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How Futile are Mindless Assessments of Roundoff
in Floating-Point Computation ?

§0:  Abstract
Redesigning computers costs less than retraining people,  so it behooves us to adapt computers to 
the way people have evolved rather than try to adapt people to the way computers have evolved.  
As the population of computer programmers has grown,  proficiency in rounding-error analysis 
has dwindled.  To compensate,  better diagnostic aids should be incorporated into hardware,  into 
program development environments,  and into programming languages;  but this is not happening.  
Schemes to assist roundoff analysis are beset by failure modes;  no scheme is foolproof;  only two 
or three are worth trying.  Alas,  these few rely upon hardware features built into  IEEE Standard 
754  for binary floating-point but now atrophying for lack of adequate linguistic support.  Here 
extensive analyses of the genesis of embarrassment due to roundoff,  and of the failure modes of 
all schemes devised so far to avert it,  point clearly to what needs doing next.
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§1:  Introduction
Numerical data piles up and numerical programs grow ever more ambitious and complicated 
while their users become,  on average,  far less knowlegeable about numerical error-analysis,  
though no less clever than their predecessors about subjects they care to learn.  Consequently 
numerical anomalies go mostly unobserved or,  if observed,  routinely misdiagnosed.  Fortunately 
most of them don’t matter.  Most computations don’t matter.

Floating-point computation has become so cheap that it’s often not worth much.  Vastly expanding 
multitudes of mostly unwitting users use it mostly for entertainment and games.  Their anomalies 
induced by roundoff flicker in and out of sight too briefly to be noticed or,  if noticed,  they might 
merely be promoted to  “features”  described perhaps in some chat-room on the web like this:

“No virgin need be found and sacrificed to the gorgon who guards the gate 
   to level seventeen;  she will go catatonic if offered exactly  $13.875 .”

While not increasing so fast as games,  increasingly many computations do matter --  a lot.  But 
ever fewer of their programmers and users are enabled adequately by education and experience to 
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debug numerical anomalies.  Rounding errors are especially refractory.  They are invisible in a 
program’s text;  if they weren’t their names would drown everything else.  They exist only in the 
mind’s eye,  and there in a model of computation framed for the purposes of roundoff analysis.

Error-analysis attracts few students and affords fewer career paths.  Therefore almost all users and 
programmers of floating-point computations require help not so much to perform error-analyses  
(they won’t)  as to determine whether roundoff is the cause of their distress,  and where.  That will 
be followed by an assignment of blame and the task of relieving the distress,  if possible.

Several schemes have been advocated as substitutes for or aids to error-analysis by non-experts.  
None can be trusted fully if used as advertised,  which is usually  “Mindless”,  i.e.  without a 
penetrating analysis of the program in question.  Two or three schemes work well enough often 
enough to justify the expense of their incorporation in full-featured  Programming Development 
Systems.  One scheme is so cheap and so effective that every debugger can support it:  It reruns 
precompiled subprograms in the three redirected rounding modes mandated by  IEEE Standard 
754 (1985),  and thus almost always reveals whether a subprogram is hypersensitive to roundoff.  
This scheme will be applied frequently to the examples analyzed in this work.

The several  “Mindless”  schemes in question are surveyed very briefly in  §4.  They include  
Interval Arithmetic,  and recomputation with increasing precision,  or with redirected rounding,  
or with randomized rounding,  or with randomly perturbed input data.  The few schemes I think 
worth considering are explained in  §14,  to which systems programmers and language designers 
and implementers can jump right now to avoid reading mathematical error-analyses of examples 
intended to disparage the other schemes.

The examples in  §5  and  §6  frustrate all schemes that attempt to assess the effects of roundoff 
without at least breaking a program into smaller subprograms to be assessed individually.  Both 
examples malfunction because of infinitesimally narrow spikes,  one deserved,  another not.  More 
spikes,  but now broad enough to be detectable during debugging,  appear in  §7  along with a bug 
that has persisted in  MATLAB’s  log2(…)  for over a decade.  Two more such bugs appear in  §8  
along with an attempt to explain their ominous persistence as a consequence of false doctrine.  A 
fatal flaw in recomputation with randomized rounding is illustrated in  §9.  Glib diagnoses that 
attribute numerical distress to cancellation,  to division by small divisors,  or to accumulations of 
hordes of rounding errors are contradicted by an example in  §10  that is more nearly typical of 
how roundoff causes numerical distress.  The user’s point of view is illustratred by a case study in  
§11.  A superfluous inaccuracy persistent in a  MATLAB  function since  1988  is discussed in  §12.   
Terse geometrical arguments in  §13  explain how  Interval Arithmetic  used naively too often 
deprives this costly and valuable scheme of its value.  §14  describes the debugging tools I think 
worth having,  and  §15  is my concluding  Jeremiad  predicting doom if they are not to be had.

Of all the many ways in which floating-point computation can go astray,  only roundoff,  which 
should rarely have to be taken seriously,  is considered seriously in what follows.  Over/underflow 
and other diversions will have to be discussed some other time.  Neither shall we consider here 
computations so numerically unstable that their faults become obvious after any testing adequate 
to satisfy requirements of  Due Diligence.  Our main concerns hereunder are errors hard to find.  
Some errors are designed not to be found;  these will be considered next in  §2  and  §3.
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§2:  Errors Designed Not To Be Found
Some parentheses in  Microsoft’s Excel 2000  spreadsheet possess uncanny powers:

  Values  Excel 2000  Displays for  Several Expressions

Besides generating an extra digit  “3”  and rounding away  15  “9”s,  Excel  changed the value of 
an expression placed between parentheses from zero to something else.  Why?

Apparently  Excel  rounds  Cosmetically  in a futile attempt to make  Binary  floating-point appear 
to be  Decimal.  This is why  Excel  confers supernatural powers upon some  (not all)  parentheses.

Suppose  Binary-to-Decimal  conversion always leaves enough uncertainty in the last displayed 
decimal digit of a floating-point variable  X  that its display cannot distinguish it from several 
adjacent floating-point numbers.  Should the order predicates  (X < Y),  (X = Y)  and  (X > Y)  
distinguish values that display the same?  If not,  how can they stay consistent with discontinuous 
functions like  SIGN(X) ,  CEILING(X)  and  FLOOR(X) ,  and with functions like  SQRT(X)  
and  ACOS(X)  whose domains have finite boundaries?  Attempts to conceal these conundrums 
merely  make their irrepressible manifestations harder to debug.  Here is what happens to the  11  

floating-point numbers  X  between  1 – 5/253  and  1 – 13/253  that all look the same displayed:

        11  Consecutive DistinctValues  X   Displayed as  “ 0.999999999999999000…” 

The three largest of these  11  values  X  display an inconsistent  0  for unparenthesized  X–1 .

     27  Consecutive Distinct Values  X  Displayed as  “ 1.00000000000000000… ” 

Expression 1.23456789012345000E+00 <– Entered to help count digits

   V = 4/3  displays ...  1.33333333333333000E+00 Does Excel carry 15 sig. dec.?

    W = V - 1        3.33333333333333000E-01 Whence comes the  15th  3 ?

     X = W*3         1.00000000000000000E+00 Where went all 15 of the  9s ?

      Y = X - 1      0.00000000000000000E+00   They all went away !

       Z = Y*2^52    0.00000000000000000E+00     Really all gone.

  (4/3 - 1)*3 - 1   0.00000000000000000E+00       Yes,  gone.

 ((4/3 - 1)*3 - 1) -2.22044604925031000E-16 (But not  ENTIRELY  gone !)

 ((4/3 - 1)*3 - 1)*2^52 -1.00000000000000000E+00   Excel’s arithmetic is weird.

 # (X–1) SIGN(X–1) FLOOR(X) (X < 1) (X = 1) ACOS(X) X–1

8 … < 0 –1 0 TRUE FALSE … > 0 … < 0
3 … < 0 –1 0 TRUE FALSE … > 0 0

 # CEIL(X) FLOOR(X) (X < 1) (X = 1) X–1 (X–1) SIGN(X–1) ACOS(X)

4 1 1 FALSE TRUE 0 … < 0 –1 … > 0

1 1 1 FALSE TRUE 0 0 0 0

7 1 1 FALSE TRUE 0 … > 0 +1 #NUM! 

15 1 1 FALSE TRUE … > 0 … > 0 +1 #NUM! 
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Excel  displays the  27  distinct floating-point numbers  X  between  1 – 4/253  and  1 + 22/252  as 
just  “ 1.000000000000000000… ”,  which is consistent with  CEIL(X) = FLOOR(X) = 1  and the 
order predicates  (X < 1) = FALSE  and  (X = 1) = TRUE.  These contradict  15  values displayed 
for  X–1  and  26  values displayed for  (X–1),  SIGN(X–1)  and  ACOS(X).  The latter produces 
the error-indicator  #NUM!  when actually  X > 1 .

Assign  Z = 1.00000000000001 .  Which of the  45  distinct values  X  between  1 + 23/252  and  

1 + 67/252  that all display the same  “ 1.000000000000010000… ”  as  Z  actually equals  Z ?  All  
45  computed values of predicate  (X = Z) = TRUE ,  but  30  contradict the displayed  X–Z  and  

44  contradict  (X–1)  and  SIGN(X–Z) .  The value stored for  Z  is the middle value  1 + 45/252 .

      45  Consecutive Distinct Values  X  Displayed as  “ 1.00000000000001000… ” 

     43  Consecutive Distinct Values  Y  Displayed as  “ 1024.5000000000… ” 

All  43  consecutive floating-point numbers  Y  display the same  1024.5000000000000000…  and 
all the nearest integers  ROUND(Y)  are the same  1025  when halfway cases round away from 
zero.  However  ROUND(Y–25)  produces  999  in  19  cases,  1000  in  24,  though  Y–25  must 
get computed with no rounding error in both binary and decimal arithmetics.  ROUND(Y–925)  
produces  99  in  21  cases,  100  in  22,  again with no roundoff during the subtraction.  Why does 
the  19:24  split change to  21:22 ?  Because  ROUND  is one of  Excel’s  functions that acts upon 
the displayed value of its argument,  unlike functions like  ACOS  that act upon the true value.

How can a user of  Excel  predict which functions act upon displayed instead of actual values?  
Which expressions get rounded cosmetically before being displayed?  The user’s program cannot 
be debugged without an awareness of these questions,  and an aware user ends up debugging  
Microsoft’s  pious fraud instead of just a malfunctioning  Excel  spreadsheet.

“Against stupidity even the gods  struggle in vain.”   F. von Schiller (1759-1805)

What’s so special about  15  sig. dec.?
Displaying at most  15  sig. dec.,  as  Excel  does,  ensures that a number entered with at most  15  
sig. dec.,  converted to binary floating-point rounded correctly to  53 sig. bits  (which is what 
Excel’s  arithmetic carries),  and then displayed converted back to decimal floating-point rounded 

 # Displayed  X (X = Z) X – Z (X – Z) SIGN(X – Z)

15 1.00000000000001000… TRUE … < 0 … < 0 –1

7 1.00000000000001000… TRUE 0 … < 0 –1

1 1.00000000000001000… TRUE 0 0 0

7 1.00000000000001000… TRUE 0 … > 0 +1

15 1.00000000000001000… TRUE … > 0 … > 0 +1

 # Displayed  Y ROUND(Y) ROUND(Y–25) ROUND(Y–925)

19 1024.500000000… 1025 999 99

2 1024.500000000… 1025 1000 99

22 1024.500000000… 1025 1000 100
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correctly to at least as many sig. dec. as were entered but no more than  15,  will always display 
exactly the same number as was entered.  The decision to make  Excel’s  arithmetic seem to be 
Decimal  instead of  Binary  restricted  Excel’s  display to at most  15 sig. dec.,  thus hiding the 
deception well enough to reduce greatly the number of calls upon  Excel’s  technical help-desk.  
When symptoms of the deception are perceived they are routinely misdiagnosed;  e.g.,  see David
Einstein’s  column on  p. E2  of the  San Francisco Chronicle  for  16 and 30 May 2005.

A host of nearly undebuggable anomalies would go away if  Excel’s  floating-point arithmetic 
were not binary but decimal implemented in  software conforming to  IEEE Standard 854 (1987)  
albeit slower than the built-in binary hardware.  Decimal has the great advantage that,  if enough 
digits are displayed,  What You See is What You Get.  Some day,  perhaps,  IBM’s LOTUS 123  
spreadsheet may come out with decimal floating-point carrying  34  sig. dec.;  if then  Microsoft’s 
Excel  imitates  (instead of  “innovates”),  its mysteries will become vastly fewer.

Meanwhile,  if distinct  53 sig. bit binary floating-point numbers are converted to decimal and 
displayed correctly rounded to  17 sig. dec.,  they will always display differently.  And if the 
displayed numbers are converted back to binary and rounded correctly to 53 sig. bits,  they will 
reproduce the original binary floating-point numbers.  Therefore,  so long as binary floating-point 
persists in  Excel,  its users should be allowed to display as many as  17  sig. dec.  instead of just  
15,  and  Excel  should eschew cosmetic rounding.  These simple amendments would eliminate 
gratuitous anomalies,  leaving only those anomalies intrinsic in rounded binary floating-point.

Excel's  HELP  files should advise users that its floating-point arithmetic is binary to explain why 
a value entered as  “ 8.04 ”,  for example,  displays as  “ 8.0399 9999 9999 9991 ”  when displayed 
to all of  17  sig. dec.  Roundof will still generate surprises like  (4/3 – 1)*3 – 1 ≈ –2.22E–16  
instead of  0 .  Some surprises that do not occur with decimal arithmetic will continue to afflict 
binary;  for example,  both predicates  (0.4*10 = 4)  and  (0.7*10 = 7)  are  TRUE  although  
(0.4*7 = 0.7*4)  is  FALSE.   And if  u := 1/10 = 0.1000…  and  t := 3/10 = 0.3000… ,  why does  
(3*u – t)/(2*u – t + u)  display  2.000…  instead of a  “#DIV/0!”  warning?  Don’t just mumble  
“Roundoff”;  it wouldn’t occur here if arithmetic were decimal instead of binary floating-point.

This is no place to list all the corrections  Excel  needs.  It was cited here only to exemplify
Errors Designed Not To Be Found.

The moral of  Excel’s  story is …

The bitter truth up front obviates obscurantist lies later.

What's in  YOUR  spreadsheet?

And now for something entirely different …
Prof. W. Kahan                     WORK IN PROGRESS;         COMMENTS ARE INVITED.                      Page 5/56



Mindless                   January 11, 2006 1:50 pm                       §3: Inscrutable Errors from Fanatical Compiler “Optimization” 
§3:  Inscrutable Errors from Fanatical Compiler  “Optimization”
The struggle to excel in benchmarks induces compiler writers and others to  “optimize”  floating-
point computations in ways that too often sacrifice mathematical integrity.  Usually this sacrifice 
is unintended. “Optimizations”  could be debugged more easily were they reflected in revised 
listings of the source-code emitted by the compiler,  but such revelatory listings cannot come from 
optimizers in a compiler’s  “back end”  shared with different  “front ends”  for diverse languages.  
Some compilers and linker/loaders emit listings of the  “optimized”  code in a pseudo-assembly 
language.  Most applications programmers despair of reading these partly because of their volume 
and partly because the compiler mixes every source-code line’s machine instructions with other 
lines’ in the course of exploiting whatever concurrency can be extracted from multiple pipelines 
and,  nowadays increasingly,  multiple processor cores on one chip.

Perhaps the only way to inhibit floating-point pejorations in the guise of  “optimizations”  is via 
education of the programming language community and its clientele.  To that end two nasty kinds 
of pejoration are exhibited hereunder.  One involves an over-zealous application of arithmetic’s 
associative laws despite parentheses inserted to deter it.  The second pejoration,  embedded in a 
recent version of  MATLAB,  is a matrix analog of a register-spill anomaly that arises when a wide 
register is spilled temporarily to a narrow location in storage and then reloaded after having lost,  
presumably inadvertently,  some of the bits originally generated in the wide register.

Optimization of matrix multiplication exploits the associativity of addition and properly so in all 
but a minuscule family of special situations.  Still,  because roundoff and over/underflow violate 
floating-point’s associativity,  it should not be exploited without a programmer’s explicit licence,  
and must not be exploited if parentheses get in the way,  lest programs crafted carefully and 
copied scrupulously,  though perhaps uncomprehendingly,  be spoiled.

Spoilage will be illustrated by  Compensated Summation.  This is today’s name for a technique 
discovered in fixed point six decades ago,  rediscovered in floating-point four decades ago,  and 
rediscovered repeatedly since.  It helps defend against roundoff’s degradation of amortization 
schedules,  frequently updated averages,  slowly convergent infinite series,  numerical quadrature 
and trajectory calculations  (ordinary differential equations),  among other things.

Our example’s task is to approximate an infinite series
Ideal infinite sum := ∑k≥1 term(k)     

by

Computed Sum := ∑1
N Term(k)  +  Tail(N) 

in which  Tail(N)  approximates   ∑k>N term(k)   ever better as  N  increases.  But we shall not 
know  N  in advance.  It may mount into billions.

Billions of rounding errors can degrade severely a sum computed naively :

[xxxxxx... Old Sum ...xxxxxx]
+ [xxxxxx... New Term ...xxxxxx]
----------------------------------------    
[xxxxxx... New Sum ...xxxxxx] […lost digits…] 

The lost digits affect the Computed Sum  about as much as if those digits had first been discarded 
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from each  New Term.  The effect is severe if  N  is gargantuan.  The following program 
compensates for those lost digits.  For simplicity’s sake it has been written assuming every  
Term(k) > Term(k+1) > Term(k+2) > … > 0 .

Sum := 0.0 ;  Oldsum := –1 ;  comp := 0.0 ;  k := 0 ;
While  Sum > Oldsum  do …

k := 1+k ;  Oldsum := Sum ;  comp := comp + Term(k) ;
Sum := comp + Oldsum ;
comp := (Oldsum – Sum) + comp ;

    End While Loop;
Sum := Sum + ( Tail(k) + comp ) .  …  This is the final compensated  Sum.

However,  an over-zealously  “optimizing”  compiler deduces that the statement
 comp := (Oldsum – Sum) + comp ;

is merely an elaborate way to recompute  comp := 0.0 ,  and thereupon scrubs out all references to  
comp,  thus simplifying and slightly speeding up the  Loop  thus:

Sum := 0.0 ;  Oldsum := –1 ;  k := 0 ;
While  Sum > Oldsum  do …

k := 1+k ;  Oldsum := Sum ;
Sum := Term(k) + Oldsum ;

    End While Loop;
Sum := Sum + Tail(k) .  …  This is the final  “Optimized”  Sum.

Now let us assign formulas for the terms of the series:
Term(k) :=  3465/( k2 – 1/16 )  +  3465/( (k + 1/2 )2 – 1/16 )  , 
Tail(k)  :=  3465/( k + 1/2 )  +  3465/( k + 1 )  ,

and then compute
Sum := ∑1

N Term(k)  +  Tail(N) 
using each of the foregoing programs,  one compensated,  the other  “optimized”.

