

DU-05162-001_v04 | May 2011

User Guide

COMPUTE VISUAL PROFILER

Compute Visual Profiler DU-05162-001_v04 | ii

DOCUMENT CHANGE HISTORY

DU-05162-001_v04

Version Date Authors Description of Change
01 August 26, 2010 SS, RG, AL,

RP, VS
Initial release.

02 October 29, 2010 SS, VS Corrected path (note the additional 3.2)
specified in section entitled, “Running the
Compute Visual Profiler”.

03 March 05, 2011 SR, SS Added Kernel Analysis feature.
Updated current features to incorporate new
UI.

04 May 3, 2011 SS, SR, VS Added the command line profile document,
“Compute_Profiler.txt” to this User Guide as
a separate chapter entitled, “Command Line
Profiler”.
Note: Compute_Profiler.txt will not be
supported as a separate document.

• Added description of the new analysis
feature under a separate chapter entitled,
“Compute Application Analysis”.

Compute Visual Profiler DU-05162-001_v04 | iii

TABLE OF CONTENTS

Overview .. 1
Getting Started ... 1

Installation and Setup .. 2
Windows ... 2
Linux ... 2
MacOS X ... 2

Running the Compute Visual Profiler ... 2
Windows ... 2
Linux ... 3
MacOS X ... 3
Xterm .. 3

CUDATM and OpenCLTM Support ... 4
Compute Visual Profiler Files and Settings ... 5
Compute Visual Profiler Usage ... 7

Graphical User Interface (GUI) at a Glance ... 7
Session Frame (Left) ... 9
Workspace Frame (Right) ... 9
Output Frame (Bottom) .. 13

Exploring a Saved Project ... 14
Creating a New Project .. 15

Compute Visual Profiler Graphical User Interface (GUI) 16
Main Menu Bar ... 16

File .. 17
New Project Dialog Box .. 18

Session ... 18
Session settings .. 19
Session Tab ... 20
Profiler Counters Tab .. 21
Other Options Tab .. 22

View .. 23
Summary Table .. 24
Kernel Table ... 25
Memcopy Table .. 25
GPU Time Summary plot ... 25
GPU Time Height plot .. 25
GPU Time Width plot ... 25
Comparison plot ... 26

Options ... 26

Compute Visual Profiler DU-05162-001_v04 | iv

Options->Session View Settings Dialog Box ... 27
Profiler Table Tab .. 28
Summary Table Tab .. 29
Summary Plot Tab .. 30
Height Plot Tab .. 30
Width Plot Tab .. 31
Default View Settings Dialog Box ... 32

Window .. 32
Help .. 33

Main Toolbar ... 34
File Toolbar Group ... 34
Profile Toolbar Group .. 34
Session Toolbar Group ... 34
View Options Toolbar Group .. 35

Compute Application Analysis ... 36
Context Level Analysis ... 37
Kernel Level Analysis ... 38

Limiting Factor Identification Tab ... 38
Instruction Throughput Analysis Tab .. 39
Memory Throughput Analysis Tab .. 40
Occupancy Analysis .. 41

Session Level Analysis .. 42
Device Level Analysis ... 43

Compute Visual Profiler Tables ... 44
Profiler Output Table ... 44

Profiler Table Context Sensitive Menu .. 46
Summary Table .. 46

Compute Visual Profiler Plots ... 47
GPU Time Summary Plot .. 48
Device Level Summary Plot ... 49
Session Level Summary Plot .. 50
GPU Time Height Plot ... 51
GPU Time Width Plot .. 52
Profiler Counter Bar Plot .. 53
Profiler Output Table Column Bar Plot ... 53
Comparison Summary Plot .. 54
CUDA API Trace ... 57

Compute Visual Profiler Counters .. 59
Interpreting Counter Values ... 59
Profiler Counters for a Single Multiprocessor (SM) ... 60

Compute Visual Profiler DU-05162-001_v04 | v

Profiler counters for all multiprocessors in a TPC ... 60
Normalized counter values .. 61
Profiler Counters .. 62

Supported Derived Statistics ... 69

Command Line Profiler ... 75
Command Line Profiler Control ... 75
Command Line Profiler Configuration ... 76

Command Line Profiler Options .. 76
Command Line Profiler Counters .. 79

Command Line Profiler Output ... 82

Compute Visual Profiler DU-05162-001_v04 | vi

LIST OF FIGURES

Figure 1. Welcome Screen ... 3

Figure 2. Compute Visual Profiler GUI ... 8

Figure 3. Session Properties- Project Related ... 10

Figure 4. Session Properties- Counters ... 11

Figure 5. Session Properties- Selected Options ... 12

Figure 6. Displaying Tables and Plots for a Saved Project 14

Figure 7. Compute Visual Profiler Menu Bar and Toolbar 16

Figure 8. File Pull Down Menu ... 17

Figure 9. File->New Project Dialog Box ... 18

Figure 10. Session Pull Down Menu ... 18

Figure 11. Session->Session settings->Session (tab) .. 19

Figure 12. Session->Session settings->Profiler Counters (tab) 21

Figure 13. Session->Session settings->Other Options (tab) 22

Figure 14. View Pull Down Menu ... 23

Figure 15. Options Pull Down Menu ... 26

Figure 16. Options->Session View Settings Dialog .. 27

Figure 17. Options->Session View Settings->Profiler Table Tab 28

Figure 18. Options->Session View Settings->Summary Table Tab 29

Figure 19. Height Plot Options .. 30

Figure 20. Width Plot Options ... 31

Figure 21. Window Pull Down Menu .. 32

Figure 22. Help Pull Down Menu .. 33

Figure 23. Toolbar Icons .. 34

Figure 24: Context Level Analysis ... 37

Figure 25: Limiting Factor Identification tab .. 38

Figure 26: Instruction Throughput Analysis tab ... 39

Figure 27: Memory Throughput Analysis ... 40

Compute Visual Profiler DU-05162-001_v04 | vii

Figure 28: Kernel Occupancy Analysis .. 41

Figure 29: Session Level Analysis .. 42

Figure 30: Device Level Analysis .. 43

Figure 31. Summary Plot ... 48

Figure 32. Device Level Summary Plot ... 49

Figure 33. Session Level Summary Plot .. 50

Figure 34. GPU Time Height Plot .. 51

Figure 35. GPU Time Width Plot .. 52

Figure 36. Profiler Counter Plot ... 53

Figure 37. Profiler Output Column Plot .. 53

Figure 38. Select Device .. 54

Figure 39. Select Column Screen for Comparison Summary Plot 55

Figure 40. Comparison Summary Plot .. 56

Figure 41. CUDA API Trace ... 57

Compute Visual Profiler DU-05162-001_v04 | viii

LIST OF TABLES

Table 1. NVIDIA® CUDATM and OpenCLTM Terminology 5

Table 2. Profiler Output Table .. 44

Table 3. Kernel Options Columns ... 45

Table 4. memcopy Options Columns ... 45

Table 5. Summary Table ... 46

Table 6. Profiler Counters ... 63

Table 7. Supported Derived Statistics .. 70

Table 8. Command Line Profiler Options .. 77

Table 9. Command Line Profiler Counters .. 79

Compute Visual Profiler DU-05162-001_v04 | 1

OVERVIEW

This document is intended for users of Compute Visual Profiler for NVIDIA® CUDATM

technology. Compute Visual Profiler is a graphical user interface based profiling tool
that can be used to measure performance and find potential opportunities for
optimization in order to achieve maximum performance from NVIDIA® GPUs.

Compute Visual Profiler provides metrics in the form of plots and counter values
presented in tables and as graphs. It tracks events with hardware counters on signals in
the chip; this is explained in detail in the chapter entitled, “Compute Visual Profiler
Counters.” This document should be used in conjunction with the CUDA C Programming
Best Practices Guide from NVIDIA.

Note that in CUDA version 3.1 onwards, NVIDIA’s CUDA Visual Profiler and OpenCL
Visual Profiler have been integrated into a single application called–Compute Visual
Profiler.

Compute Visual Profiler 4.0 provides a new analysis feature that provides performance
analysis of the application based on the profiling data. The feature also provides various
optimization hints to improve application performance. This is described in further
detail in the section entitled, “Compute Application Analysis”.

GETTING STARTED
In order to run Compute Visual Profiler you need the following:

 CUDA compatible NVIDIA graphics card
 NVIDIA CUDA Toolkit, and
 NVIDIA Display Driver (latest version)

Refer to the Getting Started Guide for your operating system for help with installation.

Overview

Compute Visual Profiler DU-05162-001_v04 | 2

Installation and Setup

Windows

If you do not have Microsoft Visual C++ 2008 or Microsoft Visual C++ 2008
Redistributable Package installed you will need to install the Microsoft Visual C++ 2008
Redistributable Package by running vcredist_x86.exe available under the
"<CudaToolkitDir>\computeprof\bin" directory.

Note that if the correct versions of Microsoft Visual C++ DLLs are not available when
you run Compute Visual Profiler, the following error is displayed:
Application failed to start because side-by-side configuration is
incorrect.

Linux

The installation is part of the CUDA toolkit installation. The files are installed under
"<CudaToolkitDir>/computeprof" where <CudaToolkitDir> is the directory
under which the CUDA Toolkit is installed.

Setup LD_LIBRARY PATH to include the ComputeVisualProfiler bin directory:
> export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<CudaToolkitDir>/computeprof/bin

MacOS X

The installation is part of the CUDA toolkit installation. The files are installed under
"<CudaToolkitDir>\computeprof" where <CudaToolkitDir> is the directory
under which the CUDA Toolkit is installed.

Running the Compute Visual Profiler

Windows

To run the Compute Visual Profiler, go to:

StartAll ProgramsNVIDIA CorporationCUDA Toolkit3.2Compute Visual Profiler

Sample pre-run projects and online help are available as follows:

 Directory containing sample Compute Visual Profiler projects:
<CudaToolkitDir>\computeprof\projects

 Directory containing files for online help and user documentation:
<CudaToolkitDir>\computeprof\doc

Overview

Compute Visual Profiler DU-05162-001_v04 | 3

Linux
> <CudaToolkitDir>/computeprof/bin/computeprof &

MacOS X
From Finder run:
"<CudaToolkitDir>\computeprof\computeprof.app"

Xterm
From Terminal run:
"<CudaToolkitDir>\computeprof\computeprof.app\Contents\MacOS\compu
teprof"

When Visual Profiler is launched, a welcome screen (shown in Figure 1) is displayed.

Figure 1. Welcome Screen

This dialog box allows first time users to navigate Visual Profiler more effectively. It
allows you to:

 Open recently saved projects.
 Open projects that are <CudaToolkitDir>\computeprof\projects folder
 Import previously saved .csv data from previous profiler runs

Click on Help to go directly to online help information about Compute Visual Profiler.

For future launches of the Compute Visual Profiler, this dialog box may be disabled by
un-checking the “Show this dialog on startup” check box.

Overview

Compute Visual Profiler DU-05162-001_v04 | 4

CUDATM AND OPENCLTM SUPPORT
The Compute Visual Profiler supports profiling for both NVIDIA CUDATM and
OpenCLTM applications. The Session settings dialog box shows options in the CUDA
terminology. Most of the options are common and supported for both CUDA and
OpenCL except for the following:

 dynsmemperblock
The kernel option ‘dynsmemperblock’ is supported only for CUDA. The warning
NV_Warning: Ignoring the invalid profiler config option: dynsmemperblock is
displayed after each profiling run if this option is selected for OpenCL.

 localworkgroupsize
The kernel option ‘localworkgroupsize’ is valid only for OpenCL. If this option is
selected for a CUDA program a column ‘localblocksize’ is added to the Profiler
Table, but this column is hidden by default.

The type of session—CUDA or OPENCL, is shown within square parentheses after the
session name:
Context_0 [CUDA] or Context_1 [OPENCL]
The column names in the Profiler Table or the summary table for a context are displayed
based on the compute language for the context. In the CUDA context, CUDA
terminology is used and in the OpenCL context OpenCL terminology is used.

A project can consist of sessions containing a mix of CUDA program profiling sessions
and OpenCL program profiling sessions. To distinguish such projects from old projects,
a new project file extension .cvp is used. Support for old projects is provided and you
can open an old CUDA project (file extension ‘.cpj’) or an old OpenCL project (file
extension ‘.oclpj’). However, when you save existing .cpj or .oclpj projects the old
projects are saved in the new format with the .cvp file extension.

Overview

Compute Visual Profiler DU-05162-001_v04 | 5

Table 1 shows how CUDA terminology maps to OpenCLTM terminology:

Table 1. NVIDIA® CUDATM and OpenCLTM Terminology

CUDA Term OpenCLTM Term
Thread Work-item

Thread block or CTA
(Cooperative Thread Array)

Work-group

Grid size Range size

Shared memory Local memory

Local memory Private memory

COMPUTE VISUAL PROFILER FILES AND SETTINGS
Profiling is automatically enabled by Compute Visual Profiler at the start of the
application. For a long running application profiling can be interactively enabled or
disabled while the application is running. Profiling can be enabled or disabled before
launching the application either using the main menu option, tool bar option or through
the checkbox on the Session settings dialog. After the application is launched and it is
running profiling can be enabled or disabled using the main menu option or the tool bar
option. The width plot shows idle time gaps on the time line for the periods when
profiling is disabled.

Each program run is referred to as a session. It is recommended that you save profiling
data for multiple sessions for useful analysis of your program. A group of sessions is
called a project.

Compute Visual Profiler saves the following files:

 Compute Visual Profiler project file:
<project-name>.cvp

 Compute Visual Profiler data file for a context in a session:
<project-name>_<session-name>_Context_<context-number>.csv

 CUDA API trace data:
<project-name>_<session-name>_Context_<context-number>.trc

Overview

Compute Visual Profiler DU-05162-001_v04 | 6

The following list of Compute Visual Profiler settings are saved across different
Compute Visual Profiler sessions.

