The next step in the never-ending process of generalizing Francis's implicitly-shifted QR algorithm

David S. Watkins

watkins@math.wsu.edu

Department of Mathematics Washington State University

This is joint work ...

This is joint work ...

... with Raf Vandebril.

This is joint work ...

- ... with Raf Vandebril.
- ...mostly Raf's work!

requires Hessenberg matrix

- requires Hessenberg matrix
- we know how

- requires Hessenberg matrix
- we know how

Reduce to Triangular Form

Reduce to Triangular Form

Reduce to Triangular Form

This yields a QR decomposition.

QR Decomposed Hessenberg matrix

QR Decomposed Hessenberg matrix

... a way to represent the matrix.

Hessenberg matrix (from now on)

Inverse of a Hessenberg matrix

Inverse of a Hessenberg matrix

... an attainable form!

Another Possibility

Another Possibility

CMV form

Another Possibility

- CMV form
- Some rotations commute.

also attainable

- also attainable
- rotators can appear in any order

- also attainable
- rotators can appear in any order
- There are variants of Francis's algorithm for all of these forms.

Allowed Operations

Allowed Operations

fusion

$$\begin{vmatrix} \uparrow & \downarrow \\ \downarrow & \end{vmatrix} \Rightarrow \qquad \begin{vmatrix} \uparrow \\ \downarrow \end{vmatrix}$$

Allowed Operations

fusion

$$\downarrow \qquad \Rightarrow \qquad \downarrow \qquad \Rightarrow \qquad \downarrow \qquad$$

shift through

Allowed Operations, continued

Allowed Operations, continued

shift through triangular matrix

structure commutes

single shift for simplicity

single shift for simplicity (can do any number)

- single shift for simplicity (can do any number)
- create a bulge

- single shift for simplicity (can do any number)
- create a bulge and chase it

- single shift for simplicity (can do any number)
- create a bulge and chase it

Suppress the triangular matrix.

Think of the unitary case.

■ Eliminate rotator in rows 2 and 3.

- Eliminate rotator in rows 2 and 3.
- Don't touch first row.

■ Eliminate rotator in rows 3 and 4.

■ Eliminate rotator in rows 4 and 5.

Done!

Francis iteration on inverse Hessenberg

Francis iteration on inverse Hessenberg

(triangular matrix suppressed)

Now eliminate the rotator on the right.

Done!

Francis iteration on an "arbitrary" pattern

(triangular matrix suppressed)

- Now go the other way.
- and so on ...

Comparing start with finish

Pattern moves upward by one.

Two ways to finish

Bottom rotator can be on left or right.

Raf tried it out.

- Raf tried it out.
- It works great!

- Raf tried it out.
- It works great!
- Can we establish some convergence theory?

- Raf tried it out.
- It works great!
- Can we establish some convergence theory?
- Yes, we can!

- Raf tried it out.
- It works great!
- Can we establish some convergence theory?
- Yes, we can!
- multishift iterations of any degree

■ It's nested subspace iteration . . .

■ It's nested subspace iteration . . . with changes of coordinate system.

- It's nested subspace iteration . . . with changes of coordinate system.
- No reliance on implicit-Q theorem.

- It's nested subspace iteration . . . with changes of coordinate system.
- No reliance on implicit-Q theorem.
- DSW, A M Monthly (May 2011)

- It's nested subspace iteration . . . with changes of coordinate system.
- No reliance on implicit-Q theorem.
- DSW, A M Monthly (May 2011)

- It's nested subspace iteration . . . with changes of coordinate system.
- No reliance on implicit-Q theorem.
- DSW, A M Monthly (May 2011)

Check this out!

■ It's nested subspace iteration . . .

It's nested subspace iteration . . . on Krylov subspaces. (from Hessenberg form)

It's nested subspace iteration . . . on Krylov subspaces. (from Hessenberg form)

It's nested subspace iteration . . . on Krylov subspaces. (from Hessenberg form)

■ For other forms, adjust the Krylov subspaces

Example: inverse Hessenberg form

Example: inverse Hessenberg form

$$\begin{array}{l} \operatorname{span}\{e_1\} \\ \operatorname{span}\{e_1,A^{-1}e_1\} \\ \operatorname{span}\{e_1,A^{-1}e_1,A^{-2}e_1\} \\ \operatorname{span}\{e_1,A^{-1}e_1,A^{-2}e_1,A^{-3}e_1\} \end{array}$$

Example: inverse Hessenberg form

and in general . . .

$$egin{aligned} \operatorname{span}\{e_1\} \ \operatorname{span}\{e_1,Ae_1\} \ \operatorname{span}\{e_1,Ae_1,A^2e_1\} \end{aligned}$$

With the new spaces, the convergence theory carries through as before.

- With the new spaces, the convergence theory carries through as before.
- Position of final rotator affects convergence rate.

- With the new spaces, the convergence theory carries through as before.
- Position of final rotator affects convergence rate.
- Subspace iteration:

$$A - \rho I$$
 or $A^{-1} - \rho^{-1}I$

- With the new spaces, the convergence theory carries through as before.
- Position of final rotator affects convergence rate.
- Subspace iteration:

$$A - \rho I$$
 or $A^{-1} - \rho^{-1}I$

■ I must be about out of time.

- With the new spaces, the convergence theory carries through as before.
- Position of final rotator affects convergence rate.
- Subspace iteration:

$$A - \rho I$$
 or $A^{-1} - \rho^{-1}I$

- I must be about out of time.
- Thank you for your attention.