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High Level Message

 Everything is changing
 Old conventional wisdom is out
 We DESPERATELY need a new approach to

HW and SW systems based on parallelism
 Need to create a “watering hole” to bring

everyone together to quickly find that
solution
 architects, language designers, application experts, numerical

analysts, algorithm designers, programmers, …
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Outline
 Part I: A New Agenda for

Parallel HW/SW Systems
 Old Conventional Wisdom vs. New Conventional Wisdom
 7 Questions to Frame Parallel Research
 New Benchmarks for New Architectures
 Hardware Building Blocks
 Innovating at HW/SW interface without Compilers
 Seemingly Obvious but Neglected Points
 Reasons for Optimism towards Parallel Computing Revolution

 Part II: A “Watering Hole” for
Parallel HW/SW Systems
 Research Accelerator for Multiple Processors
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Conventional Wisdom (CW)
in Computer Architecture

1. Old CW: Power is free, but transistors expensive
 New CW is the “Power wall”:

Power is expensive, but transistors are “free”
 Can put more transistors on a chip than have the power to turn on

2. Old CW: Only concern is dynamic power
 New CW: For desktops and servers, static power

due to leakage is 40% of total power
3. Old CW: Monolithic uniprocessors are reliable

internally, with errors occurring only at pins
 New CW: As chips drop below 65 nm feature

sizes, they will have high soft and hard error rates
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Conventional Wisdom (CW)
in Computer Architecture

4. Old CW: By building upon prior successes, continue
raising level of abstraction and size of HW designs

 New CW: Wire delay, noise, cross coupling,
reliability, clock jitter, design validation, … stretch
development time and cost of large designs at ≤65
nm

5. Old CW: Researchers demonstrate new
architectures by building chips

 New CW: Cost of 65 nm masks, cost of ECAD,
and design time for GHz clocks
⇒ Researchers no longer build believable chips

6.  Old CW: Performance improves latency & bandwidth
  New CW: BW improves > (latency improvement)2
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Conventional Wisdom (CW)
in Computer Architecture

7. Old CW: Multiplies slow, but loads and stores fast
 New CW is the “Memory wall”:

Loads and stores are slow, but multiplies fast
 200 clocks to DRAM, but even FP multiplies only 4 clocks

8. Old CW: We can reveal more ILP via compilers
and architecture innovation

 Branch prediction, OOO execution, speculation, VLIW, …

 New CW is the “ILP wall”:
Diminishing returns on finding more ILP

9. Old CW: 2X CPU Performance every 18 months
 New CW is Power Wall + Memory Wall + ILP Wall

= Brick Wall
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Uniprocessor Performance (SPECint)

• VAX         : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson, Computer Architecture: A
Quantitative Approach, 4th edition, Sept. 15, 2006

⇒ Sea change in chip
design: multiple “cores” or
processors per chip

3X
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Sea Change in Chip Design
 Intel 4004 (1971): 4-bit processor,

2312 transistors, 0.4 MHz,
10 micron PMOS, 11 mm2 chip

• Processor is the new transistor!

 RISC II (1983): 32-bit, 5 stage
pipeline, 40,760 transistors, 3 MHz,
3 micron NMOS, 60 mm2 chip

 125 mm2 chip, 0.065 micron CMOS
= 2312 RISC II+FPU+Icache+Dcache
 RISC II shrinks to ≈ 0.02 mm2 at 65 nm

 Caches via DRAM or 1 transistor SRAM (www.t-ram.com)
or 3D chip stacking

 Proximity Communication via capacitive coupling at > 1 TB/s ?
(Ivan Sutherland @ Sun / Berkeley)
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Conventional Wisdom (CW)
in Computer Architecture

10. Old CW: Increasing clock frequency is primary
method of performance improvement

 New CW: Processors Parallelism is primary method
of performance improvement

11. Old CW: Don’t bother parallelizing app, just wait
and run on much faster sequential computer

 New CW: Very long wait for faster sequential CPU
 2X uniprocessor performance takes 5 years?
 End of La-Z-Boy Programming Era

12. Old CW: Less than linear scaling for a
multiprocessor is failure

 New CW: Given the switch to parallel hardware,
even sublinear speedups are beneficial
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Need a New Approach
 Berkeley researchers from many backgrounds met

between February 2005 and October 2006 to
discuss parallelism
 Circuit design, computer architecture, massively parallel computing,

computer-aided design, embedded hardware and software,
programming languages, compilers, scientific programming, and
numerical analysis

 Krste Asanovíc, Rastislav Bodik, Bryan Catanzaro,
Joseph Gebis, Parry Husbands, Kurt Keutzer,
William Plishker, John Shalf, Samuel Williams, and
Katherine Yelick + others

 Tried to learn from successes in embedded and
high performance computing

 Led to 7 Questions to frame parallel research
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7 Questions for Parallelism
 Applications:
1. What are the apps?
2. What are kernels of apps?
 Hardware:
3. What are the HW building

blocks?
4. How to connect them?
 Programming Models:
5. How to describe apps and

kernels?
6. How to program the HW?
 Evaluation:
7. How to measure success?