Of course,  a little mathematical analysis might render the programs unnecessary,
but programming a computer is easier and running it is cheaper than analysis.

Here are the results from a  Fortran  program run on an  IBM T21 Laptop:

  Final  Sums  from Two Programs 

Even though the  “Optimized”  program’s  Loop  runs almost  10%  faster,  this program took about  
25%  longer to get a result substantially worse than the program run as originally written.

Do you see why?  If someone doesn’t,  would you like him to  “optimize”  your floating-point?

Program: Compensated “Optimized”

Final Sum : 9240.000000000000 9240.000001147523

Time : 13.7  sec. 17.8  sec.

Loop-count  K : 61,728,404 87,290,410

Time per Loop : 2.22E–7  sec. 2.04E–7  sec.
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In general the over-zealously  “optimized”   Sum  can be wrong in the worst way:  Occasionally its 
error will be too small to be obvious but not small enough to be inconsequential.

How can a programmer unaware of the  “optimization”  debug that?

There is a way:  Rerun both programs in different rounding modes afforded by  IEEE Standard 
754  on fully conforming systems.  Currently the only fully conforming standard programming 
language is  C99,  and only on a very few machines,  but let’s not dwell on that now.  On my 
machines each program can be rerun first rounding every arithmetic operation  Down (towards 
–∞)  and again rounding  Up (towards +∞)  without recompilation.  Here are the results:

  Final  Sums  from Two Programs Rounded Differently 

These results leave no doubt that  “optimization”  has actually made the program much worse.

Do you see why?  If someone doesn’t,  would you like him to  “optimize”  your floating-point?

The second example of numerical pejoration caused by ill-advised  “optimization”  exposes the 
damage done when a compiler spills wide registers to and reloads them from narrow destinations,  
thus losing  (presumably inadvertently)  the wide registers’ accuracy.  We shall explore  Iterative 
Refinement  of computed eigensystems of real symmetric matrices.  Nowadays software like  
MATLAB’s  eig,  though nearly bulletproof,  can still lose accuracy  to roundoff in several ways:

•  Losses worsen as dimensions  (degrees of freedom)  increase.
•  Eigenvectors lose accuracy as their eigenvalues approach coincidence.
•  Severe losses can occur if the data’s structural symmetries are lost to roundoff.
•  Severe losses can occur if software mishandles systematically wide-ranging data.

Example:  A  flea  atop a  dog  atop an  elephant  atop the  Eiffel  tower.
The flea’s vibrational frequencies so dominate the tower’s that the tower’s
can be lost to roundoff unless appropriate special methods are used.

Iterative Refinement  is a scheme that usually attenuates those losses without requiring that their 
cause(s) be identified.  The scheme starts by computing a  Residual  that measures how badly the 
solution computed so far dissatisfies its defining equations.  Then the residual guides refinement 
of that solution.  My  MATLAB  program  refiheig  does that in a way too complicated to describe 
here other than to say that its accuracy is limited principally by the accuracy to which matrix 
products can be accumulated while computing residuals.

A first illustrative example is the  n-by-n  Reversed Pascal  matrix.  When  n = 6  it looks like this:

 252   126    56    21     6     1 
 126    70    35    15     5     1 

P =   56    35    20    10     4     1 
  21    15    10     6     3     1 
   6     5     4     3     2     1 
   1     1     1     1     1     1 

Program: Compensated “Optimized”

Rounded to Nearest : 9240.000000000000 9240.000001147523

Rounded Down : 9239.999999999998 9239.999994834162

Rounded Up : 9240.000000000002 Ran almost forever
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Its elements range ever more wildly as dimension  n  increases.  Though no simple formulas for its  
n  eigenvalues are known,  they are known to be positive and come in reciprocal pairs:

If  λ  is an eigenvalue,  so is  1/λ .
Consequently the accuracy of computed eigenvalues will be gauged by how close products of 
appropriate pairs come to  1 .

Because the ratio  (biggest eigenvalue)/(smallest)  grows like  24n/(nπ) ,  we can expect smaller 
computed eigenvalues to lose almost  4n  sig. bits to  eig’s  roundoff as the dimension  n  gets big.  
It can’t get very big without losing all  53  sig. bits carried by  eig’s  arithmetic.  What is the biggest 
dimension  n  for which  eig  yields at least  10  sig. bits  (3 sig. dec.)  of accuracy?  Since much 
of the lost accuracy is lost to  eig’s  disregard of the systematically wild variation in the magnitudes 
of the elements of the  Reversed Pascal  matrix  P ,  we hope that  refiheig  can recover some of 
the lost accuracy and thus increase the dimension  n  for which we get at least  10  sig. bits.  If 
necessary we may  iterate  refiheig  by calling it again up to twice,  though repeated calls hardly 
ever improve accuracy much.

  With Residuals Accumulated to  53  sig. bits  

MATLAB v. 6.5  on a  Wintel PC  accumulating matrix products to  53  sig. bits:
Refinement boosts successful dimensions  n  from  n ≤ 14  to  n ≤ 17  in a tolerable time.

The results above were obtained by running  eig  and my  refiheig  under  MATLAB 6.5  and  
Windows 2000  on an  IBM T21 laptop.  (My  refiheig  also runs under  MATLAB  versions  4.2  
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and  5.2  on  Macintoshes as well as  Wintel  machines.  This will become significant later.)  Similar 
results are obtained on  Sun SPARCs,  SGS MIPS,  HP PA-RISC,  IBM Power PCs  and  Apple 
Power Macs;  on all of them …

Iterative Refinement  increases from  n = 14  to  n = 17  the
largest dimension for which at least  10  sig. bits are achieved.

At dimensions  n > 17  computation time rises steeply mainly to issue warnings of possibly severe 
loss of accuracy.  For  n ≤ 17  refined accuracy takes less than three times as long as  eig  takes.

However,  Wintel  machines can get better results in the same time running  exactly  the same  
MATLAB  programs on the same version  6.5 of  MATLAB  after invoking the prefatory command

system_dependent(‘setprecision’, 64)  
(or on version  4.2  without that command)  to accumulate matrix products to  64  sig. bits before 
storing them back to  53.  This is how  Intel’s  floating-point was originally  (back in  1978)  
designed to be used,  and  95%  of the computers on and under desks still have this capability.  Here 
are the better results:

  With Residuals Accumulated to  64  sig. bits  

MATLAB v. 6.5  on a  Wintel PC  accumulating matrix products to  64  sig. bits:
Refinement boosts successful dimensions  n  from  n ≤ 14  to  n ≤ 20  in a tolerable time.
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Prof. W. Kahan                     WORK IN PROGRESS;         COMMENTS ARE INVITED.                      Page 10/56



Mindless                   January 11, 2006 1:50 pm                       §3: Inscrutable Errors from Fanatical Compiler “Optimization” 
With that extra-precise accumulation,  Iterative Refinement  increases from  n = 14  to  n = 20  
(instead of just  17 )  the largest dimension for which  10  sig. bits are achieved,  and with no 
significant increase in running time.

We conclude that iterative refinement of eigenvalues is worthwhile without 
extra-precise accumulation but worth at least about ten more sig. bits with it.

Next let’s see how well iterative refinement enhances the accuracies of eigenvectors of an  n-by-n  
test matrix devised by  Wallace Givens;  it looks like this when  n = 6 :

    22    18    14    10     6     2   
    18    18    14    10     6     2   

W :=     14    14    14    10     6     2   
    10    10    10    10     6     2   
     6     6     6     6     6     2   
     2     2     2     2     2     2   

Givens’  matrix  W  can be derived from a discretization of an integral equation.  Its eigenvalues 
and eigenvectors can be computed almost correctly rounded from simple formulas that we shall 
use only to check the accuracy of  MATLAB’s  and my eigensystem software.

The smallest eigenvalues cluster just above  1 ;  the biggest reach over  (4n/π)2 .   The eigenvectors 
have a special structure:  Every eigenvector’s elements can be obtained from any other’s by 
permuting elements and reversing some signs.  The accuracy of computed eigenvectors belonging 
to small clustered eigenvalues can be degraded by roundoff to an extent that grows about as fast as  
n4  when the dimension  n  is huge.  How much of that degradation can be undone by iterative 
refinement when,  say,  n = 1000 ?  In the tabulations below the row marked  “MxM”  shows how 
many sig. bits were accumulated during matrix multiplication.  The  “near-minimal”  residual was 
computed from the almost correctly rounded eigensystem.

Execution Times to Compute  Givens’  Eigenvectors

Residuals  vs.  near-minimal  2.3E-11

Eigenvector Accuracies in Sig. Bits

MATLAB version: v. 6.5 v. 6.5 v. 4.2

MxM sig. bits 53 s.b. 64 s.b. 64 s.b.
eig 52.5 sec. 52.9 sec. 122 sec.
refiheig 67.1 sec. 66.7 sec. 1171 sec.

MATLAB version: v. 6.5 v. 6.5 v. 4.2

MxM sig. bits 53  s.b. 64 s.b. 64 s.b.

eig 2.1E-9 1.2E-10 3.1E-9

refiheig 1.2E-10 2.9E-11 7.4E-12

MATLAB version: v. 6.5 v. 6.5 v. 4.2

MxM sig. bits 53 s.b. 64 s.b. 64 s.b.
eig 18.4 s.b. 23.4 s.b. 18.6 s.b.
refiheig 25.9 s,b. 30.2 s.b. 40.7 s.b.
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Alas,  something has gone awry.

Why is  MATLAB version 6.5  so much  (20 times)  faster than  version 4.2 ?

Why is  v. 6.5’s  refinement so much  (10 sig. bits ≈ 3 sig. dec.)  less accurate than  v. 4.2’s ?

V. 6.5  splits big matrices into small blocks to incur fewer cache misses during its blocked-matrix 
multiplications.  These can run enormously faster than  v. 4.2’s  ordinary matrix multiplications.

But  v. 6.5  spills individual block products,  each accumulated to  64  sig. bits,  into memory 
holding only  53.  This squanders almost all advantages of extra-precise accumulation,  obscuring 
residuals while adding negligibly to speed.  The consequent loss of  10  sig. bits of ultimate 
accuracy could not have been detected if we had compared only computed residuals instead of 
comparing computed with correct eigenvectors.  Has anybody else noticed the spill anomaly ?

The anomaly should not be blamed entirely upon  MATLAB.  It uses matrix-multiply subprograms  
(BLAS 3)  “optimized”  by  Intel  for its  Pentium  architecture taking account of cache line-sizes 
and management.  If the subprograms stored sums of block products retaining all  64  sig. bits 
accumulated,  instead of just  53,  the extra time and memory required would be practically 
inconsequential.

Thus does fanatical optimization for a little more speed induce a subtle but severe pejoration of 
accuracy made almost impossible to debug,  if noticed,  by lack of access to the optimized program 
as actually executed.  How likely is the loss of accuracy to be noticed?  Without comparisons of  
computed results with true results  (rarely available)  or with previously computed results  (who 
else keeps old versions of  MATLAB  around?),  suspicion could fall upon dubious results were they 
recomputed with redirected roundings.  Among those who could do that,  who would think to do it?

In response to the foregoing complaints the following advice has come out of the programming 
language community:

“If you dislike the effect upon your program of a compiler’s optimization,  turn it off.”
This choice is unavailable to a user of  MATLAB.  The choice is impractical for a programmer of 
would-be portable code,  like  MATLAB  and  LAPACK  and many others,  for three reasons:  

First,  control over optimization is effected not from his program’s text but from a command line 
that invokes the compiler.  Optimization commands are not standardized;  they vary in effect,  often 
obscurely,  among different compilers,  sometimes for the same hardware.

Second,  for arcane reasons having to do with benchmarking practices,  compilers often  “bundle”  
desirable along with pernicious optimizations,  unnecessarily forcing knowledgeable programmers 
to choose between speed and accuracy knowing that programs that run too slowly won’t get run.

Third,  a programmer knowledgeable enough to choose the right command-line options for each 
of today’s compilers cannot know what tomorrow will bring,  nor who else will incorporate part or 
all of his source-code into theirs.  He can only recall ruefully this line from  Hamlet:

“There are more things in heaven and earth,  Horatio,  than are dreamt of in your philosophy.”

There has to be a meeting of currently disparate minds from two communities —  Programming 
Languages  and  Portable Numerical Software —  lest petty  “optimizations”  change the meanings 
of ostensibly portable programs in hitherto unimagined ways that practically stymie debugging.
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§4:  Five Plausible Schemes
Can the effects of roundoff upon a floating-point computation be assessed without submitting it to 
a mathematically rigorous and  (if feasible at all)  time-consuming error-analysis?  In general,  No.

This mathematical fact of computational life has not deterred advocates of schemes like these:

•1  Repeat the computation in arithmetics of increasing precision,  increasing it until
as many as desired of the results’ digits agree.

•2  Repeat the computation in arithmetic of the same precision but rounded differently,  
say  Down,  and then  Up,  and maybe  Towards Zero  too,  besides  To Nearest, 
and compare three or four results.

•3  Repeat the computation a few times in arithmetic of the same precision rounding
operations randomly,  some  Up,  some  Down,  and treat results statistically.

•4  Repeat the computation a few times in arithmetic of the same precision but with
slightly different input data each time,  and see how widely results spread.

•5  Perform the computation in  Significance Arithmetic,  or in  Interval Arithmetic.

Here are brief summaries of the respective schemes’ prospects:

•1  Though not foolproof,  increasing precision is extremely likely to work well provided
the manner in which rounding is performed is the same for all precisions;  but this
scheme is costly to provide and may run intolerably slowly.  For that price we may 
be served better by almost foolproof extendable-precision  Interval Arithmetic.

•2  Though far from foolproof,  rounding every inexact arithmetic operation  (but not 
constants)  in the same direction for each of two or three directions besides the
default  To Nearest   is very likely to confirm accidentally exposed hypersensitivity 
to roundoff.  When feasible,  this scheme offers the best  Benefit/Cost  ratio.

•3  Repeated recomputation with randomly redirected roundings is far more likely than the
previous non-random redirected roundings to mislead users in these two ways:
•  A few subtle programs that compensate for their own rounding errors may be 

thwarted and thus unnecessarily produce excessively inaccurate results.
•  Many numerically fragile programs,  Gaussian Elimination  among them,  can be

sent far astray by just one or two among their myriad rounding errors. 
Those one or two are too likely to be perturbed the same way at random, 
thus producing repeatedly almost identical but utterly wrong results, 
unless randomly rounded recomputation is repeated at least several times.

Random rounding is costly to implement,  runs slowly and ought to be rerun often.

•4  Only if  Backward Error-Analysis  has succeeded in  proving  that a program’s rounding 
errors alter its results about as much as do  all  end-figure perturbations of its input 
data may such perturbations have diagnostic value.  Even then such perturbations 
can all produce the same utterly wrong result.  Or else slightly perturbed data may 
produce wildly different but correct results like  tan(x)  at the two floating-point 
arguments adjacent to  π/2  (which is not a floating-point number).

•5  Significance Arithmetic  attempts to retain,  for every intermediate and final result, 
only those digits deemed uncontaminated by previous rounding or other errors.  It 
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is a coarse kind of  Interval Arithmetic  doomed to overestimate or underestimate 
(or both)  the number of significant digits to an extent proportional to the number 
of arithmetic operations between input data and output results.

     Interval Arithmetic  approximates every variable by an interval whose ends straddle 
the variable’s true value.  Used naively,  this scheme is cursed by excessively wide 
intervals that undermine its credibility when wide intervals are deserved.  Swollen 
intervals can often be curbed by combining  Interval Arithmetic  with ordinarily 
rounded arithmetic in a computation artfully recast as the determination of the 
fixed-point of a sufficiently contractive mapping.  “Artful”  is far from  “Mindless”.
Far less art may coax success from extendable-precision  Interval Arithmetic,  
though its price may be high and its performance slow.

Citations for the schemes mentioned above have been omitted for the time being because these 
notes are not intended to attack the schemes’ advocates.  Each scheme has its advocates,  so it 
must have worked on at least one example.  That’s not the point of these notes.  The point is …

     Which schemes will work on  your  computation without requiring you to error-analyze it?

In general,  none.  But one or two of these schemes may be worth trying anyway.

I propose to collect examples each of which defeats some scheme(s) mentioned above,  and which 
collectively defeat all those schemes,  including the ones I favor.  The collection will grow as time 
permits,  including perhaps accretions from subsequent contributors.

§5:  J-M. Muller’s  Recurrence
The futility of all mindless assessments of roundoff’s effect is exposed by a recurrence contrived 
by  Jean-Michel Muller  around  1980  and modified slightly here.  Given the function 

Œ(y, z) := 108 – ( 815 – 1500/z )/y
and initial values  x0 := 4  and  x1 := 4.25 ,  define  xn+1 := Œ(xn, xn-1)  for  n = 1, 2, 3, …  in turn.  
Our task is to compute  xN  for some moderately big preassigned integer  N ,  say  N = 80 .

The sequence  {xn}  does tend to a limit;   xn → L  as  n → +∞ .  In the absence of an analysis that 
finds  L  exactly it can be approximated by computing the sequence  {xn}  until,  say,  xN-1  differs 
negligibly from  xN ;  then this  xN  approximates  L .

     Try to compute  x80  or  L  before reading what follows.

All fast floating-point hardware,  all  Randomized Arithmetic,  and most implementations of  
Significance Arithmetic  will allege  x80 ≈ L = 100  very convincingly.  The correct limit  L = 5 .  

The correct  xn = 5 – 2/(1 + (5/3)n) = 8 – 15/xn–1 ,  so  x80 = 4.9999999999999999964263… .

Tabulated below are values  xn  computed first exactly,  then by a  FORTRAN  program carrying  64  
sig. bits and a  MATLAB  program carrying  53  sig. bits on an  Intel 302 (i386/387 IBM PC clone).
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 γn  will be explained in a moment.

