
1

The Berkeley View:
A New Framework & a New

Platform for Parallel Research

David Patterson and a cast of thousands
Pardee Professor of Computer Science, U.C. Berkeley

Director, RAD Lab, U.C. Berkeley
Past President, Association for Computing Machinery

November, 2006

2

High Level Message

 Everything is changing
 Old conventional wisdom is out
 We DESPERATELY need a new approach to

HW and SW systems based on parallelism
 Need to create a “watering hole” to bring

everyone together to quickly find that
solution
 architects, language designers, application experts, numerical

analysts, algorithm designers, programmers, …
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Outline
 Part I: A New Agenda for

Parallel HW/SW Systems
 Old Conventional Wisdom vs. New Conventional Wisdom
 7 Questions to Frame Parallel Research
 New Benchmarks for New Architectures
 Hardware Building Blocks
 Innovating at HW/SW interface without Compilers
 Seemingly Obvious but Neglected Points
 Reasons for Optimism towards Parallel Computing Revolution

 Part II: A “Watering Hole” for
Parallel HW/SW Systems
 Research Accelerator for Multiple Processors
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Conventional Wisdom (CW)
in Computer Architecture

1. Old CW: Power is free, but transistors expensive
 New CW is the “Power wall”:

Power is expensive, but transistors are “free”
 Can put more transistors on a chip than have the power to turn on

2. Old CW: Only concern is dynamic power
 New CW: For desktops and servers, static power

due to leakage is 40% of total power
3. Old CW: Monolithic uniprocessors are reliable

internally, with errors occurring only at pins
 New CW: As chips drop below 65 nm feature

sizes, they will have high soft and hard error rates
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Conventional Wisdom (CW)
in Computer Architecture

4. Old CW: By building upon prior successes, continue
raising level of abstraction and size of HW designs

 New CW: Wire delay, noise, cross coupling,
reliability, clock jitter, design validation, … stretch
development time and cost of large designs at ≤65
nm

5. Old CW: Researchers demonstrate new
architectures by building chips

 New CW: Cost of 65 nm masks, cost of ECAD,
and design time for GHz clocks
⇒ Researchers no longer build believable chips

6.  Old CW: Performance improves latency & bandwidth
  New CW: BW improves > (latency improvement)2
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Conventional Wisdom (CW)
in Computer Architecture

7. Old CW: Multiplies slow, but loads and stores fast
 New CW is the “Memory wall”:

Loads and stores are slow, but multiplies fast
 200 clocks to DRAM, but even FP multiplies only 4 clocks

8. Old CW: We can reveal more ILP via compilers
and architecture innovation

 Branch prediction, OOO execution, speculation, VLIW, …

 New CW is the “ILP wall”:
Diminishing returns on finding more ILP

9. Old CW: 2X CPU Performance every 18 months
 New CW is Power Wall + Memory Wall + ILP Wall

= Brick Wall
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Uniprocessor Performance (SPECint)

• VAX         : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson, Computer Architecture: A
Quantitative Approach, 4th edition, Sept. 15, 2006

⇒ Sea change in chip
design: multiple “cores” or
processors per chip

3X
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Sea Change in Chip Design
 Intel 4004 (1971): 4-bit processor,

2312 transistors, 0.4 MHz,
10 micron PMOS, 11 mm2 chip

• Processor is the new transistor!

 RISC II (1983): 32-bit, 5 stage
pipeline, 40,760 transistors, 3 MHz,
3 micron NMOS, 60 mm2 chip

 125 mm2 chip, 0.065 micron CMOS
= 2312 RISC II+FPU+Icache+Dcache
 RISC II shrinks to ≈ 0.02 mm2 at 65 nm

 Caches via DRAM or 1 transistor SRAM (www.t-ram.com)
or 3D chip stacking

 Proximity Communication via capacitive coupling at > 1 TB/s ?
(Ivan Sutherland @ Sun / Berkeley)
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Conventional Wisdom (CW)
in Computer Architecture

10. Old CW: Increasing clock frequency is primary
method of performance improvement

 New CW: Processors Parallelism is primary method
of performance improvement

11. Old CW: Don’t bother parallelizing app, just wait
and run on much faster sequential computer

 New CW: Very long wait for faster sequential CPU
 2X uniprocessor performance takes 5 years?
 End of La-Z-Boy Programming Era

12. Old CW: Less than linear scaling for a
multiprocessor is failure

 New CW: Given the switch to parallel hardware,
even sublinear speedups are beneficial
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Need a New Approach
 Berkeley researchers from many backgrounds met

between February 2005 and October 2006 to
discuss parallelism
 Circuit design, computer architecture, massively parallel computing,

computer-aided design, embedded hardware and software,
programming languages, compilers, scientific programming, and
numerical analysis