(Inspired by a view of the
Golden Gate Bridge from Berkeley)

12

 Old CW: Since cannot know future programs,
use old programs to evaluate computers for
future, e.g., SPEC2006

 What about parallel codes?
 Few, tied to old models, languages, architectures, …

 New approach: Design computers of future
for patterns of computation and
communication that will be important in the
future

 Claim: 14 “dwarfs” are key for next decade,
so design for them!
 Representative codes may vary over time, but these

dwarfs will be important for > 10 years

Apps and Kernels
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High-end simulation in the physical
sciences = 7 numerical methods:

1. Structured Grids (including
locally structured grids, e.g.
Adaptive Mesh Refinement)

2. Unstructured Grids
3. Fast Fourier Transform
4. Dense Linear Algebra
5. Sparse Linear Algebra
6. Particles
7. Monte Carlo

Phillip Colella’s “Seven dwarfs”

 A dwarf is a pattern of
computation and
communication

 Dwarfs are well-
defined targets from
algorithmic, software,
and architecture
standpoints

Slide from “Defining Software Requirements for Scientific Computing”, Phillip Colella, 2004

14

Do dwarfs work well outside HPC?

 Examined 7 dwarf effectiveness other fields
1. Embedded Computing (EEMBC benchmark)
2. Desktop/Server Computing (SPEC2006)
3. Machine Learning

 Advice from colleagues Mike Jordan and Dan Klein

4. Games/Graphics/Vision
5. Data Base Software

 Advice from Jim Gray of Microsoft and colleague Joe Hellerstein

 Result: Added 7 more dwarfs, revised 2
original dwarfs, renumbered list
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Final 14 Dwarfs
1. Dense Linear Algebra
2. Sparse Linear Algebra
3. Spectral Methods
4. N-Body Methods
5. Structured Grids
6. Unstructured Grids
7. MapReduce

  8. Combinational Logic
  9. Find Nearest Neighbors
10. Graph Traversal
11. Dynamic Programming
12. Back-track/Branch & Bound
13. Graphical Model Inference
14. Finite State Machine

• Claim is that parallel architecture, language, compiler 
… that do these well will run parallel apps of future well
• Note: MapReduce is embarrassingly  parallel;

perhaps FSM is embarrassingly sequential? 
16

Dwarf Popularity (Red Hot → White Cool)
HPC Embed SPEC ML Games DB

1 Dense Matrix

2 Sparse Matrix

3 Spectral (FFT)

4 N-Body

5 Structured Grid

6 Unstructured

7 MapReduce

8 Combinational

9 Nearest Neighbor

10 Graph Traversal

11 Dynamic Prog

12 Backtrack/ B&B

13 Graphical Models

14 FSM
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Hardware Building Blocks:
Small is Beautiful

 Given difficulty of design/validation of large
designs

 Given power limits what can build, parallel is energy
efficient way to achieve performance
 Lower threshold voltage means much lower power

 Given redundant processors can improve chip yield
 Cisco Metro 188 processors + 4 spares
 Sun Niagara sells 6 or 8 processor version

 Expect modestly pipelined (5- to 9-stage)
CPUs, FPUs, vector, SIMD PEs

 One size fits all?
 Amdahl’s Law ⇒ a few fast cores + many small cores

18

Number of Cores/Socket
 We need revolution, not evolution
 “Multicore” industry starts too small, double

number of cores per generation: 2, 4, 8, 16,
 “Manycore” 100s to 1000s is highest

performance per unit area, then double per
generation: 128, 256, 512, 1024 …

 Multicore architectures & programming
models suitable for 2 to 32 cores not likely
to successfully evolve to Manycore systems
of 1000’s of processors
⇒ Desperately need HW/SW models that
work for Manycore
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Dwarf Communication Patterns

 Dense Matrix  Sparse Matrix

20

Dwarf Communication Patterns

 Spectral (e.g., FFT)  N-Body Methods
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Dwarf Communication Patterns

