
Journal of Computational and Applied Mathematics 123 (2000) 201–216
www.elsevier.nl/locate/cam

On asynchronous iterations
Andreas Frommera, Daniel B. Szyldb; ∗; 1

aFachbereich Mathematik, Bergische Universit�at GH Wuppertal, Gauss-Strasse 20, 42 097 Wuppertal, Germany
bDepartment of Mathematics, Temple University (038-16), 1805 N. Broad Street, Philadelphia, PA 19122-6094,

USA

Received 3 June 1999

Abstract

Asynchronous iterations arise naturally on parallel computers if one wants to minimize idle times. This paper reviews
certain models of asynchronous iterations, using a common theoretical framework. The corresponding convergence theory
and various domains of applications are presented. These include nonsingular linear systems, nonlinear systems, and initial
value problems. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

With the advent of parallel computers, many new algorithms were devised or rediscovered for
the new architectures. An important concept in the design of parallel algorithms is that of load
balancing, which simply means that the work has to be approximately equally distributed among
processors. Otherwise, some processors �nish their task much earlier than others, and the waiting
time (also called idle time) degrades the performance of the algorithm. This concept has been
widely accepted as a requirement for e�cient algorithms, and has dictated for example that when
the geometric domain of a physical problem is divided into subdomains (to be processed by the
di�erent processors), each should be of approximately the same size.
In contrast to load balancing, the idea of asynchronous methods is to avoid processor idle time by

eliminating as much as possible synchronization points, i.e., points at which a processor must wait
for information from other processors. In this way, problems which naturally would decompose into
processes of very di�erent size, e.g., those with unstructured meshes, can do so without di�culty.
The price one pays for this freedom is that some processors will perform extra computations, and it

∗ Corresponding author.
E-mail addresses: frommer@math.uni-wuppertal.de (A. Frommer), szyld@math.temple.edu (D.B. Szyld).
1 Supported by National Science Foundation grants DMS-9625865 and DMS-9973219.

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00409-X

202 A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216

is only when the load is not well balanced, or when communication between the processors is slow,
that this approach is advantageous.
Since the publication of the pioneering paper in 1969 by Chazan and Miranker [21], the theory

and application of asynchronous iterations has been studied and used by many authors. For early
surveys of asynchronous iterative methods, see [3,13,14,33] (see also the recent papers [53,56]).
Asynchronous methods are not considered “mainstream” by many researchers, at least in numerical

analysis. We believe that this is so in part because the load balancing requirement is so prevalent
in the minds of many practitioners. Nevertheless, asynchronous methods are being increasingly used
and studied, particularly so in connection with the use of heterogeneous workstation clusters where
the available computational power of each processor becomes unpredictable. Experiments reported
in the literature, e.g., in [18,35,42], show practical problems for which the asynchronous parallel
times are about half to two-thirds of those reported for synchronous parallel times (which of course
are much faster than sequential times); see further Section 4.3. In [18,35], asynchronous solutions
of systems of several million variables are reported. In addition, asynchronous iterations are possibly
the kind of methods which will allow the next generation of parallel machines to attain the expected
potential. These machines are being designed today with thousands of processors.
Let us mention some recent papers where the application of asynchronous iterations to di�erent

areas is discussed: to the solution of partial di�erential equations [1,2,52]; to inverse problems in
geophysics and oil exploration [48]; to continuous time Markov chains problems for queueing and
stochastic automata networks [18]; to electrical power networks [9]; to network
ow [60], to convex
programming [58], and other optimization [25,26], and nonlinear problems [7,59,65]; and to singular
systems of linear equations [5,50].
The purpose of this paper is to review some of the di�erent models of asynchronous iterations

which have been developed during the last three decades, using a common theoretical framework.
We give some results on their convergence, and illustrate the use of these models and convergence
results in various applications, including the iterative solution of linear systems, nonlinear systems,
and initial value problems for systems of ordinary di�erential equations.
It is outside the scope of the paper to present a complete survey of the state-of-the-art in parallel

asynchronous computations. Of the topics not covered we mention a few: analysis and implementa-
tion of stopping criteria [24,51] (and also [15]), enclosure methods for nonlinear systems of equations
[32,34], the theory of multisplittings for the analysis of asynchronous iterations [17,20,55], and its
application to domain decomposition methods using overlapping subdomains [7,35]. Our aim instead
is to present a snapshot of some broad class of applications, together with a general theory which
applies to them.
To that end, we present, in the next section, general computational and mathematical models

representing asynchronous iterations. The computational models correspond to the way the methods
are actually programmed in the parallel computers. The mathematical models are tools used to
analyze the algorithms. In Section 3 we present very general convergence results which apply to
these mathematical models, and in Section 4 we apply these results to speci�c problems.

2. Computational and mathematical models

To start, let us consider a structurally simple and quite general construct. Assume that we are
given a product space E = E1 × · · · × Em and an application H : E → E whose components are

A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216 203

denoted Hi, i.e., we have

H : E → E; x = (x1; : : : ; xm)→ ((Hx)1; : : : ; (Hx)m); (1)

where xi; (Hx)i = Hi(x) ∈ Ei; i = 1; : : : ; m. The problem at hand is to �nd a �xed point of H . A
standard procedure is to approximate such �xed point by variants of the successive approximation
procedure

xk+1 = H (xk); k = 0; 1; : : : : (2)

Assume for now that we are working with a (shared memory) parallel computer with p processors
P1; : : : ; Pp (p6m) and associate a block of components Jj⊆{1; : : : ; m} with each processor Pj. Then
a parallel variant of the successive approximation procedure (2) can be implemented as follows
(pseudocode for processor Pj):

Computational Model 2.1.

