David S. Watkins

watkins@math.wsu.edu

Department of Mathematics Washington State University ■ Eigenvalue Problem: $Av = \lambda v$

- **Eigenvalue Problem:** $Av = \lambda v$
- How to solve?

- **Eigenvalue Problem:** $Av = \lambda v$
- How to solve?

lambda = eig(A)

- **Eigenvalue Problem:** $Av = \lambda v$
- How to solve?

$$lambda = eig(A)$$

■ How does eig do it?

- **Eigenvalue Problem:** $Av = \lambda v$
- How to solve?

$$lambda = eig(A)$$

- How does eig do it?
- Francis's algorithm,

- **Eigenvalue Problem:** $Av = \lambda v$
- How to solve?

$$lambda = eig(A)$$

- How does eig do it?
- Francis's algorithm, aka

- **Eigenvalue Problem:** $Av = \lambda v$
- How to solve?

$$lambda = eig(A)$$

- How does eig do it?
- Francis's algorithm, aka the implicitly shifted QR algorithm

- **Eigenvalue Problem:** $Av = \lambda v$
- How to solve?

$$lambda = eig(A)$$

- How does eig do it?
- Francis's algorithm, aka the implicitly shifted QR algorithm
- 50 years!

- **Eigenvalue Problem:** $Av = \lambda v$
- How to solve?

$$lambda = eig(A)$$

- How does eig do it?
- Francis's algorithm, aka the implicitly shifted QR algorithm
- 50 years!
- Top Ten of the century (Dongarra and Sullivan)

John Francis

born near London in 1934

- born near London in 1934
- employed in late 50's, Pegasus computer

- born near London in 1934
- employed in late 50's, Pegasus computer
- linear algebra, eigenvalue routines

- born near London in 1934
- employed in late 50's, Pegasus computer
- linear algebra, eigenvalue routines
- primitive computer

- born near London in 1934
- employed in late 50's, Pegasus computer
- linear algebra, eigenvalue routines
- primitive computer
- no software

- born near London in 1934
- employed in late 50's, Pegasus computer
- linear algebra, eigenvalue routines
- primitive computer
- no software
- experimented with a variety of methods

- born near London in 1934
- employed in late 50's, Pegasus computer
- linear algebra, eigenvalue routines
- primitive computer
- no software
- experimented with a variety of methods
- invented His algorithm and programmed it

- born near London in 1934
- employed in late 50's, Pegasus computer
- linear algebra, eigenvalue routines
- primitive computer
- no software
- experimented with a variety of methods
- invented His algorithm and programmed it
- moved on to other things

Rutishauser (q-d 1954, LR 1958)

- Rutishauser (q-d 1954, LR 1958)
- Francis's first paper (QR)

- Rutishauser (q-d 1954, LR 1958)
- Francis's first paper (QR)

$$\blacksquare A - \rho I = QR, \quad RQ + \rho I = \hat{A}$$

- Rutishauser (q-d 1954, LR 1958)
- Francis's first paper (QR)

$$\blacksquare A - \rho I = QR$$
, $RQ + \rho I = \hat{A}$ repeat!

- Rutishauser (q-d 1954, LR 1958)
- Francis's first paper (QR)

•
$$A - \rho I = QR$$
, $RQ + \rho I = \hat{A}$ repeat!

Kublanovskaya

- Rutishauser (q-d 1954, LR 1958)
- Francis's first paper (QR)

$$\blacksquare A - \rho I = QR$$
, $RQ + \rho I = \hat{A}$ repeat!