 Structured Grid  MapReduce
Map Reduce Point-to-Point Communication
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How to Connect Processors?
 Use 14 Dwarfs to gain insight into Networks

On a Chip
 Sparse connectivity for dwarfs; crossbar is overkill
 No single best topology

 A Bandwidth-oriented network for data
 Most point-to-point message are large and BW bound

 A separate Latency-oriented network
dedicated to collectives
 Given BW improves > (latency improvement)2

 E.g., Thinking Machines CM-5, Cray T3D,
IBM BlueGene/L, IBM BlueGene/P

23

7 Questions for Parallelism
 Applications:
1. What are the apps?
2. What are kernels of apps?
 Hardware:
3. What are the HW building

blocks?
4. How to connect them?
 Programming Models:
5. How to describe apps and

kernels?
6. How to program the HW?
 Evaluation:
7. How to measure success? (Inspired by a view of the

Golden Gate Bridge from Berkeley)

24

Programming Model Considerations

 Must tradeoff Opacity vs. Visibility for
productivity vs. implementation efficiency
 Abstract underlying architecture vs. making key

architecture elements of visible to programmer

 Programming model (Explicit or implicit)
1. Identification of computational tasks
2. Mapping computational tasks to processing elements
3. Distribution of data to memory elements
4. Mapping communication to inter-connection network
5. Inter-task synchronization
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Parallel Programming models:
Explicit vs. Implicit

ImpImpImp**ImpImpHPCHPF
Imp**ImpImpImpImp**HPCOpenMP

ExpImpImpImpExpData setsMap
Reduce

ExpImpImpExpExpGeneralPthreads
ImpImpExpExpExpHPCMPI
ImpExpExpExpExpDSPYAPI
ExpExpExpExpExpNetworkTejaNP

SynchComm
Map

Data
Distr

Task
Map

Task
ID

DomainModel

*With Directives*With Directives 26

21st Century Code Generation

 Takes a decade for compiler innovations to
show up in production compilers?

 New approach: “Auto-tuners” 1st run variations
of program on computer to find best
combinations of optimizations (blocking,
padding, …) and algorithms, then produce C
code to be compiled for that computer
 E.g., PHiPAC (BLAS), Atlas (BLAS),

Sparsity (Sparse linear algebra), Spiral (DSP), FFT-W
 Can achieve 10X over conventional compiler

 One Auto-tuner per kernel or dwarf?
 Exist for Dense Linear Algebra, Sparse Linear Algebra, Spectral

27

Reference

Best: 4x2

Mflop/s

Mflop/s

Sparse Matrix – Search for Blocking
For finite element problem (BCSR) [Im, Yelick, Vuduc, 2005]
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Best Sparse Blocking for 8 Computers

 All possible column block sizes selected for 8
computers; How could compiler know?

IBM
Power 3

Intel/HP
Itanium 2

IBM Power 4,
Intel/HP
Itanium

Sun Ultra 2,
Sun Ultra 3,

AMD Opteron

Intel
Pentium
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Deconstructing Operating Systems

 Resurgence of interest in virtual machines
 Traditional OSes too large and brittle
 VM monitor thin SW layer btw guest OS and HW

 Advantages
 Security via isolation
 VMs move from failing processor

 Mendel Rosenblum: future of OSes could be
libraries where only functions needed are
linked into app, on top of thin VMM layer
providing protection and sharing of resources
 Everywhere, but great match to 1000s of processors

30

How to measure success?
 Easy to write programs that execute

efficiently on manycore computing systems
1. Maximizing programmer productivity
2. Maximizing application performance and

energy efficiency
 Challenges

 Conventional serial performance issues
 Minimizing Remote Accesses
 Balancing Load
 Granularity of Data Movement and

Synchronization
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Outline
 Part I: A New Agenda for

Parallel HW/SW Systems
 Old Conventional Wisdom  vs. New Conventional Wisdom
 7 Questions to Frame Parallel Research
 New Benchmarks for New Architectures
 Hardware Building Blocks
 Innovating at HW/SW interface without Compilers
 Seemingly Obvious but Neglected Points
 Reasons for Optimism towards Parallel Computing Revolution

 Part II: A “Watering Hole” for
Parallel HW/SW Systems
 Research Accelerator for Multiple Processors
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Operand Size and Type
Programmer should be able to specify data

size, type independent of algorithm
 1 bit (Boolean*)
 8 bits (Integer, ASCII)
 16 bits (Integer, DSP fixed pt, Unicode*)
 32 bits (Integer, SP Fl. Pt., Unicode*)
 64 bits (Integer, DP Fl. Pt.)
 128 bits (Integer*, Quad Precision Fl. Pt.*)
 1024 bits (Crypto*)
* Not supported well in most programming

languages and optimizing compilers
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Support Successful Styles of Parallelism

 Old CW: PLs, compilers, and architectures
placed bets on one style of parallel
programming, forcing programmers to
express all parallelism in that style

 In addition to trying novel proposals
(e.g., Transactional Memory, Data Flow,
…), be to support those proven to work!