until convergence do
read x from common memory
compute xnewi = Hi(x) for i ∈ Jj
overwrite xi in common memory with xnewi ; i ∈ Jj.
If processors would wait for each other to complete each run through the loop we would indeed

get a (parallel synchronous) implementation of the successive approximation scheme (2). Since here
processors do not wait, we actually get a much less structured iterative process where, due to di�erent
run times for each loop, processors get out of phase. At a given time point, di�erent processors will
have achieved di�erent numbers of iterations (the iteration number k in (2) looses its meaning in
this context). No idle times occur, since processors never wait for each other.
In order to mathematically analyze the Computational Model 2:1, we now step the iteration counter

k by 1 each time x is read from the common memory by some processor Pj(k). Then this x is made
up of components each of which has been written back to memory as the result of the computation
belonging to some earlier iteration. We therefore have x = (xs1(k)1 ; : : : ; xsm(k)m) with iteration counts
s‘(k) ∈ N0; ‘ = 1; : : : ; m, prior to k, indicating the iteration when the ‘th component just read was
computed. A set I k is de�ned indicating which components are computed at the kth iteration, i.e.,
I k = Jj(k). Using these sets, and under the very weak assumptions (3) explained further below, the
Computational Model 2:1 can be modeled mathematically according to the following de�nition; see,
e.g., [33,57],

De�nition 2.2. For k ∈ N, let I k ⊆{1; : : : ; m} and (s1(k); : : : ; sp(k)) ∈ Nm
0 such that

si(k)6k − 1 for i ∈ {1; : : : ; m}; k ∈ N;
lim
k→∞

si(k) =∞ for i ∈ {1; : : : ; m};
|{k ∈ N: i ∈ I k}|=∞ for i ∈ {1; : : : ; m}:

(3)

Given an initial guess x0 ∈ E = E1 × · · · × Em, the iteration

xki =

{
xk−1i for i 6∈ I k
Hi(x

s1(k)
1 ; : : : ; xsm(k)m) for i ∈ I k ; (4)

204 A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216

is termed an asynchronous iteration (with strategy I k ; k ∈ N and delays di(k) = k − si(k); i =
1; : : : ; n; k ∈ N).

The �rst hypothesis in (3) simply indicates that only components computed earlier (and not future
ones) are used in the current approximation. The second one indicates that as the computation
proceeds, eventually one reads newer information for each of the components. The third one indicates
that no component fails to be updated as time goes on.
This mathematical model goes back at least to Baudet [10], although other authors had equivalent

models; see the historical remarks in [57]. Note that De�nition 2.2 includes as special cases the
classical synchronous successive approximation method (2) (si(k) = k − 1; I k = {1; : : : ; m}) as well
as block Gauss–Seidel-type methods (si(k)= k − 1; I k = {k modm+1}) or symmetric block Gauss–
Seidel methods.
Let us mention at this point that asynchronous iterations on local memory machines (using message

passing to communicate data) are also modeled by De�nition 2.2.
The fundamental model (4) has a wide range of applications. Nevertheless, other various extensions

to account for more general or more speci�c situations are possible. For example, some authors
impose additional conditions on the sequence of delays di(k) = k − si(k) such as being uniformly
bounded; some others restrict them in such a way that overlap is not allowed; see some examples of
these, e.g., in [57] and the bibliography therein. These additional restrictions appear to be necessary
in the convergence theory for the solution of singular linear systems; see [5,41,50].
In several practical situations, the component Hi of H may be given only implicitly (or it may be

expensive to compute) so that we will actually only compute an approximation (which may change
at each step k) to Hi(x

s1(k)
1 ; : : : ; xsm(k)m) in (4). We are then in a non-stationary setting, which includes

in particular the case of two-stage iterations (with an “inner” and an “outer” iteration) which can
be modeled by making H dependent of the iteration index k, i.e., we have the following process

xki =

{
xk−1i for i =∈ I k ;
H k
i (x

s1(k)
1 ; : : : ; xsm(k)m) for i ∈ I k (5)

with Hk : E → E, for k ∈ N, having the same �xed point as H .
One way to study the inner iterations is to consider a “splitting” of the application H of (1) into

K : E × E → E such that K(x; x) = H (x), and the following model.

Computational Model 2.3.

until convergence do
read (x) from common memory
set y = x

until convergence do
compute ynewi = Ki(x; y) for i ∈ Jj
overwrite xi in common memory with ynewi ; i ∈ Jj
set yi = ynewi (in local memory).

This computational model describes in particular asynchronous methods with
exible communica-
tion (see [25,44]), in which new information is sent to the other processors as soon as it is computed,

A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216 205

even before the inner iterations have converged. A mathematical model for it can be obtained by
introducing a second set of delays de�ned through iteration indices r‘(k) ∈ N0; ‘=1; : : : ; m; k ∈ N,
satisfying the same �rst two hypotheses in (3), and by considering the following process, which is
slightly more general than the one given in [38],

xki =

{
xk−1i for i =∈ I k ;
Ki((x

s1(k)
1 ; : : : ; xsm(k)m); (xr1(k)1 ; : : : ; xrm(k)m)) for i ∈ I k : (6)

We note that further generalizations of these mathematical models are possible (and applicable
to speci�c situations), where the domain of the application analogous to H (or K) consists of
multiple copies of E, and each component of each copy of E may be subject to di�erent delays;
see [31,37,50].
It is crucial to realize that our Computational Models 2:1 and 2:3 do not preclude the blocks Jj to

overlap, i.e., we may have Jj ∩ Jl 6= ∅ for j 6= l. This situation cannot be modeled by the expression
(1), but our mathematical models (4)–(6) are still applicable. In some instances, it turns out that
a certain degree of overlapping together with a scheme for combining di�erent contributions within
the overlap will usually accelerate the overall iteration (see, e.g., [7,35]).

3. Convergence theory

A general convergence theorem for the asynchronous iteration (4) is the following result of Bert-
sekas [12] (see also [61]).