 The Recurrence Exactly,  then in  64  Sig, Bits,  and then in  53  Sig. Bits
n True xn FORTRAN’s Xn Xn’s γn MATLAB’s xn xn’s γn

0 4 4 0 4 0

1 4.25 4.25 0 4.25 0

2 4.4705882352941… 4.4705882352941 1.4527240931E-23 4.4705882352941 -5.95035788e-20

3 4.6447368421052… 4.6447368421052 9.3144142261E-24 4.6447368421052 -7.27269462e-20

4 4.7705382436260… 4.7705382436260 9.3879254811E-24 4.7705382436250 -7.26081334e-20

5 4.8557007125890… 4.8557007125890 9.4011127174E-24 4.8557007125685 -7.26054934e-20

6 4.9108474990827… 4.9108474990828 9.4016062483E-24 4.9108474986606 -7.26062074e-20

7 4.9455374041239… 4.9455374041250 9.4016485474E-24 4.9455373955305 -7.26061505e-20

8 4.9669625817627… 4.9669625817851 9.4016502826E-24 4.9669624080410 -7.26061478e-20

9 4.9800457013556… 4.9800457018084 9.4016502839E-24 4.9800422042930 -7.26061478e-20

10 4.9879794484783… 4.9879794575704 9.4016502819E-24 4.9879092327957 -7.26061478e-20

11 4.9927702880620… 4.9927704703332 9.4016502815E-24 4.9913626413145 -7.26061478e-20

12 4.9956558915066… 4.9956595420973 9.4016502814E-24 4.9674550955522 -7.26061478e-20

13 4.9973912683813… 4.9974643422978 9.4016502814E-24 4.4296904983088 -7.26061478e-20

14 4.9984339439448… 4.9998961477637 9.4016502814E-24 -7.8172365784593 -7.26061478e-20

15 4.9990600719708… 5.0283045630311 9.4016502814E-24 168.93916767106 -7.26061478e-20

16 4.9994359371468… 5.5810310849684 9.4016502814E-24 102.03996315205 -7.26061478e-20

17 4.9996615241037… 15.420563287948 9.4016502814E-24 100.09994751625 -7.26061478e-20

18 4.9997969007134… 72.577658482982 9.4016502814E-24 100.00499204097 -7.26061478e-20

19 4.9998781354779… 98.110905976394 9.4016502814E-24 100.00024957923 -7.26061478e-20

20 4.9999268795046… 99.903728999705 9.4016502814E-24 100.00001247862 -7.26061479e-20

21 4.9999561270611… 99.995181883411 9.4016502814E-24 100.00000062392 -7.26061486e-20

22 4.9999736760057… 99.999759084721 9.4016502814E-24 100.00000003119 -7.26061591e-20

23 4.9999842055202… 99.999987954271 9.4016502815E-24 100.00000000156 -7.26060665e-20

24 4.9999905232822… 99.999999397715 9.4016502814E-24 100.00000000007 -7.26058323e-20

25 4.9999943139585… 99.999999969885 9.4016502814E-24 100.00000000000 -7.27116855e-20

26 4.9999965883712… 99.999999998494 9.4016502728E-24 100.00000000000 -7.11534953e-20

27 4.9999979530213… 99.999999999924 9.4016499619E-24 100.00000000000 -4.98074120e-20

28 4.9999987718123… 99.999999999996 9.4016399662E-24 100 Infinity

29 4.9999992630872… 99.999999999999 9.4017762549E-24 100 Infinity

30 4.9999995578522… 99.999999999999 9.4031615325E-24 100 Infinity

31 4.9999997347113… 100.00000000000 9.3755043286E-24 100 Infinity

32 4.9999998408267… 100.00000000000 7.9691782475E-24 100 Infinity

33 4.9999999044960… 100 Infinity 100 Infinity

34 4.9999999426976… 100 Infinity 100 Infinity

… … … … … …

74 4.9999999999999… 100 Infinity 100 Infinity

75 4.9999999999999… 100 Infinity 100 Infinity

… … … … … …
Prof. W. Kahan                     WORK IN PROGRESS;         COMMENTS ARE INVITED.                      Page 15/56



Mindless                   January 11, 2006 1:50 pm                       §5: J-M. Muller’s Recurrence 
Evidently a few intermediate results change when the arithmetic’s precision changes;  in general 
such intermediate changes need not imply incorrect final results,  as we shall see soon.  Interval 
Arithmetic  delivers a narrow interval around  L ≈ 5  instead of a worthless wide interval only if,  
as with ordinary arithmetic,  extravagant precision rather beyond  4.3·N  sig. bits is carried.

Why do so many different calculations produce the same wrong result  x80 ≈ 100 ?

To analyze the recurrence ignore  x0  and  x1  momentarily and substitute  xn = yn+1/yn  into the 
original recurrence  xn+1 := Œ(xn, xn-1)  to get  yn+2 = 108yn+1 – 815yn + 1500yn–1 .  This linear 
recurrence can be solved in closed form with the aid of the zeros of its Characteristic Polynomial 

z3 – 108z2 + 815z – 1500  =  (z–3)(z–5)(z–100) .
Consequently the general solution  xn  of the original recurrence is 

xn = (α·3n+1 + β·5n+1 + γ·100n+1)/(α·3n + β·5n + γ·100n)    for   n = 0, 1, 2, 3, …
in which constants  α, β, γ  are not all zero.  They may be chosen to match any two prescribed 
values  x0  and  x1 ;  choices  α = β = 1  and  γ = 0  match our prescribed  x0 := 4  and  x1 := 4.25 ,  

and then would yield  xn = (3n+1 + 5n+1)/(3n + 5n)  if no rounding errors were committed.  But 
roundoff perturbs computed values  xn .  Then they are closely approximated at least initially by 

xn ≈ (3n+1 + 5n+1 + γn·100n+1)/(3n + 5n + γn·100n)    for  n = 3, 4, 5, …   

     =  100 – (95 + 97·(3/5)n)/( 20n·γn + 1 + (3/5)n) 
in which  γn  is a tiny nonzero near-constant resembling a rounding error in a number near  0.001 .  
This changes the limit  xn → L  from  L = 5  to  L = 100 .  In the foregoing tabulation  γn  was 

obtained from the formula   γn := ( (xn – 3)·3n + (xn – 5)·5n )/( (100 - xn)·100n ) .

What if the recurrence started at  x1 := 4.25  and  x2 := 8 – 15/x0 = 76/17  ?   At first sight neither  

x80  nor limit  L  should change.  However,  76/17 = 4.4705882352941…  cannot be represented 
exactly as a floating-point number,  so it must be rounded off,  thus changing  x80  and  L  to  100 .  
Though not what was intended,  this is the correct result  for the initial  x2  stored in the computer.

Exact rational arithmetic can compute  x80  perfectly,  getting
  206795153138256918939565417139009598365577843034794672964/41359030627651383817474849310671104336332210648235594113 
if enough digits are carried.  Arithmetic must carry more than  2.33·N  bits,  or  0.7·N decimal 
digits,  to compute  xN  exactly as a quotient of integers solely from the recurrence;  the time taken 

grows like  Nç  for some constant  ç  between roughly  2.5  and  3  depending upon how multi-
word multiplication is implemented.

In the absence of roundoff the sequence  {xn}  generated by the recurrence  xn+1 := Œ(xn, xn-1)  
would approach a limit  L(xn, xn–1)  that is a discontinuous function of any two consecutive 
members of the sequence.  We find  L(3, 3) = 3 ;  otherwise  L(x, y) = 5  on the hyperbola whose 
equation is  (x – 8)y + 15 = 0 ;  and  L(x, y) = 100  everywhere else.  Although  xN  for any fixed 
large  N  is a nearly-constant bilinear rational function of  (x1, x0) ,  it spikes violently as  (x1, x0)  
moves across the hyperbola very near which the function takes both  0  and  ∞  as values.  Without 
knowing in advance where to look,  a random search for such a spike will almost never find it.
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       MATLAB  Plot of  x80  as a function of  x2  near  76/17  for fixed  x1 = 17/4  :

The horizontal axis runs over  –1e–98  ≤  x2 – 76/17  ≤  +1e–98 .  No floating-point numbers  x2  lie in that interval.

x80 = 5  when  x2 – 76/17 = 0 ,  and  x80 = ±∞  when  x2 – 76/17 = –2.241902748434…e-100 .
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§6:  A Smooth Surprise
Examples like  J-M. Muller’s  seem pathological and thus largely irrelevant to people who intend 
to compute only well-behaved smooth functions of their data,  not spiky functions like  x80  nor 
discontinuous functions like limit  L(x, y)  above.  The next example may surprise those people.

It is a relatively simple function  G(x)  which takes the value  1  for all real arguments  x .  That  
G(x) ≡ 1  has been confirmed instantly by an automated algebra system  DERIVE 4.1  from the  
Soft Warehouse Inc.,  Honolulu HI,   run under  DOS  on an  Intel i386-based  PC  (25 MHz.,  15 
MB of DRAM),  so the confirmation cannot be very complicated.  However,  this confirmation 
assumes arithmetic with real numbers to be performed always exactly.  If arithmetic is performed 
approximately but sufficiently accurately,  the computed value of  G(x)  is almost always zero 
instead of  1 !  This happens for all sufficiently large arithmetic precisions,  and not because 
gargantuan numbers cancel;  none of these need arise during the computation.

When  G(n)  is evaluated at  n = 1, 2, 3, …, 9999 ,  say,  in floating-point arithmetic of any ample 
preassigned finite precision,  the computed values of  G(n)  are almost always zero.  There are 
exceptions.  When the arithmetic rounds every operation to  24  sig. bits in conformity with  IEEE 
Standard 754  (corresponding to  Java’s  float  arithmetic)  then  G(1) = G(7) = G(2048) = 1 ;  
but otherwise  9996  computed values  G(n) = 0 .  All  9999  computed values  G(n) = 0  when 
arithmetic is rounded to  53  sig. bits  (Java’s  double)  or to  64 sig. bits  (IEEE 754’s  Double-
Extended)  on a  Pentium.  The  HP-28S  and other  Hewlett-Packard  programmable calculators 
that round their decimal floating-point arithmetic correctly to  12  sig. dec.  get  G(2) = G(42) = 1  
but otherwise compute  9997  values  G(n) = 0 .  DERIVE’s  approximate arithmetic is neither 
binary nor decimal floating-point but a kind of rational arithmetic whose  “Precision”,  though 
specified roughly in sig. dec.,  is enforced by truncating continued fractions somehow.  When 
requested to compute  G(n)  with  64  sig. dec. of  Precision,  DERIVE  got  9998  values  G(n) = 0  
and  G(159) = 1 .  A request for  72 sig. dec.  got  G(133) = G(4733) = G(4862) = G(4888) = 1  
and only  9996  values  G(n) = 0 .  A request for  84  sig. dec. got all  9999  values  G(n) = 0 .

Why does  G(n)  behave so perversely?   G(x)  is defined by a short program like the following:

Real variables   x,  y,  z  ;
Real Function  T(z) :=  { If  z = 0  then  1  else  ( exp(z) – 1 )/z }  ;

Real Function  Q(y) :=  | y – √(y2 + 1) |  –  1/( y + √(y2 + 1) )  ;

Real Function  G(x) :=  T( Q(x)2 )  ;
For  Integer  n = 1 to 9999  do  Display{ n ,  G(n) }  end.

Absent roundoff,  Q(y) ≡ 0  for all real  (but not all complex)  numbers  y .  If  y ≥ 1 ,  roundoff 
bestows upon  Q(y)  a tiny value of the order of a rounding error in  y .  It is hardly ever zero.

Absent roundoff,  T(z)  is a smooth infinitely differentiable function of  z ;  in fact

T(z) = ∫01 ezw dw  =  ∑m≥1 z
m–1/m! .

But roundoff causes the one-line program for  T(z)  to malfunction when  z  is tiny.  In extremis,  
when  z  is tinier than a rounding error in  1  but not zero,  the computed  exp(z)  rounds to  1  and 
then the computed  T(z)  vanishes,  as does  G(n) .  Unless  n  vastly exceeds  9999,  inaccuracy in 
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program  G  comes entirely from its inaccurate subprogram  T ;  and increasing arithmetic’s 
precision uniformly everywhere in the program almost never cures  G’s  inaccuracy.

The trouble with  T(z)  and  G(x)  is not their intended behavior but rather the unfortunate  (i.e.,  
numerically unstable)  way they have been computed from expressions programmed correctly for 
exact arithmetic though incorrectly for rounded arithmetic.  Two questions are brought to mind:

How can distress caused by roundoff be diagnosed reliably?  How can it be cured?

“Aha!”  says an observer;  “The distress is caused by massive cancellation.”  No;  cancellation  
never  causes numerical inaccuracy.  After cancellation  Q(y)  is rightly tiny unless  y  is huge;  
and soon we shall see a cure for inaccuracy in  T(z)  despite massive cancellation in  (exp(z) – 1) .

In general,  cancellation is at worst the  Bearer of Bad Tidings,  namely that prior rounding errors 
discarded digits whose absence now is regretted.  Some computations,  like root-finding,  succeed 
because of massive cancellation.  Other computations can go utterly awry with no subtraction,  no 
cancellation,  as we shall see in  §10’s  example.  Cancellation needn’t signify numerical distress.

“Aha!”  says another observer;  “The distress is caused by a tiny divisor.”  Not necessarily,  though  
T(z)  does suffer from a tiny divisor  z  because it is the wrong tiny divisor,  as we shall see soon.  
Tiny divisors bode ill only if,  in producing huge quotients that later mostly cancel,  they make us 
wish divisors and quotients had been computed more accurately.  No huge quotients occur in  T .  
Other computations can go utterly awry with no divisions,  no small divisors,  as we shall see in  
§10’s  example.  Small divisors needn’t signify numerical distress.

Someone without access to the formula for  T(z)  may try to narrow suspicion to it by rerunning 
the program with roundoff redirected  Up  and again redirected  Down ,  and then comparing the 
three results.  The outcome depends upon how  exp(…)  is implemented.  If  exp(z)  rounds  Up  to  
1.000…001 ,  computed values of  T(z)  and  G(n)  will diverge enough to arouse suspicion,  and 
this usually happens when  n  is big enough:  2  is big enough for  24  sig. bits,  3028891  for  53,  
5e9  for  64.  Otherwise,  if the implementation of  exp(z)  begins as many do with a test like …

If  |z| < RoundoffThreshold/4  then  Return( 1.0 )  else … ,
then redirected roundings may change nothing,  and then miscomputed values  G(n) = 0  must be 
almost always too consistent to arouse suspicion about their accuracy.

There are ways to compute   T(z) = ( exp(z) – 1)/z   accurately enough.  They figure in financial 
calculations.  Here is an easy way,  albeit tricky:

Real Function  T(Real  z) :
T := exp(z) ; …  rounded,  of course.
If  (T = 1)  Return( T ) ; …  when  |z|  is very tiny.
If  (T = 0)  Return( T := –1/z ) ; …  when  exp(z)  underflows.
Return( T := ( T – 1 )/log(T) ) ; …  in all other cases.
End  T .

This way works because the computed value of  exp(z)  is actually  exp(z+ß)  where  |ß|  amounts 
to at most a rounding error or two in values near  1 .  Consequently the value computed for  T(z)  
is actually very nearly  T(z+ß)  rounded off;  its relative error is roughly  ß·T'(z)/T(z) ,  which can 
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easily be proved to lie between  0  and  ß  by differentiating the formula  T(z) = ∫01 ezw dw .  In 
effect the program’s possibly tiny divisor  log(T)  compensates for the rounding error in  exp(z)  
preceding a possibly massive cancellation in  ( exp(z) – 1 )  provided the arithmetic,  regardless of 
its precision,  rounds the program’s difference  (T – 1)  properly and delivers its  log(T)  to near-
full working relative accuracy.  Then substituting this program  T(z)  for the one-line expression 
given initially to define  T(z)  produces the correct  G(n) = 1  for all  n  not too enormous.

Ironically,  if multi-precision  Interval Arithmetic  were used naively to compute  G(n)  either from 
its initial formula or from its accurate program,  the results at every precision would be intervals 
so excessively wide as could not distinguish the accurate program from the inaccurate one.

This chillingly simple example  G(n)  undermines confidence in all five of the mindless schemes 
to which these notes are devoted,  and casts deserved doubt upon oft-uttered glib diagnoses of  
“Cancellation”  and  “Small Divisors”  as concomitants of numerical distress.  Still,  fairness 
requires an admission that this example is atypical.  It was contrived to thwart the first and fifth 
schemes,  namely repeated recomputation with ordinary or  Interval Arithmetic  of ever increasing 
precision.  Numerical distress due solely to roundoff is relieved too often by increased precision 
for its use when available to be deterred by this example despite its worrisome simplicity.
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§7:  Some More Spikes,  and  MATLAB’s  log2  
Some spikes are deserved;  others are accidents of roundoff.  Both kinds have been difficult to 
detect.  Here is a deceptively simple looking function whose graph deserves a spike:

         Spike(x) := 1 + x2 + log(| 1 + 3·(1–x) |)/80 .

But where is it?           

The plot above was obtained from  1003  points  x = 1/2 + n/669   for   n = 1, 2, 3, …, 1003 .  The 
plot below was obtained from  1000  nearby points  x = 1/2 + n/666   for   n = 0, 1, 2, …, 999 :

     Spike(x) := 1 + x2 + log(| 1 + 3·(1–x) |)/80 .

Why is the spike so short?    

Since  Spike(4/3) = –∞  we expect the spike to plunge down into an abyss,  but it doesn’t.  Below 
is a plot of  Spike(x)  at the  1025  8-byte floating-point arguments  x  adjacent to  x = 4/3 ,  which 
is not one of them.  The argument nearest  4/3  differs from it by  (1/3)ulp ;  an  ulp  is a  Unit in 
the Last Place  the arithmetic carries.  Thus  Spike(x)’s  computed values are always finite.  Its 
spike is too thin and shallow to be discovered by uninformed random search unaided by luck.

Ancient  Greeks  used to say  “ Better to be lucky than clever.”
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   Spike(x) := 1 + x2 + log( | 1 + 3·(1–x) | )/80 .

Here  1.333333333333220 ≤ x ≤ 1.333333333333447 .  The spike is barely discernible much farther from  x = 4/3 .

Some undeserved and unwanted spikes,  accidents of roundoff in software or firmware,  have 
eluded discovery and diagnosis for many years.  For example,  no spike should mar the graph of

log2(x)/(x–1) =  ( 1 – (x–1)/2 + (x–1)2/3 – (x–1)3/4 + … )/log(2) 
plotted at arguments  x  near but not  1 .  However,  here is a spike that has persisted since  1994  in 
three  MATLAB  versions  4.2  to  6.5  on all my computers  (this graph came from an  IBM PC) :

   MATLAB’s  log2(x)/(x–1)

Here and in the next three graphs  0.9999999999998863 ≤ x ≤ 1.000000000000114 .
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MATLAB’s  eps = 2–52 ≈ 2e–16  is an  ulp  of  8-byte  numbers between  1  and  2 .  The graph 
plots   log2(x)/(x–1)  at  1536  consecutive floating-point arguments  x  straddling  1 .  A spike 
exposes errors as big as  4%  in  MATLAB’s  log2(x)  at arguments  x  very slightly bigger than  1 .  
(Thrice bigger errors occur on some other computers.)   Why do  48  sig. bits get lost?

The next graph plots  ( log2(x) – log(x)/log(2) )/eps .  It would be zero in the absence of roundoff.

Since  |log2(x)|/eps  should not exceed  1478 ,  the errors plotted above should not exceed  3000·eps < 7e-13 .  Instead 
huge errors’ amplitudes suggest that  MATLAB’s  log2(x)  comes from a formula that approximates  log2(ƒ·√2)  over  

1/2 ≤ ƒ < 1 ,  after which  log2(x/√2) + 1/2  was expected to deliver  log2(x)  for  x  slightly bigger than  1 .  Delivered 

instead were the rounding errors in  log2(x/√2)  after the rest of it cancelled with  +1/2 .  Better results would be 

obtained from that formula if it were shifted to approximate  log2(ƒ)  over  1/√2 ≤ ƒ < √2 .