 Krste Asanovíc, Rastislav Bodik, Bryan Catanzaro,
Joseph Gebis, Parry Husbands, Kurt Keutzer,
William Plishker, John Shalf, Samuel Williams, and
Katherine Yelick + others

 Tried to learn from successes in embedded and
high performance computing

 Led to 7 Questions to frame parallel research
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7 Questions for Parallelism
 Applications:
1. What are the apps?
2. What are kernels of apps?
 Hardware:
3. What are the HW building

blocks?
4. How to connect them?
 Programming Models:
5. How to describe apps and

kernels?
6. How to program the HW?
 Evaluation:
7. How to measure success?

(Inspired by a view of the
Golden Gate Bridge from Berkeley)
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 Old CW: Since cannot know future programs,
use old programs to evaluate computers for
future, e.g., SPEC2006

 What about parallel codes?
 Few, tied to old models, languages, architectures, …

 New approach: Design computers of future
for patterns of computation and
communication that will be important in the
future

 Claim: 14 “dwarfs” are key for next decade,
so design for them!
 Representative codes may vary over time, but these

dwarfs will be important for > 10 years

Apps and Kernels
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High-end simulation in the physical
sciences = 7 numerical methods:

1. Structured Grids (including
locally structured grids, e.g.
Adaptive Mesh Refinement)

2. Unstructured Grids
3. Fast Fourier Transform
4. Dense Linear Algebra
5. Sparse Linear Algebra
6. Particles
7. Monte Carlo

Phillip Colella’s “Seven dwarfs”

 A dwarf is a pattern of
computation and
communication

 Dwarfs are well-
defined targets from
algorithmic, software,
and architecture
standpoints

Slide from “Defining Software Requirements for Scientific Computing”, Phillip Colella, 2004
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Do dwarfs work well outside HPC?

 Examined 7 dwarf effectiveness other fields
1. Embedded Computing (EEMBC benchmark)
2. Desktop/Server Computing (SPEC2006)
3. Machine Learning

 Advice from colleagues Mike Jordan and Dan Klein

4. Games/Graphics/Vision
5. Data Base Software

 Advice from Jim Gray of Microsoft and colleague Joe Hellerstein

 Result: Added 7 more dwarfs, revised 2
original dwarfs, renumbered list
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Final 14 Dwarfs
1. Dense Linear Algebra
2. Sparse Linear Algebra
3. Spectral Methods
4. N-Body Methods
5. Structured Grids
6. Unstructured Grids
7. MapReduce

  8. Combinational Logic
  9. Find Nearest Neighbors
10. Graph Traversal
11. Dynamic Programming
12. Back-track/Branch & Bound
13. Graphical Model Inference
14. Finite State Machine

• Claim is that parallel architecture, language, compiler 
… that do these well will run parallel apps of future well
• Note: MapReduce is embarrassingly  parallel;

perhaps FSM is embarrassingly sequential? 
16

Dwarf Popularity (Red Hot → White Cool)
HPC Embed SPEC ML Games DB

1 Dense Matrix

2 Sparse Matrix

3 Spectral (FFT)

4 N-Body

5 Structured Grid

6 Unstructured

7 MapReduce

8 Combinational

9 Nearest Neighbor

10 Graph Traversal

11 Dynamic Prog

12 Backtrack/ B&B

13 Graphical Models

14 FSM
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Hardware Building Blocks:
Small is Beautiful

 Given difficulty of design/validation of large
designs

 Given power limits what can build, parallel is energy
efficient way to achieve performance
 Lower threshold voltage means much lower power

 Given redundant processors can improve chip yield
 Cisco Metro 188 processors + 4 spares
 Sun Niagara sells 6 or 8 processor version

 Expect modestly pipelined (5- to 9-stage)
CPUs, FPUs, vector, SIMD PEs

 One size fits all?
 Amdahl’s Law ⇒ a few fast cores + many small cores
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Number of Cores/Socket
 We need revolution, not evolution
 “Multicore” industry starts too small, double

number of cores per generation: 2, 4, 8, 16,
 “Manycore” 100s to 1000s is highest

performance per unit area, then double per
generation: 128, 256, 512, 1024 …

 Multicore architectures & programming
models suitable for 2 to 32 cores not likely
to successfully evolve to Manycore systems
of 1000’s of processors
⇒ Desperately need HW/SW models that
work for Manycore

19

Dwarf Communication Patterns

 Dense Matrix  Sparse Matrix

20

Dwarf Communication Patterns

 Spectral (e.g., FFT)  N-Body Methods
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Dwarf Communication Patterns