Theorem 3.1. Assume that there are sets Ek ⊆E which satisfy
(a) Ek = Ek1 × · · · × Ekm; k ∈ N0, (box condition)
(b) H (Ek)⊆Ek+1⊆Ek; k ∈ N0, (nested sets condition)
(c) there exists x∗ such that

yk ∈ Ek; k ∈ N⇒ lim
k→∞

yk = x∗

(synchronous convergence condition).
Then the sequence of asynchronous iterates xk from (4) converges to x∗; the unique �xed point

of H; provided assumptions (3) hold.

The idea of the proof is to show that starting in a box Ek , after some time all components xi
belong to some E‘i , ‘¿k, and by collecting them we are now in the box Ek+1. A careful inspection
of the proof of this result, e.g., in [12], reveals that we can easily obtain the following corollary for
non-stationary iterations.

Corollary 3.2. Replace (b) in Theorem 3:1 by
(b′) Hk(Ek)⊆Ek+1⊆Ek; k ∈ N0.
Then the asynchronous nonstationary iterates xk from (5) converge to x∗; the unique common

�xed point of all Hk .

206 A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216

There are several special cases of Theorem 3.1 which merit further discussion. Let us �rst consider
the case where each component space Ei is a normed linear space (Ei; ‖·‖i). De�ne ‖·‖w the weighted
max-norm on E given as

‖x‖w = m
max
i=1

‖xi‖i
wi

; (7)

where w = (w1; : : : ; wm) is a positive vector, i.e., wi ¿ 0 for i = 1; : : : ; m.

Theorem 3.3. Assume that there exists x∗ ∈ E such that Hk(x∗) = x∗ for all k. Moreover; assume
that there exists
 ∈ [0; 1) and w ∈ Rm positive, such that for all k we have

‖Hk(x)− x∗‖w6
 · ‖x − x∗‖w: (8)

Then the asynchronous (non-stationary) iterates xk from (5) converge to x∗; the unique common
�xed point of all Hk .

For a proof, set Ek = {x ∈ E: ‖x − x∗‖w6
k · ‖x0 − x∗‖w} and apply Corollary 3.2 (see [37]).
Di�erent proofs of similar theorems can be found in [28,29]. For the stationary case (Hk = H) the
above theorem is known as El Tarazi’s theorem [27].
An even more special case arises in the presence of P-contractions. The mapping H is called a

P-contraction with respect to a �xed point x∗, if there exists a nonnegative matrix P ∈ Rm×m with
�(P)¡ 1 such that for all x ∈ E we have


‖(Hx)1 − x∗1‖1

...
‖(Hx)m − x∗m‖m


6P




‖x1 − x∗1‖1
...

‖xm − x∗m‖m


 ;

where the inequality in Rm is componentwise [47]. It can be shown quite easily that a P-contraction
with respect to x∗ satis�es the assumption of Theorem 3.3 (w has to be taken as the Perron-vector
of a positive matrix su�ciently close to P). We therefore have

Corollary 3.4 (Baudet [10]). Assume that each Hk is a P-contraction with respect to x∗ with P
independent of k. Then the asynchronous (nonstationary) iterates xk from (5) converge to x∗; the
unique common �xed point of all Hk .

The contraction conditions considered so far can be somewhat relaxed to account for situations
where, instead of (8) one just has

x 6= x∗ ⇒ ‖Hx − x∗‖w ¡ ‖x − x∗‖w: (9)

This is particularly interesting for certain M -functions and diagonally dominant functions in the sense
of Mor�e [46] (see [30]). We mention here that if the implication in (9) is in both directions, such
maps are called paracontracting (with respect to the weighted max morm) [28,29,50].
The following is a further generalization of El Tarazi’s theorem which is applicable to process

(6), and in particular to asynchronous methods with
exible communication [38].

A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216 207

Theorem 3.5. Assume that there exists x∗ ∈ E such that K(x∗; x∗) = x∗. Moreover; assume; that
there exists
 ∈ [0; 1) and a weighted max norm such that

‖K(x; y)− x∗‖w6
 ·max{‖x − x∗‖w; ‖y − x∗‖w} for all x; y ∈ E:
Then the asynchronous (with
exible communication) iterates xk from (6) converge to x∗.

Another important special case arises for isotone mappings, i.e., mappings H where x6y implies
Hx6Hy. The following result goes back to Miellou [43]; see also [31] for the slightly more general
version given here, as well as for a related result for isotonically decomposable mappings.

Theorem 3.6. Assume that E is equipped with a partial ordering based on partial orderings for
each component; and that the partial ordering is compatible with the topology on E so that we
have

x06x16x26 · · ·6xk6 · · ·6y0 ⇒ lim
k→∞

xk = x∗ exists and x∗6y0:

Assume further that H is continuous and isotone and that there exist x06y0 such that x06Hx06
Hy06y0. Then the asynchronous iterates xk from (4) converge to x∗ with x∗ = Hx∗.

For a proof, let zk = H (zk−1) with z0 = x0, let x∗ = limk→∞ zk6y0 and take Ek = {x: zk6x6x∗}
in Theorem 3.1.

4. Applications of the theory

In the remainder of the paper we show how the convergence theory for the general models
(4)–(6) can be applied to a wide range of scienti�c problems.

4.1. Nonsingular linear systems

Let us start by considering a linear system of the form

Ax = b; (10)

where A ∈ Rn×n is nonsingular. Let A =M − N be a splitting of A, i.e., M is nonsingular. Let us
de�ne the iteration operator

H : Rn → Rn; x → M−1(Nx + b) (11)

and analyze the convergence of its associated asynchronous iteration (4) in the case that E = Rn =
E1× · · · ×En with Ei =R, i.e. we allow each component to be treated individually. One example of
such splitting is the Jacobi operator, when M is the diagonal part of A. Let |H | denote the matrix
of absolute values of entries of H .

Theorem 4.1. (a) H is a P-contraction if and only if �(|H |)¡ 1.
(b) If �(|H |)¡ 1; then the asynchronous iteration (4) (with H) converges to x∗; the solution of

Ax = b.

