
Journal of Parallel and Distributed Computing 58, 446�465 (1999)

Timing Models and Local Stopping Criteria for
Asynchronous Iterative Algorithms

Kostas Blathras, Daniel B. Szyld1, and Yuan Shi

Temple University, Philadelphia, Pennsylvania 19122

E-mail: kostas�thunder.ocis.temple.edu, szyld�math.temple.edu, shi�cis.temple.edu

Received May 12, 1997; accepted March 29, 1999

Asynchronous iterative algorithms can reduce much of the data dependen-
cies associated with synchronization barriers. The reported study investigates
the potentials of asynchronous iterative algorithms by quantifying the critical
parallel processing factors. Specifically, a time complexity-based analysis
method is used to understand the inherent interdependencies between comput-
ing and communication overheads for the parallel asynchronous algorithm. The
results show, not only that the computational experiments closely match the
analytical results, but also that the use of asynchronous iterative algorithms
can be beneficial for a vast number of parallel processing environments. The
choice of local stopping criteria that is critically important to the overall
system performance is investigated in depth. � 1999 Academic Press

Key Words: timing models; asynchronous algorithms; parallel iterative
methods.

1. INTRODUCTION

Parallel asynchronous block methods for the solution of a linear algebraic system
of the form

A } x=b, (1)

where A=(aij
) is a large sparse N_N matrix have been studied by many authors;

see, e.g. [6, 9, 14] and the references given therein.
These methods are usually some generalization of the classical block Jacobi

method (see, e.g., [25]), where the matrix A is partitioned into p_p blocks

_
A11

A21

b
Ap1

A12

A22

b
Ap2

} } }
} } }
} } }
} } }

A1p

A2p

b
App
& (2)

Article ID jpdc.1999.1549, available online at http:��www.idealibrary.com on

4460743-7315�99 �30.00
Copyright � 1999 by Academic Press
All rights of reproduction in any form reserved.

1 Supported by the National Science Foundation Grant DMS-9625865.

with the diagonal blocks All being square nonsingular of order nl , l=1, ..., p,
� p

l=1 nl=N, and the vectors x and b are partitioned conformally.

Algorithm 1 (Block Jacobi). Given an initial approximation of the vector
(x(0))T=[(x1(0))T, ..., (xp(0))T],

For t=1, 2,..., until convergence
For l=1 to p, solve

All xl (t+1)=bl& :
p

j=1, j{l

Aljx j (t). (3)

The entire linear system can be solved in parallel by p processors, each processor
computing one subvector xl (t) and the iteration vector at each step is

(x(t))T=[(x1(t))T, (x2(t))T, ..., (xp(t))T].

This algorithm exchanges data for each value of t, and has at that point a
synchronization barrier.

In an asynchronous version of (3), each processor would compute xl using the
most recent information available from the other processors, i.e., values of xl which
may be older than xj(t), say possibly xj (t&k), where k would depend on l and j ;
see further, Section 2, where we use an equivalent notation. In other words,
asynchronous iterative algorithms do not require exchange of the most recent
values. The convergence of (3) would naturally be delayed by the use of less recent
values of xj , but since no idle time for synchronization is necessary and less overall
communication takes place, asynchronous algorithms have the potential of outper-
forming standard synchronous iterative methods. We should mention here that,
under certain hypothesis, asynchronous iterative methods are guaranteed to converge
to the solution of the linear system (1); see, e.g., [6, 9, 15].

In practice, each subsystem (3) is solved by another iterative method such as
Gauss�Seidel, SOR, and in some cases by conjugate gradient-type methods. These
classes of methods are called two-stage iterative methods; see, e.g., [13, 19], and the
extensive references given therein.

One of the critical questions about these two-stage methods is what criterion to
use to stop the inner iterations in each processor; see, e.g., [15, 21]. In this paper,
we compare two widely used stopping criteria: one based on the size of the (inner)
residuals, and the other on a fixed number of inner iterations. We report that a
fixed number of inner iterations is a better choice for the architecture considered in
this paper; see Sections 4.3 and 6. For studies on stopping criteria in different types
of architectures, see [5, 23].