 Structured Grid  MapReduce
Map Reduce Point-to-Point Communication

22

How to Connect Processors?
 Use 14 Dwarfs to gain insight into Networks

On a Chip
 Sparse connectivity for dwarfs; crossbar is overkill
 No single best topology

 A Bandwidth-oriented network for data
 Most point-to-point message are large and BW bound

 A separate Latency-oriented network
dedicated to collectives
 Given BW improves > (latency improvement)2

 E.g., Thinking Machines CM-5, Cray T3D,
IBM BlueGene/L, IBM BlueGene/P

23

7 Questions for Parallelism
 Applications:
1. What are the apps?
2. What are kernels of apps?
 Hardware:
3. What are the HW building

blocks?
4. How to connect them?
 Programming Models:
5. How to describe apps and

kernels?
6. How to program the HW?
 Evaluation:
7. How to measure success? (Inspired by a view of the

Golden Gate Bridge from Berkeley)

24

Programming Model Considerations

 Must tradeoff Opacity vs. Visibility for
productivity vs. implementation efficiency
 Abstract underlying architecture vs. making key

architecture elements of visible to programmer

 Programming model (Explicit or implicit)
1. Identification of computational tasks
2. Mapping computational tasks to processing elements
3. Distribution of data to memory elements
4. Mapping communication to inter-connection network
5. Inter-task synchronization
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Parallel Programming models:
Explicit vs. Implicit

ImpImpImp**ImpImpHPCHPF
Imp**ImpImpImpImp**HPCOpenMP

ExpImpImpImpExpData setsMap
Reduce

ExpImpImpExpExpGeneralPthreads
ImpImpExpExpExpHPCMPI
ImpExpExpExpExpDSPYAPI
ExpExpExpExpExpNetworkTejaNP

SynchComm
Map

Data
Distr

Task
Map

Task
ID

DomainModel

*With Directives*With Directives 26

21st Century Code Generation

 Takes a decade for compiler innovations to
show up in production compilers?

 New approach: “Auto-tuners” 1st run variations
of program on computer to find best
combinations of optimizations (blocking,
padding, …) and algorithms, then produce C
code to be compiled for that computer
 E.g., PHiPAC (BLAS), Atlas (BLAS),

Sparsity (Sparse linear algebra), Spiral (DSP), FFT-W
 Can achieve 10X over conventional compiler

 One Auto-tuner per kernel or dwarf?
 Exist for Dense Linear Algebra, Sparse Linear Algebra, Spectral

27

Reference

Best: 4x2

Mflop/s

Mflop/s

Sparse Matrix – Search for Blocking
For finite element problem (BCSR) [Im, Yelick, Vuduc, 2005]
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Best Sparse Blocking for 8 Computers

 All possible column block sizes selected for 8
computers; How could compiler know?

IBM
Power 3

Intel/HP
Itanium 2

IBM Power 4,
Intel/HP
Itanium

Sun Ultra 2,
Sun Ultra 3,

AMD Opteron

Intel
Pentium
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Deconstructing Operating Systems

 Resurgence of interest in virtual machines
 Traditional OSes too large and brittle
 VM monitor thin SW layer btw guest OS and HW

 Advantages
 Security via isolation
 VMs move from failing processor

 Mendel Rosenblum: future of OSes could be
libraries where only functions needed are
linked into app, on top of thin VMM layer
providing protection and sharing of resources
 Everywhere, but great match to 1000s of processors

30

How to measure success?
 Easy to write programs that execute

efficiently on manycore computing systems
1. Maximizing programmer productivity
2. Maximizing application performance and

energy efficiency
 Challenges

 Conventional serial performance issues
 Minimizing Remote Accesses
 Balancing Load
 Granularity of Data Movement and

Synchronization

31

Outline
 Part I: A New Agenda for

Parallel HW/SW Systems
 Old Conventional Wisdom  vs. New Conventional Wisdom
 7 Questions to Frame Parallel Research
 New Benchmarks for New Architectures
 Hardware Building Blocks
 Innovating at HW/SW interface without Compilers
 Seemingly Obvious but Neglected Points
 Reasons for Optimism towards Parallel Computing Revolution

 Part II: A “Watering Hole” for
Parallel HW/SW Systems
 Research Accelerator for Multiple Processors
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Operand Size and Type
Programmer should be able to specify data

size, type independent of algorithm
 1 bit (Boolean*)
 8 bits (Integer, ASCII)
 16 bits (Integer, DSP fixed pt, Unicode*)
 32 bits (Integer, SP Fl. Pt., Unicode*)
 64 bits (Integer, DP Fl. Pt.)
 128 bits (Integer*, Quad Precision Fl. Pt.*)
 1024 bits (Crypto*)
* Not supported well in most programming

languages and optimizing compilers
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Support Successful Styles of Parallelism

 Old CW: PLs, compilers, and architectures
placed bets on one style of parallel
programming, forcing programmers to
express all parallelism in that style

 In addition to trying novel proposals
(e.g., Transactional Memory, Data Flow,
…), be to support those proven to work!