208 A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216

(c) If �(|H |)¿1; then there exists an asynchronous iteration i.e.; a set of delays and strategies
satisfying (3); and an initial guess x0 such that the iterates xk produced by (4) do not converge to
x∗ = A−1b.

Proof. (a) is a simple calculation, (b) follows from Corollary 3.4. Part (c) can be found in [21],
where a version of a proof of (b) was given for the �rst time. Bertsekas and Tsitsiklis [13], Strikwerda
[54], and Su et al. [56] suggested di�erent constructions of the non-convergent sequences.

We remark that the class of matrices with �(|H |)¡ 1 is just the class of H -matrices (see, e.g.,
[11]). H -matrices include M -matrices and strictly diagonally dominant or irreducibly diagonally
dominant matrices [62].
If we think of grouping components together into (disjoint) blocks Bi⊆{1; : : : ; n}; i=1; : : : ; m, we

can write (10) in block notation as
m∑
j=1

Aijxj = bi; i = 1; : : : ; m; (12)

where xj ∈ Rnj ; nj is the cardinality of Bj; Aij ∈ Rni×nj ; ∑m
i=1 ni = n. The corresponding block Jacobi

operator H is given by (11), where now M = diag(A11; : : : ; Amm) is the block diagonal of A which
is assumed to be nonsingular, and A =M − N . In view of Theorem 3.3 we are now interested in
cases where H is a contraction with respect to a weighted max-norm (7) where ‖ · ‖i is a norm on
block i. Interestingly, this is again so for H -matrices.

Lemma 4.2. Let A be an H -matrix and let x∗=A−1b. Then there exist norms ‖ · ‖i on each block
i; i ∈ {1; : : : ; m} such that with the (unweighted) max-norm ‖x‖ = maxni=1 ‖xi‖i, the Block Jacobi
operator H satis�es

‖Hx − x∗‖6
 · ‖x − x∗‖ with
 ∈ [0; 1):

Proof. One proceeds by showing �(|H |)¡ 1, which is true because the block Jacobi-splitting is an
H -splitting [36]. This implies the existence of v ∈ Rn, v¿ 0 with |H |v6
 · v,
 ∈ [0; 1). One then
de�nes ‖ · ‖i to be the weighted max-norm on block i with weights from the respective components
of v.

Alternatively, the following result can be helpful.

Lemma 4.3. Let ‖ · ‖i be a norm on Rni ; i = 1; : : : ; n. For each block Aij let ‖ · ‖ij denote the
corresponding matrix norm

‖Aij‖ij = max
‖xj‖j=1

‖Aijxj‖i :

Let P = (mij) ∈ Rn×n with

mij =
{
0 if i = j;
‖Aij‖ij · ‖A−1

ii ‖ii if i 6= j:
Then; if �(P)¡ 1 we have that H is a P-contraction with respect to x∗.

A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216 209

The proof is a straightforward computation.
In view of the above lemma one may thus generalize the concept of an H -matrix to block

H -matrices, a block H -matrix being one for which

1=‖A−1

11 ‖11 −‖A12‖12 : : : −‖A1m‖1m
−‖A21‖21 1=|A−1

22 ‖22 −‖A2m‖2m
...

...
. . .

...
−‖Am1‖m1 : : : : : : 1=‖A−1

mm‖mm




is an M -matrix (see, e.g., [8,49]). This then implies that the block Jacobi operator is indeed a
P-contraction, so that asynchronous iterations converge. Note also that in Lemma 4.3 we have
freedom in the choice of the norms for each block.
Let us mention that the above results remain unchanged if we replace ‖A−1

ii ‖ii in the de�nition of
P by 1=mii if we assume each block Aii to be strongly accretive with constant mii (see, e.g., [39]),
i.e., we assume that for all xi ∈ (Rni ; ‖ · ‖i) there exists a dual li(xi) of xi such that

〈Aiixi; li(xi)〉¿mii‖xi‖2i :
Here, 〈·; ·〉 denotes the bilinear form between (Rni ; ‖ · ‖i) as a Banach space and its dual, and li(xi)
is an element of (Rni ; ‖ · ‖i)∗ with

‖li(xi)‖∗i = ‖xi‖i and 〈li(xi); xi〉= ‖xi‖2i :
In this asynchronous block Jacobi setting, each processor needs to solve a linear system with the

coe�cient matrix Aii in (4) (see (11)). The solution of each of these systems by an iterative method
based on a splitting Aii = Fi − Gi in Rni × Rni gives rise to a non-stationary process (5) with

Hk
i (x) = (F

−1
i Gi)

‘(i; k)xi +
‘(i; k)−1∑
j=0

(F−1
i Gi)

j(Nx + b);

where F=diag(F1; : : : ; Fm) and G=diag(G1; : : : ; Gm) are block diagonal, M=F−G, and ‘(i; k) is the
number of inner iterations. In the context of the Computational Model 2.3, we have a process of the
form (6) with K(x; y) =F−1(Gy+Nx+ b). Under suitable hypotheses on the splittings A=M −N ,
and M = F − G (related to weak regular splittings and H -splittings), these methods can be shown
to converge using Theorems 3.3 and 3.5, respectively (see [37,38] and also [66,67]).
In the case of overlapping variables, i.e., when the blocks Bi de�ning the partitions for (12) are

not disjoint, one can still de�ne a block Jacobi iteration with overlap by solving (or approximating)
in di�erent processors the linear systems

Aiixi = bi −
m∑

j=1; j 6=i
Aijxj; i = 1; : : : ; m;

cf. the Computational Model 2.1. A consistent approximation to the solution of (10) can then be
obtained by convex combinations of the elements in each component xi belonging to nonempty
intersections of the blocks Bi. The coe�cients of these convex combinations, which can simply be
ones and zeros, may change from one iteration to the next. A full mathematical description of this
case will not be undertaken here, but we point out that for its analysis operators Hk : Em → Em are
de�ned representing each asynchronous step. Convergence of this asynchronous additive algebraic
Schwarz iteration is then obtained using Theorem 3.3 (see [7,35]).