Another question which we address is load balancing. Should the partition of the
domain be fixed by the number of available processors (static block allocation) or
do we gain time savings by dividing the computational domain dynamically to
account for the different computational complexity of the tasks in each region? To
answer this question we developed a timing model. Using the timing model, we

447ASYNCHRONOUS ITERATIVE ALGORITHMS

conclude that when the communication network is slow, as is the case of the
hardware considered in this paper, the static block allocation is preferred. It follows
as well that a dynamic block allocation would be preferable for faster networks; see
Sections 4.4 and 6.

The analysis of asynchronous algorithms can be used directly on system (1) or
they can be used as fast parallel preconditioners for conjugate gradients or other
Krylov subspace methods; see, e.g. [2, 4].

Other authors have published experiments showing that parallel asynchronous
iterative methods can be very beneficial, especially on problems with complicated
geometry [15, 21]. Here we concentrate on the inner stopping criteria and the
timing models to predict parallel performance while at the same time we illustrate
how these methods can be implemented on inexpensive clusters of workstations,
even personal computers connected with 10 Mbps shared medium Ethernet. We use
a passive object programming system named Synergy [8] that provides tuple space
as communication and synchronization mechanisms. The choice of this program-
ming tool is further discussed in Section 4.1.

The overall organization of this paper is as follows. In Section 2, we describe the
applicable class of asynchronous iterative algorithms. In Section 3 we describe the
computational test problem used in this study. In Section 4 we detail the asynchronous
parallel program design and implementation. In Section 5 we present timing analysis
for evaluation of various implementation alternatives. In Section 6, we present
computational results. Conclusions are found in Section 7.

2. BLOCK ASYNCHRONOUS ITERATIVE ALGORITHMS

For the asynchronous block Jacobi method, unlike in Algorithm 1, the processors
are allowed to start the computation of the next iteration of the block without waiting
for the simultaneous completion of the same iteration of other components. In other
words, components of x are updated using a vector which is made of block components
of previous, not necessarily the latest, iterations. As in the standard references for
asynchronous algorithms, such as [6], the iteration subscript is increased every
time any (block) component of the iteration vector is computed. Thus, one defines
the sets Jt�[1, 2, ..., p], t=1, 2, ..., by l # J if the l th block component of the itera-
tion vector is computed at the t th step. Thus the asynchronous block Jacobi
method can be described as

xl(t+1)={
xl (t),

approximate solution of Allxl(t+1)=bl& :
q

j=1, j{l

Alj
xj (r(j, t)),

if l � Jt

if l # Jt .

The term r(l, t) is used to denote the iteration number of the l th block component
being used in the computation of any block component in the t th iteration, i.e. the
iteration number of the j th block component available at the beginning of the
computation of xl (t), if l # Jt . We always assume that the terms r(l, t) of our
asynchronous iterative algorithms satisfy the minimal criteria as described in [15]
and other references therein:

448 BLATHRAS, SZYLD, AND SHI

1. r(l, t)<t for all l=1, ..., p; t=1, 2, ...;

2. limt � � r(l, t)=� for all l=1, ..., p;

3. the set [t | l # Jt] is unbounded for all l=1, ..., p.

Convergence of the asynchronous block Jacobi algorithm follows from results in
[15]; see also [9].

3. THE COMPUTATIONAL TEST PROBLEM

We use a magnetic field simulation problem as the test case for it represents
typical physical simulation applications and it has a nonuniform geometry that
requires load balancing when processed in parallel. The processing environment is
a cluster of shared 10 mbps Ethernet connected DEC�Alpha workstations. Our
simulation is to determine the magnetic field in a region outside a permanent
magnet [10]; i.e., to solve for , satisfying

{2,=div M (4)

where div M is the volume magnetic charge density.
For simplicity we chose to solve the two-dimensional form of the problem; see

Fig. 1. The magnet is assumed to be uniformly magnetized; i.e., M(r) is a constant
vector. Thus, Eq. (4) is reduced to the Laplacian everywhere except for the surface
of the magnet:

�2,
�x2+

�2,
�y2=0. (5)

The rectangular domain in Fig. 1 is discretized using a uniform grid with h horizon-
tal and vertical spaces. Thus, the grid points are labeled (i, j), i, j=1, 2, 3,..., n, and
we denote by ,i, j the value of the function , at the point of (i, j). The discretization
of (5) using centered differences is then

1
h2 (,i+1, j+,i&1, j+,i, j&1+,i, j+1&4,i, j)=0. (6)

Therefore, the value of the magnetic field on each grid point ,i, j is a function of its
four nearest neighbors; see Fig. 2.