1. Independent task parallelism e.g., Cluster
2. Word-level parallelism e.g., Vector
3. Bit-Level parallelism e.g., “MMX SIMD”
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Fast programs oblivious to # CPUs

 MPI forces awareness of exact mapping of
computational tasks to processors

 SPMD know N processors and which processor is which

 So far, languages oblivious to number of
processors have unclear performance
benefits
 E.g., Fortress? Chapel? X10?
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Accurate Performance-Power Counters

 If don’t care about performance, why parallel?
 HW must have accurate, well-defined,

standard, programmer-accessible counters of
all the events that affect parallel performance
 Traditionally lowest on HW designer totem pole
 Can’t measure ⇒ underutilize parallel processors

 Power/Energy is limit, so measure it
 Need energy usage, (peak) power, and (peak)

temperature since last reading
 Per major unit: processor, I/O, …
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Reasons for Optimism towards
Parallel Revolution this time

 No looming fast sequential juggernaut to kill it
 End of La-Z-Boy Programming Era

 Whole Industry fully committed to parallelism
 Moore’s Law continues, so soon can put 1000s of

simple cores on an economical chip
 Communication between cores within a chip at

very low latency and very high bandwidth
 Processor-to-Processor fast even

if Processor-to-Memory slow

 Open Source Software movement means that SW
stack can evolve much more quickly than in the
past
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 14 Dwarfs as stand-ins for future parallel apps
 Patterns of computation & communication that remain important

 Simple processors! Manycore beats Multicore
 Most efficient MIPS/watt, MIPS/area, MIPS/development $
 Multicore (2-32) solutions may not evolve to Manycore (500-1000)

 To maximize programmer productivity
 Autotuners play a larger role than compilers
 Programming models oblivious to number of CPUs
 Accurate performance and power counters

 To maximize application efficiency
 Programming models use a rich set of data types and sizes
 Support proven parallel models of parallelism: Task, Word, Bit

 See view.eecs.berkeley.edu (wiki, blog, …)

Conclusions [1 / 2]
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Outline
 Part I: A New Agenda for

Parallel HW/SW Systems
 Part II: A “Watering Hole” for

Parallel HW/SW Systems
 RAMP: Research Accelerator for Multiple Processors
 Vision
 RAMP Approach and Hardware
 Status and Development Plan
 RAMP Description Language
 Related Approaches
 Potential to Accelerate MP &  NonMP Research

 Conclusion
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1. Algorithms, Programming Languages, Compilers,
Operating Systems, Architectures, Libraries, …
not ready for 1000 CPUs / chip

2. ≈ Only companies can build HW, and it takes years
3. Software people don’t start working hard until

hardware arrives
• 3 months after HW arrives, SW people list everything that must be

fixed, then we all wait 4 years for next iteration of HW/SW

4. How get 1000 CPU systems in hands of researchers
to innovate in timely fashion on in algorithms,
compilers, languages, OS, architectures, … ?

5. Can avoid waiting years between HW/SW iterations?

Problems with “Manycore” Sea Change

40

Build Academic Manycore from
FPGAs

 As ≈ 20 CPUs will fit in Field Programmable Gate
Array (FPGA), 1000-CPU system from ≈ 50 FPGAs?
• 8 32-bit simple “soft core” RISC at 100MHz in 2004 (Virtex-II)
• FPGA generations every 1.5 yrs; ≈ 2X CPUs, ≈ 1.2X clock rate

 HW research community does logic design (“gate
shareware”) to create out-of-the-box, Manycore
 E.g., 1000 processor, standard ISA binary-compatible, 64-bit,

cache-coherent supercomputer @ ≈ 150 MHz/CPU in 2007

 RAMPants: Arvind  (MIT), Krste Asanovíc, Derek Chiou  (Texas),
James Hoe (CMU), Christos Kozyrakis  (Stanford), Shih-Lien Lu
(Intel), Mark Oskin  (Washington), David Patterson (Berkeley, Co-PI),
Jan Rabaey  (Berkeley), and John Wawrzynek (Berkeley, PI)

 “Research Accelerator for Multiple Processors”



11

41

Characteristics of  Ideal Academic
CS Research Parallel Processor?