210 A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216

We conclude this subsection with some comments on the case where A in (10) is singular. Any
splitting A=M −N (M nonsingular) of a singular matrix A produces an iteration matrix H =M−1N
with 1 as an eigenvalue. Assume for simplicity that H¿0 so that |H | = H and �(H) = 1 with
1 being an eigenvalue of H . The �xed points of H are the eigenvectors of H corresponding to
the eigenvalue 1, and thus form a subspace of Rn. Theorem 3.1 and its generalizations cannot be
directly applied to this situation, since the nested set condition would normally be violated. In fact,
part of the problem is that we no longer have a unique �xed point. In other words, the singular case
lies outside the general theory of Section 3 and more restrictive hypotheses on the asynchronous
iteration are needed in order to ensure convergence. For example, Lubachevsky and Mitra [41]
consider the situation where (basically) H is irreducible, the starting vector is nonnegative and the
asynchronous iteration is restricted in such a manner that for some �xed index i we always have
si(k) = k − 1 whenever i ∈ I k . In this case, one can then actually again construct a nested set of
boxes El; l = 0; 1; : : : which converge to some singleton consisting of a �xed point of H , and for
all l the asynchronous iterates xk satisfy xk ∈ El for l¿l(k).
Another approach was taken in [5,50] using the concept of paracontractions. Again, additional

restrictions have to be imposed on the asynchronous iteration in order to guarantee convergence.
For example, Bahi [5] requires to do a “true” step of (synchronous) successive approximation every
once in a while.

4.2. Nonlinear equations

Assume that we are given a nonlinear system of equations

F(x) = 0 where F : DF ⊆Rn → Rn: (13)

Assume that this equation has exactly one solution x∗ and let H : DH ⊆Rn → Rn be an iteration
function for this problem, i.e., x∗ is the unique �xed point of H . Not too surprisingly, the following
local version of Corollary 3.4 can be shown to hold [27].

Theorem 4.4. Assume that x∗ lies in the interior of DH and that H is Fr�echet di�erentiable at x∗.
If �(|H ′(x∗)|)¡ 1; then there exists a neighborhood N of x∗ such that the asynchronous iterates
(4) converge to x∗; provided x0 ∈ N.

The standard iteration operator for (13) is the Newton operator HN(x) = x − F ′(x)−1F(x): Here,
H ′(x∗) = 0 so that Theorem 4.4 can be applied. However, for practical reasons it is mandatory in
asynchronous computations that the components of H can be evaluated individually at much lower
cost than all components together. Due to the presence of the term F ′(x)−1 in HN this is usually not
the case. A favorable situation arises, for example, in the Durand–Kerner method [22,23], for the
simultaneous computation of all zeros of a polynomial, which is Newton’s method on the equations
expressing the coe�cients of the polynomial via the elementary symmetric functions on its roots,
but where one has a simple, explicit formula for each component of HN.
If D(x) denotes the diagonal part of F ′(x) = D(x) − B(x), the Newton–Jacobi operator is given

as HNJ(x) = x − D−1(x)F(x) [47]. We can regard HNJ as a two-stage approximation to HN with
one inner step. Here it is trivial that components of HNJ can be evaluated individually. We have
H ′
NJ(x

∗) = D(x∗)−1B(x∗). So, as in the remark following Theorem 4.1, we see that we get local

A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216 211

convergence of the asynchronous iterates if H ′(x∗) is an H -matrix. It is important to notice that
functions F satisfying the above conditions arise in several applications, including discretizations of
elliptic partial di�erential equations.
In a general way, we can de�ne the components of the nonlinear Jacobi operator HJ for (13)

through

yi = (HJ)i(x) ⇔ Fi(x1; : : : ; xi−1; yi; xi+1; : : : ; xn) = 0:

The generalization to a block nonlinear Jacobi operator should be obvious (cf. (16)). Another asyn-
chronous approach to Newton’s method includes the work by Boja�nczyk [16], where the Newton
operator can be viewed as K(x; y) = x − F ′(y)−1F(x) (cf. Theorem 3.5). Yet another extension is
to consider quasi-Newton methods [64].
Interestingly, there are several important situations where global convergence of asynchronous iter-

ates for HJ can be proved. As a generalization of Lemma 4.3 it was shown in [39] that Theorem 3.3
holds for the (block) Jacobi operator HJ for certain mildly non-linear functions arising in discretiza-
tions of elliptic boundary value problems, the obstacle problem or the Hamilton–Jacobi–Bellman
problem.
If the function F is an M -function (see [47]), one can also prove global convergence of the

asynchronous iterates for HJ, now using Theorem 3.6 [68]. Generalizations for further classes of
functions, including a nonlinear analog of H -matrices have been developed in [30].

4.3. Waveform relaxation

Waveform relaxation methods are parallel iterative methods for initial value problems based on a
splitting principle. They were developed at the beginning of the 1980s for the simulation of electronic
circuits (see [63]).
Consider the initial value problem

ẋ(t) = F(t; x(t)); t ∈ [0; T];
x(0) = x0;

(14)

where F : [0; T]×Rn → Rn; x(t) ∈ Rn. Instead of solving (14) directly, waveform relaxation methods
split the function F into a function G : [0; T]× Rn × Rn → Rn with G(t; x; x) = F(t; x) for all t and
x. Starting with a function x0 : [0; T] → Rn satisfying x0(0) = x0 (for example x0 ≡ x0) one then
successively solves the systems

ẋk(t) = G(t; xk(t); xk−1(t)); t ∈ [0; T];
xk(0) = x0

(15)

for k = 1; 2; : : : . Here, the function xk−1 is known and xk is to be determined.
Note that the familiar Picard iteration