1. Independent task parallelism e.g., Cluster
2. Word-level parallelism e.g., Vector
3. Bit-Level parallelism e.g., “MMX SIMD”

34

Fast programs oblivious to # CPUs

 MPI forces awareness of exact mapping of
computational tasks to processors

 SPMD know N processors and which processor is which

 So far, languages oblivious to number of
processors have unclear performance
benefits
 E.g., Fortress? Chapel? X10?
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Accurate Performance-Power Counters

 If don’t care about performance, why parallel?
 HW must have accurate, well-defined,

standard, programmer-accessible counters of
all the events that affect parallel performance
 Traditionally lowest on HW designer totem pole
 Can’t measure ⇒ underutilize parallel processors

 Power/Energy is limit, so measure it
 Need energy usage, (peak) power, and (peak)

temperature since last reading
 Per major unit: processor, I/O, …

36

Reasons for Optimism towards
Parallel Revolution this time

 No looming fast sequential juggernaut to kill it
 End of La-Z-Boy Programming Era

 Whole Industry fully committed to parallelism
 Moore’s Law continues, so soon can put 1000s of

simple cores on an economical chip
 Communication between cores within a chip at

very low latency and very high bandwidth
 Processor-to-Processor fast even

if Processor-to-Memory slow

 Open Source Software movement means that SW
stack can evolve much more quickly than in the
past
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 14 Dwarfs as stand-ins for future parallel apps
 Patterns of computation & communication that remain important

 Simple processors! Manycore beats Multicore
 Most efficient MIPS/watt, MIPS/area, MIPS/development $
 Multicore (2-32) solutions may not evolve to Manycore (500-1000)

 To maximize programmer productivity
 Autotuners play a larger role than compilers
 Programming models oblivious to number of CPUs
 Accurate performance and power counters

 To maximize application efficiency
 Programming models use a rich set of data types and sizes
 Support proven parallel models of parallelism: Task, Word, Bit

 See view.eecs.berkeley.edu (wiki, blog, …)

Conclusions [1 / 2]
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Outline
 Part I: A New Agenda for

Parallel HW/SW Systems
 Part II: A “Watering Hole” for

Parallel HW/SW Systems
 RAMP: Research Accelerator for Multiple Processors
 Vision
 RAMP Approach and Hardware
 Status and Development Plan
 RAMP Description Language
 Related Approaches
 Potential to Accelerate MP &  NonMP Research

 Conclusion
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1. Algorithms, Programming Languages, Compilers,
Operating Systems, Architectures, Libraries, …
not ready for 1000 CPUs / chip

2. ≈ Only companies can build HW, and it takes years
3. Software people don’t start working hard until

hardware arrives
• 3 months after HW arrives, SW people list everything that must be

fixed, then we all wait 4 years for next iteration of HW/SW

4. How get 1000 CPU systems in hands of researchers
to innovate in timely fashion on in algorithms,
compilers, languages, OS, architectures, … ?

5. Can avoid waiting years between HW/SW iterations?

Problems with “Manycore” Sea Change

40

Build Academic Manycore from
FPGAs

 As ≈ 20 CPUs will fit in Field Programmable Gate
Array (FPGA), 1000-CPU system from ≈ 50 FPGAs?
• 8 32-bit simple “soft core” RISC at 100MHz in 2004 (Virtex-II)
• FPGA generations every 1.5 yrs; ≈ 2X CPUs, ≈ 1.2X clock rate

 HW research community does logic design (“gate
shareware”) to create out-of-the-box, Manycore
 E.g., 1000 processor, standard ISA binary-compatible, 64-bit,

cache-coherent supercomputer @ ≈ 150 MHz/CPU in 2007

 RAMPants: Arvind  (MIT), Krste Asanovíc, Derek Chiou  (Texas),
James Hoe (CMU), Christos Kozyrakis  (Stanford), Shih-Lien Lu
(Intel), Mark Oskin  (Washington), David Patterson (Berkeley, Co-PI),
Jan Rabaey  (Berkeley), and John Wawrzynek (Berkeley, PI)

 “Research Accelerator for Multiple Processors”
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Characteristics of  Ideal Academic
CS Research Parallel Processor?