 Last opened project path
 Method Colors
 Recent files list
 Recent programs
 Recent work Dirs
 Show Output window
 Demangle Method Names
 Main Window/Size
 Main Window/Maximized
 Global view dialog box/Size
 Session view dialog box/Size
 Horizontal Splitter/Sizes
 Vertical Splitter/Sizes
 Profiler Table/Hide Zero Columns
 Summary Table/Show Average
 Summary Plot/Average
 Displayed Summary Plot/Percentage
 Displayed Height Plot/Fit in window
 Height Plot/Show CPU Time
 Height Plot/Show Legend
 Height Plot/Use global scale
 Width Plot/Enable time stamp
 Width Plot/Fit in window
 Width Plot/Maximum bar width
 Width Plot/Show CPU Time
 Width Plot/Show legend
 Width Plot/Start time stamp at zero
 Width Plot/Type

On Windows, these settings are saved in the system registry at the location:
HKEY_CURRENT_USER\Software\NVIDIA Corporation\computeprof

On Linux systems these settings are saved to the file: $HOME/.config/NVIDIA
Corporation/computeprof.conf

Overview

Compute Visual Profiler DU-05162-001_v04 | 7

The Compute Visual Profiler Help cache is saved in the folder shown below:

 Windows : C:\Documents and Settings\<username>\Local
Settings\Application Data\NVIDIA Corporation\computeprof

 Linux : $HOME/.local/share/data/NVIDIA Corporation/computeprof

There is a separate sub-directory for each version.

COMPUTE VISUAL PROFILER USAGE
A brief overview of the graphical user interface (GUI) is included to help explore saved
sample projects and to create new projects for profiling.

Graphical User Interface (GUI) at a Glance
Figure 2 shows the graphical user interface after you launch Compute Visual Profiler
and open an existing project. Sample projects are available in the projects folder under
the computeprof folder.

A project, saved as a .cvp file, may contain multiple sessions. Multiple sessions can be
saved in a single project file and analyzed at a later point in time. Counter data is saved
in .csv files and trace data is stored in the .trc files.

Overview

Compute Visual Profiler DU-05162-001_v04 | 8

Figure 2. Compute Visual Profiler GUI

Overview

Compute Visual Profiler DU-05162-001_v04 | 9

Session Frame (Left)

A session is associated with a program run. A group of sessions is called a project. The
frame on the left lists all the sessions in the current project as a tree with three levels:

 Sessions at the top level
Session profiles a CUDA program run with certain options; profiled data capture
from this run is then presented as tables, counters, graphs, and plots. The default
session names (Session1, Session2 etc.) may be customized by right-clicking on the
default Session name and selecting Rename.

 Devices under a session at the second level
Device corresponds to each physical GPU in the system. For multi-GPU systems
multiple devices are displayed. The Device which is a child of a Session is named as
Device_< device_number >, with device_number starting at 0, for example:
Device_0.

 Contexts under a device at the third level
Context corresponds to a CUDA context which in turn is analogous to a CPU
process. For a multi-context application, multiple contexts can be seen under the
device tab. The Context which is a child of a Device is named as
Context_<context_number> [CUDA|OPENCL] with context_number starting at 0
for example: Context_0 [CUDA] or Context_1 [OPENCL].
The type of session- CUDA or OPENCL is shown within square parentheses.

Right-clicking on a session item in the tree view (left frame) displays the following
context sensitive menu items related to customizing the session:

 Rename: Rename the current session.
 Delete: Delete the current session.
 Copy settings to current: Copy settings for the current session as the session settings

to be used for a new profiling session.
 Session level summary plot: Displays the GPU Utilization Plot.

Workspace Frame (Right)

Session

When a session is selected in the tree view in the left frame, the right frame displays a
summary of the information related to the session.

Project and device related information is displayed as shown in Figure 3.

Overview

Compute Visual Profiler DU-05162-001_v04 | 10

Figure 3. Session Properties- Project Related

In addition, counter information and selected options are displayed as shown in Figure 4
and Figure 5 respectively.

Overview

Compute Visual Profiler DU-05162-001_v04 | 11

Figure 4. Session Properties- Counters

Overview

Compute Visual Profiler DU-05162-001_v04 | 12

Figure 5. Session Properties- Selected Options

Device

When a device is selected in the tree view (left frame), the right frame displays a
summary of the information related to the device. The following information is
displayed:

 Device name
 Number of Contexts
 Table listing: Context | Type | Number of rows

Right-clicking on a Device (level below Session) item in the tree view displays the Device
Summary Plot.

Context

Right-clicking on a context item (level below device) in the tree view displays the
following context sensitive menu items:

1. Summary table (See section entitled, ”Summary Table”)
 Kernel table (See section entitled, ”Kernel Table”)
 Memcopy table (See section entitled, ”Memcopy Table”)
 GPU time summary plot (See section entitled, ”GPU Time Summary Plot”)
 GPU time height plot (See section entitled, ”GPU Time Height Plot”)
 GPU time width plot (See section entitled, ”GPU Time Width Plot”)
 Comparison summary Plot (See section entitled, ”Comparison Summary Plot”)
 CUDA API Trace (See section entitled, “CUDA API Trace”)

The workspace to the right of the tree view frame contains tabbed windows for each
session, each device in a session and for each context for a device. The different
windows for each context are shown as different tabs:

Overview

Compute Visual Profiler DU-05162-001_v04 | 13

 Profiler Output table
 Summary table
 Kernel table
 Memcopy table
 GPU Time height plot
 GPU Time width plot
 GPU Time Summary Plot
 Profiler counter plot
 Column plot
 Comparison Summary plot
 CUDA API Trace

Right-clicking on the table headers of the Profiler Output table and Summary table
allows you to customize the columns displayed.

Go to the Profiler Output (or Summary) Table Right-click on any cell table header.

The following options are displayed:

 Hide
 Hide zero columns
 Show all columns

Output Frame (Bottom)

The Output frame displays at the bottom of the Compute Visual Profiler GUI screen
(Figure 1). The Output frame contains standard error information and any status
messages associated with the Compute program (CUDA or OpenCL program) you are
running.

Overview

Compute Visual Profiler DU-05162-001_v04 | 14

Exploring a Saved Project
This example illustrates how you can explore the various sessions and view settings and
options to obtain the tables and plots of your choice. Several sample projects are
available in the <CudaToolkitDir>\computeprof\projects folder when the CUDA toolkit
and SDK are installed.

1. Open the project saved in the projects folder
(<CudaToolkitDir>\computeprof\projects) using the main menu option FileOpen.
The Profiler Output table is displayed.

2. Right-click Session1Device_0Context_0 in the session tree to display the various
tables and plots available (See Figure 6.)

Figure 6. Displaying Tables and Plots for a Saved Project

3. Select settings for a new session by using the main menu option SessionSession
settings.

4. Browse and select the Compute program to profile.

5. Change the working directory if it is different from the program directory.

6. Execute the Compute program by clicking Launch in the Session settings dialog box.
If the Compute program is correctly executed the profiler output is displayed.
Compare the profiler output for Session1 and Session2.

7. Right-click on the appropriate row or column in the profiler output or summary
table for a session to try the Profiler counter plot and Column plot.

8. Exit Compute Visual Profiler using the main menu option FileExit from the main
menu.

Overview

Compute Visual Profiler DU-05162-001_v04 | 15

Creating a New Project
Profiling is automatically enabled by Compute Visual Profiler. Use the following
procedure to create a new project and display the various tables and plots of your
choice.

1. Open the project (.cvp file) using main menu option FileNew or Click on the File
Open Project icon in the toolbar .

2. Select the project name and project directory where the project files will be saved.

3. Select the session settings through the dialog box. See section entitled, “Session” for
details.

4. Browse and select the Compute program to profile.

5. Change the working directory if it is different from the program directory.

6. Click on Session settings on the Session menu. Select options for maximum program
execution time, profiler counters, kernel and memory transfer options using the
tabbed options.
See Figure 11, Figure 12, and Figure 13 for details on the SessionSession settings
tabs.

7. Execute the Compute program by clicking the Start button of the Session settings
dialog box or through the main menu option SessionStart. If the Compute
program executes correctly, the profiler output is displayed.

8. Right-click on Session1Device_0Context_0 to display the summary table in the
session tree.

9. Choose the Summary table option or use the Summary table toolbar option.

10. Right-click on Session1Device_0Context_0 in the session tree and choose the
GPU Time Summary Plot option to display the GPU Time summary plot. You may
also use the GPU Time Summary Plot toolbar option. The Profiler Output and GPU
Time Summary plot windows can be viewed by scrolling, resizing and or
repositioning.

11. Save the project by using the main menu option FileSave or the toolbar icon.

12. Exit Compute Visual Profiler using the main menu option FileExit from the main
menu.

Compute Visual Profiler DU-05162-001_v04 | 16

COMPUTE VISUAL PROFILER GRAPHICAL
USER INTERFACE (GUI)

MAIN MENU BAR
Figure 7 shows the main toolbar for the CUDATM Compute Visual Profiler.

Most operations can be conducted using the File pull down menu or the toolbar situated
right below the Menu bar.

The Menu bar consists of the main menu options: File, Session, View, Options, Window,
and Help. See the description below for details on the menu options.

The Toolbar icons fall into four main groups: File, Profile, Session View Settings, and
Tables and Plots. They provide options for file and project management, session
settings, and the various output formats.

Figure 7. Compute Visual Profiler Menu Bar and Toolbar

Compute Visual Profiler Graphical User Interface (GUI)

Compute Visual Profiler DU-05162-001_v04 | 17

File
On the main menuClick on File. Figure 8. shows the File pull down menu.

Figure 8. File Pull Down Menu

The File toolbar group consists of the following self-explanatory options:

 New : Creates a new project. The New project dialog box is opened to choose the
project name and project directory. On OK the Session settings dialog box is opened.

 Open : Opens an existing project. The Open project dialog box is opened to select the
profiler project to be opened. On Open the project data for all sessions is loaded and
the profiler data table is displayed.

 Save : Saves the current project. The profiler data for the current open project is
saved to the disk.

 Save As : Saves the current project as a new project. The project name and directory
can be selected. The profiler data for the current open project is saved to the disk.

 Close : Closes the current project. The current open project is closed. All profiler
session data is deleted from memory and all open windows are closed.

 Delete : Deletes the project. File dialog box is opened to select the project. It deletes
the selected project file (.cvp) and related data files(.csv) files.

 Import: Imports Compute Visual Profiler output in comma-separated format (CSV).
A new session is created in the current project and imported data is loaded.

 Export: Exports Compute Visual Profiler output for the current session to a file in the
comma-separated format (CSV).

 List of recently opened profiler projects.
 Exit: Exits the Compute Visual Profiler program.

Compute Visual Profiler Graphical User Interface (GUI)

Compute Visual Profiler DU-05162-001_v04 | 18

New Project Dialog Box

The FileNew project dialog box has two boxes as shown in Figure 9.

Figure 9. File->New Project Dialog Box

 Project Name: Name of the profiler project.
 Project location: Directory where the project files are saved.

Session
On the main menuClick on Session
Figure 10 shows the Session pull down menu.

Figure 10. Session Pull Down Menu

The Session menu consists of:

 Session settings: Change session settings.
 Disable Profiling: Option to disable profiling.

Compute Visual Profiler Graphical User Interface (GUI)

Compute Visual Profiler DU-05162-001_v04 | 19

 Global Memory Throughput: Display overall application level global memory read
throughput, global memory write throughput and overall global memory
throughput.

 Rename: Rename the current session.
 Delete: Delete the current session. This is same as the Session context menu Delete

option.
 Copy settings to current: Copy settings for the current session as the session settings

to be used for a new profiling session.

Session settings

As shown in Figure 11, the Session setting dialog has three tabs:

 Session
 Profiler Counters
 Other Options

Figure 11. Session->Session settings->Session (tab)

Compute Visual Profiler Graphical User Interface (GUI)

Compute Visual Profiler DU-05162-001_v04 | 20

Session Tab

On the main menuClick on SessionClick on Session settingsClick on the Session
tab

Using this tab customizes your session; the following options are available:

 Session Name: Name of the profiler session. By default a new session name is chosen
(Session1, Session2 ...). This can be changed by the user.

 Launch: Select the Compute program to be profiled.
 Working Directory: Select the working directory to be used for running the Compute

program.
 Arguments: Command line arguments to be passed to the Compute program.

● Multiple command line arguments should be separated by one or more spaces.
● Arguments containing spaces should be enclosed within double quotes.
● Double quotes can be used within an argument; there is no need to use a backslash

followed by double quote.
● Each backslash is replaced by two backslash characters and there is no other

special handling for backslash.
 Max. execution time (in seconds): Select maximum time to wait for Compute

program execution completion. After this cutoff time the program is aborted.
 Run in separate window: This option is useful for console applications which accept

some keyboard input. In this case the Compute program is run from a separate
window. The standard output and standard error for the Compute program is
shown in this separate window.

 Note: Currently this option is supported only on Linux and a new xterm window is
opened.

 CUDA API trace: This option is used to collect CUDA driver API call information.

 Note: Currently this option is not supported on MacOS X.

Compute Visual Profiler Graphical User Interface (GUI)

Compute Visual Profiler DU-05162-001_v04 | 21

Profiler Counters Tab

On the main menuClick on SessionClick on Session settingsClick on the Profiler
Counters tab

Profiler Counters are logically grouped based on their functions. Since only a few of the
selected profiler counters can be collected for a single program run - the Compute
program should be run multiple times.

Figure 12. Session->Session settings->Profiler Counters (tab)

Using this tab, customize the profile counters of interest; the following options are
available:

 Device: Selection of a device in this option displays the list of counters that are
supported on that device. The user can then select the desired counters from this list.
If device 0 is selected in device selection then only profiler counters supported on
device 0 are listed for selection. If multi-device option is selected then all the
counters supported on all devices (device 0, device 1...) are selected. In this case
device specific counters are ignored for contexts which are run on other devices. The
following warning message is displayed in the output window:

NV_Warning: Ignoring the invalid profiler config option:
gld_incoherent.

 Note: Selecting a device from the Session tab does not run the program on the
device selected; the user has to handle the device selection in the program.