ẋk(t) =F(t; xk−1(t)); t ∈ [0; T];
xk(0) = x0

is a special waveform relaxation method where G(t; x; y)=F(t; y). Since the Picard iteration usually
converges very slowly, one is interested in better splittings G which yield faster convergence. One

212 A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216

possibility is to take a block Jacobi type splitting which, given a block decomposition x=(x1; : : : ; xm)
(and similarly F(t; x) = ((F(t; x))1; : : : ; (F(t; x))m)) de�nes block i of G as

(G(t; x; y))i := (F(t; (x1; : : : ; xi−1; yi; xi+1; : : : ; xm)))i : (16)

From now on, let us assume that G satis�es a one-sided Lipschitz condition with respect to the
�rst argument, and a strong Lipschitz-condition with respect to the second argument, i.e., one has

〈G(t; x; y)− G(t; �x; y); x − �x〉6l · ‖x − �x‖2; ‖G(t; x; y)− G(t; x; �y)‖6L · ‖y − �y‖ (17)

for all t ∈ [0; T];]; x; �x; y; �y ∈ Rn. The Lipschitz condition with respect to the �rst argument implies
that (15) has a unique solution xk . Moreover, since F(t; x) = G(t; x; x), the function F also satis�es
a (one-sided) Lipschitz condition which shows that (14) has a unique solution x∗.
Iteration (15) de�nes an operator H where y = H (x) if

ẏ(t) =G(t; y(t); x(t)); t ∈ [0; T];
y(0) = x0: (18)

Here, H acts on a space of functions. We take this space to be C([0; T];Rn), the Banach space of
all continuous functions from [0; T] to Rn with the norm

‖|x‖|� = max
t∈[0;T]

e−�t‖x(t)‖∞; �¿ 0: (19)

It is crucial for us to notice that ‖| · ‖|� is in fact a maximum norm over the block components of
x since

‖|x‖|� = m
max
i=1

]|xi|[�; (20)

where for continuous f : [0; T]→ Rni (ni is the dimension of block i) the norm]| · |[� is given as
]|f|[� = max

t∈[0;T]
e−�t‖f(t)‖∞: (21)

The following theorem proved very recently by Martin [42] shows that for � su�ciently large the
operator H from (18) is contracting with respect to the max-norm ‖|x‖|�. Therefore, Theorem 3.3
shows that asynchronous iterations for H converge.

Theorem 4.5. Assume that G satis�es (17) and let x∗ ∈ C([0; T];Rn) be the solution of (14). There
exists � su�ciently large such that for all x ∈ C([0; T];Rn) we have

‖|H (x)− x∗‖|�6 1
2 · ‖|x − x∗‖|�:

Proof. Denote y = H (x) and u(t) = y(t)− x∗(t).
Then u̇(t) = G(t; y(t); x(t))− G(t; x∗(t); x∗(t)), so that from (17) we get

〈u̇(t); u(t)〉6l · ‖u(t)‖2 + L · ‖u(t)‖ · ‖x(t)− x∗(t)‖; t ∈ [0; T]:
Since 〈u̇(t); u(t)〉= (d=dt)‖u(t)‖2 whenever u(t) 6= 0, a standard argument from the theory of di�er-
ential inequalities (see, e.g., [19]) yields

‖u(t)‖6L · e|l|t
∫ t

0
‖x(s)− x∗(s)‖e−|l|s ds:

A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216 213

Turning from ‖ · ‖ to ‖ · ‖∞ we get

‖u(t)‖∞6cL · e|l|t
∫ t

0
‖x(s)− x∗(s)‖∞e−|l|s ds

with some constant c¿ 0. From the latter inequality we conclude

‖u(t)‖∞6 cL · e|l|t
∫ t

0
‖x(s)− x∗(s)‖∞e−�se�se−|l|s ds

6 cL · e|l|t · ‖|x − x∗‖|�
∫ t

0
e(�−|l|)s ds:

For �¿ |l| the last integral is less than e(�−|l|)t =(�− |l|), so that we get

‖u(t)‖∞e−�t6 cL
�− |l|‖|x − x

∗‖|�; t ∈ [0; T]

and thus

‖|u‖|�6 cL
�− |l| · ‖|x − x

∗‖|�:

So taking �¿ 2cL+ |l| proves the theorem.

For an in�nite time interval [45] gives a convergence result for asynchronous iterations under
much more restrictive assumptions. For di�erential-algebraic systems and asynchronous iterations,
see [4,6].
In [42] several numerical results on asynchronous waveform relaxation methods have been re-

ported. These computations were done on a cluster of 8 SUN Ultra Sparc 10 workstations, con-
nected via fast Ethernet. The example considered arises from a model describing the penetration of
radioactively marked antibodies into cancerous tissue (MedicalAkzo from [40]). The total system
size was 400, and the splitting G was obtained by a block Jacobi decomposition of F assigning a
block of 50 to each processor. The asynchronous variant then needed only 66% (120 s) of the time
required for the synchronous variant (180 s).

References

[1] D. Amitai, A. Averbuch, M. Israeli, S. Itzikowitz, On parallel asynchronous high-order solutions of parabolic PDEs,
Numer. Algorithms 12 (1996) 159–192.

[2] D. Amitai, A. Averbuch, M. Israeli, S. Itzikowitz, Implicit-explicit parallel asynchronous solver for PDEs, SIAM J.
Sci. Comput. 19 (1998) 1366–1404.

[3] D. Amitai, A. Averbuch, M. Israeli, S. Itzikowitz, E. Turkel, A survey of asynchronous �nite-di�erence methods for
parabolic PDEs on multiprocessors, Appl. Numer. Math. 12 (1993) 27–45.

[4] J. Bahi, Asynchronous Runge–Kutta methods for di�erential-algebraic systems, Adv. Parallel Comput. 11 (1996)
205–212.

[5] J. Bahi, Algorithmes parall�eles asynchrones pour des syst�emes singuliers, C.R. l’Acad. Sci. S�er. 326 (1998) 1421–
1425.