FIG. 1. A rectangular magnet.

449ASYNCHRONOUS ITERATIVE ALGORITHMS

FIG. 2. Grid around point (i, j).

Equation (6) is suitably modified near the boundaries of the rectangular magnet
in order to incorporate the discontinuities of ,.

4. PARALLEL ALGORITHM DEVELOPMENT

A parallel program is typically more complex than its sequential counterpart. In
this section, we first discuss our programming tool choice. We then discuss our par-
titioning choices and introduce a number of parallel implementation alternatives.
Finally, we present an analysis method that can be used to evaluate the parallel
algorithms by capturing the inherent interdependencies between the computing and
communication overheads.

4.1. Parallel Programming Tool

The choice of programming tool can have a large impact on parallel implementa-
tion complexity and processing efficiency. An ideal parallel processing environment
for parallel asynchronous iterative algorithms should be totally asynchronous with
information over-write capabilities. This is because for asynchronous parallel
algorithms, the sender and receiver are running independent of each other, and the
receiver must obtain the latest information or otherwise introduce artificial synchro-
nization barriers; see [22].

All message passing systems, such as MPI [20] and PVM [7], use bounded
buffers. This implies a synchronous semantics, namely the sender should only send
when the receiver is there to receive. Moreover, the messages do not over-write each
other. If we were to use any message passing system, we had to implement the new
messaging semantics on top of the provided messaging channels. This would intro-
duce much programming complexity and processing overhead. Thus, we consider
that these systems are not appropriate for programming parallel asynchronous
algorithms.

The Synergy system uses passive objects for parallel program communication and
synchronization. A passive object is a coarse-grain data structure with a set of
predefined operators. An example passive object is a tuple space with three
operators: Read, Put, and Get. The semantics of these operators is similar to rd, get,
and put operations in the Linda system [1], provided that tuples are uniquely
named and first-in-first-out (FIFO) ordered. Writing to the same named tuple

450 BLATHRAS, SZYLD, AND SHI

means over-writing the existing tuple's content. This characteristic ideally meets the
asynchronous iterative algorithm's requirement. The object passiveness restricts the
operators from dynamically creating new objects at runtime. They can only create
instances within an object, thus leaving the outset communication topology fixed
for each application. This feature was designed to facilitate automatic generation of
efficient client�server programs from a fixed application configuration topology. For
a more detailed description of Synergy, we refer the reader to [8].

Passive objects embed multithreaded controls under a simple asynchronous
programming interface. Thus, there is no explicit process manipulation and syn-
chronization statements in either the sender or the receiver programs. Unless
specifically coded, each individual program has a single thread control within its
programming space.

4.2. Data Partition Choice

A typical parallel implementation of a block iterative algorithm, such as Block
Gauss�Seidel [6, 17], assigns several mesh points to each processor such that each
processor only communicates with its four nearest neighbors; see Fig. 3, where there
are p=9 processors and n=36.

This intuitive parallel implementation, called tiles, has the following drawbacks:

v In comparison with partitioning in stripes, the tile partitioning requires less
overall interprocessor communication data volume but more communication sessions
at each iteration, due to more interfaces with the neighbors. Since establishing a
communication session between processes needs more time than moving a few
thousand bytes of data on a typical interconnection network hardware, for many
practical problems the tile partitioning is guaranteed to deliver poor performance
when compared to striping. This conclusion was recorded in studies comparing

FIG. 3. Typical parallel block-matrix operations.

451ASYNCHRONOUS ITERATIVE ALGORITHMS

FIG. 4. Row block decomposition.

striping, tiling, and penciled partitions on clusters of workstations [11], the
IBM SP2, iPSC�860, and Cray T3D processors [18].

v Low calculation amount per data exchange is due to the small grain size.
This also causes low efficiency.

v Pipelined processors with short data streams are not effective in saving time.

A parallel implementation is more effective if we can increase the calculation
amount per data exchange, reduce the synchronization frequency, and decrease the
communication sessions. Therefore, in this paper, we focus on developing striped
block asynchronous algorithms; see Fig. 4.