Compute Visual Profiler Graphical User Interface (GUI)

Compute Visual Profiler DU-05162-001_v04 | 22

 You can select or de-select all counters by using the Select All Counters check box.
 You can also select any sub-set of specific counters using the check boxes for each

counter.
 You can enable or disable normalization of counter values by using the Normalize

counters check box.

Profiler counters are available only with CUDA toolkit version 1.1 or later.

Other Options Tab

On the main menuClick on SessionClick on Session settingsClick on the Other
Options tab

Figure 13. Session->Session settings->Other Options (tab)

Using this tab, customize other metrics of interest for the session; the following options
are available:

 Timestamp: Enable option to include time stamps for kernel/method launching. GPU
timestamp is the time when a method starts execution on the GPU. GPU timestamps
are shifted in origin, to make the minimum GPU timestamp zero, across all devices
and all contexts in a session.

 Stream id: Enable option to include stream id for kernel/method. This feature is
available only with CUDA toolkit version 1.1 or later.

Compute Visual Profiler Graphical User Interface (GUI)

Compute Visual Profiler DU-05162-001_v04 | 23

 Memory Transfer Size: It is to be enabled for describing the size of memory transfer.
It outputs the total size in bytes at the Memcopy table when profiling was done with
this option enabled.

 Host Memory Transfer Type: It specifies if the host memory from/to which data is
transferred, is pageable or page-locked.

 Kernel Options: This is a group of the following options:
● Grid Size : It is to be enabled to get dimensions of grid in terms of blocks (3

dimensional) in Kernel table.
● Thread Block Size: It is to be enabled to get dimensions of a block in terms of

threads (3 dimensional).
● Dynamic shared memory size: It is to be enabled to get Dynamic shared memory

size.
● Static shared memory size: It is to be enabled to get Static shared memory size.
● Register per thread: It is to be enabled to get Register count per thread.
● Local Block Size: If workgroupsize has been specified by the user, this option

would be 1, otherwise it would be 0(used only for OpenCL.)

View
On the main menu Click on View
Figure 14 shows the View pull down menu.

Figure 14. View Pull Down Menu

Compute Visual Profiler Graphical User Interface (GUI)

Compute Visual Profiler DU-05162-001_v04 | 24

Summary Table

For a selected context in the left frame (Sessions tree view):

On the main menu Click on View Click on Summary table

The summary table for the selected context within the current session is displayed in the
right frame. The rows in the table are sorted in decreasing order of total GPU time and
memcopy is shown as the last row.

The summary table has the following columns:

● Method: method name.
● #Calls: number of calls.
● GPU usec: total GPU time in micro seconds.
● CPU usec: total CPU time in micro seconds (column is hidden by default.)
● %GPU time: Percentage of total GPU time across all methods.
● Cumulative count column for each available profiler counter (columns are hidden

by default.)
● Derived statistics:

o glob mem read throughput
o glob mem write throughput
o glob mem overall throughput
o gld efficiency
o gst efficiency
o instruction throughput
o retire ipc
o active warps/active cycles
o l1 gld hit rate
o texture hit rate %

For a description of the derived statistics please refer to the section entitled “Supported
Derived Statistics”.

Compute Visual Profiler Graphical User Interface (GUI)

Compute Visual Profiler DU-05162-001_v04 | 25

Kernel Table

For a selected context in the left frame (Sessions tree view):

On the main menu Click on View Click on Kernel table

The Kernel table with the following properties is displayed:

● method: method name
● #calls: number of times the kernel is called
● Grid Size (x,y,z dimensions)
● Thread Block Size (x,y,z dimensions)
● Dynamic Shared Memory per Block
● Static Shared Memory per Block
● Registers per Thread

Memcopy Table

On the main menu Click on View Click on Memcopy Table

The memcopy table with the following properties is displayed:

● Method
● #calls
● Host mem transfer type
● Memory Transfer Size

GPU Time Summary plot

On the main menu Click on View Click on GPU time summary plot

The GPU time summary plot for the current session is displayed. This is same as
selecting the GPU Time Summary plot option from the Session context menu.

GPU Time Height plot

On the main menu Click on View Click on GPU time height plot

The GPU time height plot for the selected context in the current session is displayed.
This is same as selecting the GPU time height plot option from the Session context
menu.

GPU Time Width plot

On the main menu Click on View Click on GPU time width plot

The GPU time width plot for the selected context in the current session is displayed. This
is same as selecting the GPU time width plot option from the Session context menu.

Compute Visual Profiler Graphical User Interface (GUI)

Compute Visual Profiler DU-05162-001_v04 | 26

Comparison plot

For a selected context in the current session:

On the main menu Click on View Click on Comparison summary plot

Options
On the main menu Click on Options. Figure 15 shows the Options pull down menu.

Figure 15. Options Pull Down Menu

The Options menu consists of:

 Session view settings: Change session view settings for the current session.
 Default view settings: Change the default view settings to be used for new sessions.
 Method Display Options: One of the following options to display method names :

● Use Full Name : Full Mangled name is displayed.
● Use Base Name : Only base name is displayed.
● Use Base Name with Suffix : Full Mangled name with suffix is displayed.

 Height plot: Change global GPU time height plot options.
● Use Global Scale: Enable/Disable option to use a common global scale across

multiple sessions.
 Plot Colors: Select colors for plots.

● Method Colors: Pop ups a color dialog box which can be used to select colors used
for different methods in plots. The colors are saved on application exit and so they
can be used across Compute Visual Profiler sessions.

Compute Visual Profiler Graphical User Interface (GUI)

Compute Visual Profiler DU-05162-001_v04 | 27

 Session Windows Layout Setting: Change settings for display of multiple session
windows. The choices are:
● Maximize
● Cascade
● Tiles

 Environment Variable Settings: Change environment variable settings used by the
Compute program.

Options->Session View Settings Dialog Box

On the main menu Click on Options Click on Session View Settings

This dialog box can be invoked using the main menu option OptionsSession View
Settings or the toolbar. This dialog box allows the changing of settings for the different
views for the current session. There is a separate tab for different views. The dialog box
is opened with the tab corresponding to the current view. Only tabs for currently created
views can be selected.

Figure 16. Options->Session View Settings Dialog

Compute Visual Profiler Graphical User Interface (GUI)

Compute Visual Profiler DU-05162-001_v04 | 28

Profiler Table Tab

On the main menu Click on Options Click on Session View Settings Select the
Profiler Table tab

Figure 17. Options->Session View Settings->Profiler Table Tab

Customize the Profiler table output using the following options:

 Hide All Zero Counters: Enable /disable hiding of counter columns having all zero
values. This is enabled by default.

 Columns Shown: Lists columns which are to be shown. Can select and move
columns from hidden list to shown list using <<.

 Columns Hidden: Lists columns which are to be hidden. Can select and move
columns from shown list to hidden list using >>.

Compute Visual Profiler Graphical User Interface (GUI)

Compute Visual Profiler DU-05162-001_v04 | 29

Summary Table Tab

On the main menu Click on Options Click on Session View Settings Select the
Summary Table tab

Customize the Summary table output using the following options:

Figure 18. Options->Session View Settings->Summary Table Tab

 Method Display Options: One of the following options to display method names :
● Use Full Name: Full Mangled name is displayed.
● Use Base Name: Only base name is displayed.
● Use Base Name with suffix: Full Mangled name with suffix is displayed.

 Show Average Data: Enable/Disable showing average data values. When this option
is disabled the sum total across all the calls for a method are shown. When this
option is enabled the total value is divided by the number of times the method is
called and this average value for a method is displayed. This option is disabled by
default.

 Column Shown: Lists columns which are to be shown. Can select and move columns
from hidden list to shown list using <<.

 Column Hidden: Lists columns which are to be hidden. Can select and move
columns from shown list to hidden list using >>. The CPU usec and all counter
columns are hidden by default.

Compute Visual Profiler Graphical User Interface (GUI)

Compute Visual Profiler DU-05162-001_v04 | 30

Summary Plot Tab

On the main menu Click on Options Click on Session View Settings Select the
Summary Plot tab

Customize the Summary plot using the following options:

 Method Display Options: One of the following options to display method names :
● Use Full Name: Full Mangled name is displayed.
● Use Base Name: Only base name is displayed.
● Use Base Name with suffix: Full Mangled name with suffix is displayed.

 Percentage Displayed: Enable/disable displaying percentage values. When this
option is disabled total values are shown. This option is enabled by default.

 Average Displayed: Enable/disable using average data values. When this option is
disabled total values are used. This option is disabled by default.

 Timestamp based Total: Enable/disable calculation of total using initial and final
timestamps. If enabled, one extra bar showing GPU Idle with total no of method
calls is presented in a different color.

Height Plot Tab

On the main menu Click on Options Click on Session View Settings Select the
Height Plot tab

Figure 19. Height Plot Options

Compute Visual Profiler Graphical User Interface (GUI)

Compute Visual Profiler DU-05162-001_v04 | 31

Customize the Height plot using the following options:

 Show legend: Enable/Disable display of GPU Time plot legend
 Fit in window: Enable/Disable option to fit the GPU plot in the window. When fit is

enabled multiple bars can overlap.
 Show CPU Time: Enable/Disable option to show CPU time.
 Show Configuration: Enable/Disable option to show the plot configuration in the plot

view.

Width Plot Tab

On the main menu Click on Options Click on Session View Settings Select the
Width Plot tab

Figure 20. Width Plot Options

Customize the Width plot using the following options:

 Enable Time Stamp: Enable/Disable option to use time stamps.
 Show CPU Time: Enable/Disable option to show CPU time.
 Fit in window: Enable/Disable option to fit the plot in the window.
 Show legend: Enable/Disable display of GPU Time plot legend.
 Start Timestamp at Zero.
 Show Configuration.

Compute Visual Profiler Graphical User Interface (GUI)

Compute Visual Profiler DU-05162-001_v04 | 32

 Max Bar Width: Maximum width of a bar in pixels. For this option the plot display is
immediately updated and so one can interactively choose an appropriate value.

 Height Options: Choose option to use for bar height.
 Split Options- choose between No Split or Show all devices.

● No Split: A single horizontal group of bars is displayed. Even in case of multiple
streams or multiple devices the data is displayed in a single group.

● Split on Device: In case of multiple devices one separate horizontal group of bars is
displayed for each device.

● Split on Stream: In case of multiple devices one separate horizontal group of bars is
displayed for each stream.

Apply and OK change the view properties temporarily and permanently, respectively.

Default View Settings Dialog Box

On the main menu Click on OptionsSelect Default View Settings

The Default View Settings dialog box allows you to change the default settings which are
used for subsequent new session views. The tabs displayed in this window are similar to
the tabs displayed in the OptionsSession View Settings dialog box (see Figure 16,
Figure 17, and Figure 18.)

Window
On the main menu Click on Window. Figure 21 shows the Window pull down menu.

Figure 21. Window Pull Down Menu

The Window menu consists of the following self-explanatory window-related options
for the right frame:

 Close: Close active window
 Close All: Close all open windows
 Tile: Tile all open windows
 Cascade: Cascade all open windows

Compute Visual Profiler Graphical User Interface (GUI)

Compute Visual Profiler DU-05162-001_v04 | 33

Help
On the main menu Click on Help
Figure 22 shows the Help pull down menu.

Figure 22. Help Pull Down Menu

The Help menu consists of:

 Compute Visual Profiler Help: Shows the Help for Compute Visual Profiler.

 Note: This is currently not supported on Mac OS

 System Info: Shows the Host system machine configuration information.
 About Compute Visual Profiler: Display Compute Visual Profiler program version

and copyright information.

Compute Visual Profiler Graphical User Interface (GUI)

Compute Visual Profiler DU-05162-001_v04 | 34

MAIN TOOLBAR
The first row in the top frame shows the main menu options:
File, Session, View, Options, Window, and Help.

As illustrated in Figure 23, the second row in the top frame has four groups of toolbar
icons.

 Figure 23. Toolbar Icons

File Toolbar Group
File toolbar group has the following three icons (listed from left to right):

 Create a new project: The behavior is same as the FileNew menu option.
 Open an existing project: The behavior is same as the FileOpen menu option.
 Save the current project: The behavior is same as the FileSave menu option.

Profile Toolbar Group
Profile toolbar group has the following three icons (listed from left to right):

 Session settings: The behavior is same as the SessionSession settings menu option
 Launch/Abort application: Abort the program.
 Enable/Diasable profiling: The behavior is same as the SessionStart menu option

Session Toolbar Group
The Session toolbar group has the following four icons (listed from left to right)

 Summary table: The behavior is same as the ViewSummary table menu option
 Summary plot: The behavior is same as the ViewSummary plot menu option
 Kernel table: The behavior is same as the View->Kernel table menu option.
 Memcopy table: The behavior is same as the View->memcopy table menu option.
 GPU time height plot: The behavior is same as the ViewGPU time height plot menu

option

Compute Visual Profiler Graphical User Interface (GUI)

Compute Visual Profiler DU-05162-001_v04 | 35

 GPU time width plot: The behavior is same as the View GPU time width plot menu
option

 CUDA API trace: The behavior is same as the View->CUDA API trace table menu
option

View Options Toolbar Group
 Session view settings: The behavior is same as the OptionsSession View Settings

menu option

Note that in order to customize your working environment you may enable or disable
certain toolbar buttons. Right-click anywhere on toolbar for a pop-up that allows you to
enable/disable toolbar buttons that fall under the File and Profiler toolbar category.

Compute Visual Profiler DU-05162-001_v04 | 36

COMPUTE APPLICATION ANALYSIS

The Visual Profiler contains a powerful analysis feature that provides performance
analysis of the application at the context level, kernel level, session level and device
level.

Compute Application Analysis

Compute Visual Profiler DU-05162-001_v04 | 37

CONTEXT LEVEL ANALYSIS
An analysis of GPU utilization for the CUDA context is carried out at this level and
appropriate hints are provided, for example, usage of streams to improve overlap
between kernel execution and memory copies.

 Click on the context in Sessions tree to get context level analysis in the analysis
window.

