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Scientific Productivity Defined 
For This Talk

1. Hundreds of computing professionals can 
make a few codes run faster on brand new 
large scale computer vs. last one

2. Scientists themselves can make many 
codes run efficiently on new computers
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• Cost per socket goes up in large scale system
– Interconnection network more expensive for good 

1000-way system than good 100-way systems
– Good bandwidth, good latency, avoid hot spots

• Yet sell more small systems than big systems
• Supercomputing market too small to justify 

large investment for high-end custom chips, 
systems

Conventional Wisdom in 
Computer Architecture



4

• 1960s Conventional Wisdom (CW): 
Hardware is hard to change, Software is flexible

• New CW: 
Hardware is flexible, Software is hard to change

• Old CW: Commodity microprocessors have fixed 
instruction sets that can’t be changed

• New CW: Commodity microprocessors backwards 
compatible, but expand instruction set regularly
– Since 1997, Intel added 36 instructions per year to IA-32, 

or 3 instructions per month!

Conventional Wisdom in 
Computer Architecture
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• Old CW: Parallel buses connect components
• New CW: Serial lines + switches connect them

– Network (finally) connected directed to microprocessor, 
lowering HW communication overhead

– PCI Express @ Intel, Hypertransport @ AMD, 
Ethernet @ Sun Niagra, …

• Old CW: Performance improves uniformly
• New CW: 

Bandwidth improvement > (latency improvement)2

To learn more, see “Latency. Lags Bandwidth” David Patterson, CACM (Oct. 2004)

Conventional Wisdom in 
Computer Architecture
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• Old CW: Power is free, Transistors are expensive
• New CW: Power is expensive, Transistors are free

– Can put more on chip than can afford to turn on

• Old CW: MPU manufacturers don’t want new ideas
• New CW: Power wall + Memory wall = Brick wall

– New idea receptive environment

• Old CW: Uniprocessor performance 2X / 1.5 yrs
• New CW: 2X CPUs per socket / ~ 3 to 4 years

– More simpler processors more power efficient

Conventional Wisdom in 
Computer Architecture
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• Old CW:  Researchers can’t build hardware in a 
timely fashion that would convince others 

• New CW: FPGA, open source HW 
⇒ rapid development and validation of innovative 
systems even if run ~ 10X to 30X slower

• Old CW: Only 2 or 3 companies can build state-of-
the-art microprocessors

• New CW: Semiconductor technology slowing 
⇒ longer generations ⇒ more use before old 
+ not clear what to build

Conventional Wisdom in 
Computer Architecture
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Conventional Wisdom 
in Scientific Programming

• Old CW: Dense linear algebra ‘R’ Us
• New CW: Future computing is 7 dwarves 

+ Search, Sort, and Event-Driven simulation?
– Trends in evolution of 7 dwarves

• Dense ⇒ Sparse ⇒ Adaptive
• SIMD ⇒ More elaborate control flow

– One big linear system ⇒ Put together lots of small linear systems
– Different fields simultaneously at different levels of 

sophistication on trend line
• Biology on left, Physics on right?

• Advance computer design by looking forward 
(7 ± 3 dwarves) vs. looking backward (SPEC200x)

Horst Simon, William Kramer, et al, Science-Driven System Architecture: A New Process for 
Leadership Class Computing, Journal of the Earth Simulator, Vol 2, p 1-9, January 2005. 
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High-end simulation in the physical 
sciences consists of seven algorithms:

1. Structured Grids (including locally structured 
grids, e.g. AMR)

2. Unstructured Grids
3. Fast Fourier Transform
4. Dense Linear Algebra
5. Sparse Linear Algebra 
6. Particles
7. Monte Carlo
Well-defined targets from algorithmic and software standpoint.

Slide from “Defining Software Requirements for Scientific Computing”, Phillip Colella, 2004 

Phillip Colella’s “Seven dwarves”
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• Old CW: Programming is hard
• New CW: Parallel programming is really hard

– 2 kinds of Scientific Programmers
• Those using single processor
• Those who can use up to 100 processors

– Big steps for programmers
• From 1 processor to 2 processors
• From 100 processors to 1000 processors

– Can computer architecture make many processors look 
like fewer processors, ideally one?