 Scales – Hard problems at 1000 CPUs
 Cheap to buy – Limited academic research $
 Cheap to operate, Small, Low Power –  $ again
 Community – Share SW, training, ideas, …
 Simplifies debugging – High SW churn rate
 Reconfigurable – Test many parameters,

different ISAs, different organizations, …
 Credible – Results translate to real computers
 Performance – Fast enough to run real OS

and full apps, get results overnight
42

Why Good for Research Manycore?

AAACScalability (1k CPUs)

A (1.5 kw,
0.3 racks)

A+ (.1
kw, 0.1
racks)

D (120
kw, 12
racks)

D (120 kw,
12 racks)

Power/Space
(kilowatts, racks)

AAADCommunity

AADACost of ownership

GPA

Perform. (clock)

Credibility
Reconfigurability

Reproducibility

Observability

Cost (1k CPUs)

C

A (2 GHz)

A+
D

B

D

F ($40M)

SMP

B-

A (3 GHz)

A+
C

D

C

C ($2-3M)

Cluster

B

F (0 GHz)

F
A+

A+

A+

A+ ($0M)

Simulate

A-

C (0.1 GHz)

B+/A-
A+

A+

A+

A ($0.1-0.2M)

 RAMP
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Why RAMP More Credible?
 Starting point for processor is debugged

design from Industry in HDL
 Fast enough that can run more software,

more experiments than simulators
 Design flow, CAD similar to real hardware

 Logic synthesis, place and route, timing analysis

 HDL units implement operation vs.
a high-level description of function
 Model queuing delays at buffers by building real buffers

 Must work well enough to run OS
 Can’t go backwards in time, which simulators can unintentionally

 Can measure anything as sanity checks
44

Can RAMP keep up?
 FGPA generations: 2X CPUs / 18 months

 2X CPUs / 24 months for desktop microprocessors

 1.1X to 1.3X performance / 18 months
 1.2X? / year per CPU on desktop?

 However, goal for RAMP is accurate system
emulation, not to be the real system
 Goal is accurate target performance, parameterized

reconfiguration, extensive monitoring, reproducibility,
cheap (like a simulator) while being credible and fast
enough to emulate 1000s of OS and apps in parallel
(like a hardware prototype)

 OK if ≈30X slower than real 1000 processor
hardware, provided >1000X faster than simulator of
1000 CPUs
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Example: Vary memory latency, BW

 Target system: TPC-C, Oracle, Linux on
1024 CPUs @ 2 GHz, 64 KB L1 I$ & D$/CPU,
16 CPUs share 0.5 MB L2$, shared 128 MB L3$
 Latency: L1 1 - 2 cycles, L2 8 - 12 cycles, L3 20 - 30 cycles,

DRAM 200 – 400 cycles
 Bandwidth: L1 8 - 16 GB/s, L2 16 - 32 GB/s, L3 32 – 64 GB/s,

DRAM 16 – 24 GB/s per port, 16 – 32 DDR3 128b memory ports

 Host system: TPC-C, Oracle, Linux on
1024 CPUs @ 0.1 GHz, 32 KB L1 I$, 16 KB D$
 Latency: L1 1 cycle, DRAM 2 cycles
 Bandwidth: L1 0.1 GB/s, DRAM 3 GB/s per port, 128 64b DDR2

ports
 Use cache models and DRAM to emulate L1$, L2$, L3$ behavior

46

Accurate Clock Cycle Accounting
 Key to RAMP success is cycle-accurate

emulation of parameterized target design
 As vary number of CPUs, CPU clock rate, cache size and

organization, memory latency & BW, interconnect latency &
BW, disk latency & BW, Network Interface Card latency & BW,
…

 Least common divisor time unit to drive emulation?

1. For research results to be credible
2. To run standard, shrink-wrapped OS, DB,…

 Otherwise fake interrupt times since devices relatively too fast

⇒ Good target clock cycle accounting is
high priority for RAMP project

47

Why 1000 Processors?

 Eventually can build 1000 processors per chip
 Experience of high performance community

on stress of level of parallelism on
architectures and algorithms
     32-way: anything goes
   100-way: good architecture and bad algorithms

          or bad architecture and good algorithms
 1000-way: good architecture and good algorithms

 Must solve hard problems to scale to 1000
 Future is promising if can scale to 1000

48

 Completed Dec. 2004 (14x17 inch 22-layer PCB)
Board:
5 Virtex II FPGAs, 18

banks DDR2-400
memory,
20 10GigE conn.