Figure 24: Context Level Analysis

Compute Application Analysis

Compute Visual Profiler DU-05162-001_v04 | 38

KERNEL LEVEL ANALYSIS
To view the kernel analysis for any kernel, double click the kernel name in the summary
table. A new pop up window analyzes that particular kernel in greater detail as
mentioned below:

Limiting Factor Identification Tab

Figure 25: Limiting Factor Identification tab

Compute Application Analysis

Compute Visual Profiler DU-05162-001_v04 | 39

 Limiting Factor Identification – In the Analysis window, this default tab displays
important statistics for the kernel for example the min/max/avg gpu time for kernel
at each call and block/grid dimensions amongst others. It shows
● The performance limiting factor for the kernel which indicates if the application is

more compute bound or memory bandwidth bound.
● The key parameters for example IPC (Instructions per Cycle), Memory throughput

and occupancy of the kernel and compares them with the corresponding peak
values for that device which helps in identifying the limiting factor for the kernel.

Instruction Throughput Analysis Tab

Figure 26: Instruction Throughput Analysis tab

Compute Application Analysis

Compute Visual Profiler DU-05162-001_v04 | 40

 Instruction Throughput Analysis – Gives instruction throughput analysis. It tries to
identify the amount of divergence and serialization in the kernel by analyzing
control flow divergence and the reasons for instructions replayed. It also gives hints
to reduce serialization and improve IPC.

Memory Throughput Analysis Tab

Figure 27: Memory Throughput Analysis

Compute Application Analysis

Compute Visual Profiler DU-05162-001_v04 | 41

 Memory Throughput Analysis - Gives memory throughput analysis. This gives
derived statistics at all the levels in memory hierarchy for example throughput at
each level L1 cache, L2 cache, Texture cache and global memory, the hit ratio, and
extra memory fetched/store due to coalescing issues. It also provides hints about
how to increase the memory throughput and remove some other issues in kernel like
register spilling.

Occupancy Analysis

Figure 28: Kernel Occupancy Analysis

 Occupancy Analysis – This gives the theoretical kernel occupancy and identifies the
limiting factor for occupancy. It is calculated using the static parameters of the
kernel like launch configuration, shared memory, and register usage.

 The table shown in kernel analysis window displays derived statistics and raw
counters for each call for the kernel for respective analysis tab. Clicking Show all
columns displays all the columns that are available in the profiler table for that
kernel.

 Use File->Export table to export the profiler table in csv format, filtered for the
kernel.

Compute Application Analysis

Compute Visual Profiler DU-05162-001_v04 | 42

SESSION LEVEL ANALYSIS
 Click on the Session name in the Sessions tree. This displays the session level

analysis in the analysis window.

Figure 29: Session Level Analysis

 It shows GPU utilization for all the GPUs for that session and provides suitable
optimization hints.

Compute Application Analysis

Compute Visual Profiler DU-05162-001_v04 | 43

DEVICE LEVEL ANALYSIS
 Click on the device in the Sessions tree. This displays device level analysis the

analysis window.

Figure 30: Device Level Analysis

 It shows GPU utilization for the device by showing the distribution of GPU time
over kernel execution and memory copy and it also gives the overlap time between
memory copy and kernel execution. It also provides suitable hints towards
improving the application performance.

Compute Visual Profiler DU-05162-001_v04 | 44

COMPUTE VISUAL PROFILER TABLES

PROFILER OUTPUT TABLE
Whenever a CUDA program is run with profiling enabled, Compute Visual Profiler
produces a Profiler Output table by default. Table 2 shows the composition of a Profiler
output table.

Table 2. Profiler Output Table

GPU
Timestamp Method GPU Time CPU Time Stream Id

Columns for
kernel
options

(See Table 3)

Columns for
memcopy
options

(See Table 4)

Columns for
Profile

Counters

Profiler Output Table columns are described below:

 GPU Timestamp: Start time stamp.
 Method: GPU Method name. This is either memcpy* for memory copies or the name

of a GPU kernel. Memory copies have a suffix that describes the type of a memory
transfer, e.g. memcpyDToHasync means an asynchronous transfer from Device
memory to Host memory.

 GPU Time: Execution time for the method on the GPU.
 CPU Time: Sum of GPU time and CPU overhead to launch the GPU Method. At the

driver generated data level, the CPU Time is only the CPU overhead to launch the
Method for non-blocking Methods. For blocking methods it is the sum of GPU time
and CPU overhead. All kernel launches by default are non-blocking. But if any of the

Compute Visual Profiler Tables

Compute Visual Profiler DU-05162-001_v04 | 45

profiler counters are enabled kernel launches are blocking. Asynchronous memory
copy requests in different streams are non-blocking.

 Stream Id : Identification number for the stream
 Kernel Options Columns: The columns are described as follows:

Table 3 shows the columns that are displayed for kernel methods.

Table 3. Kernel Options Columns

Occupancy
Profiler
Counters

GridSize
[X, Y, Z]

Thread Block Size
[X, Y, Z]

Dyn smem
per block

Sta smem
per block

Reg per
thread

● Occupancy : Occupancy is the ratio of the number of active warps per
multiprocessor to the maximum number of active warps.

● Profiler counters: Refer to the Interpreting Profiler Counters section for a list of
counters supported.

● GridSize[X, Y, Z]: Number of blocks in the grid along dimensions X, Y and Z
displayed as [num_blocks_X, num_blocks_Y, num_blocks_Z] in a single column.

● Block size[X, Y, Z]: Number of threads in a block along dimensions X, Y, and Z
displayed as [num_threads_X, num_threads_Y, num_threads_Z] in a single
column.

● dyn smem per block: Dynamic shared memory size per block in bytes.
● sta smem per block: Static shared memory size per block in bytes.
● reg per thread: Number of registers per thread.

Table 4 shows the columns that are displayed for memcopy options.

Table 4. memcopy Options Columns

Method #Calls Host mem transfer type

Compute Visual Profiler Tables

Compute Visual Profiler DU-05162-001_v04 | 46

Profiler Table Context Sensitive Menu
Right-clicking anywhere in the Profiler Output table window brings up a menu with the
following options:

 Profiler counter plot: Display the profiler counter plot for the method in the current
row.

 Column plot: Display the column plot for the current column.
 Export: Export the profiler data to a CSV format file.
 Copy: Copy the selected table cells to the clipboard.

SUMMARY TABLE
The Summary table menu is described in the section entitled, “Summary Table”.

A typical summary table is shown in Table 5. See the section entitled, “Summary Table
Tab” on how to select columns to be displayed.

Table 5. Summary Table

Method

Calls
GPU
usec

CPU
usec

%GPU
time

glob mem
read

throughput
(GB/s)

glob mem
write

throughput
(GB/s)

glob mem
overall

throughput
(GB/s)

instruction
throughput

retired
ipc

Warps
per

cycle

l1 global
load hit

rate

Compute Visual Profiler DU-05162-001_v04 | 47

COMPUTE VISUAL PROFILER PLOTS

For a selected context in the left frame (Sessions tree view):

On the main menu Click on View
Various plots supported by the Compute Visual Profiler are displayed. Compute Visual
Profiler supports the following plots:

 Summary plot
● GPU time summary plot
● Device level summary plot
● Session level summary plot

 GPU time height plot
 GPU Time Width plot
 Comparison Summary plot
 CUDA API Trace

Compute Visual Profiler Plots

Compute Visual Profiler DU-05162-001_v04 | 48

GPU Time Summary Plot
For a selected context in the left frame (Sessions tree view):

On the main menu Click on View Click on GPU time summary plot

The Summary profiling data bar plot has one bar for each method. The bars are sorted in
decreasing GPU time and the bar length is proportional to cumulative GPU time for a
method

Figure 31. Summary Plot

Compute Visual Profiler Plots

Compute Visual Profiler DU-05162-001_v04 | 49

Device Level Summary Plot
For a selected device in the left frame (Sessions tree view):

On the main menu Click on View Click on Device level summary plot

Figure 32. Device Level Summary Plot

The Device level summary plot has one bar for each method. Bars are sorted in
decreasing GPU time. The bar length is proportional to the cumulative GPU time for a
method across all contexts for a device.

Compute Visual Profiler Plots

Compute Visual Profiler DU-05162-001_v04 | 50

Session Level Summary Plot
For a selected session in the left frame (Sessions tree view):

On the main menu Click on View Click on Session level summary plot

Figure 33. Session Level Summary Plot

The Session level summary plot has one bar for each device used. The bar length is
proportional to GPU utilization which is the proportion of time that GPU spent on the
execution of a particular method to the total time interval from GPU start to end. The
values are presented in percentage format.

Compute Visual Profiler Plots

Compute Visual Profiler DU-05162-001_v04 | 51

GPU Time Height Plot
For a selected context in the left frame (Sessions tree view):

On the main menu Click on View Click on GPU time height plot

Figure 34. GPU Time Height Plot

The GPU time height plot is a bar diagram in which the height of each bar is
proportional to the GPU time for a method; a different bar color is assigned for each
method. The width of each bar is fixed and the bars are displayed in the order in which
the methods are executed. When the Fit In Window (OptionsSession View
SettingsClick on Height Plot tabCheck Fit In Window box) option is enabled the
display is adjusted so as to fit all the bars in the displayed window width. In this case
bars for multiple methods can overlap. The overlapped bars are displayed in decreasing
order of height so that all the different bars are visible. When the Show CPU Time

Compute Visual Profiler Plots

Compute Visual Profiler DU-05162-001_v04 | 52

option (OptionsSession View SettingsClick on Height Plot tabCheck the Show CPU
Time box) is enabled the CPU time is shown as a bar in a different color on top of the
GPU time bar. The height of this bar is proportional to the difference of CPU time and
GPU time for the method.

A legend which shows the color assignment for different methods is displayed if the
Show Legend box is checked.

The plot can customized as described in the section entitled, “Height Plot Tab”; the
dialog box with options is shown in Figure 19.

GPU Time Width Plot
For a selected context in the left frame (Sessions tree view):

On the main menu Click on View Click on GPU time width plot

Figure 35. GPU Time Width Plot

The GPU time width plot is a bar diagram in which the width of each bar is proportional
to the GPU time for a method. A different bar color is assigned for each method. A
legend which shows the color assignment for different methods is displayed. The bars
are displayed in the order in which the methods are executed. When time stamps are
enabled the bars are positioned based on the time stamp. The height of each bar is based
on the option chosen.

Compute Visual Profiler Plots

Compute Visual Profiler DU-05162-001_v04 | 53

The plot can customized as described in the section entitled, “Width Plot Tab”; the
dialog box with options is shown in Figure 20.

Profiler Counter Bar Plot
Go to the Profiler Output Tab Right-click on any cell in the Profiler Table except cells
in the Method column Select Profiler Counter Plot

Figure 36. Profiler Counter Plot

The Profiler Counter bar plot displays profiler counter values for a GPU Method from
the profiler output table or the summary table. There is one bar for each profiler counter.
Bars are sorted in decreasing profiler counter value. The bar length is proportional to
profiler counter value.

Profiler Output Table Column Bar Plot
Go to the Profiler Output Tab Right-click on any cell in the Profiler TableSelect
Column Plot

Figure 37. Profiler Output Column Plot

Compute Visual Profiler Plots

Compute Visual Profiler DU-05162-001_v04 | 54

The Profiler output table column plot displays a bar graph of the selected column of
values from the profiler output table or summary table. There is one bar for each row in
the table. Bars are sorted in decreasing column value. The bar length is proportional to
column value. Figure 37 displays the CPU time since a cell on the CPU time was
selected.

Comparison Summary Plot
The Comparison Summary plot can be used to compare GPU time summary data for
two sessions: a base session and a compare session. The base session is the session with
respect to which comparison is done. The other session which is selected for comparison
is called the compare Session.

As shown in Figure 38, the dialog box Select Device of Compare Session is presented for
selecting the device on which the sessions are compared, if multiple devices are present.

Note that in case of a single device the Select Device of Compare Session dialog box will
not appear.

Select the deviceClick on OK.

Figure 38. Select Device

Compute Visual Profiler Plots

Compute Visual Profiler DU-05162-001_v04 | 55

Next, a dialog box as shown in Figure 39, allows you to select the columns that may be
used for comparison.

Figure 39. Select Column Screen for Comparison Summary Plot

Figure 40 shows the Comparison Summary Plot. Selected columns for matching kernels
from the two sessions are grouped together. For each matched kernel from the compare
session, a percentage increment or decrement with respect to base session is displayed at
the right end of the bar. In addition to the matched pairs, the unmatched kernels’
column values are shown. At the bottom of the plot two bars with total column values
for the two sessions are shown.

If multiple contexts exist, a context selection dialog is presented along with a column
selection dialog. Based on these selections, the comparison summary plot is displayed.
The plot groups matching methods from two contexts (chosen from base and compare
sessions) and plots the values of the selected columns together. In addition, non-
matching methods are plotted separately. Finally the total values are compared at the
bottom.

Compute Visual Profiler Plots

Compute Visual Profiler DU-05162-001_v04 | 56

Figure 40. Comparison Summary Plot

Compute Visual Profiler Plots

Compute Visual Profiler DU-05162-001_v04 | 57

CUDA API Trace
Figure 41 shows a sample CUDA API Trace view.

Figure 41. CUDA API Trace

The CUDA API trace helps the user to understand the CPU side overhead for CUDA
driver API calls and specifically to understand the overhead involved for each kernel
launch and memory transfer request.. Capturing of CUDA Driver API calls can be
enabled by selecting API trace in the Session settings dialog.

To view CUDA API Trace for a context:

On the main menu Click on View Select CUDA API trace

Or,

Go to the left frame Sessions tree view  Right-click on contextSelect CUDA API
trace

The API trace view displays two horizontal rows of bars. The top row of bars shows the
GPU methods and the bottom row of bars shows the CUDA driver API functions. Each
GPU method or API is represented by a bar with a width proportional to the time of
execution. The bars are displayed in time order along the horizontal direction based on
the start time. A different color is assigned to each GPU method and all APIs are shown
in the same color. Consult the legend for the color used for different GPU methods and
for APIs.

