses) /
(tex_cache_requests)

NA

NA NA NA 0-100

0-100

Compute Visual Profiler

DU-05162-001_v04 | 70

Supported Derived Statistics

Derived Statistic

Description

Compute Capability

1.0

1.1

1.2

1.3

2.0

2.1

Ideal Instruction/Byte ratio

This is a ratio of the peak instruction throughput and the
peak memory throughput of the CUDA device.

This is a property of the device and is independent of the
kernel.

NA

NA

NA

NA

instruction/byte

This is the ratio of the total number of instructions
issued by the kernel and the total number of bytes
accessed by the kernel from global memory.

If this ratio is greater than the Ideal instruction/byte
ratio, then the kernel is compute bound and if it’s less,
then the kernel is memory bound. This is calculated as:
(32 * instructions issued * #SM)/ {32 * (12 read requests +
12 write requests + 12 read texture requests)}

NA

NA

NA

NA

Achieved Kernel Occupancy

This ratio provides the actual occupancy of the kernel
based on the number of warps executing per cycle on the
SM. It is the ratio of active warps and active cycles
divided by the max number of warps that can execute on
an SM.

This is calculated as:

(active warps/active cycles)/48

NA

NA

NA

NA

0-1

0-1

Kernel requested global
memory read throughput
(GB/s)

This is the actual number of bytes requested in terms of
loads by the kernel from global memory divided by the
kernel execution time.

These requests are made in terms of global load
instructions which can be of varying word sizes of 8, 16,
32, 64 or 128 bits. This is calculated as:

(gld instructions 8bit + 2 * gld instructions 16bit + 4 * gld
instructions 32bit + 8 * gld instructions 64bit + 16 * gld
instructions 128bit) / (gpu time * 1000)

NA

NA

NA

NA

Kernel requested global
memory write throughput
(GB/s)

This is the actual number of bytes requested in terms of
stores by the kernel from global memory divided by the
kernel execution time.

These requests are made in terms of global store
instructions which can be of varying word sizes of 8, 16,
32, 64 or 128 bits. This is calculated as:

(gst instructions 8bit + 2 * gst instructions 16bit + 4 * gst
instructions 32bit + 8 * gst instructions 64bit + 16 * gst
instructions 128bit) / (gpu time * 1000)

NA

NA

NA

NA

Kernel requested global
memory throughput (GB/s)

This is the combined kernel requested read and write
memory throughput. This is calculated as:

(Kernel requested global memory read throughput +
Kernel requested global memory write throughput)

NA

NA

NA

NA

L1 cache read throughput
(GB/s)

This gives the throughput achieved while accessing data
from L1 cache. This is calculated as:

[(11 global load hit + 11 local load hit) * 128 * #SM + 12
read requests * 32] / (gpu time * 1000)

NA

NA

NA

NA

L1 cache global hit ratio
(%)

Percentage of hits that occur in L1 cache while accessing
global memory. This statistic will be zero when L1 cache
is disabled. This is calculated as:

(100 * 11 global load hit)/(11 global load hit + 11 global
load miss)

NA

NA

NA

NA

0-100

0-100

Compute Visual Profiler

DU-05162-001_v04 | 71

Supported Derived Statistics

Derived Statistic

Description

Compute Capability

1.0

1.1

1.2

1.3

2.0

2.1

Texture cache memory
throughput (GB/s)

This gives the memory throughput achieved while
reading data from texture memory. This statistic will be
zero when texture memory is not used. This is calculated
as:

(#SM * tex cache sector queries * 32) / (gpu time * 1000)

NA

NA

NA

NA

Texture cache hit rate (%)

Percentage of hits that occur in texture cache while
accessing data from texture memory. This statistic will
be zero when texture memory is not used. This is
calculated as:

100 * (tex cache requests - tex cache misses)/tex cache
requests

NA

NA

NA

NA

0-100

0-100

L2 cache texture memory
read throughput (GB/s)

This gives the throughput achieved while reading data
from L2 cache when a request for data residing in
texture memory is made. This is calculated as:

(12 read tex requests * 32)/(gpu time *1000)

NA

NA

NA

NA

L2 cache global memory
read throughput (GB/s)

