
November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

1

A Crash Course in Compilers for
Parallel Computing

Mary Hall
Fall, 2008

November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

2

Overview of “Crash Course”

• L1: Data Dependence Analysis and
Parallelization (Oct. 30)

• L2 & L3: Loop Reordering
Transformations, Reuse Analysis and
Locality Optimization (Nov. 6)

• L4: Autotuning Compiler Technology
(Nov. 13)

November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

3

Outline of Lecture

I. Summary of Last Week
II. Reuse Analysis
III. Two Loop Reordering

Transformations
- Permutation
- Tiling (aka blocking)

IV. Locality Optimization

November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

4

I. Summary: Data Dependence

True (flow) dependence
a =

= a
Anti-dependence

= a
a =

Output dependence
a =
a =

Input dependence (for locality)
= a
= a

Definition: Data dependence exists from a reference
instance i to i’ iff

either i or i’ is a write operation
i and i’ refer to the same variable
i executes before i’

November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

5

Restrict to an Affine Domain
for (i=1; i<N; i++)

for (j=1; j<N j++) {
A[i+2*j+3, 4*i+2*j, 3*i] = ...;
... = A[1, 2*i+1, j];

}

• Only use loop bounds and array indices
which are integer linear functions of loop variables.

• Non-affine example:
for (i=1; i<N; i++)

for (j=1; j<N j++) {
A[i*j] = A[i*(j-1)];
A[B[i]] = A[B[j]];

}

November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

6

Distance Vectors

• Distance vector = [1,1]
• A loop has a distance vector D if there exists data

dependence from iteration vector I to a later
vector I’, and D = I’ - I.

• Since I’ > I, D >= 0.
(D is lexicographically greater than or equal to 0).

N = 6;
for (i=1; i<N; i++)

for (j=1; j<N; j++)
A[i+1,j+1] = A[i,j] * 2.0;

November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

7

Equivalence to Integer Programming
• Need to determine if F(i) = G(i’), where i and i’ are

iteration vectors, with constraints i,i’ >= L, U>= i, i’

• Example:
for (i=2; i<=100; i++)

A[i] = A[i-1];

• Inequalities:
0 <= i1 <= 100, i2 = i1 - 1, i2 <= 100

integer vector I, AI <= b

-1 0
1 0

-1 1
1 -1
0 1

[]i1
i2

≤[]0
100
-1
1
100

Solution exist?
Yes dependence

November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

8

Fundamental Theorem of Dependence

• Theorem 2.2:
– Any reordering transformation that preserves

every dependence in a program preserves the
meaning of that program.

November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

9

II. Introduction to Locality Optimization
and Reuse Analysis

• Large memories are slow,
fast memories are small

• Hierarchy allows fast and
large memory on average

• Managing locality crucial for
achieving high performance

L3 cache

memory

L1 cache

L2 cache

proc

November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

10

Cache basics: a quiz
• Cache hit:

– in-cache memory access—cheap
• Cache miss:

– non-cached memory access—expensive
– need to access next, slower level of hierarchy

• Cache line size:
– # of bytes loaded together in one entry
– typically a few machine words per entry

• Capacity:
– amount of data that can be simultaneously in cache

• Associativity
– direct-mapped: only 1 address (line) in a given range in

cache
– n-way: n ≥ 2 lines w/ different addresses can be stored

Pa
ra

m
et

er
s

to
 o

pt
im

iz
at

io
n

November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

11

How do we get locality (in caches)?

• Data locality:
– data is reused and is present in cache
– same data or same cache line

• Data reuse:
– data used multiple times
– intrinsic in computation

• If a computation has reuse, what can
we do to get locality?
– code reordering transformations (today)
– data layout

November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

12

Temporal Reuse

• Same data used in distinct iterations I
and I’

for (i=1; i<N; i++)
for (j=1; j<N; j++)

A[j]= A[j]+A[j+1]+A[j-1]

• A[j] has self-temporal reuse in loop i

November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

13

Spatial Reuse

• Same cache line used in distinct iterations I and
I’

· A[j] has self-spatial reuse in loop j
• Multi-dimensional array note: C arrays are

stored in row-major order, while FORTRAN
arrays are stored in column-major order)

for (i=1; i<N; i++)
for (j=1; j<N; j++)

A[j]= A[j]+A[j+1]+A[j-1]

November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

14

Group Reuse

• Same data used by distinct references

• A[j],A[j+1] and A[j-1] have group reuse (spatial
and temporal) in loop j

for (i=1; i<N; i++)
for (j=1; j<N; j++)

A[j]= A[j]+A[j+1]+A[j-1]

November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

15

III. Reordering Transformations

• Analyze reuse in computation
• Apply loop reordering

transformations to improve locality
based on reuse

• With any loop reordering
transformation, always ask
– Safety? (doesn’t reverse dependences)
– Profitablity? (improves locality)

November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

16

Loop Permutation:
A Reordering Transformation

for (j=0; j<6; j++)
for (i= 0; i<3; i++)

A[i,j+1]=A[i,j]+B[j]

for (i= 0; i<3; i++)
for (j=0; j<6; j++)

A[i,j+1]=A[i,j]+B[j]

i

j

new traversal order!i

j

Permute the order of the loops to modify the traversal order

Which one is better for row-major storage?