We abuse the notation and say that (i, j) # q, implying that the grid point (i, j)
is in the block of variables assigned to processor q (1�q�p).

Each grid point on the simulation mesh requires the values of its first neighbors
during iteration t. If we divide the rectangular grid of points into blocks of rows,
with each block considered one work assignment and this block of rows corresponds
to a diagonal block All of the matrix A in (1), as shown in (2). Therefore, in Fig. 4
only the top and bottom rows of each block needs to be exchanged between
neighboring processors.

4.3. Stopping Criteria

One way to look at the block asynchronous algorithm is to think of it as a
relaxation from the point algorithm. In other words, we reduce the interprocess
communications by transmitting the most recent approximations only after each
processor has performed a specified amount of calculations (inner iterations). We
define this amount of calculations as the dataflow reduction criterion (DRC), i.e.
stopping criteria in the approximation process. An interprocessor information
exchange is called an outer iteration.

There are two distinct ways of defining DRC: one by measuring the size of the
inner residuals; and another by setting a fixed number of inner iteration limit. For

452 BLATHRAS, SZYLD, AND SHI

the first case, let us define the residual computed in the processor q as Rq(t)=
max[|,i, j (t+1)&, i, j (t)|, (i, j) # q]. This quantity is kept in the processor's
memory between successive iterations, and it is checked if the residual is reduced by
a specific amount. We use a threshold { # (0, 1] and we say that the residual
threshold criterion is met when the residual is reduced by a factor of {, i.e. when
Rq(t+1)�{ } Rq(t), { # (0, 1].

4.4. Load Balancing and Block Allocation Methods

The overall processing of the parallel program is as follows. A master process
partitions the matrix into work assignments and distributes them to parallel
workers. A worker process starts calculations after it receives a work assignment
and some global information. It starts information exchange with its neighbors
when the DRC is satisfied. Since multiple copies of the same worker code run
simultaneously, it is easy to imagine that workers will exchange data with their
neighbors at different times.

After a worker receives values of the border elements from its neighbors, it will
resume the same calculation process until the next DRC is met. A block is con-
sidered solved locally when the residual of the block q falls below a prescribed =,
i.e. when Rq(t)<=.

The master process then collects all solved blocks and performs a Gauss�Seidel
iteration across the reconstructed linear system to check if the local solutions are
indeed globally convergent. The system terminates if a global convergence is
reached. Otherwise the master repartitions the system and retransmits the blocks.
The recalculation cycles can generate very large communication volume. A system
becomes unstable when the number of recalculations is too large. An unstable
system indicates that the processors are diverging into local solutions.

To further reduce the communication we can restrict the number of workers and
put an exact amount of rows on each (static partition). This strategy can cause
work load imbalance and, thus, negatively impact our performance since our com-
putational test problem is a magnet with nonuniform geometry. To ease the load
imbalance, we can put many smaller blocks (dynamic partitioning) in an FIFO
queue, having the processors fetch the block assignments when they become idle.
This way computing-intensive blocks will be automatically processed more often.
The drawback is that it requires more network traffic.

4.4.1. Static allocation algorithm details. A static parallel block iterative
algorithm has a master and many workers. The master program is responsible for
constructing the n_n grid geometry, partitioning the grid into blocks of rows,
assigning these blocks to the p worker modules residing on different processors,
receiving results, and composing the solution matrix. Each row block that is
assigned to a worker module is composed of n�p rows; see Fig. 5.

A worker module q performs Gauss�Seidel iterations on the grid points of the
assigned block which is composed of rows with indexes between ROWq(start)=
((q&1) } n)�p and ROWq(end)=(q } n�p)&1, until it meets the DRC. At this point
it will transmit to their neighbors the values of the grid points on their border rows
and receive from them the updated values from the neighbors. In particular, worker
q will transmit

453ASYNCHRONOUS ITERATIVE ALGORITHMS

FIG. 5. Static block allocation method.

v to its upper neighbor (worker q&1), ROWq(start) and receive from it
ROWq(start)&1[#ROWq&1(end)];

v to its lower neighbor (worker q+1), ROWq(end) and receive from it
ROWq(end)+1[#ROWq+1(start)].