 Scales – Hard problems at 1000 CPUs
 Cheap to buy – Limited academic research $
 Cheap to operate, Small, Low Power –  $ again
 Community – Share SW, training, ideas, …
 Simplifies debugging – High SW churn rate
 Reconfigurable – Test many parameters,

different ISAs, different organizations, …
 Credible – Results translate to real computers
 Performance – Fast enough to run real OS

and full apps, get results overnight
42

Why Good for Research Manycore?

AAACScalability (1k CPUs)

A (1.5 kw,
0.3 racks)

A+ (.1
kw, 0.1
racks)

D (120
kw, 12
racks)

D (120 kw,
12 racks)

Power/Space
(kilowatts, racks)

AAADCommunity

AADACost of ownership

GPA

Perform. (clock)

Credibility
Reconfigurability

Reproducibility

Observability

Cost (1k CPUs)

C

A (2 GHz)

A+
D

B

D

F ($40M)

SMP

B-

A (3 GHz)

A+
C

D

C

C ($2-3M)

Cluster

B

F (0 GHz)

F
A+

A+

A+

A+ ($0M)

Simulate

A-

C (0.1 GHz)

B+/A-
A+

A+

A+

A ($0.1-0.2M)

 RAMP
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Why RAMP More Credible?
 Starting point for processor is debugged

design from Industry in HDL
 Fast enough that can run more software,

more experiments than simulators
 Design flow, CAD similar to real hardware

 Logic synthesis, place and route, timing analysis

 HDL units implement operation vs.
a high-level description of function
 Model queuing delays at buffers by building real buffers

 Must work well enough to run OS
 Can’t go backwards in time, which simulators can unintentionally

 Can measure anything as sanity checks
44

Can RAMP keep up?
 FGPA generations: 2X CPUs / 18 months

 2X CPUs / 24 months for desktop microprocessors

 1.1X to 1.3X performance / 18 months
 1.2X? / year per CPU on desktop?

 However, goal for RAMP is accurate system
emulation, not to be the real system
 Goal is accurate target performance, parameterized

reconfiguration, extensive monitoring, reproducibility,
cheap (like a simulator) while being credible and fast
enough to emulate 1000s of OS and apps in parallel
(like a hardware prototype)

 OK if ≈30X slower than real 1000 processor
hardware, provided >1000X faster than simulator of
1000 CPUs
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Example: Vary memory latency, BW

 Target system: TPC-C, Oracle, Linux on
1024 CPUs @ 2 GHz, 64 KB L1 I$ & D$/CPU,
16 CPUs share 0.5 MB L2$, shared 128 MB L3$
 Latency: L1 1 - 2 cycles, L2 8 - 12 cycles, L3 20 - 30 cycles,

DRAM 200 – 400 cycles
 Bandwidth: L1 8 - 16 GB/s, L2 16 - 32 GB/s, L3 32 – 64 GB/s,

DRAM 16 – 24 GB/s per port, 16 – 32 DDR3 128b memory ports

 Host system: TPC-C, Oracle, Linux on
1024 CPUs @ 0.1 GHz, 32 KB L1 I$, 16 KB D$
 Latency: L1 1 cycle, DRAM 2 cycles
 Bandwidth: L1 0.1 GB/s, DRAM 3 GB/s per port, 128 64b DDR2

ports
 Use cache models and DRAM to emulate L1$, L2$, L3$ behavior

46

Accurate Clock Cycle Accounting
 Key to RAMP success is cycle-accurate

emulation of parameterized target design
 As vary number of CPUs, CPU clock rate, cache size and

organization, memory latency & BW, interconnect latency &
BW, disk latency & BW, Network Interface Card latency & BW,
…

 Least common divisor time unit to drive emulation?

1. For research results to be credible
2. To run standard, shrink-wrapped OS, DB,…

 Otherwise fake interrupt times since devices relatively too fast

⇒ Good target clock cycle accounting is
high priority for RAMP project

47

Why 1000 Processors?

 Eventually can build 1000 processors per chip
 Experience of high performance community

on stress of level of parallelism on
architectures and algorithms
     32-way: anything goes
   100-way: good architecture and bad algorithms

          or bad architecture and good algorithms
 1000-way: good architecture and good algorithms

 Must solve hard problems to scale to 1000
 Future is promising if can scale to 1000

48

 Completed Dec. 2004 (14x17 inch 22-layer PCB)
Board:
5 Virtex II FPGAs, 18

banks DDR2-400
memory,
20 10GigE conn.