• Old CW: Who cares about I/O in Supercomputing?
• New CW: Supercomputing 

= Masssive data + Massive Computation

Conventional Wisdom 
in Scientific Programming
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Organize rest of this talk?
My Most Popular Talks

• “How to Give a Bad Talk”
• “How to Have a Bad Career”
• And so today’s subtitle is 
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Outline
• CW in Technology and Scientific Programming
• Part I: Key Advice for Computer Architects 

Wishing to Hurt Scientific Productivity
– Aim High (& Ignore Amdahl’s Law)
– Promote Mystery (& Hide Thy Real Performance)
– Be “Interesting” (& Have a Quirky Personality)
– Accuracy and Reliability are for Wimps (Speed Kills)

• Part II: 8 Options to Enhance Productivity
– Flight Data Recorder,128-bit Floating Point, Transactional 

Memory, Vector Architectures, “Virtual CPUs,” Innovative 
Memory, Research Prototypes, Social Science to Settle 
Debates

• Summary and Conclusion
• ACM feedback (if time permits)
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Bad Computer Architecture #1: 
Aim High

(and Ignore Amdahl’s Law)
• Peak Performance Sells

+ Increases employment of computer scientists at 
companies trying to get larger fraction of peak

• Examples
– Very deep pipeline / very high clock rate
– Relaxed write consistency
– Out-Of-Order message delivery
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Bad Computer Architecture #2: 
Promote Mystery 

(and Hide Thy Real Performance)
• Predictability suggests no sophistication

+ If its unsophisticated, how can it be expensive?
• Examples

– Out-of-order execution processors
– Memory/disk controllers with secret prefetch 

algorithms
– N levels of on-chip caches, 

where N ~ (Year – 1975) / 10
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Bad Computer Architecture #3: 
Be “Interesting”

(and Have a Quirky Personality)
• Programmers enjoy a challenge

+ Job security since must rewrite application with each 
new generation

• Examples
– Message-passing clusters composed of shared 

address multiprocessors
– TLBs exceptions if access all cache memory on chip
– Complicated, undocumented branch predictors
– Computing using Graphical Processor Units
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Bad Computer Architecture #4: 
Accuracy & Reliability are for Wimps

(Speed Kills Competition)
• Don’t waste resources on accuracy, reliability

+ Probably blame crashes on OS anyways
• Examples

– Cray et al 754 Floating Point Format, yet not 
compliant, so get different results from desktop

– No ECC on L2 Cache of Sun UltraSPARC 2 
– No ECC on Virginia Tech Apple G5 cluster
– “Error Free” intercommunication networks make 

error checking in messages “unnecessary”
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Alternatives to Hurting Productivity

• Aim High (& Ignore Amdahl’s Law)?
– No! Delivered productivity >> Peak performance

• Promote Mystery (& Hide Thy Real Performance)?
– No! Promote a simple, understandable model of execution 

and performance
• Should be able to explain to Ph.D.s in physics!

• Be “Interesting” (& Have a Quirky Personality)
– No programming surprises!

• Accuracy & Reliability are for Wimps? (Speed Kills)
– No! You’re not going fast if you’re headed in the wrong 

direction
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Enhancing Scientific Productivity: 
1) “Flight Data Recorder” for 

Replay and Debugging
• Mark Hill et al propose “Flight Data Recorder” to replay 

recent execution deterministically, even programs with 
data races, including OS interactions

• FDR records cache coherence traffic in multiprocessors 
and thread ordering information in main memory
– Logs memory state whenever memory updated to starting state 
– Records (minimal subset) of outcome of data races

• 4 processor system to replay last 1 second takes 7% of 
system memory at just 2% performance cost

To learn more, see “A ‘flight data recorder’ for enabling full-system multiprocessor deterministic replay,”
Min Xu, Rastislav Bodik, Mark D. Hill, Proc.. Int’l Symp. Computer Architecture, 2003. 
Also see, "Application Development Productivity Challenges for High-End Computing", Vivek Sarkar, Clay 
Williams, Kemal Ebcioglu, P-PHEC (Workshop on Productivity and Performance in High-End Computing), 2004.
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Enhancing Scientific Productivity: 
2) 128-bit Floating Point

• Yelick et al experience with rewriting scientific codes: 
numerical bugs every week, one parallel bug per year

• Although math-rigorous error analysis makes most 
computation fit in 64 bits, such analysis takes time 
⇒ lowered productivity
– Parallel programming already really hard

• Simulating 128-bit FP on 64-bit is very slow: 20X
• Adding less than 10% to 64-bit FPU allows 4X 

slowdown for 128-bit Fl. Pt. (wider registers…)
– 128-bit Fl. Pt. standard already set (IEEE 754R)