In both cases, if the neighboring workers have not reached the threshold control
criteria yet, worker q is going to use values received from its neighbors in a previous
outer iteration. The worker will repeat the above procedure until the local convergence
criterion is met. At that point it will return all its approximated grid point values
to the master module.

After receiving all locally converged blocks from the workers, the master module
checks if the global convergence criterion Ri, j(t)�= \i, j # [0, n&1], where Ri, j(t)
=|,i, j(t)&,i, j(t&1)|. If not, then it reassigns the blocks to the p workers. This
procedure is repeated until the global convergence criterion is met.

4.4.2. Dynamic Allocation Algorithm Details. In this variation of the block-
asynchronous parallel algorithm, only the worker module is modified, so that it
uses the tuple space as the working assignment queue. As in the static version, a
working assignment (a row-block partition of the grid) is a tuple. The tuple space
is used as a FIFO queue containing all nonconvergent tuples that have met the
given DRC.

A dynamic worker module first reads global data (problem geometry) from the
tuple space. It then extracts a work assignment tuple to compute. After the DRC
is met, it will insert its border rows to be used by neighboring partitions. If local
convergence is reached, it inserts the result for the master to retrieve. Otherwise, it
reinserts the work assignment into the working tuple space. Such reinsertion will
place the tuple at the end of the FIFO queue (see Fig. 6). If the number of working
tuples is greater than the number of processors, a slow converging region will be
processed by multiple processors. This can reduce load imbalance.

454 BLATHRAS, SZYLD, AND SHI

FIG. 6. Dynamic block allocation��Worker module.

5. PARALLEL PROGRAM EVALUATION

In this section, we build timing models for the static and dynamic partitioning
algorithms. The objective is to identify the relative merits of both algorithms judg-
ing from their inherent interdependencies between the parallel computation and
communication times. Note that the performance difference between inner iteration
limit control and residual threshold control cannot be modeled analytically but it
can be observed via computational results.

Timing models [24] are program time complexity-based models. Timing analysis
requires timing models for the sequential algorithm and the corresponding parallel
algorithm. Our scalability analysis requires calibrating the processing parameters by
running once the sequential and parallel programs on a target environment.

We use the following symbols in the timing model analysis:

N number of grid points (=n_n)

Qc number of floating point operations required per grid point

QN number of bytes required per grid point

455ASYNCHRONOUS ITERATIVE ALGORITHMS

I number of inner iterations

E number of outer iterations

W processor power in number of algorithmic steps per second

u network capacity in number of bytes per second.

Note that W=W$�c represents the delivered processing power in the number of
algorithmic steps (as related to their time complexity models) per second, where W$
is the actual processor power in the number of machine instructions per second and
c is a constant reflecting the average number of machine instructions generated
from each algorithmic step. For our computational test problem, Qc=11.

5.1. Sequantial Gauss�Seidel Model

The sequential processing time can be modeled as

Tseq=I }
N } QC

W
. (7)

To calibrate W, we run the sequential algorithm on two different processors:
Intel486�100 MHZ and DEC Alpha�120 MHz. Here is a summary of the statistics:

Resolution (n_n) 32_32 64_64 128_128 256_256

Iterations (I) 612 2258 8812 31790
Intel 486 time (s) 4.7 67.8 1179.3 16810.2

DEC Alpha time (s) 3.0 42.4 789.3 11742.8

Using (7) and the above table, we can derive the graph in Fig. 7 depicting W, in
millions of steps per second (Msps) as a function of the problem size N (grid
resolution).

From Fig. 7 we can readily observe that there are little swapping effects. All
programs can fit into memory. We can also notice the presence of a large constant
c for this algorithm, in comparison to other well-known algorithms, such as matrix
multiplication and Linpack:

FIG. 7. W as a function of N.

456 BLATHRAS, SZYLD, AND SHI

FIG. 8. Compute-aggregate-broadcast (CAB).

Linpack Matrix multiply (200_200)

Intel486�100MHz�8MB 2.4 Msps 4.3 Msps
Alpha�120MHz�32MB 6.4 Msps 29.4 Msps

5.2. Static Block Allocation Algorithm

Parallel iterative algorithms can be modeled as a compute-aggregate-broadcast
system as shown in Fig. 8.