- Kublanovskaya
- ... but this is not "Francis's Algorithm"

Second paper of Francis

- Second paper of Francis
- real matrices

- Second paper of Francis
- real matrices with complex pairs of eigenvalues

- Second paper of Francis
- real matrices with complex pairs of eigenvalues
- complex shifts

- Second paper of Francis
- real matrices with complex pairs of eigenvalues
- complex shifts
- want to stay in real arithmetic

- Second paper of Francis
- real matrices with complex pairs of eigenvalues
- complex shifts
- want to stay in real arithmetic
- two steps at once

- Second paper of Francis
- real matrices with complex pairs of eigenvalues
- complex shifts
- want to stay in real arithmetic
- two steps at once
- \blacksquare double-shift QR algorithm

- Second paper of Francis
- real matrices with complex pairs of eigenvalues
- complex shifts
- want to stay in real arithmetic
- two steps at once
- \blacksquare double-shift QR algorithm
- radically different from basic QR

- Second paper of Francis
- real matrices with complex pairs of eigenvalues
- complex shifts
- want to stay in real arithmetic
- two steps at once
- \blacksquare double-shift QR algorithm
- radically different from basic QR
- Usual justification: Francis's implicit-Q theorem

upper Hessenberg form

- upper Hessenberg form
- \blacksquare pick some shifts ρ_1, \ldots, ρ_m (m = 1, 2, 4, 6)

- upper Hessenberg form
- pick some shifts $\rho_1, \ldots, \rho_m \quad (m = 1, 2, 4, 6)$
- $p(A) = (A \rho_1 I) \cdots (A \rho_m I)$

- upper Hessenberg form
- \blacksquare pick some shifts $\rho_1, \ldots, \rho_m \quad (m = 1, 2, 4, 6)$
- $p(A) = (A \rho_1 I) \cdots (A \rho_m I)$ expensive!

- upper Hessenberg form
- pick some shifts $\rho_1, \ldots, \rho_m \quad (m = 1, 2, 4, 6)$
- $p(A) = (A \rho_1 I) \cdots (A \rho_m I)$ expensive!
- lacksquare compute $p(A)e_1$

- upper Hessenberg form
- \blacksquare pick some shifts $\rho_1, \ldots, \rho_m \quad (m = 1, 2, 4, 6)$
- $p(A) = (A \rho_1 I) \cdots (A \rho_m I)$ expensive!
- lacksquare compute $p(A)e_1$ cheap!

- upper Hessenberg form
- pick some shifts ρ_1, \ldots, ρ_m (m = 1, 2, 4, 6)
- $p(A) = (A \rho_1 I) \cdots (A \rho_m I)$ expensive!
- lacksquare compute $p(A)e_1$ cheap!
- Build unitary Q_0 with $q_1 = \alpha p(A)e_1$.

- upper Hessenberg form
- pick some shifts ρ_1, \ldots, ρ_m (m = 1, 2, 4, 6)
- $p(A) = (A \rho_1 I) \cdots (A \rho_m I)$ expensive!
- lacksquare compute $p(A)e_1$ cheap!
- Build unitary Q_0 with $q_1 = \alpha p(A)e_1$.
- Perform similarity transform $A \rightarrow Q_0^{-1}AQ_0$.

- upper Hessenberg form
- pick some shifts ρ_1, \ldots, ρ_m (m = 1, 2, 4, 6)
- $p(A) = (A \rho_1 I) \cdots (A \rho_m I)$ expensive!
- \blacksquare compute $p(A)e_1$ cheap!
- Build unitary Q_0 with $q_1 = \alpha p(A)e_1$.
- Perform similarity transform $A \rightarrow Q_0^{-1}AQ_0$.
- Hessenberg form is disturbed.

An Upper Hessenberg Matrix

After the Transformation $(Q_0^{-1}AQ_0)$

After the Transformation $(Q_0^{-1}AQ_0)$

Now return the matrix to Hessenberg form.

Chasing the Bulge

Chasing the Bulge

Done

Done

The Francis iteration is complete!

■ Pick some shifts.

- Pick some shifts.
- Compute $p(A)e_1$. (p determined by shifts)

- Pick some shifts.
- Compute $p(A)e_1$. (p determined by shifts)
- Build Q_0 with first column $q_1 = \alpha p(A)e_1$.