The foregoing graphs obtained from  MATLAB 6.5  on a  Wintel PC  exhibit what appears at first 
sight to be a kind of raggedness often associated with misbehavior induced by roundoff.  Closer 
inspection reveals regularities.  In general,  raggedness and roundoff do not always accompany 
each other.  Here are plots of the same expressions at the same arguments as before but now by  
MATLAB 5.2  on an  Apple iMac  (Power PC G3  processor):

LOG2(X)/(X – 1)      ( LOG2(X) – LOG(X)/LOG(2) )/eps

       

−600 −400 −200 0 200 400 600
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

  (X − 1) / eps  

  (
 L

O
G

2(
X

) 
−

 L
O

G
(X

)/
LO

G
(2

) 
) 

/ e
ps

  

-600 -400 -200 0 200 400 600
1.4

1.45

1.5

1.55

1.6

1.65

1.7

  ( X - 1 ) / eps 

  L
O

G
2(

 X
 )

 / 
(X

 -
 1

) 
 

-600 -400 -200 0 200 400 600

0

0.05

0.1

0.15

0.2

  ( X - 1 ) / eps 

  (
 L

O
G

2(
 X

 )
 -

 L
O

G
( 

X
 )

/L
O

G
(2

) 
) 

/ e
ps

 

Prof. W. Kahan                     WORK IN PROGRESS;         COMMENTS ARE INVITED.                      Page 23/56



Mindless                   January 11, 2006 1:50 pm                       §7: Some More Spikes, and MATLAB’s log2 
Instead of oscillation we see a smooth spike and a single jump.  Are they likely to be attributed to 
roundoff by someone who is unsure about how the functions plotted are supposed to behave?  
Analogous graphs plotted on an old  Apple Quadra 950 (Motorola 68040  processor)  show the 
same smooth spike and single jump except for noticeably smaller amplitudes.  These differences 
should suggest roundoff as the culprit to anyone who reran exactly the same computation with 
exactly the same data on those different computers.  How common is such obsessive repetition?

Something else about all foregoing spiky examples is uncommon:  We  (think we)  know which 
spikes are deserved and why.  More often,  albeit still too rarely,  a numerical result comes under 
suspicion because of some anomaly discerned,  perhaps faintly,  before a spike’s existence is 
suspected.  An example of such an anomaly is the pimple in the first graph of  Spike(x)  plotted 
above,—  the graph with no spike.  Many an anomaly like that emanates from a program to whose 
source-text full access is denied.  An example is  MATLAB’s  log2(…) ;  it is a  “built-in function”  
whose algorithm cannot be displayed by  MATLAB’s  user.  And when a program’s source text can 
be displayed,  as can  Spike(…)’s,  “full access”  may overstate how much of the program will be 
comprehended.  Let’s not embarrass the educational establishment by asking …

What percentage of college graduates 
who have passed obligatory  Math.  courses 

can supply correct values for  log(1)  and  log(0) ?

Consider instead the predicament faced by the user of a partially opaque program after it produces 
a possibly dubious result from ostensibly innocuous data.  What can this user do to dispel some of 
the fog of numerical uncertainty?  If recompilation is not an option neither are multi-precision nor  
Interval  arithmetic,  nor randomized rounding on a typical  PC.  Two possible options remain:

One possibility is repeated execution with slightly altered input data.  In general such alterations 
would pose a challenge:  Alter too little and nothing would change;  alter too much and results 
could change too much to convey information of diagnostic value.  For our examples,  after their 
spikes have been located,  altering the data by an ulp or two will provide food for thought.

Another possibility is repeated execution with redirected rounding.  This can be accomplished in  
MATLAB 6.5  on a  PC  by invoking the command  “ system_dependent('setround',  r#) ” 
with r# = +inf   to round  Up,  towards  +∞ ,   or

   = –inf   to round  Down,  towards  –∞ ,   or
   = 0     to round  Towards Zero ,    or
   = 0.5   to round  To Nearest ,   the default.

Let’s try all possibilities.  Here are some results computed by  MATLAB 6.5  on a  Wintel PC :

Spike(x) := 1 + x2 + log( | 1 + 3·(1–x) | )/80

Arguments  x  specified as  x = 4/3 – eps ,  4/3  and  4/3 + eps  came out as shown because  “4/3”  is  (4 – eps)/3 .

Rounding … x = 1.333333333333333037 1.333333333333333259 x = 1.333333333333333481

To Nearest 2.344560789927811 2.327232110413813 2.335896450170813

Towards +∞ 2.344560789927812 2.327232110413813 2.335896450170813

Towards –∞ 2.344560789927811 2.327232110413813 2.335896450170813

Towards  0 2.344560789927811 2.327232110413813 2.335896450170813
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Redirected roundings inside  Spike(…)  have almost no effect upon its computed value.  This  
corroborates  (it doesn’t  prove)  that  Spike(…)’s  spike at  x ≈ 4/3  is deserved.  Changing the  
17th sig. dec.  of  x  changed the  3rd  sig. dec.  of  Spike(x) ,  so its spike must be pretty sharp.  
However,   too few numerical samples were plotted to hint at the spike’s infinite depth.

Guy Steele  has pointed out that  Interval Arithmetic,  properly implemented,  can reveal a spike’s 
depth with little effort by its user.  “Properly implemented”  includes,  among many other things,  
a library program that searches a given domain and finds  all  extrema of a function specified by 
an expression rather than just by a program that can be executed but not read.  Otherwise the 
function’s range may be vastly overestimated.  Here,  simulating an implementation whose 
interval  LOG(…)  is perfect,  is a plot of boxes that surely enclose the graph of  spike(x) :

 Boxed Spike(x) = 1 + x2 + log( | 1 + 3·(1–x) | )/80

Relatively few plotted points suffice to reveal the spike’s existence.  Is the spike’s apparently 
infinite depth an artifact of  Interval Arithmetic’s  pessimism discussed in  §13 ?  Locating so 
narrow a spike sharply enough to plumb its infinite depth persuasively requires a sufficiently 
dense plot feasible only if  Interval Arithmetic  is integrated with floating-point arithmetic of 
arbitrarily high run-time precision.

Whether  Interval Arithmetic  could reveal the anomaly in  log2(x)/(x-1)  to  MATLAB’s  user  
is hard to say.  The anomaly is a bug.  Would it be inherited by  Interval Arithmetic?  More likely 
is the  programmer  of  MATLAB’s  log2(…)  to be aided in validating his program or exposing its 
defects with the aid of  Interval Arithmetic,  and then only if the specifications for his program’s 
tolerable error are bug free.  Validation is an interesting topic for another day.
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This document concerns a software user’s ability to track down a probable cause for suspicious 
behavior.  Initially the user would not know that  log2(…)  is anomalous.  The user will decide to 
test it only after a process of elimination has brought suspicion upon it.  What test can he try?

Redirected roundings testify to a bug in  MATLAB 6.5’s  log2(…) :  Its rounding errors ruin all but 
the first few sig. bits of its value at arguments  x  barely bigger than  1 .  Arguments  x  barely less 
than  1  produce values near  1/log(2) = 1.4426950408889634…  as they should.  This table can 
be sent  (it has been)  as convincing evidence of a bug to  MATLAB’s  author.  While awaiting a 
helpful response,  MATLAB’s  user can substitute  “ log(x)/log(2) ”  for  “ log2(x) ”  in his 
arithmetic expressions unless he expects  “ log2(2^n) ”  to reproduce every integer  n  exactly 
unless over/underflow interferes.  A slower more accurate program is my  lg2(x)  posted at

http://www.cs.berkeley.edu/~wkahan/LOG10HAF.TXT .

  MATLAB  6.5’s     log2(x)/(x–1) 

Rounding … x = 1 – eps/2 x = 1 + eps 

To Nearest 1.442695040888963 1.5

Towards +∞ 1.442695040888964 2

Towards –∞ 1.442695040888963 0.5

Towards  0 1.442695040888963 2
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§8:  An  Old Hand  Accuses Division  
Many an  Old Hand  at floating-point computation will point to what causes trouble in  §6’s  
Smooth Surprise  immediately;  he will blame the tiny divisor  z  in

T(z) :=  { If  z = 0  then  1  else  ( exp(z) – 1 )/z } .
It is an instance of a hazard the  Old Hand  remembers well,  namely conditional statements like

… If  x = y  then  …   else  …/(x–y) .
These used to malfunction routinely when the two predicates  “ x = y ”  and  “ x–y = 0 ”  had 
inconsistent boolean values on many computers and/or with some compilers in the  1970s.  On  
CDC 6x00s  division-by-zero could thwart  T(z) ,  logic notwithstanding,  unless  “ If  z = 0.0 ”  
were replaced by  “ If z·1.0 = 0.0 ” .    None of that happens now,  at least not on machines that 
conform fully to  IEEE Standard 754 (1985)  as almost all do now.  Many algorithms that used to 
malfunction mysteriously or dramatically,  depending upon the hardware and/or compiler,  now 
work about as well as they deserve.  How well do they deserve to work,  and who decides?

 “Use every man after his desert,  and who should ’scape whipping?”      Hamlet,  act II sc. ii .

The nearly universal adoption of  IEEE 754  in the  1980s  replaced previous fuzzy mental models 
of floating-point arithmetic by a sharper mathematical model from which reasonble expectations 
of computational behavior could more easily be inferred and proved,  at least in principle.  By 
enhancing computed results’ predictability,  IEEE 754  enhanced also their achievable quality.

For example take the revised program for  T(z)  above,  which can be rewritten in one line thus:
      T(z) := { If  exp(z) = 0  then  –1/z  else if  exp(z) = 1  then  1  else  (exp(z) – 1)/log(exp(z)) } .
This version has the same division as before except for two extra rounding errors which,  when  z  
is too tiny,  turn the quotient into  Roundoff/Roundoff  in the eyes of the  Old Hand.  And  Interval 
Arithmetic  evaluation of that quotient would confirm his fear of its indeterminacy.  But we know 
now that its indeterminacy is illusory.  Instead a rounding error in the numerator’s  exp(z)  is offset 
by the same one in the denominator to produce an almost fully accurate quotient provided

log(x) = (x–1)·(1 – (x–1)/2 + (x–1)2/3 – (x–1)3/4 + … ) ,    when   |x–1| < 1 , 
is computed as accurately as we have every right to expect nowadays,  namely well within a unit 
in the last digit carried by the arithmetic.

Of course,  the revised version of  §6’s  T(z)  is a trick.
 “A trick used three times becomes a standard technique”  (G. Pólyà). 

A similar trick figures often in financial calculations involving mortgages,  bonds,  leases and 
loans.  Frequently they entail computation of the  Future Value  function

FV(N, x) :=  { If  x = 0  then  N  else  ( (1+x)N – 1 )/x  } 
in which the number of payment periods  |N|  is a moderately big integer,  and the periodic interest 
or discount rate  x = i/100 ,  expressed as a fraction instead of a percentage  i ,  is fairly small in 
magnitude unless usury is in force.  If  |x|  is too tiny the foregoing expression for  FV  can lose all 
its sig. digits to roundoff as did the original  T(z)  above,  and in the same way obvious to the  Old 
Hand.  This is not the place to explain how the trick rescues  FV .  Instead,  to tantalize the  Old 
Hand,  here is a simpler revised  (unless the compiler  “optimizes”  parentheses away)  expression 
for the same function:

FV(N, x) :=  { If  (1+x) = 1  then  N  else  ( (1+x)N – 1 )/( (1+x) – 1 )  } .
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To  Old Hands  an expression with two extra rounding errors in its divisor seems more likely than 
the original to lose all digits carried when  |x|  is tiny,  yet nowadays it can be proved to lose at 
most half the sig. digits carried by arithmetic provided integer  |N|  is not immoderately big.

This phenomenon,  losing at most half the digits carried to roundoff,  occurs surprisingly often.  
Half full,  or half empty?  Some applications cannot tolerate so great a loss when it carries away 
anticipated properties like smoothness,  monotonicity and symmetry too.  Other applications,  like  
least-squares linear regression to statistical data in the life and social sciences,   need no more than 
seven sig. dec. in their results and achieve that accuracy fastest by carrying over twice as many 
sig. dec. during their arithmetic.  Either way,  the phenomenon raises doubts about glib diagnoses 
of  “Small Divisors”  and  “Cancellation”  as invariable concomitants of numerical distress.

Programmers who still fear division can compute  FV  well for moderately big positive integers  N  without any 

division at all,  and with about twice as much work as would be required to compute  (1+x)N  alone by means solely 
of multiplications and additions.  The algorithm’s derivation via  Divided Differences  is left as an exercise.

There is just one reason to fear floating-point division:  It can be slow.  A hardware designer,  after 
noticing how many fewer divisions occur than multiplications and add/subtractions,  may have  
“optimized”  his design in a way that causes divisions to run too slowly.

Unless a programmer loses his nerve,  he need no longer fear that  Division-by-Zero  will derail 
his program.  For instance,  Secant Iteration  solves a real or complex equation  ƒ(z) = 0  for a real 
or complex scalar unknown  z  by generating a sequence of presumably improving guesses

xn+1 := xn – (xn – xn–1)·( ƒ(xn)/( ƒ(xn) – ƒ(xn–1) ) ) .
The program reacts to an  ∞  produced by  Division-by-Zero  (since  0/0  and  0·∞  are ruled out by 
prior tests)  the same way it reacts to a wildly aberrant  xn+1  caused any other way:  Replace an 
aberrant  xn+1 by another guess moderated by the history of recent iterations.

Some divisions by zero must be averted.  The ways we did that three decades ago are no longer 
the only ways.  Moreover,  newer ways can produce better results more easily than older ways did.

Here is an example:  For  all finite  x > 0  consider the function

ƒ(x) :=  { if  x < 1  then  –arctan(log(x))/arccos(x)2  
else if  x = 1  then  1/2  

else  arctan(log(x))/arccosh(x)2  } . 

It has a smooth graph.  It is smooth as  x  passes through  1  because this  ƒ(x)  has a convergent  
Taylor Series  there that will be exhibited in a moment.  As  x → 0+  the graph rises to  ƒ(0) = 2/π  
sharply because  ƒ'(0) = –∞ .  A graph computed from the foregoing formula for  ƒ(x)  appears 
below.  It looks perfectly smooth as  x  passes through  1 ,  but appearances deceive.  Actually,  old  
386-MATLAB  running on a  PC  lost  26  of the  53  sig. bits it carried during the computation of  
ƒ(x)  at arguments  x  next to  1 .  The graph’s resolution is too coarse to reveal the loss.
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        ƒ(x)  plotted by  386-MATLAB v. 3.5m  (1992)

To expose  386-MATLAB’s  errors we must first compute  ƒ(x)  correctly around  x = 1  using its 
series.  A brief look at nine terms of its  Taylor  series

     ƒ(1+z) = 

computed by  MAPLE®  persuades us of two things:
•  At most a few leading terms involve integers small enough to be computed by hand.
•  The series converges slowly;  its radius of convergence is  1  since  ƒ'(1 + (–1)) = –∞ .

Thus the series serves to check any other program’s accuracy only in a narrow neighborhood of  
ƒ(x)’s  removable singularity at  x = 1+z = 1 ,  where  ƒ(1) = 1/2 .  Below is a graph of the error,  
the difference between  386-MATLAB’s  ƒ(x)  and its series,  plotted at  401  consecutive floating-

point arguments  x  running from  1 – 100·eps  to  1 + 200·eps ,  where  eps = 2–52 ≈ 2.210–16 .

ULPs  of  Error  in  386-MATLAB 3.5’s  ƒ(x)
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The error is measured in  ULPs  (Units in the Last Place)  of the values of  ƒ(x) ,  whence an  

ULP = { if  x > 1  then  eps/2 ≈ 1.1/1016  else  eps/4 } .  Note the scale  ( x 107 ULPs )  of the 
vertical axis.  The worst error is  74055679.7 ULPs  at  x = 1 – eps/2 .

What caused those errors?  To assist diagnosis,  we reran the computation of  386-MATLAB’s  ƒ(x)  
in  Directed Rounding Modes  (Scheme 2  in  §4).  Results tabulated here expose hypersensitivity 
to roundoff enough to arouse suspicion but not yet enough for conviction.

To sharpen the focus of diagnosis,  we reran separately the subprograms used in  386-MATLAB’s  
ƒ(x)  with the same inputs as revealed the hypersensitivities just exposed above.  386-MATLAB’s  
log  and  atan  were almost indifferent to directions of rounding,  but the table below shows how 
its  acos  and  acosh  turned out both hypersensitive and wrong in almost half their sig. bits.  
Suspicions aroused by evidence of hypersensitivity were confirmed by comparison with correctly 
computed values of  arccos(1–eps/2)  and  arccosh(1+eps) .  Note that the errors in  MATLAB’s  
acos  and  acosh  were far tinier than the variations caused by redirected roundings.  Actual errors 
had to be determined the hard way:  Compute correct values somehow and then compare.

MATLAB’s  acos  is a  “built in”  function whose source-text has been inaccessible to  MATLAB’s  
users for decades.  MATLAB 3.5 (1991)  on  680x0-based  Macintoshes,  and  MATLAB  versions  
4.2 (1997)  and later on  Macs  and  PCs  have enjoyed accurate implementations of  acos.

MATLAB’s  acosh  has been implemented inaccurately as an  .m  file,  and therefore accessible and 
alterable,  from early versions in  1984  until version  5.2 (1998).  Accurate implementations of  
acosh  were built into versions  5.3 (1999)  and later on  PCs.

When  acos,  acosh,  atan  and  log  are each accurate within less than an  ulp,  the formula for  
ƒ(x)  given above transliterates into a program whose error can reasonably be expected never to 

 386-MATLAB’s  ƒ(x)  computed with Directed Roundings

Direction ƒ(1–eps/2) ƒ(1+eps)

To Nearest : 0.5000000041109161 0.4999999960408469

To Zero : 0.5000000041036400 0.5000000065775587

To  +∞ : 0.5001221042336121 0.9999999552965182

To  –∞ : 0.5000000041036401 0.5000000065775587

 386-MATLAB’s  acos  and  acosh  with Redirected Roundings

Direction 108·acos(1–eps/2) 108·acosh(1+eps)

To Nearest : 1.490116113259023 2.107342433887993

To Zero : 1.490116113269865 2.107342411683533

To  +∞ : 1.489934203216439 1.490116152691456

To  –∞ : 1.490116113269865 2.107342411683533

Correct value: 1.49011611938476564 2.10734242554470155
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exceed a few ulps.  Such expectations are consistent with this graph of the program’s error plotted 
at  1025  consecutive floating-point arguments  x  between  1 – 256·eps   and   1 + 512·eps :

ULPs of Error  in  PC MATLAB 6.5’s  ƒ(x)

(x – 1)/eps

Compare this graph’s and the previous graph’s vertical scales.  Here satisfactorily small ragged 
rounding errors confirm that division by tiny divisors need not cause numerical distress if they are 
correlated properly with their numerators.  But now this and previous graphs raise worrisome 
questions about the diagnosis and persistence of erroneous numerical software.  …

Why have erroneous implementations of fundamental functions like  acos,  acosh  and  log2  
persisted in  MATLAB  for so many years?  Have their errors escaped notice by  MATLAB’s  many 
myriads of users?  It’s possible.  I noticed these errors only after slightly excessive discrepancies 
among results from old and new versions of  MATLAB  on  PCs,  Power Macs  and my old  Quadra  
aroused my curiosity during the preparation of numerical exercises for students.  Not everyone 
gets an opportunity to compare numerical results from so many sources.  Not everyone wants one.