RAMP 1 Hardware

BEE2: Berkeley Emulation Engine 2
By John Wawrzynek and Bob Brodersen with
students Chen Chang and Pierre Droz

1.5W / computer,
5 cu. in. /computer,
$100 / computer

1000 CPUs : 
≈1.5 KW, 

 ≈  ¼ rack, 
≈ $100,000  

Box:
10 compute modules in

8U rack mount chassis
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RAMP Storage

 RAMP can emulate disks as well as CPUs
 Inspired by Xen, VMware Virtual Disk models
 Have parameters to act like real disks
 Can emulate performance, but need storage capacity

 Low cost Network Attached Storage to hold
emulated disk content
 Use file system on NAS box
 E.g., Sun Fire X4500 Server (“Thumper”)

48 SATA disk drives,
24TB of storage @ <$2k/TB

4 Rack Units High

50

the stone soup of
architecture research

platforms

I/OI/O

PattersonPatterson

MonitoringMonitoring
KozyrakisKozyrakis

Net SwitchNet Switch
OskinOskin

CoherenceCoherence
HoeHoe

CacheCache
AsanovicAsanovic

PPCPPC
ArvindArvind

x86x86
LuLu

Glue-supportGlue-support
ChiouChiou

HardwareHardware
WawrzynekWawrzynek

51

Quick Sanity Check
 BEE2 4 banks DDR2-400 per FPGA
 Memory BW/FPGA = 4 * 400 * 8B = 12,800 MB/s
 16 32-bit Microblazes per Virtex II FPGA (last

generation)
 Assume 150 MHz, CPI is 1.5 (4-stage pipeline), 33% Load/Stores
 BW need/CPU =  150/1.5 * (1+ 0.33) * 4B ≈ 530 MB/sec

 BW need/FPGA ≈ 16 * 530 ≈ 8500 MB/s
 2/3 Peak Memory BW / FPGA

 Suppose add caches (.75MB ⇒ 32KI$, 16D$/CPU)
 SPECint2000 I$ Miss 0.5%, D$ Miss 2.8%, 33% Load/stores, 64B blocks*
 BW/CPU = 150/1.5*(0.5% + 33%*2.8%)*64 ≈ 100 MB/s

 BW/FPGA with caches ≈ 16 * 100 MB/s ≈ 1600 MB/s
 1/8 Peak Memory BW/FPGA; plenty BW available for tracing, …

 Example of optimization to improve emulation
* Cantin and Hill, “Cache Performance for SPEC CPU2000 Benchmarks” 

52

RAMP Philosophy
 Build vanilla out-of-the-box examples to

attract software community
 Multiple industrial ISAs, real industrial operating systems, 1000

processors, accurate clock cycle accounting, reproducible,
traceable, parameterizable, cheap to buy and operate, …

 But RAMPants have grander plans (will share)
 Data flow computer (“Wavescalar”) – Oskin @ U. Washington
 1,000,000-way MP (“Transactors”) – Asanovic @ MIT
 Distributed Data Centers (“RAD Lab”) – Patterson @ Berkeley
 Transactional Memory (“TCC”) – Kozyrakis @ Stanford
 Reliable Multiprocessors (“PROTOFLEX”) – Hoe @ CMU
 X86 emulation (“UT FAST”) – Chiou @ Texas
 Signal Processing in FPGAs (“BEE2”)  – Wawrzynek @ Berkeley
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RAMP multiple ISAs status:

 Got it: IBM Power 405 (32b),
Sun SPARC v8 (32b), Xilinx Microblaze (32b)

 Sun announced 3/21/06 donating T1
(“Niagara”) 64b SPARC (v9) to RAMP

 Likely: IBM Power 64b
 Likely: Tensilica
 Probably? (had a good meeting): ARM
 Probably? (haven’t asked): MIPS32, MIPS64
 No: x86, x86-64 (said no)

 But Derek Chiou of UT looking at x86 binary translation

54

Outline
 Part I: A New Agenda for

Parallel HW/SW Systems
 Part II: A “Watering Hole” for

Parallel HW/SW Systems
 RAMP: Research Accelerator for Multiple Processors
 Vision
 RAMP Approach and Hardware
 Status and Development Plan
 RAMP Description Language
 Related Approaches
 Potential to Accelerate MP &  NonMP Research

 Conclusion
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3 Examples of RAMP to Inspire Others

1. Transactional Memory RAMP
 Based on Stanford TCC
 Led by Kozyrakis at Stanford

2. Message Passing RAMP
 First NAS benchmarks (MPI), then Internet Services (LAMP)
 Led by Patterson and Wawrzynek at Berkeley

3. Cache Coherent RAMP
 Shared memory/Cache coherent (ring-based)
 Led by Chiou of Texas and Hoe of CMU

 Exercise common RAMP infrastructure
 RDL, same processor, same OS, same benchmarks, …
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Transactional Memory status (8/06)
 8 CPUs with 32KB L1 data-cache with Transactional