Compute Visual Profiler Plots

Compute Visual Profiler DU-05162-001_v04 | 58

The attributes for a GPU method or an API can be viewed by pointing the cursor on the
bar. The following attributes are displayed for a CUDA driver API:

 API name: Name of CUDA driver API function
 Context ID: GPU context ID
 Thread ID: CPU thread ID
 Process ID: CPU process ID
 Stream ID: GPU steam ID
 Return value: API call return value
 Start time stamp: Start time of an API call in micro seconds
 Time duration: Time duration for execution of a API in micro seconds

Compute Visual Profiler DU-05162-001_v04 | 59

COMPUTE VISUAL PROFILER COUNTERS

INTERPRETING COUNTER VALUES
Counter values obtained from the Compute Visual Profiler are not the same as numbers
obtained by inspecting kernel code. Compute Visual Profiler values are best used to
identify relative performance differences between un-optimized and optimized code.
For example, if for the initial version of the program the profiler reports N non-coalesced
global loads, it is easy to see if the optimized code produces less than N non-coalesced
loads. In most cases, the goal is to make N go to 0, so the counter value is useful for
tracking progress toward this goal.

Performance counter values represent events within a thread warp; they do not
correspond to individual thread activity. For example, a divergent branch within a
thread warp will increment the divergent_branch counter by one. Therefore the final
counter value contains information for all divergent branches in all warps. In addition,
the profiler can only target one of the multiprocessors in the GPU, so the counter values
will not correspond to the total number of warps launched for a particular kernel. For
this reason, when using the performance counter options in the profiler the user should
always launch enough threads blocks to ensure that the target multiprocessor is given a
consistent percentage of the total work. In practice for consistent results, it is best to
launch at least 2 times as many blocks as there are multiprocessors in the device on
which you are profiling.

Note that the counter values for the same application can be different across different
runs even on the same setup since it depends on the number of thread blocks which are
executed on each multiprocessor. For consistent results it is best to have number of
blocks for each kernel launched to be at least equal to or a multiple of the total number
of multiprocessors on a compute device. In other words when profiling the grid
configuration should be chosen such that all the multiprocessors are uniformly loaded
i.e. the number of blocks launched on each multiprocessor is same and also the amount

Compute Visual Profiler Counters

Compute Visual Profiler DU-05162-001_v04 | 60

of work of interest per block is the same. This will result in better accuracy of
extrapolated counts, such as memory and instruction throughput, and will also provide
more consistent results from one run to the next run.

In every application run only a few counter values can be collected. The number of
counters depends on the specific counters selected. Compute Visual Profiler executes the
application multiple times to collect all the counter values. Note that in case the number
blocks in a kernel is less than or not a multiple of the number of multiprocessors the
counters values across multiple runs will not be consistent.

Refer to the Best Practices Guides for CUDA and OpenCL for further details.

PROFILER COUNTERS FOR A SINGLE
MULTIPROCESSOR (SM)
These counter values are a cumulative count for all thread blocks which were run on
multiprocessor zero. Note that the multiprocessor single-instruction multi-thread unit
(SIMT) creates, manages, schedules, and executes threads in groups of 32 threads called
warps. These counters are incremented by one for each warp.

PROFILER COUNTERS FOR ALL MULTIPROCESSORS
IN A TPC
Profiler counter values for all multiprocessors in a Texture Processing Cluster (TPC) are
a cumulative count for all thread blocks which were run on multiprocessors within TPC
zero. There are two multiprocessors per TPC on compute devices with compute
capability less than 1.3, there are three multiprocessors per TPC on compute devices
with compute capability 1.3 and one multiprocessor per TPC on compute devices with
compute capability 2.0. The number of multiprocessors per TPC is not dependent on
compute capability.

A coalesced access is said to occur when simultaneous global memory accesses by
threads in a half-warp, during the execution of a single read or write instruction, can be
combined into a single memory transaction of 32, 64, or 128 bytes.

If the global memory access by all threads of a half-warp does not fulfill the coalescing
requirements it is called a non-coalesced access and a separate memory transaction is
issued for each thread and throughput is significantly reduced. The coalescing
requirements on devices with compute capability 1.2 and higher are different from

Compute Visual Profiler Counters

Compute Visual Profiler DU-05162-001_v04 | 61

devices with compute capability 1.0 or 1.1. Refer to the CUDA C Programming Guide for
details. The profiler counters related to global memory count the number of global
memory accesses or memory transactions and they are not per warp. They provide
counts for all global memory requests initiated by warps running on a TPC.

NORMALIZED COUNTER VALUES
When the "Normalize Counters" option is selected (see Figure 12) all counter values are
normalized and per block counts are shown. This option is currently supported only for
compute devices with compute capability less than 2.0.

For single multiprocessor counters the counter value is divided by the number of thread
blocks which were run on multiprocessor 0. The profiler counter "sm_cta_launched"
is used to count thread blocks which were run on multiprocessor 0.

For TPC counters the counter value is divided by the number of thread blocks which
were run on TPC 0. The profiler counter "cta_launched" is used to count thread blocks
which were run on multiprocessors in TPC 0.

The counter value is set to zero in the following cases:
 The number of blocks launched on the multiprocessor(s) being profiled is zero. This

can happen when the number of blocks launched for a kernel is less than the total
number of multiprocessors on a compute device.

 The counter value is less than the number of blocks launched on the
multiprocessor(s) being profiled. The normalized fractional value less than one is
truncated to zero.

If any counter value is set to zero a warning is displayed at the end of the application
profiling.

Enabling the "Normalize Counters" option results in the following:

 more number of application runs are required to collect all counter values as
compared to when the option is disabled.

 the "cta_launched" and "sm_cta_launched" columns are not shown in the
profiler table.

Compute Visual Profiler Counters

Compute Visual Profiler DU-05162-001_v04 | 62

PROFILER COUNTERS
Table 6 lists the profiler counters supported for different multiprocessor configurations
and compute capabilities.

The "Type" column specifies one of the following types of counters:

 SM: Streaming Multiprocessor
Counters of this type provide accumulated values for all thread blocks which were
run on multiprocessor zero.

 TPC: Texture Processing Cluster
Counters of this type provide accumulated values for all thread blocks which were
run on multiprocessors within TPC 0.

 FB: Frame Buffer for GPU DRAM or Device Memory
DRAM and L2 cache counters are categorized as FB type counters. Counters of this
type provide accumulated values for all instances of the unit available on the GPU.
e.g. the L2 counters provide accumulated values for all the L2 cache units and
DRAM counters provide accumulated values for all the DRAM units available on the
GPU. When values of these counters are compared with the SM counter values, the
SM counter values need to be extrapolated for the total number of thread blocks for
the kernel.
e.g. ((128 * ‘l1 global load miss’ * ‘grid size’)/’sm cta launched’) should be
approximately equal to (‘l2 read requests’ * 32) assuming uniform work load across
all the multiprocessors.

 SW: Counter values obtained by performing code instrumentation on the device
code
SW counters include the counters that count different sizes of memory requests in
the kernel. Since these counters are collected for all thread blocks of the kernel, when
values of these counters are compared with the SM counter values, SM counter
values should be extrapolated for the total number of thread blocks for the kernel.
e..g. (‘gld inst 8bit’ + 2 * ‘gld inst 16bit’ + 4 * ’gld inst 32bit’ + 8 * ‘gld inst 64bit’ + 16 *
‘gld inst 128bit’) should be approximately equal to ((128 * (l1_global_load_hit +
l1_global_load_miss) * ‘grid size’) / ’sm cta launched’) if the memory access pattern
is coalesced and assuming uniform work load across all multiprocessors.

In addition to the Compute Visual Profiler, a command line profiling tool called the
Compute Command Line Profiler is also supported for compute application profiling.
Both tools support similar counters with slightly different nomenclature.

Compute Visual Profiler Counters

Compute Visual Profiler DU-05162-001_v04 | 63

Profiler counters for the command line profiler are indicated in a different font
(Courier) in Table 6 below.

High level counters supported only in the Visual Profiler are computed in terms of the
command line profiler low level counters. Formulas (in Courier font) for such high
level counters are listed in the “Description” column in Table 6 below.

Details regarding the command line profiler low level counters are provided in Table 9
in the section entitled, “Command Line Profiler Counters”.

Table 6. Profiler Counters

Visual Profiler Counter
Name

Command Line
Profiler Counter
Name

Description

Type

SM= Streaming
Multiprocessor

TPC=Texture
Processing Cluster

FB =Frame Buffer
(GPU DRAM or
Device Memory)

SW= Software

Compute Capability Support

Y= Yes

N= No

1.0 1.1 1.2 1.3 2.0 2.1

Branch
branch

Number of branches taken by threads
executing a kernel. This counter is
incremented by one if at least one thread
in a warp takes the branch. Note that
barrier instructions (__syncThreads()) also
get counted as branches.

SM Y Y Y Y Y Y

divergent branch
divergent_branch

Number of divergent branches within a
warp. This counter is incremented by one if
at least one thread in a warp diverges (that
is, follows a different execution path) via a
data dependent conditional branch. The
counter is incremented by one at each
point of divergence in a warp.

SM Y Y Y Y Y Y

instructions
instructions

Number of instructions executed.
SM Y Y Y Y N N

warp serialize
warp_serialize

If two addresses of a memory request fall
in the same memory bank, there is a bank
conflict and the access has to be serialized.
This counter gives the number of thread
warps that serialize on address conflicts to
either shared or constant memory.

SM Y Y Y Y N N

sm cta launched
sm_cta_launched

Number of threads blocks launched on a
multiprocessor. SM Y Y Y Y Y Y

gld uncoalesced
gld_incoherent

Number of non-coalesced global memory
loads. TPC Y Y N N N N

gld coalesced
gld_coherent

Number of coalesced global memory loads.
TPC Y Y N N N N

Compute Visual Profiler Counters

Compute Visual Profiler DU-05162-001_v04 | 64

Visual Profiler Counter
Name

Command Line
Profiler Counter
Name

Description

Type

SM= Streaming
Multiprocessor

TPC=Texture
Processing Cluster

FB =Frame Buffer
(GPU DRAM or
Device Memory)

SW= Software

Compute Capability Support

Y= Yes

N= No

1.0 1.1 1.2 1.3 2.0 2.1

gld request
gld_request

Number of global memory load requests.
On devices with compute capability 1.3
enabling this counter will result in
increased counts for the "instructions" and
"branch" counter values if they are also
enabled in the same application run.

TPC N N Y Y Y Y

gld 32 byte
gld_32b

Number of 32 byte global memory load
transactions; incremented by 1 for each 32
byte transaction.

TPC N N Y Y N N

gld 64 byte
gld_64b

Number of 64 byte global memory load
transactions; incremented by 1 for each 64
byte transaction.

TPC N N Y Y N N

gld 128 byte
gld_128b

Number of 128 byte global memory load
transactions; incremented by 1 for each
128 byte transaction.

TPC N N Y Y N N

gst coalesced
gst_coherent

Number of coalesced global memory stores.
TPC Y Y N N N N

gst request
gst_request

Number of global memory store requests.
On devices with compute capability 1.3
enabling this counter will result in
increased counts for the "instructions" and
"branch" counter values if they are also
enabled in the same application run.

TPC N N Y Y Y Y

gst 32 byte
gst_32b

Number of 32 byte global memory store
transactions; incremented by 2 for each 32
byte transaction.

TPC N N Y Y N N

gst 64 byte
gst_64b

Number of 64 byte global memory store
transactions; incremented by 4 for each 64
byte transaction.

TPC N N Y Y N N

gst 128 byte
gst_128b

Number of 128 byte global memory store
transactions; incremented by 8 for each
128 byte transaction.

TPC N N Y Y N N

local load
local_load

Number of local memory load transactions.
Each local load request will generate one
transaction irrespective of the size of the
transaction.

TPC Y Y Y Y Y Y

local store
local_store

Number of local memory store transactions;
incremented by 2 for each 32-byte
transaction, by 4 for each 64-byte
transaction and by 8 for each 128-byte
transaction for compute devices having
compute capability 1.x. It is incremented
by 1 irrespective of the size of the
transaction for compute devices having
compute capability 2.0.

TPC Y Y Y Y Y Y

Compute Visual Profiler Counters

Compute Visual Profiler DU-05162-001_v04 | 65

Visual Profiler Counter
Name

Command Line
Profiler Counter
Name

Description

Type

SM= Streaming
Multiprocessor

TPC=Texture
Processing Cluster

FB =Frame Buffer
(GPU DRAM or
Device Memory)

SW= Software

Compute Capability Support

Y= Yes

N= No

1.0 1.1 1.2 1.3 2.0 2.1

cta launched
cta_launched

Number of threads blocks launched on a
TPC. TPC Y Y Y Y N N

texture cache hit
tex_cache_hit

Number of texture cache hits.
TPC Y Y Y Y N N

texture cache miss
tex_cache_miss

Number of texture cache misses.
TPC Y Y Y Y N N

prof triggers
prof_trigger_00 :
prof_trigger_07

There are 8 such triggers that user can
profile. Those are generic and can be
inserted in any place of the code to collect
the related information.

TPC Y Y Y Y Y Y

shared load/
shared_load

Number of executed shared load
instructions per warp on a multiprocessor. SM N N N N Y Y

shared store/
shared_store

Number of executed shared store
instructions per warp on a multiprocessor. SM N N N N Y Y

instructions issued

Number of instructions issued including
replays.
This is calculated as:
inst_issued
OR
(inst_issued1_0 + 2*inst_issued2_0 +
inst_issued1_1 + 2*inst_issued2_1)

SM N N N N Y Y

instructions executed
inst_executed

Number of instructions executed, do not
include replays. SM N N N N Y Y

threads instruction
executed

Number of instructions executed by all
threads. This does not include replays. For
each instruction it increments by the
number of threads in the warp that execute
the instruction.
This is calculated as:
(thread_inst_executed_0 +
thread_inst_executed_1
 [+ thread_inst_executed_2 +
thread_inst_executed_3])

SM N N N N Y Y

warps launched
warps_launched

Number of warps launched on a
multiprocessor. SM N N N N Y Y

threads launched
threads launched

Number of threads launched on a
multiprocessor. SM N N N N Y Y

active cycles
active_cycles

Number of cycles a multiprocessor has at
least one active warp. SM N N N N Y Y

active warps
active_warps

Accumulated number of active warps per
cycle. For every cycle it increments by the
number of active warps in the cycle which
can be in the range 0 to 48.