[6] J. Bahi, E. Griepentrog, J.-C. Miellou, Parallel treatment of a class of di�erential-algebraic systems, SIAM J. Numer.
Anal. 23 (1996) 1969–1980.

214 A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216

[7] J. Bahi, J.-C. Miellou, K. Rho�r, Asynchronous multisplitting methods for nonlinear �xed point problems, Numer.
Algorithms 15 (1997) 315–345.

[8] Z.-Z. Bai, V. Migall�on, J. Penad�es, D.B. Szyld, Block and asynchronous two-stage methods for mildly nonlinear
systems, Numer. Math. 82 (1999) 1–20.

[9] B. Bar�an, E. Kaszkurewicz, A. Bhaya, Parallel asynchronous team algorithms: Convergence and performance analysis,
IEEE Trans. Parallel Distributed Systems 7 (1996) 677–688.

[10] G.M. Baudet, Asynchronous iterative methods for multiprocessors, J. Assoc. Comput. Mach. 25 (1978) 226–244.
[11] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, Third

edition, 1979 (reprinted by SIAM, Philadelphia, 1994).
[12] D.P. Bertsekas, Distributed asynchronous computation of �xed points, Math. Programming 27 (1983) 107–120.
[13] D.P. Bertsekas, J.N. Tsitsiklis, Parallel and Distributed Computation, Prentice-Hall, Englewood Cli�s, NJ, 1989.
[14] D.P. Bertsekas, J.N. Tsitsiklis, Some aspects of parallel and distributed iterative algorithms – a survey, Automatica

27 (1991) 3–21.
[15] K. Blathras, D.B. Szyld, Y. Shi, Timing models and local stopping criteria for asynchronous iterative algorithms. J.

Parallel Distributed Comput. 58 (1999) 446–465.
[16] A. Boja�nczyk, Optimal asynchronous Newton method for the solution of nonlinear equations, J. Assoc. Comput.

Mach. 31 (1984) 792–803.
[17] R. Bru, V. Migall�on, J. Penad�es, D.B. Szyld, Parallel, synchronous and asynchronous two-stage multisplitting

methods, Electron. Trans. Numer. Anal. 3 (1995) 24–38.
[18] P. Buchholz, M. Fischer, P. Kemper, Distributed steady state analysis using Kronecker algebra, in: B. Plateau,

W.J. Stewart (Eds.), Numerical Solution of Markov Chains (NSMC ’99), Prensas Universitarias de Zaragoza, 1999,
pp. 76–95.

[19] K. Burrage, Sequential and Parallel Methods for Ordinary Di�erential Equations, Oxford University Press, Oxford,
1995.

[20] M.J. Castel, V. Migall�on, J. Penad�es, Convergence of non-stationary multisplitting methods for Hermitian positive
de�nite matrices, Math. Comput. 67 (1998) 209–220.

[21] D. Chazan, W. Miranker, Chaotic relaxation, Linear Algebra Appl. 2 (1969) 199–222.
[22] M. Cosnard, P. Fraigniaud, Asynchronous Durand-Kerner and Aberth polynomial root �nding methods on a

distributed memory multicomputer, in: D. Evans, G. Joubert, F. Peters (Eds.), Parallel Computing 89, North-Holland,
Amsterdam, 1990.

[23] E. Durand, Solutions num�eriques des �equations alg�ebriques, Vol. I, Masson, Paris, 1960.
[24] D. El Baz, A method of terminating asynchronous iterative algorithms on message passing systems, Parallel

Algorithms Appl. 9 (1996) 153–158.
[25] D. El Baz, D. Gazen, J.-C. Miellou, P. Spiteri, Mise en �uvre de m�ethodes it�eratives asynchrones avec communication

exible, application �a la r�esolution d’une classe de probl�emes d’optimisation, Calculateurs Parall�eles 8 (1996) 393–
410.

[26] D. El Baz, P. Spiteri, J.-C. Miellou, Distributed asynchronous iterative methods with order intervals for a class of
nonlinear optimization problems, J. Parallel Distributed Comput. 38 (1996) 1–15.

[27] M.N. El Tarazi, Some convergence results for asynchronous algorithms, Numer. Math. 39 (1982) 325–340.
[28] L. Elsner, I. Koltracht, M. Neumann, On the convergence of asynchronous paracontractions with application to

tomographic reconstruction from incomplete data, Linear Algebra Appl. 130 (1990) 65–82.
[29] L. Elsner, I. Koltracht, M. Neumann, Convergence of sequential and asynchronous nonlinear paracontractions, Numer.

Math. 62 (1992) 305–319.
[30] A. Frommer, Generalized nonlinear diagonal dominance and applications to asynchronous iterative methods, J.

Comput. Appl. Math. 38 (1991) 105–124.
[31] A. Frommer, On asynchronous iterations in partially ordered spaces, Numer. Functional Anal. Optim. 12 (1991)

315–325.
[32] A. Frommer, Asynchronous iterations for enclosing solutions of �xed point problems, in: L. Atanassova,

J. Herzberger (Eds.), Computer Arithmetic and Enclosure Methods, Elsevier, Amsterdam, 1992, pp. 243–252.
[33] A. Frommer, Parallele asynchrone Iterationen. in: J. Herzberger (Ed.), Wissenschaftliches Rechnen, Akademie, Berlin,

1995, pp. 187–231 (Chapter 4).

A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216 215

[34] A. Frommer, H. Schwandt, Asynchronous parallel methods for enclosing solutions of nonlinear equations, J. Comput.
Appl. Math. 60 (1995) 47–62.

[35] A. Frommer, H. Schwandt, D.B. Szyld, Asynchronous weighted additive Schwarz methods, Electron. Trans. Numer.
Anal. 5 (1997) 48–61.