This gives the throughput achieved while reading data
from L2 cache when a request for data residing in global
memory is made by L1. This is calculated as:

(12 read requests * 32)/(gpu time * 1000)

NA

NA

NA

NA

L2 cache global memory
write throughput (GB/s)

This gives the throughput achieved while writing data to
L2 cache when a request to store data in global memory
is made by L1. This is calculated as:

(12 write requests * 32)/(gpu time * 1000)

NA

NA

NA

NA

L2 cache global memory
throughput (GB/s)

This is the combined L2 cache read and write memory
throughput. This is calculated as:

(L2 cache global memory read throughput + L2 cache
global memory write throughput)

NA

NA

NA

NA

L2 cache read hit ratio (%)

Percentage of hits that occur in L2 cache while reading
from global memory. This is calculated as:

100 * (L2 cache global memory read throughput - glob
mem read throughput)/(L2 cache global memory read
throughput)

NA

NA

NA

NA

0-100

0-100

L2 cache write hit ratio (%)

Percentage of hits that occur in L2 cache while writing to
global memory. This is calculated as:

100 * (L2 cache global memory write throughput - glob
mem write throughput)/(L2 cache global memory write
throughput)

NA

NA

NA

NA

0-100

0-100

Local memory bus traffic

(%)

Percentage of bus traffic caused due to accesses to local
memory. This is calculated as:

(2 * 11 local load miss * 128 * 100)/((12 read requests + 12
write requests)* 32 / #SMs)

NA

NA

NA

NA

0-100

0-100

Compute Visual Profiler

DU-05162-001_v04 | 72

Supported Derived Statistics

Derived Statistic

Description

Compute Capability

1.0

1.1

1.2

1.3

2.0

2.1

Global memory excess load

(*%)

This shows the percentage of excess data that is fetched
while making global memory load transactions. Ideally 0%
excess loads will be achieved when kernel requested
global memory read throughput is equal to the L2 cache
read throughput i.e. the number of bytes requested by
the kernel in terms of reads are equal to the number of
bytes actually fetched by the hardware during kernel
execution to service the kernel. If this statistic is high, it
implies that the access pattern for fetch is not
coalesced, many extra bytes are getting fetched while
serving the threads of the kernel. This is calculated as:

100 - (100 * kernel requested global memory read
throughput 7 12 read throughput)

NA

NA

NA

NA

0-100

0-100

Global memory excess
store (%)

This shows the percentage of excess data that is
accessed while making global memory store transactions.
Ideally 0% excess stores will be achieved when kernel
requested global memory write throughput is equal to
the L2 cache write throughput i.e. the number of bytes
requested by the kernel in terms of stores are equal to
the number of bytes actually accessed by the hardware
during kernel execution to service the kernel. If this
statistic is high, it implies that the access pattern for
store is not coalesced, many extra bytes are getting
accessed while execution of the threads of the kernel.
This is calculated as:

100 - (100 * kernel requested global memory write
throughput 7 12 write throughput)

NA

NA

NA

NA

0-100

0-100

Peak global memory
throughput (GB/s)

This is the peak memory throughput or bandwidth that
can be achieved on the present CUDA device. This is a
device property and the kernel achieved memory

throughput should be as close as possible to this peak.

IPC - Instructions/Cycle

This gives the number of instructions issued per cycle.
This should be compared to maximum IPC possible for
the device. The range provided is for single precision
floating point instructions. This is calculated as:
(instructions issued/active cycles)

NA

NA

NA

NA

0-2

0-4

Divergent branches (%)

The percentage of branches that are causing divergence
within a warp amongst all the branches present in the
kernel. Divergence within a warp causes serialization in
execution. This is calculated as:

(100*divergent branch)/(divergent branch + branch)

0-100

0-100 | 0-100

0-100

0-100

0-100

Control flow divergence (%)

Control flow divergence gives the percentage of thread
instructions that were not executed by all threads in the
warp, hence causing divergence. This should be as low as
possible. This is calculated as:

100 * ((32 * instructions executed) - threads instruction
executed)/(32* instructions executed)