These types of systems have a typical timing profile as shown in Fig. 9, where T1
is the master initialization time, T2 is the task (tuple) distribution time, T3 is the
worker tuple extraction time, T4 is the worker local solution computing time, T5
is the worker result submission time, T6 is the master result tuple extraction time,
and T7 is the master sanity checking. The program may re-iterate T2�T7 if the
global convergence check fails. Otherwise, it terminates. Note that for parallel
processors using shared-medium networks or buses, communication times T2 and
T3 do not overlap, nor do T5 and T6.

FIG. 9. CAB timing profile.

457ASYNCHRONOUS ITERATIVE ALGORITHMS

To simplify the analysis, we express the total parallel processing time as

Tpar=Tmaster+Tworker+Tcomm+Tsync ,

where Tmaster=E } Qc } N�W which defines the master total pure computation time,
and Tworker=E } I } Qc } N�pW which defines the maximum worker pure computa-
tion time (among p parallel workers), and

Tcomm=Tcmaster+Tcworker . (8)

In (8), Tcmaster=(2Ir } QN } N+c)�u which defines the master total communication
time, including broadcast of global geometry, distribution of working tuples, and
extraction of result tuples, and Tcworker=(2Ir } QN } N�u)+4p } E } QN - N�u)+p } c�u
which defines the total worker communication time, including extraction of global
information, extraction of working tuples, return of result tuples, and intermediate
exchange of data with neighboring processors. Lastly, Tsync=(I } N } Qc } E)�pW)_
(# } $&1�#) which defines the worst-case load imbalancing overhead, assuming #
times the difference between the fastest and slowest processors and $ times the
differences between the fastest converging block and the slowest converging block.

Finally, we can define the static block algorithm timing to be

Tspar=\1+
I
p+

E } Qc } N
W

+
I } N } Qc } E

pW
}
} $&1

#

+
(p+1) } (2Ir } QN } N+c)+4p } E } QN - N

u
. (9)

5.3. Dynamic Block Allocation Algorithm

The dynamic block allocation algorithm has a similar model, except that

Tcworker=
2(E+Ir) } QN } N

u
+

4p } E } QN - N
u

+
c } p

u
.

Here, assuming the best load balancing (Tsync=0), the only difference is in the
tuple re-insertion overhead. Therefore, the total dynamic time model is

Tdpar=Tspar+
2E } QNN

u
. (10)

An important investigation is to quantitatively decide when to use static or when
to use the dynamic block allocation algorithm, in terms of the parallel processing
environments and problem sizes. Figures 10 and 11 are obtained with numerical
calculations using (9), (10), and the following assumptions:

N=256_256

W=2.5 Mflops (million algorithmic steps per second)

u=100 Kbytes per second

458 BLATHRAS, SZYLD, AND SHI

FIG. 10. Static vs dynamic with respect to inner iteration control (I).

c=100 Kbytes (global broadcast data size)

Qc=11 operations per grid point

QN=8 bytes per grid point

p=5

#=$=2 (two times the difference in load imbalance).

Figure 10 illustrates that for the given parallel processing environment only the
static algorithm will outperform the sequential one. However, the static algorithm's
convergence time will increase more rapidly than the dynamic algorithm as we
increase local iterations to reduce communication. Figure 11 indicates that when
the network speed goes above a certain point (approximately sustained 600 Kbps),
the dynamic algorithm will out-perform the static algorithm.

FIG. 11. Static vs dynamic with respect to network speed (u).

459ASYNCHRONOUS ITERATIVE ALGORITHMS

6. COMPUTATIONAL RESULTS

Our computational results validate the predictions of the timing models, e.g., the
shape of the curve Tdpar in Fig. 10 is confirmed in Fig. 13(a), and that of Tspar in
Fig. 10 is confirmed in Fig. 15(a). The experiments reveal the quantitative perfor-
mance consequences of data exchange frequencies and compare the residual and
inner iteration control methods. We have produced four sets of experiments. These
are dynamic block allocation with residual threshold control, dynamic block alloca-
tion with inner iteration control, static block allocation with residual threshold
control, and static block allocation with inner iteration control. The parallel
processing environment is a cluster of five (5) DEC�Alpha workstations running the
OSF�1 operating system. The workstations use a shared 10 mbps Ethernet. The
parallel programming environment is C and the Synergy V3.0 system.