[36] A. Frommer, D.B. Szyld, H -splittings and two-stage iterative methods, Numer. Math. 63 (1992) 345–356.
[37] A. Frommer, D.B. Szyld, Asynchronous two-stage iterative methods, Numer. Math. 69 (1994) 141–153.
[38] A. Frommer, D.B. Szyld, Asynchronous iterations with
exible communication for linear systems, Calculateurs

Parall�eles 10 (1998) 421–429.
[39] L. Giraud, P. Spit�eri, R�esolution parall�ele de probl�emes aux limites non lineaires, Math. Modelling Numer. Anal.

25 (1991) 579–606.
[40] W. Lioen, J. de Swart, W. van der Veen, Test set for IVP solvers. CWI Amsterdam, Online at

http://www.cwi.nl/cwi/projects/IVPtestset.
[41] B. Lubachevsky, D. Mitra, A chaotic asynchronous algorithm for computing the �xed point of a nonnegative matrix

of unit spectral radius, J. Assoc. Comput. Mach. 33 (1986) 130–150.
[42] S. Martin, Parallele asynchrone Waveform-Relaxation f�ur Anfangswertaufgaben, Master’s thesis, Department of

Mathematics, University of Wuppertal, 1999.
[43] J.C. Miellou, It�erations chaotiques �a retards; �etudes de la convergence dans le cas d‘espaces partiellement ordonn�es,

C.R. l’Acad. Sci. Paris, S�er. A 280 (1975) 233–236.
[44] J.C. Miellou, D. El Baz, P. Spit�eri, A new class of asynchronous iterative algorithms with order intervals, Math.

Comput. 67 (1998) 237–255.
[45] D. Mitra, Asynchronous relaxations for the numerical solution of di�erential equations by parallel processors, SIAM

J. Sci. Statist. Comput. 8 (1987) s43–s58.
[46] J.J. Mor�e, Nonlinear generalizations of matrix diagonal dominance with application to Gauss–Seidel iterations, SIAM

J. Numer. Anal. 9 (1972) 357–378.
[47] J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New

York and London, 1970.
[48] V. Pereyra, Asynchronous distributed solution of large scale nonlinear inversion problems, Appl. Numer. Math. 30

(1999) 31–40.
[49] B. Polman, Incomplete blockwise factorization of (block) H -matrices, Linear Algebra Appl. 90 (1987) 119–132.
[50] M. Pott, On the convergence of asynchronous iteration methods for nonlinear paracontractions and consistent linear

systems, Linear Algebra Appl. 283 (1998) 1–33.
[51] S.A. Savari, D.P. Bertserkas, Finite termination of asynchronous iterative algorithms, Parallel Comput. 22 (1996)

39–56.
[52] W. Shangmeng, L. Xiaomei, A class of stable di�erence schemes for linear elliptic PDE’s and their asynchronous

parallel computation, Wuhan Univ. J. Nat. Sci. 1 (1996) 553–556.
[53] J. �Silc, B. Robi�c, T. Ungerer, Asynchrony in parallel computing: From data
ow to multithreading, Parallel Distributed

Comput. Practices 1 (1998) 3–30.
[54] J.C. Strikwerda, A convergence theorem for chaotic asynchronous relaxation, Linear Algebra Appl. 253 (1997)

15–24.
[55] Y. Su, A. Bhaya, Convergence of pseudocontractions and applications to two-stage and asynchronous multisplittings,

Technical Report SB97=NACAD=05, Laboratory for High Performance Computing, Graduate School of Engineering,
Federal University of Rio de Janeiro, 1997.

[56] Y. Su, A. Bhaya, E. Kaszkurewicz, V.S. Kozyakin, Further results on convergence of asynchronous linear iterations,
Linear Algebra Appl. 281 (1998) 11–24.

[57] D.B. Szyld, Di�erent models of parallel asynchronous iterations with overlapping blocks, Comput. Appl. Math. 17
(1998) 101–115.

[58] X.-C. Tai, P. Tseng, An asynchronous space decomposition method, in: C.-H. Lai, P.E. BjHrstad, M. Cross,
O.B. Widlund (Eds.), Eleventh International Conference on Domain Decomposition Methods (London), DDM.org
Press, 1999, pp. 348–358.

[59] P. Tseng, On the rate of convergence of a partially asynchronous gradient projection algorithm, SIAM J. Optim. 1
(1991) 603–619.

216 A. Frommer, D.B. Szyld / Journal of Computational and Applied Mathematics 123 (2000) 201–216

[60] P. Tseng, D.P. Bertsekas, J.N. Tsitsiklis, Partially asynchronous, parallel algorithm for network
ow and other
problems, SIAM J. Control Optim. 28 (1990) 678–710.

[61] A. �Uresin, M. Dubois, Su�cient conditions for the convergence of asynchronous iterations, Parallel Comput. 10
(1989) 83–92.

[62] R.S. Varga, On recurring theorems on diagonal dominance, Linear Algebra Appl. 13 (1976) 1–9.
[63] J. White, A. Sangiovanni-Vincentelli, Relaxation Techniques for the Simulation on VLSI Circuits, Kluwer Academic

Publishers, Boston, 1987.
[64] J.-J. Xu, Convergence of partially asynchronous block quasi-Newton methods for nonlinear systems of equations, J.

Comput. Appl. Math. 103 (1999) 307–321.
[65] J. Aral, V. Migall�on, J. Penad�es, Non-stationary parallel multisplitting algorithms for almost linear systems, Numer.

Linear Algebra Appl. 6 (1999) 79–92.
[66] R. Bru, L. Elsner, M. Neumann, Models of parallel chaotic iteration methods, Linear Algebra Appl. 103 (1988)

175–192.
[67] R. Bru, L. Elsner, M. Neumann, Convergence of in�nite products of matrices and inner–outer iteration schemes,

Electron. Trans. Numer. Anal. 2 (1994) 183–193.
[68] D. El Baz, M -functions and parallel asynchronous algorithms, SIAM J. Numer. Anal. 27 (1990) 136–140.