NA

NA

NA

NA

0-100

0-100

Compute Visual Profiler

DU-05162-001_v04 | 73

Supported Derived Statistics

Derived Statistic

Description

Compute Capability

1.0

1.1

1.2

1.3

2.0

2.1

Replayed Instructions (%)

This gives the percentage of instructions replayed during
kernel execution. Replayed instructions are the
difference between the numbers of instructions that are
actually issued by the hardware to the number of
instructions that are to be executed by the kernel.
Ideally this should be zero. This is calculated as:

100 * (instructions issued - instruction executed)
/instruction issued

NA

NA

NA

NA

0-100

0-100

Global memory replay (%)

Percentage of replayed instructions caused due to global
memory accesses. This is calculated as:

100 * (11 global load miss)/ instructions issued

NA

NA

NA

NA

0-100

0-100

Local memory replay (%)

Percentage of replayed instructions caused due to local
memory accesses. This is calculated as:

100 * (11 local load miss + 11 local store miss)/
instructions issued

NA

NA

NA

NA

0-100

0-100

Shared bank conflict replay
(%)

Percentage of replayed instructions caused due to shared
memory bank conflicts. This is calculated as:

100 * (11 shared conflict)/ instructions issued

NA

NA

NA

NA

0-100

0-100

Shared memory bank
conflict per shared memory
instruction (%)

This gives an indication of the number of bank conflicts
caused per shared memory instruction. This may exceed
100% if there are n-way bank conflicts or the data
accessed is double precision. This is calculated as:

100 * (11 shared bank conflict)/(shared load + shared
store)

NA

NA

NA

0-100

0-100

SM activity (%)

Percentage of multiprocessor utilization. This is
calculated as:

100 * (active cycles)/ elapsed clocks

NA

NA

NA

NA

0-100

0-100

Compute Visual Profiler

DU-05162-001_v04 | 74

COMMAND LINE PROFILER

The command line profiler allows users to gather timing information about kernel
execution and memory transfer operations for CUDA and OpenCL applications.
Profiling options are controlled through environment variables and a profiler
configuration file. Profiler output is generated in text files either in Key-Value-Pair
(KVP) or Comma Separated (CSV) format.

COMMAND LINE PROFILER CONTROL

The command line profiler is controlled using the following environment variables:
COMPUTE_PROFILE: is set to either 1 or 0 (or unset) to enable or disable profiling.

COMPUTE_PROFILE_LOG: is set to the desired file path for profiling output. In case of
multiple contexts you can add “%d’ in the COMPUTE_PROFILE_LOG name. This will
generate separate profiler output files for each context - with “%d” substituted by the
context number. Contexts are numbered starting with zero. If there is no log path
specified, the profiler will log data to “cuda_profile_%d.log” in case of a CUDA context
and “opencl_profile_%d.log” in case of a OpenCL context (‘“%d’” is substituted by the
context number).

COMPUTE_PROFILE_CSV: is set to either 1 (set) or 0 (unset) to enable or disable a comma
separated version of the log output.

COMPUTE_PROFILE_CONFIG: is used to specify a config file for enabling performance
counters in the GPU.

Configuration details are covered in a subsequent section.

Compute Visual Profiler DU-05162-001_v04 | 75

Command Line Profiler

The old environment variables, which were used specifically for CUDA/OpenCL are still
supported. The old environment variables for the above functionalities are:

CUDA_PROFILE/OPENCL_PROFILE
CUDA_PROFILE_LOG/OPENCL_PROFILE_LOG
CUDA_PROFILE_CSV/OPENCL_PROFILE_CSV
CUDA_PROFILE_CONFIG/OPENCL_PROFILE_CONFIG

If CUDA_PROFILE or OPENCL_PROFILE are explicitly set and the COMPUTE_PROFILE environment
variable is not set, the profiler outputs only the corresponding contexts. If both are set, the
COMPUTE_PROFILE environment variables take precedence over CUDA_PROFILE/OPENCL_PROFILE
environment variable.

COMMAND LINE PROFILER CONFIGURATION

The profiler configuration file is used to select the profiler options and counters which
are to be collected during application execution. The configuration file is a simple format
text file with one option on each line. Options can be commented out using the ‘#’
character at the start of a line. The profiler configuration options are same for CUDA and
OpenCL contexts, though they differ in their terminology. Refer to Table 1 for the
terminology mapping between CUDA and OpenCL.