- Pick some shifts.
- Compute $p(A)e_1$. (p determined by shifts)
- Build Q_0 with first column $q_1 = \alpha p(A)e_1$.
- Make a bulge. $(A \rightarrow Q_0^{-1}AQ_0)$

- Pick some shifts.
- Compute $p(A)e_1$. (p determined by shifts)
- Build Q_0 with first column $q_1 = \alpha p(A)e_1$.
- Make a bulge. $(A \rightarrow Q_0^{-1}AQ_0)$
- Chase the bulge. (return to Hessenberg form)

- Pick some shifts.
- Compute $p(A)e_1$. (p determined by shifts)
- Build Q_0 with first column $q_1 = \alpha p(A)e_1$.
- Make a bulge. $(A \rightarrow Q_0^{-1}AQ_0)$
- Chase the bulge. (return to Hessenberg form)
- $\hat{A} = Q^{-1}AQ$

Quicker Summary

Quicker Summary

Make a bulge.

Quicker Summary

- Make a bulge.
- Chase it.

■ This is pretty simple.

- This is pretty simple.
- \blacksquare no QR decomposition in sight!

- This is pretty simple.
- \blacksquare no QR decomposition in sight!
- \blacksquare Why call it the QR algorithm?

- This is pretty simple.
- \blacksquare no QR decomposition in sight!
- \blacksquare Why call it the QR algorithm?
- Confusion!

- This is pretty simple.
- \blacksquare no QR decomposition in sight!
- \blacksquare Why call it the QR algorithm?
- Confusion!
- Can we think of another name?

- This is pretty simple.
- \blacksquare no QR decomposition in sight!
- \blacksquare Why call it the QR algorithm?
- Confusion!
- Can we think of another name?
- I'm calling it Francis's Algorithm.

- This is pretty simple.
- \blacksquare no QR decomposition in sight!
- \blacksquare Why call it the QR algorithm?
- Confusion!
- Can we think of another name?
- I'm calling it Francis's Algorithm.
- This is not a radical move.

■ How should we view Francis's algorithm?

- How should we view Francis's algorithm?
- \blacksquare Do we have to start with the basic QR algorithm?

- How should we view Francis's algorithm?
- \blacksquare Do we have to start with the basic QR algorithm?
- Couldn't we just as well introduce Francis's algorithm directly?

- How should we view Francis's algorithm?
- \blacksquare Do we have to start with the basic QR algorithm?
- Couldn't we just as well introduce Francis's algorithm directly? ... bypassing the basic QR algorithm entirely?

- How should we view Francis's algorithm?
- \blacksquare Do we have to start with the basic QR algorithm?
- Couldn't we just as well introduce Francis's algorithm directly? ... bypassing the basic QR algorithm entirely?
- ... and the answer is:

- How should we view Francis's algorithm?
- \blacksquare Do we have to start with the basic QR algorithm?
- Couldn't we just as well introduce Francis's algorithm directly? ... bypassing the basic QR algorithm entirely?
- ... and the answer is: Why not?

- How should we view Francis's algorithm?
- \blacksquare Do we have to start with the basic QR algorithm?
- Couldn't we just as well introduce Francis's algorithm directly? ... bypassing the basic QR algorithm entirely?
- ... and the answer is: Why not?
- This simplifies the presentation.

- How should we view Francis's algorithm?
- \blacksquare Do we have to start with the basic QR algorithm?
- Couldn't we just as well introduce Francis's algorithm directly? ... bypassing the basic QR algorithm entirely?
- ... and the answer is: Why not?
- This simplifies the presentation.
- I'm putting my money where my mouth is.

■ I'm putting my money where my mouth is ...

- I'm putting my money where my mouth is ...
- ... and saving one entire section!

reduction to Hessenberg form

- reduction to Hessenberg form
- Francis's algorithm

- reduction to Hessenberg form
- Francis's algorithm
- Try it out!

- reduction to Hessenberg form
- Francis's algorithm
- Try it out!
- It works great!