SM N N N N Y Y

Compute Visual Profiler Counters

Compute Visual Profiler DU-05162-001_v04 | 66

Visual Profiler Counter
Name

Command Line
Profiler Counter
Name

Description

Type

SM= Streaming
Multiprocessor

TPC=Texture
Processing Cluster

FB =Frame Buffer
(GPU DRAM or
Device Memory)

SW= Software

Compute Capability Support

Y= Yes

N= No

1.0 1.1 1.2 1.3 2.0 2.1

l1 global load hit
l1_global_load_hit

Number of global load hits in L1 cache.
SM N N N N Y Y

l1 global load miss
l1_global_load_miss

Number of global load misses in L1 cache.
SM N N N N Y Y

l1 local load hit
l1_local_load_hit

Number of local load hits in L1 cache.
SM N N N N Y Y

l1 local load miss
l1 local load miss

Number of local load misses in L1 cache
SM N N N N Y Y

l1 local store hit
l1_local_store_hit

Number of local store hits in L1 cache.
SM N N N N Y Y

l1 local store miss
l1_local_store_miss

Number of local store misses in L1 cache.
SM N N N N Y Y

l1 shared bank conflicts
l1 shared bank
conflicts

Number of shared bank conflicts.
SM N N N N Y Y

uncached global load
transaction
uncached_global_load
_transaction

Number of uncached global load
transactions; incremented by 1 per
transaction. Transaction size can be
32/64/128 bytes.

SM N N N N Y Y

global store transaction
global_store_transac
tion

Number of global store transactions;
incremented by 1 per transaction.
Transaction size can be 32/64/128 bytes.

SM N N N N Y Y

l2 read requests Number of read requests from L1 to L2
cache; incremented by 1 for each 32-byte
access.
This is calculated as:
l2_subp0_read_sector_queries [+
l2_subp1_read_sector_queries]

FB N N N N Y Y

l2 read texture
requests

Number of read requests from texture
cache to L2 cache; incremented by 1 for
each 32-byte access.
This is calculated as:
l2_subp0_read_tex_sector_queries [+
l2_subp1_read_tex_sector_queries]

FB N N N N Y Y

l2 write requests Number of write requests from L1 to L2
cache; incremented by 1 for each 32-byte
access.
This is calculated as:
l2_subp0_write_sector_queries [+
l2_subp1_write_sector_queries]

FB N N N N Y Y

Compute Visual Profiler Counters

Compute Visual Profiler DU-05162-001_v04 | 67

Visual Profiler Counter
Name

Command Line
Profiler Counter
Name

Description

Type

SM= Streaming
Multiprocessor

TPC=Texture
Processing Cluster

FB =Frame Buffer
(GPU DRAM or
Device Memory)

SW= Software

Compute Capability Support

Y= Yes

N= No

1.0 1.1 1.2 1.3 2.0 2.1

l2 read misses Number of read misses in L2 cache;
incremented by 1 for each 32-byte access.
This is calculated as:
l2_subp0_read_sector_misses [+
l2_subp1_read_sector_misses]

FB N N N N Y Y

l2 write misses Number of write misses in L2 cache;
incremented by 1 for each 32-byte access.
This is calculated as:
l2_subp0_write_sector_misses [+
l2_subp1_write_sector_misses]

FB N N N N Y Y

dram reads Number of read requests to DRAM;
incremented by 1 for each 32-byte access.
This is calculated as:
(fb_subp0_read_sectors +
fb_subp1_read_sectors)
 OR
(fb0_subp0_read_sectors +
fb0_subp1_read_sectors +
fb1_subp0_read_sectors +
fb1_subp1_read_sectors)

FB N N N N Y Y

dram writes Number of write requests to DRAM;
incremented by 1 for each 32-byte access.
This is calculated as:
(fb_subp0_write_sectors +
fb_subp1_write_sectors)
OR
(fb0_subp0_write_sectors +
fb0_subp1_write_sectors +
fb1_subp0_write_sectors +
fb1_subp1_write_sectors)

FB N N N N Y Y

tex cache requests Number of texture cache requests;
incremented by 1 for each 32-byte access.
This is calculated as:
tex0_cache_sector_queries [+
tex1_cache_sector_queries]

SM N N N N Y Y

tex cache misses Number of texture cache misses;
incremented by 1 for each 32-byte access.
This is calculated as:
tex0_cache_sector_misses [+
tex1_cache_sector_misses]

SM N N N N Y Y

gld instruction 8bit
gld_inst_8bit

Total number of 8-bit global load
instructions that are executed by all the
threads across all thread blocks.

SW N N N N Y Y

Compute Visual Profiler Counters

Compute Visual Profiler DU-05162-001_v04 | 68

Visual Profiler Counter
Name

Command Line
Profiler Counter
Name

Description

Type

SM= Streaming
Multiprocessor

TPC=Texture
Processing Cluster

FB =Frame Buffer
(GPU DRAM or
Device Memory)

SW= Software

Compute Capability Support

Y= Yes

N= No

1.0 1.1 1.2 1.3 2.0 2.1

gld instruction 16bit
gld_inst_16bit

Total number of 16-bit global load
instructions that are executed by all the
threads across all thread blocks.

SW N N N N Y Y

gld instruction 32bit
gld_inst_32bit

Total number of 32-bit global load
instructions that are executed by all the
threads across all thread blocks.

SW N N N N Y Y

gld instruction 64bit
gld_inst_64bit

Total number of 64-bit global load
instructions that are executed by all the
threads across all thread blocks.

SW N N N N Y Y

gld instruction 128bit
gld_inst_128bit

Total number of 128-bit global load
instructions that are executed by all the
threads across all thread blocks.

SW N N N N Y Y

gst instruction 8bit
gst_inst_8bit

Total number of 8-bit global store
instructions that are executed by all the
threads across all thread blocks.

SW N N N N Y Y

gst instruction 16bit
gst_inst_16bit

Total number of 16-bit global store
instructions that are executed by all the
threads across all thread blocks.

SW N N N N Y Y

gst instruction 32bit
gst_inst_32bit

Total number of 32-bit global store
instructions that are executed by all the
threads across all thread blocks.

SW N N N N Y Y

gst instruction 64bit
gst_inst_64bit

Total number of 64-bit global store
instructions that are executed by all the
threads across all thread blocks.

SW N N N N Y Y

gst instruction 128bit
gst_inst_128bit

Total number of 128-bit global store
instructions that are executed by all the
threads across all thread blocks.

SW N N N N Y Y

Compute Visual Profiler DU-05162-001_v04 | 69

SUPPORTED DERIVED STATISTICS

Visual Profiler supports derived statistics for different multiprocessor configurations
and compute capabilities. A description of the statistics that are derived from the
profiler counter values is provided in Table 7. The Compute Capability columns provide
theoretical valid ranges for the derived statistics.

 * indicates that the range for this derived statistic varies from one device to another
and depends on factors such as memory bus width and memory clock.

 NA indicates that the derived statistic is not available for the specific compute
capability.

 Note: The derived statistics displayed in the Summary Table as well as in the
Analysis window of the Kernel Analysis feature for a particular kernel are the
average values taken over all the invocations of that kernel.

Supported Derived Statistics

Compute Visual Profiler DU-05162-001_v04 | 70

Table 7. Supported Derived Statistics

Derived Statistic Description
Compute Capability

1.0 1.1 1.2 1.3 2.0 2.1

glob mem read throughput Global memory read throughput in gigabytes per second.
For compute capability < 2.0 this is calculated as:
(((gld_32*32) + (gld_64*64) + (gld_128*128)) * TPC) /
(gputime * 1000)
For compute capability >= 2.0 this is calculated as:
((DRAM reads) * 32) / (gputime * 1000)
This derived statistic is also shown as ‘Achieved global
memory read throughput (GB/s)’ in the kernel analysis
window for Fermi.

* * * * * *

glob mem write throughput Global memory write throughput in gigabytes per second.
For compute capability < 2.0 this is calculated as:
(((gst_32*32) + (gst_64*64) + (gst_128*128)) * TPC) /
(gputime * 1000)
For compute capability >= 2.0 this is calculated as:
((DRAM writes) * 32) / (gputime * 1000)
This derived statistic is also shown as ‘Achieved global
memory write throughput (GB/s)’ in the kernel
analysis window for Fermi.

* * * * * *

glob mem overall
throughput

Global memory overall throughput in gigabytes per
second. This is calculated as:
Global memory read throughput + Global memory write
throughput
This derived statistic is also shown as ‘Achieved global
memory throughput (GB/s)’ in the kernel analysis
window for Fermi.

* * * * * *

gld efficiency Global load efficiency NA NA 0-1 0-1 NA NA

gst efficiency Global store efficiency NA NA 0-1 0-1 NA NA

instruction throughput This is the ratio of achieved instruction rate to peak
single issue instruction rate. The achieved instruction
rate is calculated using the profiler counter
“instructions”.
The peak instruction rate is calculated based on the GPU
clock speed.
In the case of instruction dual-issue coming into play,
this ratio shoots up to greater than 1.
This is calculated as:
(instructions) / (gpu_time * clock_frequency)

0-1 0-1 0-1 0-1 NA NA

active warps/active cycles The average number of warps that are active on a
multiprocessor per cycle. This is calculated as:
(active warps) / (active cycles).

NA NA NA NA 0-48 0-48

l1 gld hit rate This is calculated as:
100 * (l1 global load hit count) / ((l1 global load hit
count) + (l1 global load miss count))

NA NA NA NA 0-100 0-100

texture hit rate % This is calculated as:
100 * (tex_cache_requests - tex_cache_misses) /
(tex_cache_requests)

NA NA NA NA 0-100 0-100

Supported Derived Statistics

Compute Visual Profiler DU-05162-001_v04 | 71

Derived Statistic Description
Compute Capability

1.0 1.1 1.2 1.3 2.0 2.1

Ideal Instruction/Byte ratio

This is a ratio of the peak instruction throughput and the
peak memory throughput of the CUDA device.
This is a property of the device and is independent of the
kernel.

NA NA NA NA * *

instruction/byte

This is the ratio of the total number of instructions
issued by the kernel and the total number of bytes
accessed by the kernel from global memory.
If this ratio is greater than the Ideal instruction/byte
ratio, then the kernel is compute bound and if it’s less,
then the kernel is memory bound. This is calculated as:
(32 * instructions issued * #SM)/ {32 * (l2 read requests +
l2 write requests + l2 read texture requests)}

NA NA NA NA * *

Achieved Kernel Occupancy

This ratio provides the actual occupancy of the kernel
based on the number of warps executing per cycle on the
SM. It is the ratio of active warps and active cycles
divided by the max number of warps that can execute on
an SM.
This is calculated as:
(active warps/active cycles)/48

NA NA NA NA 0-1 0-1

Kernel requested global
memory read throughput
(GB/s)

This is the actual number of bytes requested in terms of
loads by the kernel from global memory divided by the
kernel execution time.
These requests are made in terms of global load
instructions which can be of varying word sizes of 8, 16,
32, 64 or 128 bits. This is calculated as:
(gld instructions 8bit + 2 * gld instructions 16bit + 4 * gld
instructions 32bit + 8 * gld instructions 64bit + 16 * gld
instructions 128bit) / (gpu time * 1000)

NA NA NA NA * *

Kernel requested global
memory write throughput
(GB/s)

This is the actual number of bytes requested in terms of
stores by the kernel from global memory divided by the
kernel execution time.
These requests are made in terms of global store
instructions which can be of varying word sizes of 8, 16,
32, 64 or 128 bits. This is calculated as:
(gst instructions 8bit + 2 * gst instructions 16bit + 4 * gst
instructions 32bit + 8 * gst instructions 64bit + 16 * gst
instructions 128bit) / (gpu time * 1000)

NA NA NA NA * *

Kernel requested global
memory throughput (GB/s)

This is the combined kernel requested read and write
memory throughput. This is calculated as:
(Kernel requested global memory read throughput +
Kernel requested global memory write throughput)

NA NA NA NA * *

L1 cache read throughput
(GB/s)

This gives the throughput achieved while accessing data
from L1 cache. This is calculated as:
[(l1 global load hit + l1 local load hit) * 128 * #SM + l2
read requests * 32] / (gpu time * 1000)

NA NA NA NA * *

L1 cache global hit ratio
(%)

Percentage of hits that occur in L1 cache while accessing
global memory. This statistic will be zero when L1 cache
is disabled. This is calculated as:
(100 * l1 global load hit)/(l1 global load hit + l1 global
load miss)

NA NA NA NA 0-100 0-100

Supported Derived Statistics

Compute Visual Profiler DU-05162-001_v04 | 72

Derived Statistic Description
Compute Capability

1.0 1.1 1.2 1.3 2.0 2.1

Texture cache memory
throughput (GB/s)

This gives the memory throughput achieved while
reading data from texture memory. This statistic will be
zero when texture memory is not used. This is calculated
as:
(#SM * tex cache sector queries * 32) / (gpu time * 1000)

NA NA NA NA * *

Texture cache hit rate (%)

Percentage of hits that occur in texture cache while
accessing data from texture memory. This statistic will
be zero when texture memory is not used. This is
calculated as:
100 * (tex cache requests – tex cache misses)/tex cache
requests

NA NA NA NA 0-100 0-100

L2 cache texture memory
read throughput (GB/s)

This gives the throughput achieved while reading data
from L2 cache when a request for data residing in
texture memory is made. This is calculated as:
(l2 read tex requests * 32)/(gpu time *1000)

NA NA NA NA * *

L2 cache global memory
read throughput (GB/s)

This gives the throughput achieved while reading data
from L2 cache when a request for data residing in global
memory is made by L1. This is calculated as:
(l2 read requests * 32)/(gpu time * 1000)

NA NA NA NA * *

L2 cache global memory
write throughput (GB/s)