Command Line Profiler Options

Table 8 contains the options supported by the command line profiler. Note the following
regarding the profiler log that is produced from the different options:

» Typically, each profiler option corresponds to a single column is output. There are a
few exceptions in which case multiple columns are output; these are noted where
applicable in Table 8.

» In most cases the column name is the same as the option name; the exceptions are
listed in Table 8.

» In most cases the column values are 32-bit integers in decimal format; the exceptions
are listed in Table 8.

Compute Visual Profiler DU-05162-001_v04 | 76

Command Line Profiler

Table 8. Command Line Profiler Options
Option Description
timestamp Time stamps for kernel launches and memory transfers. This

can be used for timeline analysis.

The column values are single precision floating point value
in microseconds.

gpustarttimestamp

Time stamp when kernel starts execution in GPU.

The column values are 64-bit unsigned value in nanoseconds
in hexadecimal format.

gpuendtimestamp

Time stamp when kernel ends execution in GPU.

The column values are 64-bit unsigned value in nanoseconds
in hexadecimal format.

gridsize

Number of blocks in a grid along the X and Y dimensions for
a kernel launch.

This option outputs the following two columns:
CUDA:

gridsizeX

gridsizeY
OpenCL:

ndrangesizeX

ndrangesizeY

gridsize3d

Number of blocks in a grid along the X, Y and Z dimensions
for a kernel launch.

This option outputs the following three columns:
CUDA:

gridsizeX

gridsizeY

gridsizeZ
OpenCL:

ndrangesizeX

ndrangesizeY

ndrangesizeZ

threadblocksize

Number of threads in a block along the X, Y and Z
dimensions for a kernel launch.

This option outputs the following three columns:
CUDA:

threadblocksizeX

threadblocksizeY

threadblocksizeZ
OpenCL:

workgroupsizeX

workgroupsizeY

workgroupsizeZ

dynsmemperblock

Size of dynamically allocated shared memory per block in
bytes for a kernel launch. (Only CUDA)

Compute Visual Profiler

DU-05162-001_v04 | 77

Command Line Profiler

Option

Description

stasmemperblock

Size of statically allocated shared memory per block in
bytes for a kernel launch.

This option outputs the following columns:
CUDA:

stasmemperblock
OpenCL:

stasmemperworkgroup

regperthread

Number of registers used per thread for a kernel launch.
This option outputs the following columns:
CUDA:
regperthread
OpenCL:
regperworkitem

memtransferdir

Memory transfer direction, a direction value of 0 is used for
host to device memory copies and a value of 1 is used for
device to host memory copies.

memtransfersize

Memory transfer size in bytes. This option shows the amount
of memory transferred between source (host/device) to
destination (host/device).

memtransferhostmem | Host memory type (pageable or page-locked). This option

type implies whether during a memory transfer, the host memory
type is pageable or page-locked.

streamid Stream Id for a kernel launch.

localblocksize

If workgroupsize has been specified by the user, this option
would be 1, otherwise it would be 0.(Only OpenCL).

This option outputs the following column:
localworkgroupsize

cacheconfigrequested

Requested cache configuration option for a kernel launch:
0 CU_FUNC_CACHE_PREFER_NONE - no preference for
shared memory or L1 (default)
1 CU_FUNC_CACHE_PREFER_SHARED - prefer larger shared
memory and smaller L1 cache
2 CU_FUNC _CACHE_PREFER L1 - prefer larger L1 cache
and smaller shared memory

3 CU_FUNC_CACHE_PREFER_EQUAL - prefer equal sized L1
cache and shared memory

cacheconfigexecuted

Cache configuration which was used for the kernel launch.
The values are same as those listed under
cacheconfigrequested.

Compute Visual Profiler

DU-05162-001_v04 | 78

Command Line Profiler

Command Line Profiler Counters

The command line profiler supports logging of counters during kernel execution. Table
9 lists only counters specific to the command line profiler. Refer to Table 6 for counters
which are common to both command line profiler and Visual Profiler. Table 6 also
contains formulas for calculating some higher level counters provided in Visual Profiler
which in turn are calculated using the low level counters supported by the command
line profiler. In every application run only a few counter values can be collected. The
number of counters depends on the specific counters selected.