November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

17

Safety of Permutation
• Intuition: Cannot permute two loops i and j in a loop

nest if doing so reverses the direction of any
dependence.

• Loops i through j of an n-deep loop nest are fully
permutable if for all dependences D,
either

(d1, … di-1) > 0
or

forall k, i ≤ k ≤ j, dk ≥ 0
• Stated without proof: Within the affine domain, n-1

inner loops of n-deep loop nest can be transformed to
be fully permutable.

November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

18

Simple Examples: 2-d Loop Nests

• Distance vectors

• Ok to permute?

for (i= 0; i<3; i++)
for (j=0; j<6; j++)

A[i,j+1]=A[i,j]+B[j]

for (i= 0; i<3; i++)
for (j=0; j<6; j++)
A[i+1,j-1]=A[i,j]

+B[j]

November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

19

Tiling (Blocking):
Another Loop Reordering Transformation

• Blocking reorders loop iterations to
bring iterations that reuse data
closer in time

J

I

J

I

November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

20

Tiling Example

for (j=1; j<M; j++)
for (i=1; i<N; i++)
D[i] = D[i] +B[j,i]

for (j=1; j<M; j++)
for (i=1; i<N; i+=s)

for (ii=i, min(i+s-1,N)
D[i] = D[i] +B[j,i]

Strip
mine

for (i=1; i<N; i++)
for (j=1; j<M; j++)

for (ii=i, min(i+s-1,N)
D[i] = D[i] +B[j,i]

Permute

November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

21

Legality of Tiling

• Tiling = strip-mine and permutation
– Strip-mine does not reorder

iterations
– Permutation must be legal
OR
– strip size less than dependence

distance

November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

22

IV. Locality Optimization

• Reuse analysis can be formulated in a
manner similar to dependence analysis
– Particularly true for temporal reuse
– Spatial reuse requires special handling of most

quickly varying dimension
• Simplification for today’s lecture

– Estimate cache misses for different scenarios
– Select scenario that minimizes misses

November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

23

Reuse Analysis:
Use to Estimate Cache Misses

for (i=0; i<N; i++)
for (j=0; j<M; j++)

A[i]=A[i]+B[j,i]

for (j=0; j<M; j++)
for (i=0; i<N; i++)

A[i]=A[i]+B[j,i]

reference loop J loop I

A[i] 1 N

B[j,i] M N*M

reference loop I loop J

A[i] N/cls(*) M*N/cls

B[j,i] N/cls M*N/cls

(*) cls = Cache Line Size (in elements)

November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

24

Allen & Kennedy:
Innermost memory cost

• Innermost memory cost: CM(Li)
– assume Li is innermost loop

• li = loop variable, N = number of iterations of Li

– for each array reference r in loop nest:
• r does not depend on li : cost (r) = 1
• r such that li strides over a non-contiguous dimension:

cost (r) = N
• r such that li strides over a contiguous dimension:

cost (r) = N/cls
– CM(Li) = sum of cost (r)

Implicit in this cost function is that N is sufficiently large that cache
capacity is exceeded by data footprint in innermost loop

November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

25

Canonical Example: matrix multiply
Selecting Loop Order

• CM(I) = 2N3/cls + N2

• CM(J) = 2N3 + N2

• CM(K) = N3 + N3/cls + N2

• Ordering by innermost loop cost: (J, K, I)

DO I = 1, N
DO J = 1, N

DO K = 1, N
C(I,J)= C(I,J) + A(I,K) * B(K,J)

November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

26

Canonical Example: Matrix Multiply
Selecting Tile Size

DO K = 1, N by TK
DO I = 1, N by TI

DO J = 1, N
DO KK = K, min(KK+ TK,N)

DO II = I, min(II+ TI,N)
C(II,J)= C(II,J)+A(II,KK)*B(KK,J)

C A B

BI

BK

Choose Ti and Tk such that data footprint does not exceed cache capacity

November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

27

How to select optimal tile size ?
(topic for next week)

Square Tile with Lowest L1 Misses

0

5

10

15

20

25

30

35

0 512 1024 1536 2048
Matrix Size

Ti
le

 S
iz

e

Slide source: Jacqueline Chame

November 6, 2008 Compilers for Parallel Computing,
L2: Transforms, Reuse, Locality

28

Next Week

• How to use loop reordering
transformations in an auto-tuning
optimization system?