This gives the throughput achieved while writing data to
L2 cache when a request to store data in global memory
is made by L1. This is calculated as:
(l2 write requests * 32)/(gpu time * 1000)

NA NA NA NA * *

L2 cache global memory
throughput (GB/s)

This is the combined L2 cache read and write memory
throughput. This is calculated as:
(L2 cache global memory read throughput + L2 cache
global memory write throughput)

NA NA NA NA * *

L2 cache read hit ratio (%)

Percentage of hits that occur in L2 cache while reading
from global memory. This is calculated as:
100 * (L2 cache global memory read throughput - glob
mem read throughput)/(L2 cache global memory read
throughput)

NA NA NA NA 0-100 0-100

L2 cache write hit ratio (%)

Percentage of hits that occur in L2 cache while writing to
global memory. This is calculated as:
100 * (L2 cache global memory write throughput - glob
mem write throughput)/(L2 cache global memory write
throughput)

NA NA NA NA 0-100 0-100

Local memory bus traffic
(%)

Percentage of bus traffic caused due to accesses to local
memory. This is calculated as:
(2 * l1 local load miss * 128 * 100)/((l2 read requests + l2
write requests)* 32 / #SMs)

NA NA NA NA 0-100 0-100

Supported Derived Statistics

Compute Visual Profiler DU-05162-001_v04 | 73

Derived Statistic Description
Compute Capability

1.0 1.1 1.2 1.3 2.0 2.1

Global memory excess load
(%)

This shows the percentage of excess data that is fetched
while making global memory load transactions. Ideally 0%
excess loads will be achieved when kernel requested
global memory read throughput is equal to the L2 cache
read throughput i.e. the number of bytes requested by
the kernel in terms of reads are equal to the number of
bytes actually fetched by the hardware during kernel
execution to service the kernel. If this statistic is high, it
implies that the access pattern for fetch is not
coalesced, many extra bytes are getting fetched while
serving the threads of the kernel. This is calculated as:
100 – (100 * kernel requested global memory read
throughput / l2 read throughput)

NA NA NA NA 0-100 0-100

Global memory excess
store (%)

This shows the percentage of excess data that is
accessed while making global memory store transactions.
Ideally 0% excess stores will be achieved when kernel
requested global memory write throughput is equal to
the L2 cache write throughput i.e. the number of bytes
requested by the kernel in terms of stores are equal to
the number of bytes actually accessed by the hardware
during kernel execution to service the kernel. If this
statistic is high, it implies that the access pattern for
store is not coalesced, many extra bytes are getting
accessed while execution of the threads of the kernel.
This is calculated as:
100 - (100 * kernel requested global memory write
throughput / l2 write throughput)

NA NA NA NA 0-100 0-100

Peak global memory
throughput (GB/s)

This is the peak memory throughput or bandwidth that
can be achieved on the present CUDA device. This is a
device property and the kernel achieved memory
throughput should be as close as possible to this peak.

* * * * * *

IPC - Instructions/Cycle

This gives the number of instructions issued per cycle.
This should be compared to maximum IPC possible for
the device. The range provided is for single precision
floating point instructions. This is calculated as:
(instructions issued/active cycles)

NA NA NA NA 0-2 0-4

Divergent branches (%)

The percentage of branches that are causing divergence
within a warp amongst all the branches present in the
kernel. Divergence within a warp causes serialization in
execution. This is calculated as:
(100*divergent branch)/(divergent branch + branch)

0-100 0-100 0-100 0-100 0-100 0-100

Control flow divergence (%)

Control flow divergence gives the percentage of thread
instructions that were not executed by all threads in the
warp, hence causing divergence. This should be as low as
possible. This is calculated as:
100 * ((32 * instructions executed) – threads instruction
executed)/(32* instructions executed)

NA NA NA NA 0-100 0-100

Supported Derived Statistics

Compute Visual Profiler DU-05162-001_v04 | 74

Derived Statistic Description
Compute Capability

1.0 1.1 1.2 1.3 2.0 2.1

Replayed Instructions (%)

This gives the percentage of instructions replayed during
kernel execution. Replayed instructions are the
difference between the numbers of instructions that are
actually issued by the hardware to the number of
instructions that are to be executed by the kernel.
Ideally this should be zero. This is calculated as:
100 * (instructions issued - instruction executed)
/instruction issued

NA NA NA NA 0-100 0-100

Global memory replay (%)
Percentage of replayed instructions caused due to global
memory accesses. This is calculated as:
100 * (l1 global load miss)/ instructions issued

NA NA NA NA 0-100 0-100

Local memory replay (%)

Percentage of replayed instructions caused due to local
memory accesses. This is calculated as:
100 * (l1 local load miss + l1 local store miss)/
instructions issued

NA NA NA NA 0-100 0-100

Shared bank conflict replay
(%)

Percentage of replayed instructions caused due to shared
memory bank conflicts. This is calculated as:
100 * (l1 shared conflict)/ instructions issued

NA NA NA NA 0-100 0-100

Shared memory bank
conflict per shared memory
instruction (%)

This gives an indication of the number of bank conflicts
caused per shared memory instruction. This may exceed
100% if there are n-way bank conflicts or the data
accessed is double precision. This is calculated as:
100 * (l1 shared bank conflict)/(shared load + shared
store)

NA NA NA NA 0-100 0-100

SM activity (%)
Percentage of multiprocessor utilization. This is
calculated as:
100 * (active cycles)/ elapsed clocks

NA NA NA NA 0-100 0-100

Compute Visual Profiler DU-05162-001_v04 | 75

COMMAND LINE PROFILER

The command line profiler allows users to gather timing information about kernel
execution and memory transfer operations for CUDA and OpenCL applications.
Profiling options are controlled through environment variables and a profiler
configuration file. Profiler output is generated in text files either in Key-Value-Pair
(KVP) or Comma Separated (CSV) format.

COMMAND LINE PROFILER CONTROL
The command line profiler is controlled using the following environment variables:

COMPUTE_PROFILE: is set to either 1 or 0 (or unset) to enable or disable profiling.

COMPUTE_PROFILE_LOG: is set to the desired file path for profiling output. In case of
multiple contexts you can add ‘%d’ in the COMPUTE_PROFILE_LOG name. This will
generate separate profiler output files for each context - with ‘%d’ substituted by the
context number. Contexts are numbered starting with zero. If there is no log path
specified, the profiler will log data to “cuda_profile_%d.log” in case of a CUDA context
and “opencl_profile_%d.log” in case of a OpenCL context (‘%d’ is substituted by the
context number).

COMPUTE_PROFILE_CSV: is set to either 1 (set) or 0 (unset) to enable or disable a comma
separated version of the log output.

COMPUTE_PROFILE_CONFIG: is used to specify a config file for enabling performance
counters in the GPU.

Configuration details are covered in a subsequent section.

Command Line Profiler

Compute Visual Profiler DU-05162-001_v04 | 76

The old environment variables, which were used specifically for CUDA/OpenCL are still
supported. The old environment variables for the above functionalities are:

CUDA_PROFILE/OPENCL_PROFILE

CUDA_PROFILE_LOG/OPENCL_PROFILE_LOG

CUDA_PROFILE_CSV/OPENCL_PROFILE_CSV

CUDA_PROFILE_CONFIG/OPENCL_PROFILE_CONFIG

If CUDA_PROFILE or OPENCL_PROFILE are explicitly set and the COMPUTE_PROFILE environment
variable is not set, the profiler outputs only the corresponding contexts. If both are set, the
COMPUTE_PROFILE environment variables take precedence over CUDA_PROFILE/OPENCL_PROFILE
environment variable.

COMMAND LINE PROFILER CONFIGURATION
The profiler configuration file is used to select the profiler options and counters which
are to be collected during application execution. The configuration file is a simple format
text file with one option on each line. Options can be commented out using the ‘#’
character at the start of a line. The profiler configuration options are same for CUDA and
OpenCL contexts, though they differ in their terminology. Refer to Table 1 for the
terminology mapping between CUDA and OpenCL.

Command Line Profiler Options
Table 8 contains the options supported by the command line profiler. Note the following
regarding the profiler log that is produced from the different options:

 Typically, each profiler option corresponds to a single column is output. There are a
few exceptions in which case multiple columns are output; these are noted where
applicable in Table 8.

 In most cases the column name is the same as the option name; the exceptions are
listed in Table 8.

 In most cases the column values are 32-bit integers in decimal format; the exceptions
are listed in Table 8.

Command Line Profiler

Compute Visual Profiler DU-05162-001_v04 | 77

Table 8. Command Line Profiler Options

Option Description
timestamp Time stamps for kernel launches and memory transfers. This

can be used for timeline analysis.
The column values are single precision floating point value
in microseconds.

gpustarttimestamp Time stamp when kernel starts execution in GPU.
The column values are 64-bit unsigned value in nanoseconds
in hexadecimal format.

gpuendtimestamp Time stamp when kernel ends execution in GPU.
The column values are 64-bit unsigned value in nanoseconds
in hexadecimal format.

gridsize Number of blocks in a grid along the X and Y dimensions for
a kernel launch.
This option outputs the following two columns:
CUDA:
• gridsizeX
• gridsizeY
OpenCL:
• ndrangesizeX
• ndrangesizeY

gridsize3d Number of blocks in a grid along the X, Y and Z dimensions
for a kernel launch.
This option outputs the following three columns:
CUDA:
• gridsizeX
• gridsizeY
• gridsizeZ
OpenCL:
• ndrangesizeX
• ndrangesizeY
• ndrangesizeZ

threadblocksize Number of threads in a block along the X, Y and Z
dimensions for a kernel launch.
This option outputs the following three columns:
CUDA:
• threadblocksizeX
• threadblocksizeY
• threadblocksizeZ
OpenCL:
• workgroupsizeX
• workgroupsizeY
• workgroupsizeZ

dynsmemperblock Size of dynamically allocated shared memory per block in
bytes for a kernel launch. (Only CUDA)

Command Line Profiler

Compute Visual Profiler DU-05162-001_v04 | 78

Option Description
stasmemperblock Size of statically allocated shared memory per block in

bytes for a kernel launch.
This option outputs the following columns:
CUDA:
• stasmemperblock
OpenCL:
• stasmemperworkgroup

regperthread Number of registers used per thread for a kernel launch.
This option outputs the following columns:
CUDA:
• regperthread
OpenCL:
• regperworkitem

memtransferdir Memory transfer direction, a direction value of 0 is used for
host to device memory copies and a value of 1 is used for
device to host memory copies.

memtransfersize Memory transfer size in bytes. This option shows the amount
of memory transferred between source (host/device) to
destination (host/device).

memtransferhostmem
type

Host memory type (pageable or page-locked). This option
implies whether during a memory transfer, the host memory
type is pageable or page-locked.

streamid Stream Id for a kernel launch.

localblocksize If workgroupsize has been specified by the user, this option
would be 1, otherwise it would be 0.(Only OpenCL).
This option outputs the following column:
• localworkgroupsize

cacheconfigrequested Requested cache configuration option for a kernel launch:
• 0 CU_FUNC_CACHE_PREFER_NONE - no preference for

shared memory or L1 (default)
• 1 CU_FUNC_CACHE_PREFER_SHARED - prefer larger shared

memory and smaller L1 cache
• 2 CU_FUNC_CACHE_PREFER_L1 - prefer larger L1 cache

and smaller shared memory
• 3 CU_FUNC_CACHE_PREFER_EQUAL - prefer equal sized L1

cache and shared memory

cacheconfigexecuted Cache configuration which was used for the kernel launch.
The values are same as those listed under
cacheconfigrequested.

Command Line Profiler

Compute Visual Profiler DU-05162-001_v04 | 79

Command Line Profiler Counters
The command line profiler supports logging of counters during kernel execution. Table
9 lists only counters specific to the command line profiler. Refer to Table 6 for counters
which are common to both command line profiler and Visual Profiler. Table 6 also
contains formulas for calculating some higher level counters provided in Visual Profiler
which in turn are calculated using the low level counters supported by the command
line profiler. In every application run only a few counter values can be collected. The
number of counters depends on the specific counters selected.

Table 9. Command Line Profiler Counters

Command Line Profiler Counter
Name Description

Type
SM= Single
Multiprocessor

FB = Frame
Buffer (GPU
DRAM or Device
Memory)

Compute Capability Support

Y= Yes

N= No

1.0 1.1 1.2 1.3 2.0 2.1

inst_issued Number of instructions issued
including replays. SM N N N N Y N

inst_issued1_0 Number of cycles that issue one
instruction for instruction pipeline 0 SM N N N N N Y

inst_issued2_0 Number of cycles that issue two
instructions for instruction pipeline
0

SM N N N N N Y

inst_issued1_1 Number of cycles that issue one
instruction for instruction pipeline 1 SM N N N N N Y

inst_issued2_1 Number of cycles that issue two
instructions for instruction pipeline
1

SM N N N N N Y

thread_inst_executed_0 Number of instructions executed by
all threads. This does not include
replays. For each instruction it
increments by the number of
threads in the warp that execute the
instruction in pipeline 0.

SM N N N N Y Y

thread_inst_executed_1 Number of instructions executed by
all threads. This does not include
replays. For each instruction it
increments by the number of
threads in the warp that execute the
instruction in pipeline 1.

SM N N N N Y Y

thread_inst_executed_2 Number of instructions executed by
all threads. This does not include
replays. For each instruction it
increments by the number of
threads in the warp that execute the
instruction in pipeline 2.

SM N N N N Y Y

Command Line Profiler

Compute Visual Profiler DU-05162-001_v04 | 80

Command Line Profiler Counter
Name Description

Type
SM= Single
Multiprocessor

FB = Frame
Buffer (GPU
DRAM or Device
Memory)

Compute Capability Support

Y= Yes

N= No

1.0 1.1 1.2 1.3 2.0 2.1

thread_inst_executed_3 Number of instructions executed by
all threads. This does not include
replays. For each instruction it
increments by the number of
threads in the warp that execute the
instruction in pipeline 3.