- reduction to Hessenberg form
- Francis's algorithm
- Try it out!
- It works great!
- Why does it work?

subspace iteration (power method)

- subspace iteration (power method)
- subspace iteration with changes of coordinate system

- subspace iteration (power method)
- subspace iterationwith changes of coordinate system
- Krylov subspaces

- subspace iteration (power method)
- subspace iterationwith changes of coordinate system
- Krylov subspaces (instead of the implicit-Q theorem)

- subspace iteration (power method)
- subspace iterationwith changes of coordinate system
- Krylov subspaces (instead of the implicit-Q theorem)
- Krylov subspaces and subspace iteration

- subspace iteration (power method)
- subspace iterationwith changes of coordinate system
- Krylov subspaces (instead of the implicit-Q theorem)
- Krylov subspaces and subspace iteration
- Krylov subspaces and Hessenberg form

 $v, Av, A^2v, A^3v, ...$

- $\blacksquare v, Av, A^2v, A^3v, \dots$
- \blacksquare convergence rate $|\lambda_2/\lambda_1|$

- $\blacksquare v, Av, A^2v, A^3v, \dots$
- \blacksquare convergence rate $|\lambda_2/\lambda_1|$
- \blacksquare \mathcal{S} , $A\mathcal{S}$, $A^2\mathcal{S}$, $A^3\mathcal{S}$, ...

- $\blacksquare v, Av, A^2v, A^3v, \dots$
- \blacksquare convergence rate $|\lambda_2/\lambda_1|$
- \blacksquare \mathcal{S} , $A\mathcal{S}$, $A^2\mathcal{S}$, $A^3\mathcal{S}$, ...
- \blacksquare subspaces of dimension j

- $v, Av, A^2v, A^3v, ...$
- \blacksquare convergence rate $|\lambda_2/\lambda_1|$
- \blacksquare \mathcal{S} , $A\mathcal{S}$, $A^2\mathcal{S}$, $A^3\mathcal{S}$, ...
- subspaces of dimension j $(|\lambda_{j+1}/\lambda_j|)$

- $\blacksquare v, Av, A^2v, A^3v, \dots$
- \blacksquare convergence rate $|\lambda_2/\lambda_1|$
- \blacksquare \mathcal{S} , $A\mathcal{S}$, $A^2\mathcal{S}$, $A^3\mathcal{S}$, ...
- subspaces of dimension j $(|\lambda_{j+1}/\lambda_j|)$
- Substitute p(A) for A

- $v, Av, A^2v, A^3v, ...$
- \blacksquare convergence rate $|\lambda_2/\lambda_1|$
- \blacksquare \mathcal{S} , $A\mathcal{S}$, $A^2\mathcal{S}$, $A^3\mathcal{S}$, ...
- subspaces of dimension j $(|\lambda_{j+1}/\lambda_j|)$
- Substitute p(A) for A (shifts, multiple steps)

- $v, Av, A^2v, A^3v, ...$
- \blacksquare convergence rate $|\lambda_2/\lambda_1|$
- \blacksquare \mathcal{S} , $A\mathcal{S}$, $A^2\mathcal{S}$, $A^3\mathcal{S}$, ...
- subspaces of dimension j $(|\lambda_{j+1}/\lambda_j|)$
- Substitute p(A) for A (shifts, multiple steps)
- \blacksquare \mathcal{S} , $p(A)\mathcal{S}$, $p(A)^2\mathcal{S}$, $p(A)^3\mathcal{S}$, ...

- $\blacksquare v, Av, A^2v, A^3v, \dots$
- \blacksquare convergence rate $|\lambda_2/\lambda_1|$
- \blacksquare \mathcal{S} , $A\mathcal{S}$, $A^2\mathcal{S}$, $A^3\mathcal{S}$, ...
- subspaces of dimension j $(|\lambda_{j+1}/\lambda_j|)$
- Substitute p(A) for A (shifts, multiple steps)
- \blacksquare \mathcal{S} , $p(A)\mathcal{S}$, $p(A)^2\mathcal{S}$, $p(A)^3\mathcal{S}$, ...
- convergence rate $|p(\lambda_{j+1})/p(\lambda_j)|$