Memory support
 CPUs are hardcoded PowerPC405, Emulated FPU
 UMA access to shared memory (no L2 yet)
 Caches and memory operate at 100MHz
 Links between FPGAs run at 200MHz
 CPUs operate at 300MHz

 A separate, 9th, processor runs OS (PowerPC Linux)
 It works: runs SPLASH-2 benchmarks, AI apps,

C-version of SpecJBB2000 (3-tier-like benchmark)
 Transactional Memory RAMP runs 100x faster

than simulator on a Apple 2GHz G5 (PowerPC)
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RAMP Blue Prototype (11/06)
 8 MicroBlaze cores / FPGA

+ FPU
 8 BEE2 modules (32 “user”

FPGAs) x 4 FPGAs/module
= 256 cores @ 100MHz

 Full star-connection between
modules

 11/1/06 Run 1 NAS benchmark
in UPC on 32 nodes (1 board)

 CPUs are softcore MicroBlazes
(32-bit Xilinx RISC architecture)

 Also 32-bit SPARC (LEON3)
running full Linux OS, large SW
stack
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RAMP Milestones
 September 2006 : Picked 32-bit SPARC (Leon) 1st ISA

 Verification suite, Running full Linux, Size of design (LUTs / BRAMs)
 Executes comm. app binaries, Configurability, Friendly licensing

 January 2007 milestones for all 3 RAMP examples
 Run on Xilinx Virtex 2 XUP board
 Run on 8 RAMP 1 (BEE2) boards
 64 to 128 processors

 June 2007 milestones for all 3 RAMPs
 Accurate clock cycle accounting, I/O model
 Run on 16 RAMP 1 (BEE2) boards and Virtex 5 XUP boards
 128 to 256 processors

 2H07: RAMP 2.0 boards on Virtex 5
 3rd party sells board, download software and gateware from website on

RAMP 2.0 or Xilinx V5 XUP boards
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RAMP Project Status
 NSF infrastructure grant awarded 3/06

 2 staff positions (NSF sponsored), no grad students

 IBM Faculty Awards to RAMPants 6/06
 Krste Asanovic (MIT), Derek Chiou (Texas), James Hoe (CMU),

Christos Kozyrakis (Stanford), John Wawrzynek (Berkeley)

 3-day retreats with industry visitors
 “Berkeley-style” retreats 1/06 (Berkeley), 6/06

(ISCA/Boston), 1/07 (Berkeley), 6/07 (ISCA/San Diego)

 RAMP 1/RDL short course
 40 people from 6 schools 1/06
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       RAMP Description Language (RDL)
 RDL describes plumbing

connecting units together ≈
“HW Scripting Language/Linker”

 Design composed of units
that send messages over
channels via ports

 Units (10,000 + gates)
 CPU + L1 cache, DRAM controller…

 Channels (≈ FIFO)
 Lossless, point-to-point,

unidirectional, in-order delivery…

 Generates HDL to connect units

Channel Receiving UnitSending Unit

Port

Port

Sending Unit

Channel

Port “DataOut”

DataOut

__DataOut_READY

__DataOut_WRITE

Receiving Unit

Port “DataIn”

DataIn

__DataIn_READ

__DataIn_READY
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RDL at technological sweet spot
 Matches current chip design style

 Locally synchronous, globally asynchronous

 To plug unit (in any HDL) into RAMP infrastructure,
just add RDL “wrapper”

 Units can also be in C or Java or System C or …
⇒ Allows debugging design at high level

 Compiles target interconnect onto RAMP paths
 Handles housekeeping of data width, number of transfers

 FIFO communication model
⇒ Computer can have deterministic behavior
 Interrupts, memory accesses, … exactly same clock cycle each run

⇒ Easier to debug parallel software on RAMP

RDL Developed by Krste Asanovíc and Greg Giebling
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Related Approaches

 Quickturn, Axis, IKOS, Thara:
 FPGA- or special-processor based gate-level hardware emulators
 HDL mapped to array for cycle and bit-accurate netlist emulation
 No DRAM memory since modeling CPU, not system
 Doesn’t worry about speed of logic synthesis: 1 MHz clock
 Uses small FPGAs since takes many chips/CPU, and pin-limited
 Expensive: $5M

 RAMP’s emphasis is on emulating high-level
system behaviors
 More DRAMs than FPGAs: BEE2 has 5 FPGAs, 96 DRAM chips
 Clock rate affects emulation time: >100 MHz clock
 Uses biggest FGPAs, since many CPUs/chip
 Affordable: $0.1 M
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RAMP’s Potential Beyond Manycore
 Attractive Experimental Systems Platform:

Standard ISA + standard OS + modifiable
+ fast enough + trace/measure anything
 Generate long traces of full stack: App, VM, OS, …
 Test hardware security enhancements in the wild
 Inserting faults to test availability schemes
 Test design of switches and routers
 SW Libraries for 128-bit floating point
 App-specific instruction extensions (≈Tensilica)

 Alternative Data Center designs
 Akamai vs. Google: N centers of M computers
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Potential to Accelerate Manycore
 With RAMP: Fast, wide-ranging exploration of

HW/SW options + head-to-head competitions to
determine winners and losers
 Common artifact for HW and SW researchers ⇒

innovate across HW/SW boundaries
 Minutes vs. years between “HW generations”
 Cheap, small, low power ⇒ Every dept owns one
 FTP supercomputer overnight, check claims locally
 Emulate any Manycore ⇒ aid to teaching parallelism
 If HP, IBM, Intel, M/S, Sun, …had RAMP boxes
⇒ Easier to carefully evaluate research claims
⇒ Help technology transfer

 Without RAMP: One Best Shot + Field of Dreams?
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Multiprocessing Watering Hole

 Killer app: ≈ All CS Research, Advanced Development

 RAMP attracts many communities to shared artifact
⇒ Cross-disciplinary interactions
⇒ Ramp up innovation in multiprocessing

 RAMP as next Standard Research/AD Platform?
(e.g., VAX/BSD Unix in 1980s)

Parallel file system

Flight Data Recorder Transactional Memory
Fault insertion to check dependability

Data center in a box

Internet in a box

Dataflow language/computer

Security enhancements
Router design Compile to FPGA

Parallel languages

RAMPRAMP

128-bit Floating Point Libraries
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RAMP Supporters:
 Gordon Bell  (Microsoft)
 Ivo Bolsens  (Xilinx CTO)
 Jan Gray (Microsoft)
 Norm Jouppi  (HP Labs)
 Bill Kramer  (NERSC/LBL)
 Konrad Lai (Intel)
 Craig Mundie  (MS CTO)
 Jaime Moreno (IBM)
 G. Papadopoulos  (Sun CTO)
 Jim Peek (Sun)
 Justin Rattner  (Intel CTO)

 Michael Rosenfield (IBM)
 Tanaz Sowdagar (IBM)
 Ivan Sutherland  (Sun Fellow)
 Chuck Thacker  (Microsoft)
 Kees Vissers  (Xilinx)
 Jeff Welser (IBM)
 David Yen (Sun EVP)
 Doug Burger  (Texas)
 Bill Dally  (Stanford)
 Susan Eggers  (Washington)
 Kathy Yelick  (Berkeley)

RAMP Participants: Arvind  (MIT), Krste Asanovíc (MIT),
Derek Chiou (Texas), James Hoe  (CMU), Christos Kozyrakis  (Stanford),
Shih-Lien Lu  (Intel), Mark Oskin  (Washington), David Patterson (Berkeley,
Co-PI), Jan Rabaey  (Berkeley), and John Wawrzynek (Berkeley, PI)
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 Carpe Diem: need RAMP yesterday
 FPGAs ready now, and getting better
 Stand on shoulders vs. toes: standardize on BEE2
 Architects aid colleagues via gateware

 RAMP accelerates HW/SW generations
 System emulation + good accounting vs. FPGA computer
 Emulate, Trace, Reproduce anything; Tape out every day
 RAMP + Auto-tuner ⇒ search HW and algorithm space

 “Multiprocessor Research Watering Hole”
ramp up research in multiprocessing via common
research platform ⇒ innovate across fields ⇒
hasten sea change from sequential to parallel
computing

 See ramp.eecs.berkeley.edu

Conclusions [2 / 2]
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69

Backup Slides for Q&A
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 SPECfp
 8 Structured grid

 3 using Adaptive Mesh Refinement

 2 Sparse linear algebra
 2 Particle methods
 5 TBD: Ray tracer, Speech Recognition, Quantum

Chemistry, Lattice Quantum Chromodynamics
(many kernels inside each benchmark?)

 SPECint
 8 Finite State Machine
 2 Sorting/Searching
 2 Dense linear algebra (data type differs from dwarf)
 1 TBD: 1 C compiler (many kernels?)

6/11 Dwarves Covers 24/30 SPEC 2006
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Communication Primitives

 No insights, just issues to explore
 On chip latency, BW much better
 Coherency?
 Synchronization using Locks, Messages,

Transactional Memory, Full/Empty bits in
Memory?