Table 9. Command Line Profiler Counters

Type Compute Capability Support
SM= Single _
Multiprocessor US e
Command Line Profiler Counter Descripti N= No
Name escription EB = Frame
Buffer (GPU
DRAM or Device | 1.0 | 1.1 | 1.2 | 1.3 | 2.0
Memory)
inst_issued !\lumb(_er of instructions issued M N N N N y
including replays.
inst_issuedl 0 !\lumber_ of cycl_es that issue one M N N N N N
instruction for instruction pipeline 0
inst_issued2 0 Number of cycles that issue two
instructions for instruction pipeline SM N N N N N
0
inst_issuedl 1 Number of cycles that issue one
- .) . S SM N N N N N
instruction for instruction pipeline 1
inst_issued2 1 Number of cycles that issue two
instructions for instruction pipeline SM N N N N N
1
thread inst _executed O Number of instructions executed by
all threads. This does not include
_replays. For each instruction it M N N N N y
increments by the number of
threads in the warp that execute the
instruction in pipeline 0.
thread inst executed 1 Number of instructions executed by
all threads. This does not include
replays. For each instruction it M N N N N y
increments by the number of
threads in the warp that execute the
instruction in pipeline 1.
thread inst _executed 2 Number of instructions executed by
all threads. This does not include
_replays. For each instruction it M N N N N y
increments by the number of
threads in the warp that execute the
instruction in pipeline 2.

Compute Visual Profiler DU-05162-001_v04 | 79

Command Line Profiler

Type Compute Capability Support
SM= Single _
Multiprocessor | '~ Y€S
Command Line Profiler Counter D L N= No
Name escription FB = Frame =
Buffer (GPU
DRAM or Device | 1.0 | 1.1 | 1.2 | 1.3 | 2.0 | 2.1
Memory)
thread inst executed 3 Number of instructions executed by
all threads. This does not include
replays. For each instruction it M N N N N y y
increments by the number of
threads in the warp that execute the
instruction in pipeline 3.
12_subp0_read sector_queries Accumulated read sector queries
from L1 to L2 cache for slice 0 of all FB N N N N Y Y
the L2 cache units
12_subpl read sector_queries Accumulated read sector queries
from L1 to L2 cache for slice 1 of all FB N N N N Y Y*
the L2 cache units
12_subp0_read tex sector_queries | Accumulated read sector queries
from texture cache to L2 cache for FB N N N N Y Y
slice 0 of all the L2 cache units
12 _subpl read tex sector_queries | Accumulated read sector queries
from texture cache to L2 cache for FB N N N N Y Y*
slice 1 of all the L2 cache units
12_subp0 write_sector_gueries Accumulated write sector queries
from L1 to L2 cache for slice 0 of all FB N N N N Y Y
the L2 cache units
12_subpl write sector_queries Accumulated write sector queries
from L1 to L2 cache for slice 1 of all FB N N N N Y Y*
the L2 cache units
12_subpO_read sector_misses Accumulated read sectors misses
from L2 cache for slice 0 for all the FB N N N N Y Y
L2 cache units
12 _subpl read sector_misses Accumulated read sectors misses
from L2 cache for slice 1 for all the FB N N N N Y Y*
L2 cache units
12_subp0 write_sector_misses Accumulated write sector misses
from L2 cache for slice 0 for all the FB N N N N Y Y
L2 cache units
12_subpl write sector_misses Accumulated write sectors misses
from L2 cache for slice 1 for all the FB N N N N Y Y*
L2 cache units
b _subpO_read sectors Number of read requests sent to B N N N N y y
sub-partition 0 of all the DRAM units
b subpl read sectors Number of read requests sent to B N N N N y y
sub-partition 1 of all the DRAM units
TH0_subpO_read sectors Number of read requests sent to B N N N N y y
sub-partition 0 of DRAM unit 0
TH0_subpl read sectors Number of read requests sent to B N N N N y y
sub-partition 1 of DRAM unit 0
Tbl subpO_read sectors Number of read requests sent to B N N N N y y
sub-partition 0 of DRAM unit 1
Tbl subpl read sectors Number of read requests sent to FB N N N N Y v
sub-partition 1 of DRAM unit 1