FIG. 12. Dynamic block allocation with residual threshold control.

460 BLATHRAS, SZYLD, AND SHI

For each set of experiments, we report elapsed times, total outer iterations, and
the number of total iterations. The elapsed time measures the actual wall-clock time
of the application. The total outer iteration records the changes in the outer itera-
tion by the respective iteration control methods. The total iteration records the
changes in the maximal number of inner iterations performed by a parallel worker
process. The problem size is 256_256 grid points (or N=65,536 equations).
Parallel processing will yield no advantage for problems of smaller sizes.

From the performance charts (Figs. 12�15), we observe:

(a) The elapsed time curves of the inner iteration controls of both dynamic
and static allocations obey the timing model predictions; compare Fig. 10, Tdpar

and Tspar curves with Figs. 13(a) and 15(a). Considering that the timing models
have ignored some dynamic details, the predicted optimal static DRC is very close

FIG. 13. Dynamic block allocation with inner iteration control.

461ASYNCHRONOUS ITERATIVE ALGORITHMS

to computational results. The predicted DRCs are 17 (Tspar) and 80 (Tdpar), respec-
tively (Fig. 10). The actual static and dynamic optimal DRCs are 19 (Fig. 15(a))
and 30 (Fig. 13(a)).

(b) The total iteration increases linearly as we cut off the data exchanges; see
Figs. 12(c)�15(c).

(c) Using the 11,742.8 second sequential elapsed time (see Section 5.1) as
comparison we have the following results. Dynamic allocation with threshold
control finishes in 8551.35 s, or speedup=1.37 (see Fig. 12(a)). Dynamic allocation
with iteration control finished in 6756.39 s, or speedup=1.74 (see Fig. 13(a)). Static
block algorithms performed better. Static threshold control finished in 5746.01 s, or

FIG. 14. Static block allocation with residual threshold control.

462 BLATHRAS, SZYLD, AND SHI

FIG. 15. Static block allocation with inner iteration control.

speedup=2.04 (see Fig. 14(a)). Static allocation with iteration control finished in
3577.92 s, or speedup=3.28 (Fig. 15(a)). The best speedup represents 660 parallel
processing efficiency using five processors.

(d) Residual threshold control is consistently slower than inner iteration
control.

7. CONCLUSIONS

In this paper we report our analysis and computational results of an investigation
that trades the abundance of computing power for scarce network bandwidth using
asynchronous iterative algorithms. We studied several critical aspects of developing
a practical asynchronous parallel linear system solver and conclude that it is

463ASYNCHRONOUS ITERATIVE ALGORITHMS

possible to gain overall processing speed by sacrificing some local convergence
speed for our test case. The test algorithms were specifically chosen for their proven
asynchronous convergence and relatively long running time (1300 sequential
processing seconds) in order to reveal the details of timing impact in different
factors. For instance, we have found that the convergence time increases linearly
(see Section 6) as we reduce the data exchange frequency. Since the overall cumulative
speed of multiple processors is typically many times the interconnection network
speed, for many practical applications asynchronous iterative algorithms can be
more advantageous than synchronous algorithms when processed in parallel.

Our experiences in applying the timing model method to parallel algorithm
analysis showed that it is possible to analytically prototype a complex parallel
system with little program instrumentation. The results can be used to predict the
scalability of the system as well as to identify optimal performance factors.

REFERENCES

1. S. Ahuja, N. Carriero, and D. Gelertner, Linda and friends, IEEE Comp. (August 1986), 26�32.

2. O. Axelsson and P. S. Vassilevski, A black box generalized conjugate gradient solver with inner
iterations and variable-step preconditioning, SIAM J. Matrix Anal. Appl. 12 (1991), 625�644.

3. D. Bailey, ``Twelve Ways to Fool the Masses When Giving Performance Results on Parallel
Computers,'' RNR technical report RNR-091-020, NASA Ames Research Center, 1991.

4. R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. van der Vorst, ``Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods,'' SIAM, Philadelphia, 1994.

5. E. Baz, A method of terminating asynchronous iterative algorithms on message passing systems,
Parallel Algorithms Appl. 9 (1996), 153�158.