• Also, user-level Fl. Pt. traps reduce programming 
concerns of denorms, divide by zero, …
To learn more, see How Futile are Mindless Assessments of Roundoff in Floating-Point 
Computation? http://www.cs.berkeley.edu/~wkahan/Mindless.pdf 
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Enhancing Scientific Productivity: 
3) Transactional Memory

• New research: Kozyrakis and Olukotun at Stanford
• Rather than critical sections, assume that there is no 

data sharing race conditions, but periodically check 
and redo threads that conflict

• Buffer writes until “check points,” then broadcast 
addresses before committing writes to memory
– For cache-coherent, shared address computers

• Trades bursts of network bandwidth for simpler 
parallel programming
– Early work with small multiprocessors encouraging

(To learn more, see http://tcc.stanford.edu/)
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Enhancing Scientific Productivity: 
4) Vector Architectures [Part I]

• 1 instruction operates on vectors of data
• Vector loads get data from memory into big 

register files, operate, and then vector store
– E.g., Indexed load, store for sparse matrix
– Invent new vector load, store for adaptive matrix?

• Easy to add vector to commodity instruction set
– E.g., Morph SIMD into vector in ~ 30 instructions
– About the same CPU requirements as SMT
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Enhancing Scientific Productivity: 
4) Vector Architectures [Part II]

• Compiler technology parallelizes code, hides latency 
+ gives hints how to make even better

• Easy to understand performance model, can avoid 
quirks, delivers large fraction of peak performance
– Scientists successfully vectorize their codes

• Need memory to support vector
– Short term, can deliver vector from L2 cache like Cray X1
– Long term, memory on same chips as CPU
– If memory latency is THE problem, innovate there vs. CPU?

• Vectorized codes used to justify novel, non-vector 
architecture; often all it runs; so just use vector!

To learn more,see http://www.iram.berkeley.edu
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Enhancing Scientific Productivity: 
5) “Virtual Central Processing Unit”

• Multithreaded occasionally useful now, 
but exacerbates programming challenge in future
– Making 64 processors look like 1024 a good idea?

• Clearly, commercial microprocessors will have 
many processors on chip for commercial workloads
– Can we make them more attractive building blocks for 

scientific computing at low cost?
• A different approach (for Berkeley): “Virtual CPU”

makes many physical processors look like fewer
CPUs, ideally one
– Just as virtual memory invented to make small physical 

memory look to programmer like a lot of memory
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Enhancing Scientific Productivity: 
Virtual Vector CPU

• For example, collection of processors on a chip ⇒
selectable mode where they act as 1 vector computer

• Each processor has one portion of vector unit 
(“lane”) and subset of vector register file

• Memory unit, TLB modified to handle many requests 
from vector loads and vectors stores

• Common clock makes synchronization easier
• Single chips makes extra paths to exchange 

information between “vector units” plausible
– Broadcast vector instructions, Coordination between units, 

Passing results for reductions, …
Horst Simon, William Kramer, et al, Science-Driven System Architecture: A New Process for 
Leadership Class Computing, Journal of the Earth Simulator, Vol 2, p 1-9, January 2005. 
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Enhancing Scientific Productivity: 
6) Innovate in Memory vs. CPU

• If Memory Wall is a major performance 
bottleneck, why not look beyond main 
memory of DRAM SIMM modules?
– Why use same memory as in desktops?
– Simplified programming via low latency 

has value too?
• SRAM for portion of Main Memory?
• Logic in Memory?
• Stencil in memory?
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Enhancing Scientific Productivity: 
7) Build Research Prototypes

• DOE universe of all possible architectures 
≈ what a few manufacturers are willing to propose to a 
small market

• Instead, fund research prototypes that rapidly, cheaply 
explore more alternatives?
– FPGAs to quickly simulate innovative designs while running 

7 dwarves with operating systems
– Lower risk innovation for companies and DOE

• Millions now to save 10s of millions later takes vision, but sensible
– Market for reliable processing with massive storage may be 

larger than market for I/O-starved, accuracy-challenged, 
undependable, low productivity but high peak performance 
conventional supercomputer
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Enhancing Scientific Productivity: 
8) Social Science to Resolve Debates

• CS&E pretends that can’t do experiments with 
programmers and learn anything significant
– Yet ~ 25% of university campus does social science 

experiments on human subjects (under strict guidelines)