Subspace Iteration with changes of coordinate system

■ take $S = \operatorname{span}\{e_1, \ldots, e_j\}$

```
take S = \operatorname{span}\{e_1, \dots, e_j\}
p(A)S = \operatorname{span}\{p(A)e_1, \dots, p(A)e_j\}
= \operatorname{span}\{q_1, \dots, q_j\} \text{ (orthonormal)}
```

- take $S = \operatorname{span}\{e_1, \ldots, e_j\}$
 - $p(A)S = \text{span}\{p(A)e_1, \dots, p(A)e_j\}$ = $\text{span}\{q_1, \dots, q_j\}$ (orthonormal)
- build unitary $Q = [q_1 \cdots q_j \cdots]$

- take $S = \operatorname{span}\{e_1, \ldots, e_j\}$
 - $p(A)S = \text{span}\{p(A)e_1, \dots, p(A)e_j\}$ = $\text{span}\{q_1, \dots, q_j\}$ (orthonormal)
- build unitary $Q = [q_1 \cdots q_j \cdots]$
- change coordinate system: $\hat{A} = Q^{-1}AQ$

- take $S = \operatorname{span}\{e_1, \ldots, e_j\}$
 - $p(A)S = \text{span}\{p(A)e_1, \dots, p(A)e_j\}$ = $\text{span}\{q_1, \dots, q_j\}$ (orthonormal)
- build unitary $Q = [q_1 \cdots q_j \cdots]$
- change coordinate system: $\hat{A} = Q^{-1}AQ$

- take $S = \operatorname{span}\{e_1, \ldots, e_j\}$
 - $p(A)S = \operatorname{span}\{p(A)e_1, \dots, p(A)e_j\}$ = $\operatorname{span}\{q_1, \dots, q_j\}$ (orthonormal)
- build unitary $Q = [q_1 \cdots q_j \cdots]$
- change coordinate system: $\hat{A} = Q^{-1}AQ$
- = span $\{q_1,\ldots,q_j\} \rightarrow$ span $\{e_1,\ldots,e_j\}$

- take $S = \operatorname{span}\{e_1, \ldots, e_j\}$
 - $p(A)S = \operatorname{span}\{p(A)e_1, \dots, p(A)e_j\}$ = $\operatorname{span}\{q_1, \dots, q_j\}$ (orthonormal)
- build unitary $Q = [q_1 \cdots q_j \cdots]$
- change coordinate system: $\hat{A} = Q^{-1}AQ$

- ready for next iteration

This version of subspace iteration ...

This version of subspace iteration ...

...holds the subspace fixed

This version of subspace iteration . . .

- ...holds the subspace fixed
- while the matrix changes.

This version of subspace iteration . . .

- ...holds the subspace fixed
- while the matrix changes.
- ... moving toward a matrix under which

$$\operatorname{span}\{e_1,\ldots,e_j\}$$

is invariant.

This version of subspace iteration . . .

- ...holds the subspace fixed
- while the matrix changes.
- ... moving toward a matrix under which

$$\operatorname{span}\{e_1,\ldots,e_j\}$$

is invariant.

$$A \rightarrow \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix} \qquad (A_{11} \text{ is } j \times j.)$$

$$\hat{A} = Q^{-1}AQ$$
 where $q_1 = \alpha p(A)e_1$.

$$\hat{A} = Q^{-1}AQ$$
 where $q_1 = \alpha p(A)e_1$.

power method

$$\hat{A} = Q^{-1}AQ$$
 where $q_1 = \alpha p(A)e_1$.

power method + change of coordinates

$$\hat{A} = Q^{-1}AQ$$
 where $q_1 = \alpha p(A)e_1$.

- power method + change of coordinates
- $q_1 \to Q^{-1}q_1 = e_1$

$$\hat{A} = Q^{-1}AQ$$
 where $q_1 = \alpha p(A)e_1$.

- power method + change of coordinates
- $q_1 \to Q^{-1}q_1 = e_1$
- lacktriangleright case j=1 of subspace iteration with a change of coordinate system

$$\hat{A} = Q^{-1}AQ$$
 where $q_1 = \alpha p(A)e_1$.