With one thermometer you always know the temperature;  with two of them you rarely know it.

The longevity of inaccuracies in numerical software by and for numerical adepts has ominous 
implications:  Numerical software does not have to be very complicated to be difficult to debug by 
experts,  practically impossible to debug by amateurs.  Numerical software from numerically 
naive programmers,  no matter how competent they are in other fields,  must often be much less 
accurate than programmers and users believe.  How often?  How much?  How would we know?

Another possibility,  Unnecessarily Low Expectations,  may explain the persistence of erroneous 
numerical software.  Old Hands  at numerical computation may recall that in the  1950s  floating-
point arithmetic’s errors were generally deemed impossible to analyze.  John von Neumann  had 
recommended against building floating-point into computers in  1947.  But by  1960  numerical 
analysts,  particularly  James H. Wilkinson,  were promulgating explanations for floating-point 
errors under the heading of  Backward Error-Analysis.  It went like this:
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Many numerical programs are hypersensitive to roundoff for at least some data if not all.  Some 
are deemed  Numerically Stable  when their results are scarcely worse than if their data had been 
perturbed by a few  ulps  first and then computation had been performed exactly without roundoff.  
For example,  the solution of matrix equations  A·Z = B  by  Gaussian Elimination  with  Pivotal 
Exchanges  is numerically stable in this sense except for pathological cases.  Eigensystems of all 
symmetric matrices and of all but pathological nonsymmetric matrices can be computed by stable 
algorithms replacing a plethora of unstable algorithms advocated in the literature before  1960.  A 
small  Residual  is typical of algorithms stable in the backward sense:  Even if wrong,  the matrix  

X  by which  Gaussian Elimination  approximates the solution  Z = A–1·B  almost always has a 
small residual  A·X – B  satisfying an inequality like

||A·(X – Z)||  =  ||A·X – B||  ≤  γ·n3/2·ε·( ||A||·||X|| + ||B|| )
wherein  γ  is a moderate constant,  n  is the dimension of  A ,  and  ε  is a rounding error threshold 
like  MATLAB’s  eps.  “Almost always”  allows for pathological exceptions like matrices  A  so 
nearly singular that  Gaussian Elimination  may well be thwarted for lack of a nonzero pivot.

The success of  Backward Error-Analysis  at  explaining  floating-point errors has been mistaken 
by many an  Old Hand  as an  excuse  to do and expect no better.  Since  MATLAB’s  log2(x)  
computes  log2(x·(1 + æ))  for some unknown  |æ| < eps  he could deem it numerically stable in 
the sense of  Backward Error-Analysis.  Likewise for old  acos(x) ≈ arccos(x·(1 + æ'))  and old  
acosh(x) ≈ arccosh(x·(1 + æ")) .  To tolerate such errors for doctrinal reasons would be illogical,  
unnecessary,  and pernicious.  Illogical because  Backward Error-Analysis  explains but does not 
excuse.  Unnecessary because accurate implementations of those functions for  IEEE 754  have 
been available for decades on  Macs  and  PCs;  other computers could use the  Math.  library 
released in the  1980s  with  4.3 BSD Berkeley UNIX  and now refined and promulgated for use 
with  Java  as  fdlibm,  the freely distributed math. library maintained by a few  U.C. Berkeley  
graduates now working for  Sun Microsystems.  MATLAB  uses  fdlibm  nowadays.

Tolerating unnecessary backward errors in the  math.  library is pernicious in so far as it obstructs 
the numerical removal of mathematically removable singularities.  Our example  ƒ(x)  above will 
illustrate what goes wrong.  Suppose  log,  arccos  and  arccosh  were implemented no better than 
a mistaken  Old Hand  might expect;  suppose  (oversimplified)  that their implementations were
   LOG(x) = log(x·(1 + æ)) ,  ACOS(x) = arccos(x·(1 + æ'))  and  ACOSH(x) = arccosh(x·(1 + æ"))
wherein  |æ| < ε ,  |æ'| < ε  and  |æ"| < ε := (roundoff threshold) .  The tiny perturbations  æ, æ'  and  
æ"  are accidents of roundoff and therefore uncorrelated for all we know.  They would induce 
uncertainties  (bounds upon errors)  amounting roughly  (oversimplified)  to …

| LOG(x) – log(x) |  ≤  ε  ,

| ACOSH(x) – arccosh(x) |  ≤  ε·x/√(x2 – 1)  ,       and

    | ACOS(x) – arccos(x) |  ≤  ε·|x|/√(1 – x2)  .
The oversimplifications affect the first two inequalities when  |log(x)|  is huge,  and the last two 
when  |x – 1|  is not much bigger than  ε ,  but neither of these cases will matter to what follows.

The obvious implementation of function  ƒ(x)  as a program  f(x)  looks like this:

f(x) :=  { if  x < 1  then  –ATAN(LOG(x))/ACOS(x)2  
else if  x = 1  then  1/2  

else  ATAN(LOG(x))/ACOSH(x)2  } . 
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And this program produced all the graphs of  f(x)  displayed above.  But if the math, library were 
so inaccurate as an  Old Hand  might mistakenly expect,  the program’s relative uncertainty at 
arguments  x  near  1.0  (but not so near that  |x – 1|  is not much bigger than  ε )  would be roughly

  | f(x) – ƒ(x) |/ƒ(x)  ≤  ε·( 3 + 2/|x–1| ) .
Thus,  program  f(x)  could lose all but a few sig. bits,  for all the  Old Hand  knew.

But the  Old Hand  knew how to avoid most of that loss by using  N  terms of the  Taylor  series

ƒ(x) = 

when  |x–1| < ΘN  for some suitably chosen small integer  N  and threshold  ΘN .  His program  
f(x)  looked like this:

f(x) :=  { if  x ≤ 1–ΘN  then  –ATAN(LOG(x))/ACOS(x)2  

      else if  x ≥ 1+ΘN  then  ATAN(LOG(x))/ACOSH(x)2  
       else  ( N  terms of the series for  ƒ(x)  around  x = 1 )  } . 

By chosing threshold  ΘN  properly he got his program’s relative uncertainty down to roughly

  | f(x) – ƒ(x) |/ƒ(x)  ≤  min{  ε·( 3 + 2/|x–1| ) ,   2ε + 2µN·|x–1|N  } 

wherein  µN  is the magnitude of the coefficient of the first omitted term  ±µN·(x–1)N  in the series.  

A rough estimate adequate for our purposes is  µN ≈ 1/20 ,  correct within an order of magnitude 

unless  N  is 37 or 81 .  Given  N ,  a properly chosen  ΘN  makes  ε·( 3 + 2/ΘN ) ≈ 2ε + 2µN·ΘN
N ,  

which happens nearly enough when  ΘN ≈ (ε/µN)1/(N+1) ,  and then the program’s uncertainty 

peaks at roughly  2ε·(1 + (ε/µN)–1/(N+1) )  when  x = 1 ± ΘN .  The bottom line is this:

The  Old Hand’s  program  f(x)  lost almost  1/(N+1)  of the sig. bits carried,  whereas
the obvious program  f(x)  loses just a few sig. bits nowadays.  For similar accuracy,
N  had to be a substantial fraction of the number of sig. bits carried by the arithmetic.

Worse than this extra work is that the  Old Hand’s  old ways imposed a superfluous burden upon 
the conscientious programmer,  the one who tries to achieve fully accurate results over as wide a 
range of valid inputs as possible.  This is the kind of person we hope is programming the design,  
construction and control of our transportation,  our bridges and buildings,  our chemical and 
pharmaceutical processes,  etc.  To burn such programmers out prematurely seems perverse.
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§9:  Repeated Randomized Rounding  
Roundoff may be accidental but never random.   A few rounding errors,  probably one or two,  did 
most of the damage to  MATLAB’s  log2(x)/(x–1)  tabulated in  §7;  and plots of the scaled error  
(log2(x) – log(x)/log(2))/eps  exhibit regular rather than random behavior as  x  increases past  1 . 

Roundoff is not random,  yet mathematical models that pretend roundoff is random have their 
uses,  and abuses.  Such a model can be exploited by a numerical analyst during an error-analysis 
of her program which then she can test upon randomly sampled data for which accurate results are 
known or computable by a  (presumably)  slower program.  If her program’s actual errors too far 
exceed what her analysis led her to expect,  she will know something is wrong with her program 
or her error-analysis of it.  Diagnosis and correction can ensue.  This is a good use of statistics.

Statistics get abused when an engineer,  economist  or  …  using that program relies naively upon 
a probabilistic estimate of the error in the program’s output for his particular input data.  Results 
from slightly different randomly perturbed data can be interpreted properly only in the light of an 
adequate understanding of both the function desired and the function computed by the program.  
How much should the desired function vary when its data is varied?  If the computed function 
varies not much more than that,  has it been shifted,  as  §6’s  G(x)  got shifted,  by far more than 
the variations?  Has all perturbed data fallen on the wrong side of a step like the one in  §7’s  last 
graph?  Only error-analysis of the program can answer these last two questions.  It’s not mindless.

To gauge how badly roundoff affects a computed result,  recomputation with perturbed rounding 
errors makes sense.  Lest a few such recomputations produce biased results,  randomly perturbed 
rounding errors seem appropriate.  The hope is that the recomputed results’ mean approximate the  
“True Result”  that would be obtained if all rounding errors assumed their mean value  (zero 
presumably),  and that the recomputed results’ variance can be used to estimate the probability of 
too large a gap between their mean and that  True Result.  This hope is misplaced.

Alas,  randomized rounding has a fatal flaw.  It has had to be rediscovered the hard way by well-
intentioned advocates of recrudescing proposals ever since randomized rounding was first  (so far 
as I know)  proposed for the  IBM 7030 “Stretch”  in the late  1950s.  The fatal flaw arises out of 
conditions inadequate to sustain two bedrock principles of  Statistics:

•  The Law of Large Numbers:  As ever more independent unbiased random samples are drawn
from a population,  the samples’ mean and variance will approach the population’s.

•  The Central Limit Theorem:  If sufficiently many independent random variates have variances
not too dissimilar,  the variates’ sum will be a random variate distributed approximately
Normally  with mean the sum of their means,  and variance the sum of their variances.

Regardless of whether a large number of rounding errors contribute to each recomputed result,  a 
large number of these results  (each is one sample)  must be computed to satisfy the  Law of Large 
Numbers.  But nobody is eager to spend a lot of time on a large number of recomputations.

Regardless of whether a large number of rounding errors contribute to each result,  they are far 
less likely than men to be  “all … created equal and independent”  as asserted in  Jefferson’s  first 
draft of the  Declaration of Independence.  Quite often a computed result’s error is dominated by 
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so few as one or two rounding errors,  as is  MATLAB’s  log2(…) .  Even the solution of a huge 
system of linear equations by  Gaussian Elimination,  incurring millions of rounding errors,  is 
often perturbed predominantly by two rounding errors incurred in the first pass of elimination,  
especially when the system of equations is hypersensitive to roundoff because of  “ill-condition”.  
An example is exhibited below.  In general,  the one or two most injurious rounding errors are no 
easier to distinguish from the others than are pickpockets in a crowd at the racetrack.  In short, 

Without an error-analysis,  the  Central Limit Theorem  cannot be
relied upon to estimate from the variance of a few recomputed results
how likely is their mean to differ vastly from the  True Result.

Our example is drawn from a scheme called  “CESTAC”  patented in  Europe  by  J. Vignes  in the 
late  1970s.  It added  +1,  –1  or  0  chosen randomly to the last bit of every arithmetic operation.  
A better scheme circumvents  Vignes’  patent by randomly toggling  UP  or  DOWN  the directed 
rounding,  mandated by  IEEE Standard 754  for Binary Floating-Point Arithmetic,  before each 
arithmetic operation.  Stephan G. Popovitch  seems to have done that in his version of  CESTAC  
called  “ProSolveur”.  It  attempts to solve small systems of equations on an  IBM PC  using three  
randomly rounded computations to assay the accuracies of results.  Then  ProSolveur  displays 
only those figures it  “believes”  to be correct.  Of the many ways  ProSolveur  can go astray,  only 
one of those we believe characteristic of  CESTAC  is exposed by the simple example exhibited 
below.  Here is  Prosolveur’s  welcoming screen:
=============================================================================

      (c) Copyright 1987 - LA COMMANDE ELECTRONIQUE - Tous droits réservés

PROSOLVEUR

             »  ProSolveur Version 1.1  par Stephan G. POPOVITCH  «

                       Frappez une touche pour continuer

=============================================================================

ProSolveur’s  user enters algebraic equations symbolically to be solved numerically,  indicates 
which symbols represent data  (parameters)  and which are unknowns  (“inconnus”  in  French),  
and supplies values for the data.  Then  ProSolveur  displays its results and the user’s data and 
equations in two panels under headings of which only the following need be explained:

st Entry’s Status,  p = parameter (datum),  i = “inconnu”  (unknown).
entrée Initially,  user’s guess,  if any;  afterwards,  Prosolveur’s  “résultat”.
±(%) Percentage uncertainty  ProSolveur  attributes to  entré  or  résultat.
unité Unit  ( $,  Km,  Kg,  sec.,  … )  if one has been chosen by the user.
résultat Prosolveur’s  result displayed to as many  sig. dec.  as  Prosolveur  deems correct.
id Line number identifying an equation or a comment beginning with  “*”.
fichier Name of the disk(ette) file containing the line identified.
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2x2  Problem  submitted thrice to  ProSolveur :
 ====================== variables =====================================
 st   entrée          ± (%)       nom          unité       résultat
 p      4194304.000               A
 i                                x
 p      4194303.000               B
 i                                y
 p      4194302.000               C
 p            3.000               p
 i                                X
 i                                Y
 i                                µ
 i                                ß
 ====================== équations =====================================
 id    équation                                               fichier
 (1)                                                          << ? >>
 (2)   A*x + B*y = 0                                          2X2
 (3)   B*x + C*y = p                                          2X2
 (4)                 A*X + B*Y = 0                            2X2
 (5)                 B*X + C*Y = p                            2X2
 (6)                               A*µ + B*ß = 0              2X2
 (7)                               B*µ + C*ß = p              2X2
 ======================================================================
 no des équations du système à résoudre : 2:7

The command line beneath the panel above displays the  id  numbers of equations  ProSolveur  
has been asked to solve,  and also its warning messages if any.  Our example,  the simplest of 
many,  exposes a failure mode by asking  ProSolveur  to solve six repetitive linear equations:

Results  delivered by  ProSolveur :
 ====================== variables =====================================
 st   entrée          ± (%)       nom          unité       résultat
 p      4194304.000               A
 i         1.3E+007   1           x                        1.3E+7
 p      4194303.000               B
 i        -1.3E+007   1           y                       -1.3E+7
 p      4194302.000               C
 p            3.000               p
 i         1.2E+007   1           X                        1.2E+7
 i        -1.2E+007   1           Y                       -1.2E+7
 i     12509610.504               µ                        1.2509611E+7
 i    -12509613.487               ß                       -1.2509613E+7
 ======================================================================

Since the determinant of the equations is  A·C – B·B = –1 ,  the ideal results  (with no rounding 
error)  for this ill-conditioned  (hypersensitive to roundoff)  linear system should be

        x = X = µ = 3B = 12582909   and   y = Y = ß = -3A = -12582912 .
ProSolveur's  awesomely optimistic claims for the accuracies of its computed  µ  and  ß  indicate 
that the three  “random”  samples drawn by  ProSolveur  are far too few because they were drawn 
from a nearly  discrete  rather than continuously distributed population.  The only rounding errors 
that matter in this computation are the two committed during the computation of  B·(B/A) ,  after 
which  C – B·(B/A)  mostly cancels to a very rough approximation of  1/A  without generating 
any more error.  There are only two ways to perturb each of those two crucial rounding errors,  so 
the probability that both would repeat in all three samples is  1/16 .  This is the probability that  
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ProSolveur  will say that its error is too small to estimate,  below  0.00001% ,  when actually its 
error is about  57000  times bigger than that for our example’s calculation.  If the  Central Limit 

Theorem  applied,  the probability of such a big error would be not  1/16  but below  10–70000 .

More instances of  ProSolveur’s  naively excessive optimism have been posted at
http://www.cs.berkeley.edu/~wkahan/improberr.pdf .

Applied mindlessly,  recomputation with randomized roundings provides no reliable estimate of 
the probability of rare errors far larger than were anticipated.  And without knowing whether such 
gross errors have occurred,  how can their cost be predicted?  What good is a probabilistic error 
estimate that cannot support the calculation of a price worth paying for insurance against the 
possibly calamitous cost of intolerably large errors?  Even if a procedure produces probabilistic 
estimates that have turned out about right in numerous test cases each susceptible to confirmation,  
these ostensibly successful tests are misleading without a fair appraisal of the incidence of failure,  
and also of the existence of failure modes overlooked by the tests’ designers.

Imponderable probabilities multiplied by imponderable costs of calamitous errors should not be 
allowed to paralyze us.  Life is too full of imponderables.  Probabilistic error estimates deserve to 
be trusted for any computation whose error-analysis vindicates them.  But these are not mindless.

We have yet to consider the possibility that probabilistic rounding may have ruined a subprogram 
that was designed to work and works well only if rounding is performed as specified or expected 

by the programmer.  Many of the math. library’s “built-in”  functions like  pow(x, y) = xy  and  
floor  are like that.  If presumed utterly trustworthy  (not being debugged),  such subprograms’ 
innards must be sheltered from schemes that rerun distrusted programs in altered rounding modes.

Even with pivotal exchanges,  Gaussian Elimination  is  not  utterly trustworthy.  Scattered results from redirected 
roundings can be due to an ill-conditioned  (nearly singular)  matrix like the one presented above to  Prosolveur,  or 
else due to poor scaling or other rare accidents which  Backward Error-Analysis  explains but does not excuse.