6. D. P. Bertsekas and J. N. Tsitsiklis, ``Parallel and Distributed Computation,'' Prentice�Hall, Englewood
Cliffs, NJ, 1989.

7. A. Beguelin, J. Dongarra, A. Geist, R. Mancheck, and V. Sunderam, PVM: Heterogeneous Network
Computing, in ``Sixth SIAM Conference on Parallel Processing,'' SIAM, Philadelphia, 1993.

8. Y. Shi, ``The Synergy System: Manual and Programming Guide,'' CIS Department, Temple University,
1992. [www.cis.temple.edu�tshi�synergy.html]

9. R. Bru, V. Migallon, J. Penades, and D. B. Szyld, Parallel, synchronous and asynchronous two-stage
multisplitting methods, Electron. Trans. Numer. Anal. 3 (1995), 24�38.

10. M. I. Darby, Calculation of the fields near permanent magnets, in ``Physics Programs,'' pp. 125�149,
Wiley, New York, 1980.

11. J. Dougherty, Variable-size partitioning approaches for a distributed application, in ``Joint Conference
on Information Sciences, Pinehurst, NC, November 1994.''

12. K. Dowd, ``High Performance Computing,'' O'Reilly, Sebastopol, CA, 1993.

13. A. Frommer and D. B. Szyld, H-splittings and two-stage iterative methods, Numer. Math. 63 (1992),
345�356.

14. A. Frommer, H. Schwandt, and D. B. Szyld, Asynchronous weighted additive Schwarz methods,
Electron. Trans. Numer. Anal. 5 (1997), 48�61.

15. A. Frommer and D. B. Szyld, Asynchronous two-stage iterative methods, Numerische Mathematik
69 (1994), 141�153.

16. F. Halsal, ``Data Communications, Computer Networks and Open Systems,'' Addison�Wesley, New
York, 1996.

464 BLATHRAS, SZYLD, AND SHI

17. D. P. Koester, S. Ranka, and G. C. Fox, A parallel Gauss�Seidel algorithm for sparse power system
matrices, in ``Proceedings of Supercomputing '94, pp. 184�193, 1994.''

18. S. Kortas and P. Angot, A practical and portable model for programming for iterative solvers on
distributed memory machines, Parallel Computing 22 (1996), 487�512.

19. P. J. Lanzkron, D. J. Rose, and D. B. Szyld, Numer. Math. 58 (1991), 685�702.

20. Message-passing Interface Forum, ``MPI: A Message Passing Interface Standard,'' CIS technical
report CS-94-230, University of Tennessee, Knoxville, 1994.

21. J. C. Miellou, D. E. Baz, and P. Spiteri, A new class of asynchronous iterative algorithms with order
intervals, Math. Comp. 67 (1998), 237�255.

22. D. A. Reed and R. M. Fujimoto, ``Message Based Parallel Processing,'' MIT Press, Boston, 1988.

23. S. A. Savari and D. P. Bertserkas, Finite termination of asynchronous iterative algorithms, Parallel
Computing 22 (1996), 39�56.

24. Y. Shi, Program scalability analysis, in ``Proceedings of Ninth IASTED International Conference on
Distributed and Parallel Processing, Georgetown University, Washington, DC, 1997,'' pp. 451�456.

25. R. S. Varga, ``Matrix Iterative Analysis,'' Prentice�Hall, Englewood Cliffs, NJ, 1962.

465ASYNCHRONOUS ITERATIVE ALGORITHMS

	1. INTRODUCTION
	2. BLOCK ASYNCHRONOUS ITERATIVE ALGORITHMS
	FIG. 1

	3. THE COMPUTATIONAL TEST PROBLEM
	FIG. 2

	4. PARALLEL ALGORITHM DEVELOPMENT
	FIG. 3
	FIG. 4
	FIG. 5
	FIG. 6

	5. PARALLEL PROGRAM EVALUATION
	FIG. 7
	FIG. 8
	FIG. 9
	FIG. 10
	FIG. 11
	FIG. 12

	6. COMPUTATIONAL RESULTS
	FIG. 13
	FIG. 14
	FIG. 15

	7. CONCLUSIONS
	REFERENCES