- power method + change of coordinates
- $q_1 \to Q^{-1}q_1 = e_1$
- $lue{}$ case j=1 of subspace iteration with a change of coordinate system
- ... but this is just a small part of the story.

Krylov Subspaces ...

■ Def: $\mathcal{K}_j(A,q) = \operatorname{span}\{q, Aq, A^2q, \dots, A^{j-1}q\}$

Def: $\mathcal{K}_j(A, q) = \operatorname{span}\{q, Aq, A^2q, \dots, A^{j-1}q\}$ $j = 1, 2, 3, \dots$ (nested subspaces)

- Def: $\mathcal{K}_j(A, q) = \operatorname{span}\{q, Aq, A^2q, \dots, A^{j-1}q\}$ $j = 1, 2, 3, \dots$ (nested subspaces)
- $\mathcal{K}_i(A,q)$ are "determined by q".

- Def: $\mathcal{K}_j(A, q) = \operatorname{span}\{q, Aq, A^2q, \dots, A^{j-1}q\}$ $j = 1, 2, 3, \dots$ (nested subspaces)
- $\mathcal{K}_j(A,q)$ are "determined by q".
- $p(A)\mathcal{K}_j(A,q) = \mathcal{K}_j(A,p(A)q)$

- Def: $\mathcal{K}_j(A, q) = \operatorname{span}\{q, Aq, A^2q, \dots, A^{j-1}q\}$ $j = 1, 2, 3, \dots$ (nested subspaces)
- $\mathcal{K}_j(A,q)$ are "determined by q".
- $p(A)\mathcal{K}_j(A,q) = \mathcal{K}_j(A,p(A)q)$
- ... because p(A)A = Ap(A)

- Def: $\mathcal{K}_j(A, q) = \operatorname{span}\{q, Aq, A^2q, \dots, A^{j-1}q\}$ $j = 1, 2, 3, \dots$ (nested subspaces)
- $\mathcal{K}_j(A,q)$ are "determined by q".
- $p(A)\mathcal{K}_j(A,q) = \mathcal{K}_j(A,p(A)q)$
- \blacksquare ... because p(A)A = Ap(A)
- Conclusion: Power method induces nested subspace iterations on Krylov subspaces.

power method: $q \to p(A)^k q$

- **power method:** $q \rightarrow p(A)^k q$
- nested subspace iterations:

$$p(A)^{k}\mathcal{K}_{j}(A,q) = \mathcal{K}_{j}(A,p(A)^{k}q) \quad j = 1, 2, 3, \dots$$

- power method: $q \to p(A)^k q$
- nested subspace iterations:

$$p(A)^k \mathcal{K}_j(A,q) = \mathcal{K}_j(A,p(A)^k q) \quad j = 1, 2, 3, \dots$$

convergence rates:

$$|p(\lambda_{i+1})/p(\lambda_i)|, \quad j=1, 2, 3, \ldots, n-1$$

Krylov Subspaces ...

■ ... go hand in hand.

- ... go hand in hand.
- \blacksquare A properly upper Hessenberg \Longrightarrow

$$\mathcal{K}_j(A, e_1) = \operatorname{span}\{e_1, \dots, e_j\}.$$

- ... go hand in hand.
- \blacksquare A properly upper Hessenberg \Longrightarrow

$$\mathcal{K}_j(A, e_1) = \operatorname{span}\{e_1, \dots, e_j\}.$$

■ More generally . . .