Compute Visual Profiler

DU-05162-001_v04 | 80

Command Line Profiler

Command Line Profiler Counter

Type
SM= Single
Multiprocessor

Compute Capability Support
Y= Yes

Name Description FB = Frame N= No
Buffer (GPU
DRAM or Device | 1.0 | 1.1 | 1.2 | 1.3 | 2.0 | 2.1
Memory)
fb_subp0 write sectors Number of write requests sent to B N N N N v y
sub-partition 0 of all the DRAM units
fb_subpl write sectors Number of read requests sent to B N N N N y v
sub-partition 1 of all the DRAM units
TH0_subp0 write_sectors Number of write requests sent to B N N N N N v
sub-partition 0 of DRAM unit 0
fH0_subpl write_sectors Number of write requests sent to B N N N N N v
sub-partition 1 of DRAM unit 0
bl subp0 write sectors Number of write requests sent to B N N N N N v
sub-partition 0 of DRAM unit 1
Tbl subpl write sectors Number _of write requests sent to B N N N N N v
sub-partition 1 of DRAM unit 1
tex0_cache_sector_queries Numper of texture caqhe sector M N N N N y y
queries for texture unit 0
tex1l cache_sector_queries Numper of texture caqhe sector M N N N N N y
queries for texture unit 1
tex0_cache_sector_misses quber of texture ca_che sector M N N N N y y
misses for texture unit 0
tex1l _cache_sector_misses Number of texture cache sector M N N N N N y

misses for texture unit 1

Compute Visual Profiler

DU-05162-001_v04 | 81

Command Line Profiler

COMMAND LINE PROFILER OUTPUT

If the COMPUTE_PROFILE environment variable is set to enable profiling, the profiler log
records timing information for every kernel launch and memory operation performed
by the driver. The profiler determines dynamically whether the context is CUDA or
OpenCL, and produces the output log accordingly.

The default log syntax shown in Example 1 is part of the profiler log for a CUDA
application with no profiler configuration file specified.

Example 1. CUDA Default Profiler Log- No Options or Counters Enabled

CUDA_PROFILE_LOG_VERSION 2.0

CUDA_DEVICE_NAME O GeForce GTX 280

timestamp,method, gputime,cputime,occupancy

timestamp=[2155.302] method=[_Z10fhaarldwtdiPf] gputime=[7.808]
cputime=[74.730]

occupancy=[1.000]

timestamp=[2421.886] method=[memcopy] gputime=[4.864] cputime=[
238.159]

timestamp=[2706.140] method=[_Zl1OihaarldwtdiPf] gputime=[7.296]
cputime=[59.295]
occupancy=[1.000]

timestamp=[2876.413] method=[memcopy] gputime=[4.608] cputime=[
224.679]

The log above in Example 1 shows data for memory copies and a few different kernel
launches. The ‘method’ label specifies which GPU function was executed by the driver.
The “gputime’ and ‘cputime’ labels specify the actual chip execution time and the driver
execution time (including gputime), respectively. Note that timestamp, gputime and
cputime are in microseconds. The ‘occupancy’ label gives the warp occupancy -
percentage of the maximum warp count in the GPU - for a particular method launch.

Compute Visual Profiler DU-05162-001_v04 | 82

Command Line Profiler

Example 2 shows the profiler log of a matrix multiplication application. There are a few

options and counters enabled in this example using the profiler configuration file:
gridsize

threadblocksize

memtransfersize

memtransferdir

instructions

branch

cta_ launched

Example 2. CUDA Profiler Log- Options and Counters Enabled

CUDA_PROFILE_LOG_VERSION 2.0
CUDA_DEVICE_NAME O GeForce GTX 280

timestamp,method,gputime,cputime,gridsizeX,gridsizeY,threadblocksizeX,t
hreadblocksizeY,

threadblocksizeZ,occupancy, instructions,branch,cta_launched, memtransfer
size,memtransferdir

timestamp=[6492.515] method=[_Zl1OdmatrixmulPfiiS_iiS_] gputime=[
25.472] cputime=[203.797]

gridSize=[2, 1] threadblocksize=[32, 8, 8] occupancy=[0.333]
instructions=[2261]

branch=[312] cta_launched=[2]

timestamp=[7031.061] method=[memcopy] gputime=[8.896] cputime=[
230.686]

memtransfersize=[8192] memtransferdir=[1]

The default log syntax is easy to parse with a script, but for spreadsheet analysis it might
be easier to use the comma separated format.