Let us not confuse randomized rounding during recomputation with systematically redirected 
rounding during recomputation as exemplified in  §7’s  tabulation of  log2(x)/(x–1) .  The two 
recomputation schemes have different purposes.  Systematically redirected rounding explores the 
behavior of a software module suspected of hypersensitivity to roundoff at a particular set of input 
data.  Such exploration is unlikely to prove anything with mathematical certainty.  Instead such 
exploration is highly likely to strengthen suspicion if it is deserved,  or to allay suspicion and 
guide searches for the source of a numerical anomaly elsewhere.
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§10:  Cancellation is Not the Culprit 
Diagnosis would be easier if a program’s numerical instability in the face of roundoff were visible 
to the naked eye in the program’s text,  unlike its computed results erroneous for some perhaps 
infinitesimal range of data.  The  “Usual Suspects”,  subtractions susceptible to cancellations and 
divisions susceptible to small divisors,  were nearly exonerated during the explanation of  §6’s  
Smooth Surprise,  the function  G(x) ≡ 1  for which zero is almost always computed.  Neither 
cancellation nor small divisors need be concomitants of numerical distress.  Another suspect,  
arithmetic operations so numerous that their hordes of rounding errors threaten to overwhelm the 
desired result,  can hardly ever carry out such a threat.  Instead,  floating-point computation may 
go utterly awry without …

•  Subtractions (hence no cancellation) ,
•  Divisions (hence no small divisors) ,   nor
•  Very many arithmetic operations (hence no hordes of rounding errors).

Next is an example with only  256  arithmetic operations,  and yet it loses all the figures carried by 
every commercially significant computer’s floating-point hardware no matter how many sig. dec. 
or bits are carried.  (The current maximum is below  36  sig. dec.,  120  sig. bits).  Worse, …

Most  numerical  computations  that  go  awry  because  of  roundoff
behave  more  nearly  like  this  next  example  than  like  our  others.

Define a floating-point-valued function  H(X)  for nonnegative floating-point arguments  X  thus:

Y := √√…√√√X  ; …  128  consecutive square roots …

H := ((…((Y2)2)2…)2)2 . …  128  consecutive squares.

A naive expectation is that  H(X)  should match  X  except perhaps in its last three sig. dec.  or last 
nine sig. bits.  Something utterly else happens.  What follows is a plot of  H(X)  versus  X  as 
computed by arithmetic rounded to  53  sig. bits:

     H(X) := ((…((Y(X)2)2)2…)2)2   where   Y(X) := √√…√√√X  ,    128 times each
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The same thing happens on  Sun SPARCs,  on recent  (for  25  years)  hp calculators,  on  PCs  and 
recent  (since 1995)  Macintoshes  using recent versions  ( 5  or later)  of  MATLAB,  and so on.

How can this graph be explained?  Of course  H(0.0) = 0.0  and  H(1.0) = 1.0  because then  H  

commits no rounding errors.  Otherwise  Y  must be a rounded approximation to  .  Let’s 
suppose that the computer rounds every square root correctly  (error smaller than  0.5  in the last 
digit retained).  If  X > 1  then  Y = 1  exactly;  do you see why?  And then  H = 1  exactly too.  On 
the other hand,  if  0 < X < 1  then  Y = 0.999…999  or the the arithmetic’s binary floating-point 

number next less than  1 ;  do you see why?  And then raising that number  Y  to the power  2128  
Underflows  (do you see why?)  to  0.0 ,  which is returned as  H(X) .

However,  some computers and calculators do something else;  here is their graph of  H(X) :

Why?  The previous page’s analysis implies that  sqrt(x)  must sometimes return something else 
than  ( √x correctly rounded )  on computers that produce the last graph.  Instead,  if  s = 1 – µ  is 
the floating-point number next less than  1 ,  namely  s = 1 – eps/2  in  MATLAB,  s = 0.9999…999  
in decimal arithmetic,  then  sqrt(s)  must return  1.0  instead of  s  on those computers.  Actually   

√s = 1 – µ/2 – µ2/8 – …  falls so nearly halfway between  s  and  1  that  sqrt(s)  can be extremely 
nearly correctly rounded and yet be rounded wrongly up instead of down.  Most computers did 
this until the late  1980s  when  IEEE Standard 754 for Binary Floating-Point  became ubiquitous.

Something else again can happen on the old  Apple Mac Quadra’s  68040  and on  Intel-based  
PCs  and their clones though they conform to  IEEE 754.  It is a double rounding.  First  sqrt(s)  is 
rounded correctly to  64  sig. bits in one of a set of floating-point registers intended to evaluate all 
subexpressions to this wider precision regardless of the narrower precisions,  53  or  24  sig. bits,  
of many operands.  Normally this extra precision would be advantageous in so far as it attenuates 
roundoff in all subexpressions,  literal constants and local variables before they are rounded back 
to  53  or  24  sig. bits in  8-byte  or  4-byte variables stored in memory for subsequent display or 
communication.  Alas,  the programming language community and especially  Bill Gates Jr.  at  
Microsoft  and  Bill Joy  at  Sun Microsystems  failed to appreciate the importance of that extra 
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precision and consequently declined to support it,  so it is threatened with atrophy now.  But all 
that is a story for another day;  see my web page’s  “How Java’s Floating-Point Hurts Everyone 
Everywhere”,  …/JAVAhurt.pdf ,  and  “Marketing vs. Mathematics”,  …/MktgMath.pdf ,  and  
“MATLAB’s Loss is Nobody’s Gain”,  …/MxMulEps.pdf .

When older versions of  MATLAB  first round  sqrt(1 – eps/2)  to  64  sig. bits in one of those extra-
precise but anonymous floating-point registers,  the result is  1 – eps/4  correctly but temporarily.  
This result is then stored in an  8-byte  memory cell rounded to  53  sig. bits;  it rounds correctly to  
1.0 ,  which explains the last graph with a step at zero.

Version  6.5  of  MATLAB  can set bits that control rounding precision in the  PC’s  floating-point 
registers to mimic  SPARCs  and other workstations’  8-byte  floating-point,  thus rounding  
sqrt(8-byte)  once to  53  sig. bits.  This version gets the graph with the step at  x = 1 .  To benefit 
from extra precision during the multiplication of non-sparse matrices in  MATLAB 6.5  on  PCs,  
invoke  “ system_dependent(‘setprecision’, 64) ”.  Then  sqrt(8-bytes)  will get rounded 
correctly twice,  producing the graph with a step at zero.

Why should we care that an extravagantly complicated computation of  H(X) = X  misbehaves in 
obscure ways because of roundoff?  Because most computations deemed  “numerically unstable”  
malfunction in a similar way,  usually exposed by casual tests.  Commonplace instances include 
differential equation solvers and eigensystem solvers.  And because their malfunctions have so 
much in common,  an explanation for them in general mathematical terms deserves our attention.

Suppose a floating-point program  F(X)  is intended to compute a function  ƒ(x) .  The program  
F(X)  you see is not the program you get.  Instead you get a function  f(x, r)  in which  r  is a 
column of rounding errors,  one for every arithmetic operation in  F(X)  susceptible to roundoff.  
Of course,  r  is unknown but tiny;  and if  F(X)  is algebraically correct then  f(x, o) = ƒ(x) .  

Consequently,  in most cases,  f(x, r) = ƒ(x) + (∂f/∂r)r=0·r + O(r)2 .  Here  ∂f/∂r  is the  Jacobian  
matrix of first partial derivatives of  f(x, r)  with respect to variables in  r .  If  ∂f/∂r  is not huge,  
the execution of program  F(X)  will produce  f(x, r)  with an error  f(x, r) – ƒ(x) ≈ (∂f/∂r)·r  that is 
tolerable because every elemement of  r  is so tiny.  Otherwise,  when the error  f(x, r) – ƒ(x)  is 
intolerably big,  it must be so big because some elements of  ∂f(x, r)/∂r  are gargantuan.

How can  ∂f/∂r  become gargantuan?  It can do so only if  x  comes close,  in some sense,  to a  
Singularity  of  f(x, r)  where  ∂f/∂r  would become infinite.  This singularity of  f  need not be a 
singularity of the function  ƒ ,  but instead an artifact of the formula chosen for the program  F .  
For example,  the program  T(z) := { If  z = 0  then  1  else  ( exp(z) – 1 )/z }  that figured in  §6’s  
Smooth Surprise  has a division-by-zero singularity at  z = 0  which,  though ostensibly removed 
by the branch,  can still exert a baleful influence if roundoff disconnects the numerator from the 
tiny divisor.  Another example is an  ∞ – ∞  singularity approached when a program  F  computes 
an innocuous function  ƒ  as the difference between two gargantuan numbers whose cancellation 
leaves only the ghosts of digits lost previously.  Some singularities can turn out to be benign,  as is 
the division by a tiny  log(…)  in the accurate but tricky version of  T(z)  in  §6.

Whether malignant or benign,  ∞ – ∞  and  …/0  are not the only kinds of singularities.  On the 
contrary,  singularities in general are far too diverse to be classified mathematically.  This is why
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“Neither cancellation nor small divisors need be concomitants of numerical distress”;
many other kinds of singularities cause numerical distress more often.  As in our example  H :

Absent roundoff,  our example  H(x) :=   for  N = 128  would compute  H(x) = x .  Only 

one rounding error  r  dominates the computation,  and by ignoring the others we can approximate 

the computed value of  H  by the expression  h(x, r) =   whose  ∂h/∂r = 2N·h(x, r) .  

Therefore error  h(x, r) – h(x, 0) ≈ 2N·r·x ;  and when  N = 128   we find that the relative error in  

h(x, r)  is a rounding error  r  (perhaps not so big as  2–53 ≈ 10–16 )  amplified by  2128 ≈ 1038 .  
The singularity occurs when parameter  N = 128  (which figures in program  H  and expression  h  
but not in  h(x, 0) = x )  is replaced by  N = +∞ .  This replacement seems drastic at first;  actually 
it is a consequence of a singularity so strong that its effect is felt when  N  is big but not very big.

In general,  singularities whose nearness amplifies roundoff intolerably tend to be unobvious.  If 
they were always obvious,  error-analysts would be mostly unemployed.  Such is not the case.

How can somebody innocent of error-analysis at least detect if not correct miscalculation due to 
roundoff?  One way is to study error-analysis;  a good text on the subject is  Nicholas J. Higham’s  
book  “Accuracy and Stability of Numerical Algorithms” 2d. ed. (2002,  SIAM, Philadelphia),  
though it is about  700  pages long.  Another way is to rerun a suspected subprogram under diverse 
rounding modes and compare results.  Rerunning our example program  H(X)  with rounding 
directed  Down  reproduces the first graph with a step up from  0  to  1  at  X = 1 .  Rounding 
directed  Up  produces a new graph that steps up from  1  to  ∞  (due to  Overflow)  at  X > 1 .  
These graphs reveal the hypersensitivity of  H(X)  to roundoff unmistakably and with little effort.
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§11:  A Case Study of Bits Lost in Space  
Imagine plans for unmanned astronomical observatories in outer space.  They needed software to 
compute their locations relative to stars and planets whose positions are listed in a computerized 
ephemeris.  Three vendors tendered programs for that purpose.  To assess their accuracies without 
becoming bogged down in the messy mathematics of error-analyses,  we have presented the same 
test data to the different vendors’ programs and compared their results.  Compared with what?  
Were we able ourselves to generate software that computed accurate results,  we would not have 
to purchase one of these programs.  Their three results matched nearly enough for almost all our 
millions of tests,  but a few tests have exposed substantial disagreements.  Now what shall we do?

Presented here is a case study that may shed light upon that question by focussing upon a small 
subprogram that computes subtended angles from spherical polar coordinates of pairs of celestial 
objects listed in the ephemeris.  Computed angles will be compared with observed angles to help 
adjust or determine an observatory’s location in space,  but these procedures and corrections for 
the finite speed of light coming from the planets are all omitted here for the sake of simplicity.

First some notation.  Directions to distant stars are specified by angles named as follows:

Names of Angles used for  Spherical Polar Coordinates  

These angles must satisfy  –π ≤ θ ≤ π  and  –π/2 ≤ φ ≤ π/2  in  Radian  measure,  –180˚ ≤ θ ≤ 180˚  
and  –90˚ ≤ φ ≤ 90˚  in degrees.  Similarly for  Θ  and  Φ .  Radians will be used in what follows 
because the observatories’ instruments resolve angles in radians with  3  bits to the left and  24  
bits to the right of the binary point;  displayed in decimal they would look like  “x.xxxxxxx” .

Two stars whose coordinates are  (θ, φ)  and  (Θ, Φ)  subtend an angle  ψ  at the observer’s eye.  
This  ψ  is a function  ψ(θ–Θ, φ, Φ)  that depends upon  θ  and  Θ  only through their difference  
| θ–Θ | mod 2π .  The three implementations of this function  ψ  to be compared are called  u,  v  
and  w .  They run at roughly the same speed.  They perform all their computations in arithmetic 
conforming to  IEEE Standard 754’s  specifications for single precision  (4 bytes wide, 24 sig. bits 
worth more than six sig. dec.),  the same precision as the data from the ephemeris,  so the reader 
of this case study need not fear drowning in digits.  Still,  in order that anyone so inclined may 
recover all binary data and results exactly,  a full nine sig. dec. will be displayed here.  All results 
were computed on the same  Intel Pentium  processor as will be installed in the observatories.

Angle Symbols Relative to Horizon Relative to Ecliptic Plane Relative to Equatorial Plane

θ,  Θ Azimuth Right Ascension Longitude

φ,  Φ Elevation Declination Latitude

 Three Subprograms  u,  v  and  w   Approximate  Subtended Angle   ψ(θ–Θ, φ, Φ) .

θ–Θ : 0.00123456784 0.000244140625 0.000244140625 1.92608738 2.58913445 3.14160085

φ : 0.300587952 0.000244140625 0.785398185 -1.57023454 1.57074428 1.10034931

Φ : 0.299516767 0.000244140654 0.785398245 -1.57079506 -1.56994033 -1.09930503

ψ ≈ u : 0.00158221229 0.0 0.000345266977 0.000598019978 3.14082050 3.14055681

ψ ≈ v : 0.00159324868 0.000244140610 0.000172633489 0.000562231871 3.14061618 3.14061618

ψ ≈ w : 0.00159324868 0.000244140610 0.000172633489 0.000562231871 3.14078044 3.14054847
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This tabulation exhibits only the few atypical test results from  u(θ–Θ, φ, Φ),  v(θ–Θ, φ, Φ)  and  
w(θ–Θ, φ, Φ) .  They have agreed to at least six sig. dec. for almost all of millions of randomly 
generated test arguments.  But the few atypical discrepancies are of the worst kind,  intolerably 
bigger than the known uncertainties in the observatories’ instruments and ephemeris,  yet too 
small to be obvious.  Which if any of subprograms  u,  v  and  w  dare we trust?

Because the three subprograms under test agreed so closely for almost all inputs,  we inferred that 
their different formulas were algebraically equivalent in the absence of roundoff to which their 
sensitivities differed.  To assess these sensitivities we reran the subprograms in different directed 
rounding modes with exactly the same atypical data.  The table below exhibits typical results for 
some of the atypical data.  Results from redirected roundings resembled symptoms of numerical 
instability due to roundoff at the data tested on subprograms  u  and  v .  Subprogram  w  seemed 
stable.  Could it be trusted?  Unfortunately,  our tests could not prove any of the subprograms 
correct.  All that was proved was that at least two of the three seemed intolerably hypersensitive to 
rounding errors.  This was worth knowing if only because it dropped the number of subprograms 
we thought worth further testing down to one.

When advised of our tests’ results,  all three vendors revised their subprograms to perform all 
floating-point arithmetic in some higher precision while keeping the subprograms’ input data and 
output results in single precision  (4 bytes wide)  as before.  Now all those tests find no significant 
differences among the three vendors’ revised programs’ results,  though they all run a little slower 
than the original programs.  And they all get results that agree to at least six sig. dec. with results 
from the original program  w .  Now what should we do?

Of course the foregoing story is imaginary.  It is probably impossible because,  alas,  compilers 
and  Programming Development Systems  generally obstruct rather than aid attempts to diagnose 
a floating-point program’s numerical distress by rerunning its subprograms in redirected rounding 
modes and/or in different precisions.  Diagnostic proceedures that ought to be mindless aren’t.

Still,  if only to satisfy our curiosity,  let us imagine what might come to light if the vendors were 
obliged to describe the algorithms used by their subprograms,  or if these were reverse-engineered 
after disassembly.  Here are the formulas that produced the foregoing tabulated results:

 Three Subprograms  u,  v  and  w   Run with Redirected Roundings.

θ–Θ : 0.000244140625 2.58913445

φ : 0.000244140625 1.57074428

Φ : 0.000244140654 -1.56994033

ψ ≈ u : 0.000598019920 NaN arccos(>1) 0.000598019920 3.14061594 3.14067936 3.14082050

ψ ≈ v : 0.000244140581 0.000244140683 0.000244140581 3.14039660 3.14159274 3.14039660

ψ ≈ w : 0.000244140610 0.000244140683 0.000244140610 3.14078045 3.14078069 3.14078045

Rounded: To Zero To +Infinity To –Infinity To Zero To +Infinity To –Infinity
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• Subprogram  u :
    ψ(θ–Θ, φ, Φ) ≈ u(θ–Θ, φ, Φ) := arccos( sin(φ)·sin(Φ) + cos(φ)·cos(Φ)·cos(θ–Θ) ) .
This formula,  programmed by a computer science graduate who figured it out with the aid of his 
freshman  Calculus  text,  can lose all figures the arithmetic carries when  u  nears zero,  and can 
lose almost half the figures carried when  u  nears  π .  Should he have forseen these errors?  How?

• Subprogram  v :
    ψ(θ–Θ, φ, Φ) ≈ v(θ–Θ, φ, Φ) := 2·arcsin(√( sin2((φ–Φ)/2) + (cos(φ)·cos(Φ))·sin2((θ–Θ)/2) )) . 
This formula from a text on  Astronomy  loses almost half the figures carried when  v  nears  π .  
The loss is due to the singularity  (infinite derivative)  in  arcsin(…)  when its value is  π/2 .

• Subprogram  w :
    ψ(θ–Θ, φ, Φ) ≈ w(θ–Θ, φ, Φ) :=  2·arctan( √q/r )   wherein

t := tan2((θ–Θ)/2) ,   p := tan2((φ–Φ)/2) ,      P := tan2((φ+Φ)/2) ,
q := (P + t + 1)·p + t ,    and     r := ((p+1)·t + 1)·P + 1 .

This formula,  devised for the occasion,  conserves almost all the arithmetic’s accuracy for all 
valid angles input in radians,  for which no  tan(…)  can be infinite.  For angles in degrees use
    ψ(θ–Θ, φ, Φ) ≈ w(θ–Θ, φ, Φ) := { If  p+P+t = ∞  then  180˚–φ–Φ  else   2·arctan( √q/r ) } .

Only subprogram  w  should be accepted for use by an observatory whose position in outer space 
is often determinable most accurately when it lies in or very near a straight line segment joining a 
planet to a star,  in which case the angle they subtend at the observatory will be  π  or very near it.

The foregoing case study is hypothetical.  Fictional.  The numerical results are true results.  Truth  
is stranger than  Fiction:  Mathematically valid formulas,  including some repeated in textx for 
centuries  (“they have ’stood the test of  Time”),  can be numerically treacherous.  

How can you separate numerically trustworthy formulas from the treacherous ones?