Krylov-Hessenberg Relationship

$$If \hat{A} = Q^{-1}AQ,$$

- $If \hat{A} = Q^{-1}AQ,$
- \blacksquare and \hat{A} is properly upper Hessenberg,

- $\blacksquare \text{ If } \hat{A} = Q^{-1}AQ,$
- \blacksquare and \hat{A} is properly upper Hessenberg,
- then for j = 1, 2, 3, ...,

- $\blacksquare \text{ If } \hat{A} = Q^{-1}AQ,$
- \blacksquare and \hat{A} is properly upper Hessenberg,
- then for j = 1, 2, 3, ...,

$$\operatorname{span}\{q_1,\ldots,q_j\}=\mathcal{K}_j(A,q_1).$$

$$\hat{A} = Q^{-1}AQ$$
 where $q_1 = \alpha p(A)e_1$.

$$\hat{A} = Q^{-1}AQ$$
 where $q_1 = \alpha p(A)e_1$.

power method with a change of coordinate system.

$$\hat{A} = Q^{-1}AQ$$
 where $q_1 = \alpha p(A)e_1$.

power method with a change of coordinate system.
Moreover . . .

$$\hat{A} = Q^{-1}AQ$$
 where $q_1 = \alpha p(A)e_1$.

- power method with a change of coordinate system. Moreover . . .
- $p(A)\mathcal{K}_j(A,e_1) = \mathcal{K}_j(A,p(A)e_1)$

$$\hat{A} = Q^{-1}AQ$$
 where $q_1 = \alpha p(A)e_1$.

- power method with a change of coordinate system. Moreover . . .
- $p(A)\mathcal{K}_j(A, e_1) = \mathcal{K}_j(A, p(A)e_1)$
- i.e. p(A)span $\{e_1, \dots, e_j\} =$ span $\{q_1, \dots, q_j\}$

$$\hat{A} = Q^{-1}AQ$$
 where $q_1 = \alpha p(A)e_1$.

- power method with a change of coordinate system. Moreover...
- $p(A)\mathcal{K}_j(A, e_1) = \mathcal{K}_j(A, p(A)e_1)$
- i.e. p(A)span $\{e_1, \dots, e_j\} =$ span $\{q_1, \dots, q_j\}$
- subspace iteration with a change of coordinate system

$$\hat{A} = Q^{-1}AQ$$
 where $q_1 = \alpha p(A)e_1$.

- power method with a change of coordinate system. Moreover . . .
- $p(A)\mathcal{K}_j(A, e_1) = \mathcal{K}_j(A, p(A)e_1)$
- i.e. p(A)span $\{e_1, \dots, e_j\} =$ span $\{q_1, \dots, q_j\}$
- subspace iteration with a change of coordinate system for j = 1, 2, 3, ..., n 1

$$\hat{A} = Q^{-1}AQ$$
 where $q_1 = \alpha p(A)e_1$.

- power method with a change of coordinate system. Moreover...
- $p(A)\mathcal{K}_j(A, e_1) = \mathcal{K}_j(A, p(A)e_1)$
- i.e. p(A)span $\{e_1, \dots, e_j\} =$ span $\{q_1, \dots, q_j\}$
- subspace iteration with a change of coordinate system for j = 1, 2, 3, ..., n 1
- $p(\lambda_{j+1})/p(\lambda_j)$ j = 1, 2, 3, ..., n-1

choice of shifts

- choice of shifts
- We change the shifts at each step.

- choice of shifts
- We change the shifts at each step.
- quadratic or cubic convergence

- choice of shifts
- We change the shifts at each step.
- quadratic or cubic convergence
- Watkins (2007, 2010)

- choice of shifts
- We change the shifts at each step.
- \blacksquare \Rightarrow quadratic or cubic convergence
- Watkins (2007, 2010)

question asked frequently by Gene Golub

- question asked frequently by Gene Golub
- inquiries by Golub and Uhlig

- question asked frequently by Gene Golub
- inquiries by Golub and Uhlig
- Francis is alive and well, retired in the South of England.

- question asked frequently by Gene Golub
- inquiries by Golub and Uhlig
- Francis is alive and well, retired in the South of England.
- was unaware of the impact of his algorithm

- question asked frequently by Gene Golub
- inquiries by Golub and Uhlig
- Francis is alive and well, retired in the South of England.
- was unaware of the impact of his algorithm
- appearance at the Biennial Numerical Analysis Conference in Glasgow in June of 2009

John Francis speaking in Glasgow

A Portion of the Audience

Afterwards

Photos courtesy of Frank Uhlig