RAMP 1 Hardware

BEE2: Berkeley Emulation Engine 2
By John Wawrzynek and Bob Brodersen with
students Chen Chang and Pierre Droz

1.5W / computer,
5 cu. in. /computer,
$100 / computer

1000 CPUs : 
≈1.5 KW, 

 ≈  ¼ rack, 
≈ $100,000  

Box:
10 compute modules in

8U rack mount chassis
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RAMP Storage

 RAMP can emulate disks as well as CPUs
 Inspired by Xen, VMware Virtual Disk models
 Have parameters to act like real disks
 Can emulate performance, but need storage capacity

 Low cost Network Attached Storage to hold
emulated disk content
 Use file system on NAS box
 E.g., Sun Fire X4500 Server (“Thumper”)

48 SATA disk drives,
24TB of storage @ <$2k/TB

4 Rack Units High

50

the stone soup of
architecture research

platforms

I/OI/O

PattersonPatterson

MonitoringMonitoring
KozyrakisKozyrakis

Net SwitchNet Switch
OskinOskin

CoherenceCoherence
HoeHoe

CacheCache
AsanovicAsanovic

PPCPPC
ArvindArvind

x86x86
LuLu

Glue-supportGlue-support
ChiouChiou

HardwareHardware
WawrzynekWawrzynek
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Quick Sanity Check
 BEE2 4 banks DDR2-400 per FPGA
 Memory BW/FPGA = 4 * 400 * 8B = 12,800 MB/s
 16 32-bit Microblazes per Virtex II FPGA (last

generation)
 Assume 150 MHz, CPI is 1.5 (4-stage pipeline), 33% Load/Stores
 BW need/CPU =  150/1.5 * (1+ 0.33) * 4B ≈ 530 MB/sec

 BW need/FPGA ≈ 16 * 530 ≈ 8500 MB/s
 2/3 Peak Memory BW / FPGA

 Suppose add caches (.75MB ⇒ 32KI$, 16D$/CPU)
 SPECint2000 I$ Miss 0.5%, D$ Miss 2.8%, 33% Load/stores, 64B blocks*
 BW/CPU = 150/1.5*(0.5% + 33%*2.8%)*64 ≈ 100 MB/s

 BW/FPGA with caches ≈ 16 * 100 MB/s ≈ 1600 MB/s
 1/8 Peak Memory BW/FPGA; plenty BW available for tracing, …

 Example of optimization to improve emulation
* Cantin and Hill, “Cache Performance for SPEC CPU2000 Benchmarks” 
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RAMP Philosophy
 Build vanilla out-of-the-box examples to

attract software community
 Multiple industrial ISAs, real industrial operating systems, 1000

processors, accurate clock cycle accounting, reproducible,
traceable, parameterizable, cheap to buy and operate, …

 But RAMPants have grander plans (will share)
 Data flow computer (“Wavescalar”) – Oskin @ U. Washington
 1,000,000-way MP (“Transactors”) – Asanovic @ MIT
 Distributed Data Centers (“RAD Lab”) – Patterson @ Berkeley
 Transactional Memory (“TCC”) – Kozyrakis @ Stanford
 Reliable Multiprocessors (“PROTOFLEX”) – Hoe @ CMU
 X86 emulation (“UT FAST”) – Chiou @ Texas
 Signal Processing in FPGAs (“BEE2”)  – Wawrzynek @ Berkeley
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RAMP multiple ISAs status:

 Got it: IBM Power 405 (32b),
Sun SPARC v8 (32b), Xilinx Microblaze (32b)

 Sun announced 3/21/06 donating T1
(“Niagara”) 64b SPARC (v9) to RAMP

 Likely: IBM Power 64b
 Likely: Tensilica
 Probably? (had a good meeting): ARM
 Probably? (haven’t asked): MIPS32, MIPS64
 No: x86, x86-64 (said no)

 But Derek Chiou of UT looking at x86 binary translation

54
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3 Examples of RAMP to Inspire Others

1. Transactional Memory RAMP
 Based on Stanford TCC
 Led by Kozyrakis at Stanford

2. Message Passing RAMP
 First NAS benchmarks (MPI), then Internet Services (LAMP)
 Led by Patterson and Wawrzynek at Berkeley

3. Cache Coherent RAMP
 Shared memory/Cache coherent (ring-based)
 Led by Chiou of Texas and Hoe of CMU

 Exercise common RAMP infrastructure
 RDL, same processor, same OS, same benchmarks, …

56

Transactional Memory status (8/06)
 8 CPUs with 32KB L1 data-cache with Transactional