Without an error-analysis,  you can’t.  And if you can’t,  the simplest way to evade numerical 
embarrassment is to perform computation carrying extravagantly more precision throughout than 
you think necessary,  and pray that it is enough.  Usually somewhat more than twice the precision 
you trust in the data and seek in the results is enough.  If it isn’t,  or if it runs so slowly that you 
have had to choose some narrower precision because it is the widest that doesn’t run too slowly,  
how can you tell which formula has betrayed you when some datum has aroused your suspicion?

Rerun each formula separately on its same input but with different directed roundings;
the first one to exhibit hypersensitivity to roundoff is the first to suspect.

This usually works.  Nothing less than an order of magnitude more costly works better.  And 
nothing at all works infallibly.

More examples of numerically unstable classical trigonometrical formulas and stable substitutes 
for them are posted on my web page.  See  “Miscalculating Area and Angles of a Needle-like 
Triangle”,  http://www.cs.berkwley.edu/~wkahan/Triangle.pdf ,  and  “What has the Volume of a 
Tetrahedron to do with Computer Programming Languages?”,  …/VtetLang.pdf .  The unstable 
formulas lose at least about half or almost all figures carried for data coming from geometrically 
near-degenerate configurations even when a configuration is numerically well-conditioned,  in 
which case the loss of accuracy is due not to some geometrical instability  (there is none)  but to a 
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gratuitous near-singularity in the chosen classical formula.  Every instance of those numerical 
instabilities is exposed by reruns in redirected rounding modes;  such reruns affect only negligibly 
the stable formulas supplied on my web page to supplant the unstable formulas.
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§12:  Mangled Angles
Geometrical computations notoriously demand occasionally extravagant precision to resolve 
critical numerical questions in a way consistent with geometry.  For instance,  questions of 
incidence  (Where do these figures intersect or touch?)  involving several points and/or lines 
through them can require arbitrarily high precision to be answered consistently.  Otherwise, 
inconsistent answers can derail computation.  A relatively simple and striking example is 
exhibited in   http://www.cs.berkeley.edu/~jrs/meshpapers/robnotes.ps.gz   on  Prof. 
Jonathan Shewchuk’s  web page,  which also provides software to deal with such situations 
successfully by simulating arithmetic of precision as high as needed.

We shall consider now a simpler example chosen to support the thesis that numerical software is 
extremely difficult to debug.  Evidence for this thesis is the longevity of inaccurate software in use 
by vast numbers of numerically active and,  in most instances,  sophisticated users of  MATLAB.  
Once again we consider the angle between two directions  x  and  y  specified now in  Cartesian  
coordinates instead of the spherical polar coordinates of  §11’s  function  ψ(θ–Θ, φ, Φ) .  The 
usual formula for the unoriented angle  ∠ (x, y)  between two  (column)  vectors  x  and  y  in an  
Euclidean  space of arbitrary dimension is  ∠ (x, y) := arccos( x'·y/(||x||·||y||) )  wherein the length  
||x|| := √(x'·x) .  “Unoriented”  means  0 ≤ ∠ (x, y) = ∠ (y, x) ≤ π .

The usual formula is known to lose near half the sig. digits carried when  x  and  y  are almost  
(anti-)parallel.  For example,  if  x  chosen at random and  y := π·x  are both rounded to  n  sig. 

bits,  ∠ (x, y)  cannot exceed  1/2n–1  no matter how big the dimension.  But if  m  sig. bits are 
carried during the computation of the usual formula,  then with probability at least about  1/5  the 

computed  ∠ (x, y)  will err by at least roughly  1/2m/2  unless  m  exceeds  2n  sufficiently.  Both 
error and probability grow slowly with dimension.  Similarly behavior afflicts  π – ∠ (x, y)  when  
y := –π·x  rounded.  These results conform to an ancient rule-of-thumb I inherited from an elderly 
computer  J.C.P. Miller: 

During all intermediate computations carry at least somewhat more than twice 
as many sig. digits as have been stored in the data and are desired from the results.

This recipe protects against embarrassment due to roundoff except in direly pathological cases.

Strangely,  the recipe fails to guard the usual formula for  ∠ (x, y)  against embarrassment.  If 
random  x  and  y := ±π·x  are rounded to  n  sig.bits,  the probability of an  arccos(…)  invalid 
because   | x'·y/(||x||·||y||) | > 1   exceeds about  1/5  unless computation carries rather more than  2n  
sig. bits.  Most programmers who test the usual formula on nearly (anti-)parallel vectors learn to 
replace it by   ∠ (x, y) := arccos( max{min{x'·y/(||x||·||y||), +1}, –1} )   either without noticing or 
without caring that it can lose about half the sig. digits carried.  Can these digits be saved?

Yes.  If precision much greater than  n  sig. bits runs too slow,  other formulas can be used.  The 
best known for three dimensions is the cross-product formula
      ∠ (x, y) := if  x'·y ≥ 0   then  arcsin( ||xxy||/(||x||·||y||) )  else  π – arcsin( ||xxy||/(||x||·||y||) ) .
Analogous formulas exist for higher dimensions though they entail too much work at very large 
dimensions.  No matter;  these formulas lose about half the digits carried when  ∠ (x, y) ≈ π/2 .  
The loss is exposed by hypersensitivity to the direction of roundoff when these formulas or the 
usual formula are executed with vulnerable data in  IEEE 754’s  four directed rounding modes.
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Here is a better formula less well known than it deserves:
     ∠ (x, y) := 2 arctan( ||x·||y|| – ||x||·y||/||x·||y|| + ||x||·y|| ) .

When executed in arithmetic rounded to  n  sig. bits its absolute error never much exceeds  1/2n–1  
unless the dimension is gargantuan.  And redirected roundoff barely affects this formula.

Why have we looked at so many formulas for the angle  ∠ (x, y) ?

The formulas lose accuracy at singularities simple enough to be obvious to anyone with a modest 
exposure to numerical methods.  Infinite derivatives of  arcsin(…)  where  arcsin(1) = π/2  and of  
arccos(…)  where  arccos(1) = 0  and  arccos(–1) = π  attract scrutiny to places where accuracy 
gets lost.  Hardly any accuracy is lost at the singularities of  arctan(±∞)   because the derivative 
vanishes there.  It all looks too easy.  It can’t be that easy all the time.

Apparently,  ostensibly obvious singularities and good ways around them can be concealed from 
numerical experts as well as nonexperts by surprisingly little complexity.  What else can explain 
the persistence since  1988  of a defect that loses up to half the digits carried when a  MATLAB 
program misnamed  subspace(X, Y)  computes the angle between two subspaces spanned by the 
columns of two given matrices  X  and  Y ?  Has no user traced his troubles to  subspace ?

To simplify our exposition a nonessential restriction to subspaces with the same dimension will be 
imposed.  Let the given matrices  X  and  Y  have the same dimensions with  (usually many)  more 
rows than columns.  The columns can be orthogonalized quickly by  MATLAB’s  qr(…)  program,  
so we may assume that  X'·X = Y'·Y = I ;  the columns of  X  constitute an orthonormal basis for 
the subspace they span.  Y  likewise.  Then the usual formula for the angle between the subspaces 
is   ∠ (X, Y) := arccos(max{min{||X'·Y||, +1}, –1})   wherein norm  ||…||  is the largest singular 
value and  max{min{…  is there  for reasons noted above.  After that discussion we expect this 
formula to lose about half the digits carried when  X  and  Y  are orthonormal bases for slightly 
different spaces or the same space.  Can such a loss occur often?

From  1988  to  2002  this formula caused versions  3.5 - 5.3  of  MATLAB’s  subspace(X, X)  to 

produce angles greater than  1/108  instead of  0.0  or the roundoff threshold  eps ≈ 2.2/1016  for 
over  90%  of random matrices  X .  Surely someone must have noticed and complained.

Better methods had been published as early as  1973.  MATLAB  6.x  adopted one in  2002;  but it 
suffers from the same flaw as afflicts the cross-product formula  arcsin(…) :  For at least  1%  of 
random orthonormal matrices  X  and  Y  satisfying  X'·X ≈ Y'·Y ≈ I  and  X'·Y ≈ O  within  eps,  

the adopted  subspace(X, Y)  produces angles differing from  π/2  by more than  1/108  instead 
of a correct difference not much bigger than  eps .  For how long will this error go uncorrected?

See a paper by  A.V. Knyazev and M.E. Argentati  in  pp. 2009-2041  of  SIAM. J. Sci. Comput. 23 
(2002)  <http://www.siam.org/journal /sisc/23-6/37733.html>  for a  “comprehensive 
overview”  of angles between subspaces including mention of applications to statistics,  science 
and software testing,  plus algorithms to compute angles accurately and an extensive bibliography.  
Their algorithms are uglier than necessary.  A neat perhaps novel algorithm is outlined hereunder:
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Starting with given  X  and  Y  with orthonormal columns,  so  X'·X = Y'·Y = I ,  compute  X'·Y  
and then its nearest orthogonal matrix  Q ;  it can come quickly from  MATLAB’s  poldec(…)  or 
from  svd(…)  or faster from a few steps of an iteration if  X'·Y  is not too far from orthogonal,  as 
happens when  ∠ (X, Y)  is small.  For more about  Q  see  p. 385 et seq. of  N.J. Higham’s book  
Accuracy and Stability of Numerical Algorithms 2d. ed. (2002) Soc. Indust. Appl. Math., 
Philadelphia.  Then  ∠ (X, Y) = 2 arcsin(||X·Q – Y||)  within a modest multiple of  eps .  This 
algorithm is almost indifferent to redirected rounding,  unlike  MATLAB’s  current  subspace .

What do mangled angles teach us?  The goal of error-analysis is not to find errors but to fix them.  
They have to be found first.  The embarrassing longevity,  over three decades,  of inaccurate and/ 
or ugly programs to compute a function so widely used as  ∠ (X, Y)  says something bleak about 
the difficulty of floating-point error-analysis for experts and nonexperts:  Without adequate aids 
like redirected roundings,  diagnosis and cure are becoming practically impossible.  Our failure to 
find errors long suspected or known to exist is too demoralizing.  We may just give up.
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§13:  Bloated Coffins  
Interval Arithmetic (IA)  is a good thing if implemented properly and integrated properly into a 
popular programming language.  IA aids searches for zeros and extrema of functions of vector 
arguments,  and is an almost indispensible tool for coping with tolerances in the computer-aided 
design of manufactured devices.  Occasionally  IA  facilitates a mathematical proof.  If intended 
also to assess roundoff’s degradation of computed results,  IA  should be integrated with multi-
precision floating-point arithmetic.  Then  IA’s  error estimates can serve to predict how much 
extra precision will suffice to recompute a desired result at least as accurately as desired even if 
usually such predictions greatly overestimate the smallest adequate amount of extra precision.

IA  always over-estimates errors’ accrual,  too often so extravagantly as to undermine its own 
credibility as did  The Little Boy Who Cried “Wolf!”.  How this happens will be discussed below 
not to disparage  IA  but to explain why its users are so likely to be disappointed if they use it 
mindlessly.  Insinuating  IA  successfully into a computation usually alters its algorithm for the 
purpose,  perhaps recasting the computation with the aid of unobvious perturbation analyses into 
a self-correcting iteration.  This is not mindless;  it is a long story for another day.  Today’s story 
is a long sad account of over-optimistic expectations,  disappointments and frustration.

First some notation:  Lower-case letters like  x, y, …  will be used here to represent noninterval 
variables,  sometimes called  “points”  be they scalars or vectors.  Bold upper-case letters  X, Y, 
…  will be used here to represent regions over which the corresponding lower-case variables 
range.  For instance,  if a scalar interval  X = [x, x]  is constructed to contain the scalar variable  
x  within the range  x ≤ x ≤ x ,  we shall write  “ x ∈  X “.  The same goes for a vector  X  of 
intervals when it contains a vector point  x ∈  X ,  but in this case we shall call  X  “a coffin”  as 
an abbreviation for  “a rectangular parallelepiped with edges parallel to the coordinate axes”.  
The  diameter  ↔(X)  is the diameter of the smallest circle,  sphere or hypersphere that contains  
X ;  when  X = [x, x]  is a scalar interval its diameter is just its width:  ↔(X) = x–x .

The range of a function  ƒ(x)  as  x  runs through  X  will be denoted by  ƒ(X) .  This is what we 
wish  IA  would compute.  Instead,  if a program  f(x)  written to compute  ƒ(x)  is rewritten to 
produce an  IA  program  F(X)  it should,  if rewritten  correctly,  satisfy a containment relation  
F(X) ⊇  ƒ(X) .  A mindless but correct rewriting merely replaces every lower-case point variable 
in program  f(x)  by its upper-case interval analog,  and replaces every arithmetic operation upon 
point variables by its analogous  IA  operation.  This may be easier said than done.  When done,  
F(X) ⊇  ƒ(X) ;  but all too often diameter  ↔(F(X))  exceeds  ↔(ƒ(X))  by orders of magnitude.

For example,  take  ƒ(x) := 4·x·(1–x) .  Rewriting a program  f(x) := 4·x·(1–x)  mindlessly turns 
it into  F(X) := 4·X·(1–X) .  Since we care about  IA’s  overestimates of roundoff’s effects,  let’s 
consider an interval  X = [x–h, x+h]  whose width  2h  amounts to several rounding errors in 

numbers near  x .  In particular take  x = 0.5  and  h ≤ 2–20  so that  X = [0.5 – h, 0.5 + h] = 1–X  

and then  F(X) = [1–4h+4h2, 1+4h+4h2]  in the absence of additional roundoff that could only 

widen it.  Now  ↔(F(X)) = 8h  is millions of times as big as  ↔(ƒ(X)) = ↔([1–4h2, 1]) = 4h2 .  

Worse,  arccos(ƒ(X)) = [0, arccos(1–4h2)]  but  ACOS(F(X))  is thwarted by an  arccos(>1) .

This  F(X) = 4·X·(1–X)  is too wide because  IA  took no account of the anti-correlaton between 
the factors  X  and  1–X ;  they might as well be independent variables  X  and  Y  each with the 
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interval value  [0.5 – h, 0.5 + h] .  A different program  f(x) := 1 – (2·x–1)2  computes  ƒ(x)  well 

when  x  is near  0.5 ;  its mindlessly rewritten analog  F(X) := 1 – (2·X–1)2 = ƒ(X)  too provided 

subexpression  (2·X–1)2  compiles to a call to a proper  IA  implementation of  (…)2 ,  not to an 
uncorrelated product  (…)·(…) .  Now  F([0.5 – h, 0.5 + h]) = ƒ([0.5 – h, 0.5 + h]) .  Good.  But 

then computing this  F([0, h6])  yields  [0, ƒ(h6)+r]  in which roundoff  r  is at least a unit in the 

last place of  1.0 ,  inflating  ↔(F([0, h6])) = ƒ(h6)+r = ↔(ƒ([0, h6])) + r  by perhaps many 
orders of magnitude.  If extravagant inflation is to be prevented for  every  interval argument  
X ,  the  IA  analog of  ƒ(x) = 4·x·(1–x)  must employ a more complicated formula like …

F(X) := If  ( X  is near enough to  [0, 0] )  then  4·X·(1 – X)
  else if  ( X  is near enough to  [1, 1] )  then  F(1–X)

   else  1 – (2·X–1)2 .
In general,  we must partition  ƒ(x)’s  domain into subdomains over each of which an apt choice 
of expression  F(X)  can keep  ↔(F(X))  from exceeding  ↔(ƒ(X))  excessively,  we hope.

The expression  Spike(x) := 1 + x2 + log(| 1 + 3·(1–x) |)/80  explored in  §7  suffers slightly from 
bloated width due to anticorrelated variation of subexpressions over the interval  0 < x < 4/3  in 

which  x2  increases while  log(…)  decreases.  The bloat becomes severe for  X  including  4/3  
when  “ log(| 1 + 3·(1–x) |)/80 ”  is replaced by  “ log(( 1 + 3·(1–x) )·( x – 4·(x–1) ))/160 ” ;  it is 
algebraically identical but gets  NaN  from  log(negative)  no matter how narrow  X  may be.

Another phenomenon bloats  IA’s  intervals when they estimate functions of more than one real 
variable:  Coffins have too few shapes.  For example,  consider multiplying a complex interval  
Z := [√2–h, √2+h] + ı[–h, h]  by a complex constant c :=(1 + ı)/√2 .  Even if roundoff during  IA  
multiplication is negligible,  IA  produces a product  P = [1–h√2, 1+h√2] + ı[1–h√2, 1+h√2]  
which barely contains  c·Z  but has diameter  ↔(P) = 4h  rather bigger than  ↔(c·Z) = √8 h .  
This inflation occurs because the coffin  Z  (actually a square with sides of length  2h  parallel to 
the real and imaginary axes)  gets turned into a diamond  c·Z  of the same size.  The smallest 
coffin that contains the diamond is a coffin  P  with bigger sides of length  √8 h .  Inflations like 
this become compounded during lengthy computations,  producing coffins bloated by factors 
that can grow as fast as exponentially with the number of  IA  operations.

Soon after  R.E. Moore  introduced  IA  in the  1950s,  P. Henrici  sought a way to retard the 
inflations of coffins during complex  IA;  he replaced them by circles.  Just as a real interval  
X := [x–h, x+h]  can be rewritten  X = x ± h  in terms of a center-point  x  and  half-width  h ,  so 
can a circular disk  Ç  in the complex plane be written  Ç := ç + µ●  in terms of a center-point  
ç ,  radius  µ ,  and the unit disk  ● .  So long as radii were nearly infinitesimal,  as they should 
be if due solely to roundoff,  and provided no singularity was approached too closely,  complex 
circle-arithmetic attenuated excessive bloating far better than complex  IA  with coffins could 
during simple computations.  But complicated complex computations continued to suffer from 
exponentially excessive bloating for reasons that will become apparent shortly.

While seeking  IA  bounds for solutions of differential equations in the  1960s,  F. Krückeberg  
sought a way to retard inflations of coffins;  he replaced them by more general parallelepipeds: 
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Write  P = p + S■  to represent a parallelepiped centered at point  p  with shape determined by a 
linear map  (matrix)  S  acting on the unit cube  ■ .  Just when  S  is diagonal is  P  a coffin.  If  

S =   then  P  is a diamond-shaped parallelogram like  ♦   but twice as high as wide.

IA  becomes far more costly with parallelepipeds than with coffins.  Given a program  f(x)  that 
computes a vector-valued function  ƒ(x)  of a vector argument  x ,  and given  P = p + S■ ,  the 
computation of a containing parallelepiped  F(P) := f(p) + T■ ⊇  ƒ(P) = ƒ(p + S■)  reduces to a 
determination of a matrix  T  via symbolic as well as numerical operations upon program  f .  In 
the simplest case,  and provided  ↔(S■)  is tiny enough,  T = f'(p)·S·V  wherein the coffin  

V■ ⊇  (f'(p)·S)–1·(f(P)–f(p))  and  f'(p)  is the  Jacobian  matrix of first partial derivatives of 
program  f(x)  at  x := p .  In other cases,  where the inverse of  f'(p)·S  does not exist or when  
↔(S■)  is not so tiny,  T  becomes slightly arbitrary and much more complicated to determine.  
The labor can be automated,  at least in principle,  and thus rendered mindless or very nearly so.