SM N N N N Y Y

l2_subp0_read_sector_queries Accumulated read sector queries
from L1 to L2 cache for slice 0 of all
the L2 cache units

FB N N N N Y Y

l2_subp1_read_sector_queries Accumulated read sector queries
from L1 to L2 cache for slice 1 of all
the L2 cache units

FB N N N N Y Y*

l2_subp0_read_tex_sector_queries Accumulated read sector queries
from texture cache to L2 cache for
slice 0 of all the L2 cache units

FB N N N N Y Y

l2_subp1_read_tex_sector_queries Accumulated read sector queries
from texture cache to L2 cache for
slice 1 of all the L2 cache units

FB N N N N Y Y*

l2_subp0_write_sector_queries Accumulated write sector queries
from L1 to L2 cache for slice 0 of all
the L2 cache units

FB N N N N Y Y

l2_subp1_write_sector_queries Accumulated write sector queries
from L1 to L2 cache for slice 1 of all
the L2 cache units

FB N N N N Y Y*

l2_subp0_read_sector_misses Accumulated read sectors misses
from L2 cache for slice 0 for all the
L2 cache units

FB N N N N Y Y

l2_subp1_read_sector_misses Accumulated read sectors misses
from L2 cache for slice 1 for all the
L2 cache units

FB N N N N Y Y*

l2_subp0_write_sector_misses Accumulated write sector misses
from L2 cache for slice 0 for all the
L2 cache units

FB N N N N Y Y

l2_subp1_write_sector_misses Accumulated write sectors misses
from L2 cache for slice 1 for all the
L2 cache units

FB N N N N Y Y*

fb_subp0_read_sectors Number of read requests sent to
sub-partition 0 of all the DRAM units FB N N N N Y Y

fb_subp1_read_sectors Number of read requests sent to
sub-partition 1 of all the DRAM units FB N N N N Y Y

fb0_subp0_read_sectors Number of read requests sent to
sub-partition 0 of DRAM unit 0 FB N N N N Y Y

fb0_subp1_read_sectors Number of read requests sent to
sub-partition 1 of DRAM unit 0 FB N N N N Y Y

fb1_subp0_read_sectors Number of read requests sent to
sub-partition 0 of DRAM unit 1 FB N N N N Y Y

fb1_subp1_read_sectors Number of read requests sent to
sub-partition 1 of DRAM unit 1 FB N N N N Y Y

Command Line Profiler

Compute Visual Profiler DU-05162-001_v04 | 81

Command Line Profiler Counter
Name Description

Type
SM= Single
Multiprocessor

FB = Frame
Buffer (GPU
DRAM or Device
Memory)

Compute Capability Support

Y= Yes

N= No

1.0 1.1 1.2 1.3 2.0 2.1

fb_subp0_write_sectors Number of write requests sent to
sub-partition 0 of all the DRAM units FB N N N N Y Y

fb_subp1_write_sectors Number of read requests sent to
sub-partition 1 of all the DRAM units FB N N N N Y Y

fb0_subp0_write_sectors Number of write requests sent to
sub-partition 0 of DRAM unit 0 FB N N N N N Y*

fb0_subp1_write_sectors Number of write requests sent to
sub-partition 1 of DRAM unit 0 FB N N N N N Y*

fb1_subp0_write_sectors Number of write requests sent to
sub-partition 0 of DRAM unit 1 FB N N N N N Y*

fb1_subp1_write_sectors Number of write requests sent to
sub-partition 1 of DRAM unit 1 FB N N N N N Y*

tex0_cache_sector_queries Number of texture cache sector
queries for texture unit 0 SM N N N N Y Y

tex1_cache_sector_queries Number of texture cache sector
queries for texture unit 1 SM N N N N N Y

tex0_cache_sector_misses Number of texture cache sector
misses for texture unit 0 SM N N N N Y Y

tex1_cache_sector_misses Number of texture cache sector
misses for texture unit 1 SM N N N N N Y

Command Line Profiler

Compute Visual Profiler DU-05162-001_v04 | 82

COMMAND LINE PROFILER OUTPUT
If the COMPUTE_PROFILE environment variable is set to enable profiling, the profiler log
records timing information for every kernel launch and memory operation performed
by the driver. The profiler determines dynamically whether the context is CUDA or
OpenCL, and produces the output log accordingly.

The default log syntax shown in Example 1 is part of the profiler log for a CUDA
application with no profiler configuration file specified.

Example 1. CUDA Default Profiler Log- No Options or Counters Enabled

CUDA_PROFILE_LOG_VERSION 2.0
CUDA_DEVICE_NAME 0 GeForce GTX 280
timestamp,method,gputime,cputime,occupancy
timestamp=[2155.302] method=[_Z10fhaar1dwtdiPf] gputime=[7.808]
cputime=[74.730]
occupancy=[1.000]
timestamp=[2421.886] method=[memcopy] gputime=[4.864] cputime=[
238.159]
timestamp=[2706.140] method=[_Z10ihaar1dwtdiPf] gputime=[7.296]
cputime=[59.295]
occupancy=[1.000]
timestamp=[2876.413] method=[memcopy] gputime=[4.608] cputime=[
224.679]

The log above in Example 1 shows data for memory copies and a few different kernel
launches. The ‘method’ label specifies which GPU function was executed by the driver.
The ‘gputime’ and ‘cputime’ labels specify the actual chip execution time and the driver
execution time (including gputime), respectively. Note that timestamp, gputime and
cputime are in microseconds. The ‘occupancy’ label gives the warp occupancy -
percentage of the maximum warp count in the GPU - for a particular method launch.

Command Line Profiler

Compute Visual Profiler DU-05162-001_v04 | 83

Example 2 shows the profiler log of a matrix multiplication application. There are a few
options and counters enabled in this example using the profiler configuration file:
gridsize
threadblocksize
memtransfersize
memtransferdir
instructions
branch
cta_launched

Example 2. CUDA Profiler Log- Options and Counters Enabled

CUDA_PROFILE_LOG_VERSION 2.0
CUDA_DEVICE_NAME 0 GeForce GTX 280
timestamp,method,gputime,cputime,gridsizeX,gridsizeY,threadblocksizeX,t
hreadblocksizeY,
threadblocksizeZ,occupancy,instructions,branch,cta_launched,memtransfer
size,memtransferdir
timestamp=[6492.515] method=[_Z10dmatrixmulPfiiS_iiS_] gputime=[
25.472] cputime=[203.797]
gridSize=[2, 1] threadblocksize=[32, 8, 8] occupancy=[0.333]
instructions=[2261]
branch=[312] cta_launched=[2]
timestamp=[7031.061] method=[memcopy] gputime=[8.896] cputime=[
230.686]
memtransfersize=[8192] memtransferdir=[1]

The default log syntax is easy to parse with a script, but for spreadsheet analysis it might
be easier to use the comma separated format.

When COMPUTE_PROFILE_CSV is set to 1, this same test produces the output log shown in
Example 3.

Example 3. CUDA Profiler Log- Options and Counters Enabled in CSV
Format

CUDA_PROFILE_LOG_VERSION 2.0
CUDA_PROFILE_CSV 1
CUDA_DEVICE_NAME 0 GeForce GTX 280
timestamp,method,gputime,cputime,gridsizeX,gridsizeY,threadblocksizeX,t
hreadblocksizeY,
threadblocksizeZ,occupancy,cta_launched,branch,instructions,memtransfer
size,memtransferdir
6390.687,_Z10dmatrixmulPfiiS_iiS_,25.184,203.168,2,1,32,8,8,0.333,312,3
12,2261
6946.483,memcopy,8.928,240.673,,,,,,,,,,8192,1

Command Line Profiler

Compute Visual Profiler DU-05162-001_v04 | 84

The following examples are for OpenCL applications. Example 4 is part of the log from a
test of the scan application without any counters enabled.

Example 4. OpenCL Default Profiler Log- No Options or Counters Enabled

OPENCL_PROFILE_LOG_VERSION 2.0
OPENCL_DEVICE 0 GeForce GTX 280
TIMESTAMPFACTOR 114aa119a0c9d7d2
timestamp,gpustarttimestamp,gpuendtimestamp,method,gputime,cputime,occu
pancy
timestamp=[7791621.500] gpustarttimestamp=[114ab721d9c649e0]
gpuendtimestamp=[114ab721da1a0be0]
method=[workgroupScanInclusive] gputime=[5489.152] cputime=[
5842.782] occupancy=[1.000]
timestamp=[7802433.500] gpustarttimestamp=[114ab721da6aaaa0]
gpuendtimestamp=[114ab721da6b5500]
method=[workgroupScanExclusive] gputime=[43.616] cputime=[387.270
] occupancy=[1.000]
timestamp=[7804496.500] gpustarttimestamp=[114ab721da894480]
gpuendtimestamp=[114ab721dacecc00]
method=[uniformUpdate] gputime=[4556.672] cputime=[4915.150]
occupancy=[1.000]

This log shows data for memory copies and a few different kernel launches. The
‘method’ label specifies which GPU function was executed by the driver. The ‘gputime’
and ‘cputime’ labels specify the actual chip execution time and the driver execution time
(including gputime), respectively. The gpustarttimestamp and gpuendtimestamp
indicate the start and end timestamps of the kernel being executed on the GPU.

Note that timestamp, gputime and cputime are in microseconds, and
gpustarttimestamp and gpuendtimestamp are in nanoseconds. The ‘occupancy’ label
gives the warp occupancy - percentage of the maximum warp count in the GPU - for a
particular method launch. An occupancy of 1.000 means the chip is completely full.

Example 5 shows the profiler log for the matrix multiplication application. There are
some options and counters enabled using the same configuration file as for Example 2:

Example 5. OpenCL Profiler Log- Options and Counters Enabled

OPENCL_PROFILE_LOG_VERSION 2.0
OpenCL_DEVICE_NAME 0 GeForce GTX 280
TIMESTAMPFACTOR 12bae765a4r9c521
timestamp,method,gputime,cputime,ndrangesizeX,ndrangesizeY,workgroupsiz
eX,workgroupsizeY,
workgroupsizeZ,occupancy,instructions,branch,cta_launched,memtransfersi
ze,memtransferdir
timestamp=[7205451.000] method=[matrixMul] gputime=[92695.133]
cputime=[93108.766]
NDRangesize=[50, 100] workgroupsize=[16, 16, 1] occupancy=[1.000]
instructions=[18204777]

Command Line Profiler

Compute Visual Profiler DU-05162-001_v04 | 85

branch=[1479119] cta_launched=[500]
timestamp=[7423482.500] method=[memcopy] gputime=[8.896]
cputime=[230.686]
memtransfersize=[8192] memtransferdir=[1]

When COMPUTE_PROFILE_CSV is set to 1, this same test produces the following output:

Example 6. OpenCL Profiler Log- Options and Counters Enabled in CSV
Format

OPENCL_PROFILE_LOG_VERSION 1.0
OPENCL_PROFILE_CSV 1
OpenCL_DEVICE_NAME 0 GeForce GTX 280
TIMESTAMPFACTOR 1e4231f54a45c645
timestamp,method,gputime,cputime,ndrangesizeX,ndrangesizeY,workgroupsiz
eX,workgroupsizeY,
workgroupsizeZ,occupancy,instructions,branch,
cta_launched,memtransfersize,memtransferdir
7535422.000,matrixMul,91935.766,93031.500,50,100,16, 16,
1,1.000,18204777,1479119,500
7754673.000,memcopy,8.536,241.342,,,,,,,,,,8192,1

www.nvidia.com

Notice
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

OpenCL
OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks
NVIDIA the NVIDIA logo, and CUDA are trademarks or registered trademarks of NVIDIA Corporation in the U.S.
and other countries. Other company and product names may be trademarks of the respective companies with
which they are associated.

Copyright
© 2010, 2011 NVIDIA Corporation. All rights reserved.

	Overview
	Getting Started
	Installation and Setup
	Windows
	Linux
	MacOS X

	Running the Compute Visual Profiler
	Windows
	Linux
	MacOS X
	Xterm

	CUDATM and OpenCLTM Support
	Compute Visual Profiler Files and Settings
	Compute Visual Profiler Usage
	Graphical User Interface (GUI) at a Glance
	Session Frame (Left)
	Workspace Frame (Right)
	Session
	Device
	Context

	Output Frame (Bottom)

	Exploring a Saved Project
	Creating a New Project

	Compute Visual Profiler Graphical User Interface (GUI)
	Main Menu Bar
	File
	New Project Dialog Box

	Session
	Session settings
	Session Tab
	Profiler Counters Tab
	Other Options Tab

	View
	Summary Table
	Kernel Table
	Memcopy Table
	GPU Time Summary plot
	GPU Time Height plot
	GPU Time Width plot
	Comparison plot

	Options
	Options->Session View Settings Dialog Box
	Profiler Table Tab
	Summary Table Tab
	Summary Plot Tab
	Height Plot Tab
	Width Plot Tab
	Default View Settings Dialog Box

	Window
	Help

	Main Toolbar
	File Toolbar Group
	Profile Toolbar Group
	Session Toolbar Group
	View Options Toolbar Group

	Compute Application Analysis
	Context Level Analysis
	Kernel Level Analysis
	Limiting Factor Identification Tab
	Instruction Throughput Analysis Tab
	Memory Throughput Analysis Tab
	Occupancy Analysis

	Session Level Analysis
	Device Level Analysis

	Compute Visual Profiler Tables
	Profiler Output Table
	Profiler Table Context Sensitive Menu

	Summary Table

	Compute Visual Profiler Plots
	GPU Time Summary Plot
	Device Level Summary Plot
	Session Level Summary Plot
	GPU Time Height Plot
	GPU Time Width Plot
	Profiler Counter Bar Plot
	Profiler Output Table Column Bar Plot
	Comparison Summary Plot
	CUDA API Trace

	Compute Visual Profiler Counters
	Interpreting Counter Values
	Profiler Counters for a Single Multiprocessor (SM)
	Profiler counters for all multiprocessors in a TPC
	Normalized counter values
	Profiler Counters

	Supported Derived Statistics
	Command Line Profiler
	Command Line Profiler Control
	Command Line Profiler Configuration
	Command Line Profiler Options
	Command Line Profiler Counters

	Command Line Profiler Output