When COMPUTE_PROFILE_CSV is set to 1, this same test produces the output log shown in
Example 3.

Example 3. CUDA Profiler Log- Options and Counters Enabled in CSV
Format

CUDA_PROFILE_LOG_VERSION 2.0
CUDA_PROFILE_CSV 1
CUDA_DEVICE_NAME O GeForce GTX 280

timestamp,method,gputime,cputime,gridsizeX,gridsizeY,threadblocksizeX,t
hreadblocksizeY,

threadblocksizeZ,occupancy,cta_launched,branch, instructions,memtransfer
size,memtransferdir

6390.687,_Zi1O0dmatrixmulPfiiS_iiS_,25.184,203.168,2,1,32,8,8,0.333,312,3
12,2261

6946 .483,memcopy,8.928,240.673,,,,,,,,,,8192,1

Compute Visual Profiler DU-05162-001_v04 | 83

Command Line Profiler

The following examples are for OpenCL applications. Example 4 is part of the log from a
test of the scan application without any counters enabled.

Example 4. OpenCL Default Profiler Log- No Options or Counters Enabled

OPENCL_PROFILE_LOG_VERSION 2.0

OPENCL_DEVICE O GeForce GTX 280

TIMESTAMPFACTOR 114aal19a0c9d7d2
timestamp,gpustarttimestamp,gpuendtimestamp,method,gputime,cputime,occu
pancy

timestamp=[7791621.500] gpustarttimestamp=[114ab721d9c649e0]
gpuendtimestamp=[114ab72l1dalaObeO]

method=[workgroupScaninclusive] gputime=[5489.152] cputime=[
5842.782] occupancy=[1.000]

timestamp=[7802433.500] gpustarttimestamp=[1l14ab72lda6aaaal]
gpuendtimestamp=[114ab721da6b5500]

method=[workgroupScanExclusive] gputime=[43.616] cputime=[387.270
] occupancy=[1.000]

timestamp=[7804496.500] gpustarttimestamp=[114ab721da894480]
gpuendtimestamp=[114ab72ldacecc00]

method=[uniformUpdate] gputime=[4556.672] cputime=[4915.150]
occupancy=[1.000]

This log shows data for memory copies and a few different kernel launches. The
‘method’ label specifies which GPU function was executed by the driver. The ‘gputime’
and ‘cputime’ labels specify the actual chip execution time and the driver execution time
(including gputime), respectively. The gpustarttimestamp and gpuendtimestamp
indicate the start and end timestamps of the kernel being executed on the GPU.

Note that timestamp, gputime and cputime are in microseconds, and
gpustarttimestamp and gpuendtimestamp are in nanoseconds. The ‘occupancy’ label
gives the warp occupancy - percentage of the maximum warp count in the GPU - for a
particular method launch. An occupancy of 1.000 means the chip is completely full.

Example 5 shows the profiler log for the matrix multiplication application. There are
some options and counters enabled using the same configuration file as for Example 2:

Example 5. OpenCL Profiler Log- Options and Counters Enabled

OPENCL_PROFILE_LOG_VERSION 2.0

OpenCL_DEVICE_NAME 0O GeForce GTX 280

TIMESTAMPFACTOR 12bae765a4r9c521
timestamp,method,gputime,cputime,ndrangesizeX,ndrangesizeY,workgroupsiz
eX,workgroupsizey,

workgroupsizeZ,occupancy, instructions,branch,cta_launched,memtransfersi
ze,memtransferdir

timestamp=[7205451.000] method=[matrixMul] gputime=[92695.133]
cputime=[93108.766]