However the labor is worthwhile only in special cases because in general,  in the absence of 
contraindications inferred from error-analyses,  IA  with parallelepipeds tends to bloat almost as 
badly as does  IA  exclusively with coffins.  Bloating is due to geometrical oversimplification:

Three forces tend to inflate circumscribing regions computed by the foregoing  IA  schemes.  
The first force has already been discussed;  it arises from regions restricted to shapes,  like 
coffins’,  that are too simple.  A second force is generated by regions’ convexity if they are not 
tiny enough.  The third force is generated when circumscribing regions are tiny enough but 
possess sharp edges or corners.  The next example will illustrate how the latter two forces act.

Suppose  x  represents the initial position and velocity of a planet in orbit about a star,  and  ƒ(x)  
is this planet’s position and velocity after a year.  This planet’s position and velocity after  K  

years is  ƒ(K)(x) := ƒ(ƒ(ƒ(…ƒ(x)…)))  composed  K  times.  If a small  X  is convex and roughly 
spherical,  ƒ(X)  is banana-shaped because planets slightly closer to the star orbit slightly faster.  

Then  ƒ(K)(X)  tends to a spiral aligned along the orbit,  ultimately  (as  K → ∞ )  resembling a 
ring of  Saturn.  IA  computes a convex circumscribing region  F(X) ⊇  ƒ(X) .  Some points  
x ∈  F(X)  lie closer to the star than any points in  ƒ(X) ,  and consequently travel faster than they 
should,  thus exaggerating the length and curvature of  ƒ(F(X))  compared with  ƒ(ƒ(X)) .  As  K  

increases,  F(K)(X)  compounds that exaggeration.  Soon the shape of  ƒ(F(K)(X))  so resembles 

the letter  C  that convex  F(F(K)(X))  enclosing  ƒ(F(K)(X))  encloses the star too,  whereupon  

ƒ(F(K+1)(X))  explodes.  This is how the mere convexity of  F  ultimately forces excessive bloat.

If  ↔(X)  is too tiny for mere convexity to bloat  F(X)  much,  a third force threatens to bloat it.  
Here is how:  Suppose  X = p + S■  is a parallelepiped and  ƒ(x) = ƒ(p) + ƒ'(p)·(x–p) + … ,  so 
that  ƒ(X) = ƒ(p) + ƒ'(p)·S■ + …  is very nearly a parallelepiped too.  However,  parallepiped  
F(X)  must enclose the first two terms plus contributions from higher order terms  “…”  as well 
as computational errors.  F(X) ⊇  ƒ(p) + ƒ'(p)·S■ + ∆f(X) ⊇  ƒ(X)  in which  ∆f(X)  bounds those 
two contributions and  “ + ”  is the  Minkowsi Sum:  Y+Z := {y+z  for all  y ∈  Y  and  z ∈  Z } .

When  ↔(S■)  is so tiny that  ↔(∆f(X))  is rather smaller than  ↔(ƒ'(p)·S■)  we might expect  
F(X)  to have nearly the same shape as  ƒ'(p)·S■  and a slightly bigger diameter,  thus enclosing  

1 1–

2 2
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ƒ(X)  tightly.  Something else happens because the orbit function  ƒ(x)  maps almost every near- 
infinitesimal parallelepiped  X  to a flattened parallelepiped  ƒ(X)  resembling a two-bladed axe-

head,  and as  K  increases  ƒ(K)(X)  tends to a needle-shaped parallelepiped.  When  X = p + S■ ,
though very tiny,  is needle-shaped,  so is  ƒ(p) + ƒ'(p)·S■ ;  but the error-term  ∆f(X)  is not 
needle-shaped though it is tinier again.  Below is a picture showing how the addition of a 
relatively tiny error-term  ∆f(X)  to the needle  ƒ(p) + ƒ'(p)·S■  thickens it enough to force  
F(X) ,  the sum’s smallest enclosing parallelepiped,  to extend too far beyond  ƒ(X) .

Enlarged Extension of a Slightly Thickened Needle

The narrower the needle,  the greater is the extension,  often amounting to orders of magnitude 
beyond  ↔(∆f(X)) .  This is how sharp edges and corners force  IA  with general parallelepipeds 
to bloat excessively.  This force has usually been strong enough to frustrate the application of  
IA  that originally motivated it,  namely error-bounds provably valid but not too excessive for 
trajectories and orbits obtained as solutions of differential equations with given initial conditions.

No simple  (much less mindless)  way is known to defeat all three geometrical forces that thwart 
applications of  IA.  In  1968  I replaced parallelepipeds by ellipsoids to get rid of sharp edges 
and corners,  thereby suppressing inflationary forces enough that bloating grew by factors like  
√number of arithmetic operations  instead of exponentially so long as computed error-bounds 
stayed small enough not to be bloated by the force of mere convexity.  Flattened and needle-
shaped ellipsoids still occurred,  and their associated ill-conditioned matrices required extra-
precise arithmetic and other costly expedients,  none of them remotely mindless.  For a brief 
outline of ellipsoidal computations see  “Ellipsoidal Error Bounds for Trajectory Calculations”  
posted at  http://www.cs.berkeley.edu/~wkahan/Math128/Ellipsoi.pdf.

Even if  IA’s  coffins are generalized,  as they should be,  to include figures like parallelepipeds 
and ellipsoids in an attempt to suppress excessive bloating,  the attempt will fail too often on 
nontrivial computations unless augmented by considerable thought.  It’s not a mindless method.

ƒ(p) + ƒ'(p)·S■  =

∆f(X)  = 

ƒ(p) + ƒ'(p)·S■ + ∆f(X)  =

F(X)  =

ƒ(X)

ƒ(X)
Prof. W. Kahan                     WORK IN PROGRESS;         COMMENTS ARE INVITED.                      Page 52/56



Mindless                   January 11, 2006 1:50 pm                       §14: Desperate Debugging 
§14:  Desperate Debugging  
Programming Development Systems  offer programmers ways to insert break-points into their 
programs and specify conditions under which execution will pause there.  Then the programmer 
can single-step through his program looking for the first step at which his program went astray.  
Though invaluable,  these debugging aids often fail to help us diagnose bugs due to roundoff in 
floating-point software of typical complexity.  The futility of single-stepping a long way into a 
program intended to run at gigaflops is not the only difficulty.  Two kinds of ignorance interfere 
with accurate diagnosis:  One is ignorance of the  “correct”  path from which the program strayed.  
Another is ignorance of how far the program should be allowed to stray,  since it cannot follow the  
“correct”  path perfectly.  The two kinds of ignorance will be treated in turn hereunder.

Higher precision will very often estimate a  “correct”  path well enough.  To this end,  imagine a 
debugger that can transform a given subprogram  p ,  whose literal constants and variables  x,  y,  
z, …  have been declared by the programmer to have precisions thought adequate at the time,  into 
an analogous subprogram  P  whose corresponding literal constants and variables  X,  Y,  Z,  …  
are declared by the debugger to have greater precisions,  preferably about twice as great.  Then the 
debugger can execute both programs  p  and  P  simultaneously  (actually interleaved)  with the 
same input  (or copies of it if the subprogram will change it)  and compare their progress to see 
where one of the variables  x,  y,  z,  …  first departs excessively from its analog  X,  Y,  Z, … .

To get all that to work properly,  three technicalities must be addressed.  First,  if subprogram  p  
invokes other subprograms the programmer must tell the debugger which of them to transform 
into higher precision analogs,  leaving others unaltered.  Second,  if subprogram  p  includes tests-
and-branches dependent upon its input,  the programmer must tell the debugger which branches  P  
must follow the same way  p  goes regardless of how the branch would otherwise go in  P .  When  
P  will follow a branch differently than  p  does,  the programmer must tell the debugger to pause,  
or else tell it where to resume comparisons of corresponding variables,  or both.  The necessity of 
these latter options is obvious for the subprogram  T(z)  that figured in  §6’s  Smooth Surprise.  
Less obvious is the necessity for  P  to persist longer than  p  in a convergent equation-solving 
iteration so that  P’s  solution will be computed more accurately than  p’s  in accordance with  P’s  
higher precision.  However,  if the former option,  namely forcing  P  to match  p’s  branching 
despite contrary predicates,  appears perverse,  consider the following situation:

Gaussian Elimination with Pivotal Exchanges  is the method by which most systems of linear 
equations are solved.  It scans columns to choose an element of biggest magnitude to serve as the  
Pivot  (divisor),  and its row as the  Pivotal Row,  for the next pass of the elimination process.  On 
rare occasions two of a column’s biggest elements can have almost identical magnitudes,  and 
then both are valid choices for pivot.  The actual choice may be an accident of roundoff;  usually it 
alters intermediate results a lot but final results inconsequentially.  If the choice alters final results 
drastically,  the equations’ matrix may be nearly singular or else the equations and/or unknowns 
may have been scaled badly,  perhaps because of inappropriate units like kilometers for both the 
length and width of glass fibers.  Only forcing  P  to match  p’s  choices of pivots will expose the 
consequences of these choices to scrutiny by the method’s programmer or user.  Otherwise he 
may blame discrepant results indiscriminately upon  “ill-conditioning”  and consequently embark 
upon a futile quest for algebraic redundancy  (linear dependence).  I’ve seen this happen often.

The third technicality runs into the second kind of ignorance:  How far should the debugger allow
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p’s  variables to deviate from their analogs among  P’s  before bringing deviations to the attention 
of whoever is trying to debug  p ?  This question has no easy answer.  Sometimes early end-figure 
deviations propagate into subsequent gross deviations that may or may not dwindle away later.  
And if they do dwindle away at the end as in  §5’s  recurrence,  still results may be as wrong as 
when the recurrence starts from  x0 := 4  and  x1 := 4.25 .  Or final results may be quite right as 

when the recurrence starts from  x1 := 17/4  and  x2 := 76/17 rounded.  An example more 
representative than  §5’s  is  QR Iteration  for computing matrix eigenvalues.  Without branches 
like  Gaussian Elimination’s,  QR Iteration  routinely generates grossly deviant intermediate 
results and yet delivers final results in an array of fairly accurate eigenvalues differing at worst in 
their ordering from what would have been delivered had rounding errors been much smaller.

There is no easy way to decide when  p’s  variables have deviated too far from their analogs in  P .  
There is an onerous way,  though it seems far-fetched at first.  It resembles the computation of 
loop-invariants for programs that have nothing to do with floating-point.  Here is the way to do it:

Mark a number of break-points in subprogram  p  and in the corresponding places in  P .  We shall 
call these break-points  “stages”.  At each stage,  copy the values of all  p’s  variables onto  P’s  
and execute  P  completely starting from that stage.  If that stage’s final results differ too much 
from the previous stage’s,  something deleterious happened in  p  between these two stages.  Insert 
more stages between them to narrow the search for an offending event if there is one.  No such 
event need exist if successive stages’ final results drift away slowly but ultimately too far,  as 
happens with numerically unstable programs like  H(X) = X  whose graph in  §10  was a step.

This scheme succeeds as well as it can as soon as two of its stages straddle the shortest piece of 
software  (maybe all of  p )  hypersensitive to roundoff at the input data tested.  The scheme costs 
lots of time and storage,  and it can fail on some pathological programs like  Muller’s  recurrence 
in  §5  and the  Smooth Surprise’s  program  G(x) = 1  in  §6  that almost always computes  0 .  
Such failures are rare.  Of all comparably effective schemes I know about,  none comes closer 
than this one to earning the epithet  “mindless”.  I wish all  Programming Development Systems  
provided it even if it runs too slowly to run on the lengthier floating-point programs.

What runs too slowly won’t get run.  Consequently,  possibly aberrant subprograms  p  have first 
to be segregated from the others in a lengthier program by a diagnostic scheme that runs at least 
almost as fast as if the lengthier program were not being subjected to close scrutiny.  Here speed 
matters because,  with today’s gigahertz clock-rates,  trillions of floating-point operations and 
millions of subprogram invocations may have to elapse before a first observable anomaly occurs.  
Redirected rounding during repeated executions of parts of the program in question is the only 
scheme I know likely to expose hypersensitivity to roundoff in one of those parts,  perhaps one 
whose source-code is inaccessible,  and to do so at an acceptable speed and bearable cost.

Programming Development Systems  and debuggers that support recomputation with redirected 
roundings must,  as mentioned at the end of  §9,  expect their users to specify which subprograms’ 
innards are to be sheltered from redirected roundings.  By default,  built-in library functions,  
including  Fortran’s  “Intrinsic Functions”,  may well be sheltered that way except possibly for 
their last arithmetic operation whose result is the function’s output.  Directed rounding of this last 
result is appropriate when the function is intended to appear  “atomic”  like multiplication and 
addition.  For example,  if division is not built into the hardware but is composed from other 
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arithmetic operations,  only the finally delivered quotient should be exposed to directed rounding.  
The same goes for  sqrt(…),  which is built into the hardware on some machines but not others.  
Exp(…),  log(…),  pow(…)  and  Fortran’s  **,  and other math. library functions,  as well as some 
others known by the programmer to require shelter from redirected roundings,  pose a technical 
nuisance to a compiler that  “inlines”  such functions to gain a little extra speed.  Then interleaved 
floating-point instructions will have to be marked,  some to have their rounding redirectable,  
others not,  in ways dependent upon how the hardware has implemented directed roundings 
mandated by  IEEE Standard 754 (1985).

Redirected rounding is not so simple to support as it first appears.  Debuggers can support it 
properly only by collaborating closely with the compiler and,  in some systems,  with dynamic 
linkers that can revise a subprogram as it is loaded into memory.  A debugger that surmounts these 
technical obstacles offers its users a way easier,  faster and more often successful than all other 
known ways to find sources of anomalies triggered by ostensibly innocuous data.  Without such a 
tool such an anomaly becomes so nearly impossible to track down that the temptation to ignore it,  
and to pray that it is not the sole harbinger of an impending calamity,  becomes irresistable.

§15:  Conclusion  
“Only  Knowledge  is purely  Good,  only  Ignorance  purely  Evil.”

Socrates,  470-399 BC.

We should be disappointed but not surprised by people’s tendency to conceal errors instead of 
acknowledge and correct them.  Only for baseball does anyone maintain a public record of errors.  
The journal  MTAC  (now  Math. of Computation)  used to publish errors in tables.  Now nobody 
tracks errors in numerical software.  Nor in other software,  come to think of it.  Who publishes 
how many  Service Packs  Microsoft  issues to fix bugs in previous  Service Packs  for  Windows?  
No wonder that so much software is reputed to be unreliable.  How unreliable?  Who knows?

If we publish no record of our mistakes,  how shall we learn to avoid more of them?

Strangely,  our culture is afflicted simultaneously with a fascination for bad news and an aversion 
to it.  Cowed by the  National Rifle Association,  Congress  has forbidden the  Bureau of Alcohol, 
Tobacco and Firearms  from spending money to collect statistics that might explain why guns kill 
almost  30000  civilians in the  U.S.A.  each year,  but hardly any in  Canada.  Planeloads of  
American  soldiers returning home in coffins used to land surreptitiously at night to obstruct a 
count of heroes each of whom would be celebrated at an isolated sad ceremony scattered around 
the country.  A few years ago  Californians  almost passed a proposition to forbid collecting racial 
statistics lest they reveal how well or badly laws against racial discrimination are working.

Ignorance  is  Bliss  for too many of us,  Socrates  notwithstanding.

Current computers’ software systems provide practically no practicable assistance to diagnose 
numerical anomalies encountered occasionally by programmers and users of numerical software.  
Whatever is impracticable is unnecessary too to fulfill obligations of  Due Diligence,  so corporate 
lawyers may prefer the current situation to one in which widely available diagnostic tools made a 
merely difficult task out of one that is now almost impossible.  However,  engineers probably and 
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scientists certainly would prefer to be able with high probability to identify anomalous software 
modules promulgated in libraries and packages.  Then these could be circumvented or avoided 
while their authors,  notified of the evidence for an anomaly,  sought a remedy.  Or didn’t.

At present only the second of the five schemes explored in these notes offers an economical way 
to diagnose anomalies caused by roundoff in precompiled software:  Rerun the suspected module 
with exactly the same input but with default roundings  (those not already directed by the author 
of the module)  redirected.  Though far from foolproof,  this scheme has worked on over-zealous 
optimization in  §3,  on intermediate iterates  xn  in  §5,  on  T(§6),  on  MATLAB’s  log2(§7),  
acosh(§8)  and  acos(§8),  on  Gaussian Elimination (§9),  on step  H(§10) ,  on subtended angle  
ψ(§11),  on  subspace(§12)  and on innumerable other examples upon which nothing else so 
inexpensive could possibly have worked so well.

In the near future I hope that programming languages will by default evaluate all constants and 
expressions in the hardware’s widest floating-point format that does not run too slowly,  as was the 
custom with old-fashioned  Kernighan-Ritchie  C .  Of course,  the language has to allow the 
programmer access to variables declared to have this widest format,  not like  C  compilers offered 
nowadays by  Microsoft  and formerly by  Sun Microsystems  when they used  MC68020/68882  
processors.  C99  tries to get its implementors and its users to do things right.  Routine use of far 
more precision than deemed necessary by clever but numerically naive programmers,  provided it 
does not run too slowly,  is the best way available,  with today’s mixture of popular programming 
languages with overtaxed underfunded education,  to diminish the incidence of roundoff-induced 
anomalies below any level of commercial significance even if we knew about every anomaly.

Farther in the future I hope that popular programming languages will support  Interval Arithmetic  
of arbitrarily high  (within limits)  precision variable  (coarsely)  at run-time.  Then programmers 
may use it to prove most of their numerical software free from roundoff-induced anomalies even 
if it runs sometimes slower than usual.  “Sometimes slower”  need not deter the majority of 
programmers if,  as I expect,  processor clock-rates and floating-point arithmetics continue to 
outpace memory speeds.  The cost of moderate extra demands for processor cycles and memory 
cells will seem picayune compared with the cost of a numerically adept mathematician’s time.

Speedy floating-point arithmetic is dangerous unless its design takes account of two requirements:  
One is the suppression of avoidable anomalies,  each perhaps easily tolerable by itself,  lest they 
accumulate to blight mathematical thought with a  Death of a Thousand Cuts.  Second,  human 
thought is fallible,  so computer systems must also help us both to find and fix our errors,  and to 
render insignificant those we cannot find and fix.  In particular,  better floating-point debugging 
capabilities deserve high priority among computer system designers and implementors concerned 
with their own safety,  since all of us depend upon the reliability of numerical computations that 
pervade our technology,  from aircraft to antibiotics,  from our  MRI  and  PET  images to seismic 
images of the  Earth  beneath us,  from weather prediction to waste disposal and treatment.

At present,  occasionally inaccurate floating-point software of moderate complexity is difficult 
verging on impossible to debug.  If this state of affairs persists long enough to become generally 
accepted as inevitable,  the obligations of  Due Diligence  will atrophy,  and nobody will expect to 
be held accountable for unobvious numerical malfunctions.  And nobody will be safe from them.
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