Memory support
 CPUs are hardcoded PowerPC405, Emulated FPU
 UMA access to shared memory (no L2 yet)
 Caches and memory operate at 100MHz
 Links between FPGAs run at 200MHz
 CPUs operate at 300MHz

 A separate, 9th, processor runs OS (PowerPC Linux)
 It works: runs SPLASH-2 benchmarks, AI apps,

C-version of SpecJBB2000 (3-tier-like benchmark)
 Transactional Memory RAMP runs 100x faster

than simulator on a Apple 2GHz G5 (PowerPC)
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RAMP Blue Prototype (11/06)
 8 MicroBlaze cores / FPGA

+ FPU
 8 BEE2 modules (32 “user”

FPGAs) x 4 FPGAs/module
= 256 cores @ 100MHz

 Full star-connection between
modules

 11/1/06 Run 1 NAS benchmark
in UPC on 32 nodes (1 board)

 CPUs are softcore MicroBlazes
(32-bit Xilinx RISC architecture)

 Also 32-bit SPARC (LEON3)
running full Linux OS, large SW
stack

58

RAMP Milestones
 September 2006 : Picked 32-bit SPARC (Leon) 1st ISA

 Verification suite, Running full Linux, Size of design (LUTs / BRAMs)
 Executes comm. app binaries, Configurability, Friendly licensing

 January 2007 milestones for all 3 RAMP examples
 Run on Xilinx Virtex 2 XUP board
 Run on 8 RAMP 1 (BEE2) boards
 64 to 128 processors

 June 2007 milestones for all 3 RAMPs
 Accurate clock cycle accounting, I/O model
 Run on 16 RAMP 1 (BEE2) boards and Virtex 5 XUP boards
 128 to 256 processors

 2H07: RAMP 2.0 boards on Virtex 5
 3rd party sells board, download software and gateware from website on

RAMP 2.0 or Xilinx V5 XUP boards

59

RAMP Project Status
 NSF infrastructure grant awarded 3/06

 2 staff positions (NSF sponsored), no grad students

 IBM Faculty Awards to RAMPants 6/06
 Krste Asanovic (MIT), Derek Chiou (Texas), James Hoe (CMU),

Christos Kozyrakis (Stanford), John Wawrzynek (Berkeley)

 3-day retreats with industry visitors
 “Berkeley-style” retreats 1/06 (Berkeley), 6/06

(ISCA/Boston), 1/07 (Berkeley), 6/07 (ISCA/San Diego)

 RAMP 1/RDL short course
 40 people from 6 schools 1/06

60

       RAMP Description Language (RDL)
 RDL describes plumbing

connecting units together ≈
“HW Scripting Language/Linker”

 Design composed of units
that send messages over
channels via ports

 Units (10,000 + gates)
 CPU + L1 cache, DRAM controller…

 Channels (≈ FIFO)
 Lossless, point-to-point,

unidirectional, in-order delivery…

 Generates HDL to connect units

Channel Receiving UnitSending Unit

Port

Port

Sending Unit

Channel

Port “DataOut”

DataOut

__DataOut_READY

__DataOut_WRITE

Receiving Unit

Port “DataIn”

DataIn

__DataIn_READ

__DataIn_READY
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RDL at technological sweet spot
 Matches current chip design style

 Locally synchronous, globally asynchronous

 To plug unit (in any HDL) into RAMP infrastructure,
just add RDL “wrapper”

 Units can also be in C or Java or System C or …
⇒ Allows debugging design at high level

 Compiles target interconnect onto RAMP paths
 Handles housekeeping of data width, number of transfers

 FIFO communication model
⇒ Computer can have deterministic behavior
 Interrupts, memory accesses, … exactly same clock cycle each run

⇒ Easier to debug parallel software on RAMP

RDL Developed by Krste Asanovíc and Greg Giebling
62

Related Approaches

 Quickturn, Axis, IKOS, Thara:
 FPGA- or special-processor based gate-level hardware emulators
 HDL mapped to array for cycle and bit-accurate netlist emulation
 No DRAM memory since modeling CPU, not system
 Doesn’t worry about speed of logic synthesis: 1 MHz clock
 Uses small FPGAs since takes many chips/CPU, and pin-limited
 Expensive: $5M

 RAMP’s emphasis is on emulating high-level
system behaviors
 More DRAMs than FPGAs: BEE2 has 5 FPGAs, 96 DRAM chips
 Clock rate affects emulation time: >100 MHz clock
 Uses biggest FGPAs, since many CPUs/chip
 Affordable: $0.1 M

63

RAMP’s Potential Beyond Manycore
 Attractive Experimental Systems Platform:

Standard ISA + standard OS + modifiable
+ fast enough + trace/measure anything
 Generate long traces of full stack: App, VM, OS, …
 Test hardware security enhancements in the wild
 Inserting faults to test availability schemes
 Test design of switches and routers
 SW Libraries for 128-bit floating point
 App-specific instruction extensions (≈Tensilica)

 Alternative Data Center designs
 Akamai vs. Google: N centers of M computers

64

Potential to Accelerate Manycore
 With RAMP: Fast, wide-ranging exploration of

HW/SW options + head-to-head competitions to
determine winners and losers
 Common artifact for HW and SW researchers ⇒

innovate across HW/SW boundaries
 Minutes vs. years between “HW generations”
 Cheap, small, low power ⇒ Every dept owns one
 FTP supercomputer overnight, check claims locally
 Emulate any Manycore ⇒ aid to teaching parallelism
 If HP, IBM, Intel, M/S, Sun, …had RAMP boxes
⇒ Easier to carefully evaluate research claims
⇒ Help technology transfer

 Without RAMP: One Best Shot + Field of Dreams?
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Multiprocessing Watering Hole

 Killer app: ≈ All CS Research, Advanced Development

 RAMP attracts many communities to shared artifact
⇒ Cross-disciplinary interactions
⇒ Ramp up innovation in multiprocessing

 RAMP as next Standard Research/AD Platform?
(e.g., VAX/BSD Unix in 1980s)

Parallel file system

Flight Data Recorder Transactional Memory
Fault insertion to check dependability

Data center in a box

Internet in a box

Dataflow language/computer

Security enhancements
Router design Compile to FPGA

Parallel languages

RAMPRAMP

128-bit Floating Point Libraries
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RAMP Supporters:
 Gordon Bell  (Microsoft)
 Ivo Bolsens  (Xilinx CTO)
 Jan Gray (Microsoft)
 Norm Jouppi  (HP Labs)
 Bill Kramer  (NERSC/LBL)
 Konrad Lai (Intel)
 Craig Mundie  (MS CTO)
 Jaime Moreno (IBM)
 G. Papadopoulos  (Sun CTO)
 Jim Peek (Sun)
 Justin Rattner  (Intel CTO)

 Michael Rosenfield (IBM)
 Tanaz Sowdagar (IBM)
 Ivan Sutherland  (Sun Fellow)
 Chuck Thacker  (Microsoft)
 Kees Vissers  (Xilinx)
 Jeff Welser (IBM)
 David Yen (Sun EVP)
 Doug Burger  (Texas)
 Bill Dally  (Stanford)
 Susan Eggers  (Washington)
 Kathy Yelick  (Berkeley)

RAMP Participants: Arvind  (MIT), Krste Asanovíc (MIT),
Derek Chiou (Texas), James Hoe  (CMU), Christos Kozyrakis  (Stanford),
Shih-Lien Lu  (Intel), Mark Oskin  (Washington), David Patterson (Berkeley,
Co-PI), Jan Rabaey  (Berkeley), and John Wawrzynek (Berkeley, PI)
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 Carpe Diem: need RAMP yesterday
 FPGAs ready now, and getting better
 Stand on shoulders vs. toes: standardize on BEE2
 Architects aid colleagues via gateware

 RAMP accelerates HW/SW generations
 System emulation + good accounting vs. FPGA computer
 Emulate, Trace, Reproduce anything; Tape out every day
 RAMP + Auto-tuner ⇒ search HW and algorithm space

 “Multiprocessor Research Watering Hole”
ramp up research in multiprocessing via common
research platform ⇒ innovate across fields ⇒
hasten sea change from sequential to parallel
computing

 See ramp.eecs.berkeley.edu

Conclusions [2 / 2]
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69

Backup Slides for Q&A

70

 SPECfp
 8 Structured grid

 3 using Adaptive Mesh Refinement

 2 Sparse linear algebra
 2 Particle methods
 5 TBD: Ray tracer, Speech Recognition, Quantum

Chemistry, Lattice Quantum Chromodynamics
(many kernels inside each benchmark?)

 SPECint
 8 Finite State Machine
 2 Sorting/Searching
 2 Dense linear algebra (data type differs from dwarf)
 1 TBD: 1 C compiler (many kernels?)

6/11 Dwarves Covers 24/30 SPEC 2006

71

Communication Primitives

 No insights, just issues to explore
 On chip latency, BW much better
 Coherency?
 Synchronization using Locks, Messages,

Transactional Memory, Full/Empty bits in
Memory?