• Do a valid, large scale social science experiment 
to get real measurements on productivity of 
programming languages and architectures
– Science to settle debates of Scientific Computing?
– Compared to supercomputer, doesn’t cost much
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Conclusion
• Chips limited in power, memory, implicit parallelism, 

so processors per socket will grow: 2X / 3 to 4 years
• For years, computer designers neglected productivity 

– No excuse for 21st century scientific computing to be based on 
untrustworthy, mysterious, I/O-starved, quirky hardware where 
peak performance is king and must rewrite applications 

– Larger market if 21st century supercomputer ≠ 20th century?
• Let’s design processors for 21st century programs 

(7 ± 3 dwarves) vs. 20th century programs (SPEC200x)
• 8 Options that may help: Flight Data Recorder, 

128-bit Fl. Pt., Vector Instructions, Virtual CPUs, 
Transactional Memory, Innovative Main Memory, 
Research Prototypes, Social Science to Settle Debates
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Why Join ACM?

Join a worldwide organization with 80,000+ 
members on 6 continents
Benefit from 35 Special Interest Groups 
(SIGs): big SIGs like SIGGRAPH, SIGPLAN + 
small SIGs from SIGACCESS (Accessible 
Computing for those with disabilities) to 
SIGWEB (Hypertext, Hypermedia and Web)
Learn from 100+ research conferences, 21+ 
journals, 4+ magazines, and Digital Library 
(DL): 58 years of ACM papers online 
Sponsor outreach via new Computer Science 
Teachers Association (K-12) +ACM-Women, 
Coalition to Diversify Computing (joint with 
IEEE-CS & CRA),  International Collegiate 
Programming Contest, 500+ student chapters, 
100+ local (regional) chapters
Aid advocacy (US-ACM), such as new policy 
on E-voting machines 
Support education via Curriculum Standards 
and Accreditation
Help honor computing via ACM  Fellows + 
12 Awards, including it’s “Nobel Prize,”

It’s the right thing to do! It’s a good return on your investment!

$99 / year gets Professional Development Centre (PDC), 
magazines, Email redirect

Lifelong learning is up to you in this fast moving field, 
so stay current via 

•Magazines like Queue (featured in Slashdot almost 
every month)

•PDC with 450+ free IT Courses and 400+ free Online IT 
Books with search, bookmarking, …
(PDC is not part of a DL site license)
Lifelong email forwarding

•Doesn’t replace favorite email service
•YourName@acm.org can use forever

•ACM 58 years old and growing; Free email in 2020?

Saves money if you go to ≥ 1 ACM conf. / year as 
ACM discount > $99 or  if you take ≥ 1 PDC course / year 
as course outside ACM costs > $99

May be free as some employers (e.g., Google, 
Microsoft) pay membership, yet you save them money if 
go to ≥ 1 ACM conf.  or take ≥ 1 PDC course/year

Joiners Value-seekers

(From “Why Join ACM?,” David Patterson, CACM, Feb ’05, p. 14)
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Backup Slides
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3 Scientific Programming Cultures: 
NSF Centers, DOE Labs, Academia

1. At NSF Centers
a. Lone wolf amateur scientists / programming experts
b. Lone wolf amateur programmers / science experts
c. Consortia: groups of 12 to 50 oriented around a problem 

and set of code
i. Separate user group who can use old version
ii. Limited number who control the code and get the first 

crack at using it to advance the science
iii. Enough resources so that can hire a few professional 

programmers
iv. Properly motivated to do good science and efficiently 

use machines
d. Users of canned systems e.g., NAMD
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3 Scientific Programming Cultures: 
NSF Centers, DOE Labs, Academia

2. At DOE labs
a. Unclassified DOE and NSF centers share similarities
b. New group: “hired guns” expert programmers paid to fix 

codes, make things run well
3. Academic scientists outside of labs

a. Do-it-yourselfers trying to get work done on clusters
b. Theoreticians who gave up on parallel programming, 

waiting for desktop to get faster
– Matlab is lingua franca for  publications, pseudo code
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Size of Machine

• What parallelism achievable with good or 
bad architectures, good or bad algorithms?
– 32-way: anything goes
– 100-way: good architecture and bad algorithms 

or bad architecture and good algorithms
– 1000-way: good architecture and good 

algorithm
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100 Processor Plateau

• Why does computation stay at ~ 100 
processors?

• Scientists improve accuracy, efficiency of  
computation to improve solution but 
generally reduce parallelism 
– E.g., adjustable matrix resolution

• Programmers recode to improve parallelism