NDRangesize=[50, 100] workgroupsize=[16, 16, 1] occupancy=[1.000]
instructions=[18204777 7]

Compute Visual Profiler DU-05162-001_v04 | 84

Command Line Profiler

branch=[1479119] cta launched=[500]

timestamp=[7423482.500] method=[memcopy] gputime=[8.896]
cputime=[230.686]

memtransfersize=[8192] memtransferdir=[1]

When COMPUTE_PROFILE_CSV is set to 1, this same test produces the following output:

Example 6. OpenCL Profiler Log- Options and Counters Enabled in CSV
Format

OPENCL_PROFILE_LOG_VERSION 1.0

OPENCL_PROFILE_CSV 1

OpenCL_DEVICE_NAME O GeForce GTX 280
TIMESTAMPFACTOR 1e4231f54a45c645

timestamp,method,gputime,cputime,ndrangesizeX,ndrangesizeY,workgroupsiz
eX,workgroupsizey,

workgroupsizeZ,occupancy, instructions,branch,
cta launched,memtransfersize,memtransferdir

7535422 .000,matrixMul ,91935.766,93031.500,50,100,16, 16,
1,1.000,18204777,1479119,500

7754673.000,memcopy,8.536,241.342,,,,,,,5,,8192,1

Compute Visual Profiler DU-05162-001_v04 | 85

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

OpenCL
OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA the NVIDIA logo, and CUDA are trademarks or registered trademarks of NVIDIA Corporation in the U.S.
and other countries. Other company and product names may be trademarks of the respective companies with
which they are associated.

Copyright

© 2010, 2011 NVIDIA Corporation. All rights reserved.

www.nvidia.com ﬁViﬁIAa

	Overview
	Getting Started
	Installation and Setup
	Windows
	Linux
	MacOS X

	Running the Compute Visual Profiler
	Windows
	Linux
	MacOS X
	Xterm

	CUDATM and OpenCLTM Support
	Compute Visual Profiler Files and Settings
	Compute Visual Profiler Usage
	Graphical User Interface (GUI) at a Glance
	Session Frame (Left)
	Workspace Frame (Right)
	Session
	Device
	Context

	Output Frame (Bottom)

	Exploring a Saved Project
	Creating a New Project

	Compute Visual Profiler Graphical User Interface (GUI)
	Main Menu Bar
	File
	New Project Dialog Box

	Session
	Session settings
	Session Tab
	Profiler Counters Tab
	Other Options Tab

	View
	Summary Table
	Kernel Table
	Memcopy Table
	GPU Time Summary plot
	GPU Time Height plot
	GPU Time Width plot
	Comparison plot

	Options
	Options->Session View Settings Dialog Box
	Profiler Table Tab
	Summary Table Tab
	Summary Plot Tab
	Height Plot Tab
	Width Plot Tab
	Default View Settings Dialog Box

	Window
	Help

	Main Toolbar
	File Toolbar Group
	Profile Toolbar Group
	Session Toolbar Group
	View Options Toolbar Group

	Compute Application Analysis
	Context Level Analysis
	Kernel Level Analysis
	Limiting Factor Identification Tab
	Instruction Throughput Analysis Tab
	Memory Throughput Analysis Tab
	Occupancy Analysis

	Session Level Analysis
	Device Level Analysis

	Compute Visual Profiler Tables
	Profiler Output Table
	Profiler Table Context Sensitive Menu

	Summary Table

	Compute Visual Profiler Plots
	GPU Time Summary Plot
	Device Level Summary Plot
	Session Level Summary Plot
	GPU Time Height Plot
	GPU Time Width Plot
	Profiler Counter Bar Plot
	Profiler Output Table Column Bar Plot
	Comparison Summary Plot
	CUDA API Trace

	Compute Visual Profiler Counters
	Interpreting Counter Values
	Profiler Counters for a Single Multiprocessor (SM)
	Profiler counters for all multiprocessors in a TPC
	Normalized counter values
	Profiler Counters

	Supported Derived Statistics
	Command Line Profiler
	Command Line Profiler Control
	Command Line Profiler Configuration
	Command Line Profiler Options
	Command Line Profiler Counters

	Command Line Profiler Output

