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The parareal algorithm

Overview

» Proposed by Lions, Maday, Turinici in 2001

» Parareal = “Parallel in time” ODE solver

» Low order accurate solution obtained via serial computation
to a final time

> e.g foreward Euler
» Corrections to low order solution done in parallel
» e.g. on a finer temporal grid
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The parareal algorithm

Notation and Problem Statement

» u' = f(t,u) on coarse mesh t" = nAt. n=20,1,.. N
IC u® = u(tY)
» Three flavors of solution operator
» Analytic: u(t"1) = g(t", u(t"))
» Numerical, coarse with order m: u
» Numerical, fine: u™?! = ghne(t”, u™)

n+1 _ gAt(tny un)

» One might choose the fine solution operator such that
At/100, or use a method with an order of accuracy higher
than m.

> 08" (u) = ghne(t", u) — gae(t", u)

» Introduce a correction iteration label u,’(’*l, where k =1,2,....
k will denote the number of refinements, and

1
ult™ = gae(t", um).
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Algorithm

After choosing a temporal discretization and schemes ga; and ggne,
the following iterative procedure comprises the parareal algorithm
1. compute uf*™t = ga,(t", u") in serial

2. compute the corrections 0g"(uf) = &hne(t", u7) — gae(t", uf)
in parallel

3. add the prediction and correction terms as
uy ™ = gae(t", u) + 0g"(u])

4. repeat steps 2 and 3, incrementing the iteration label and
using u2+1 = u° as the initial condition.

Or more compactly

u,’(’ﬂ = gne(t", up 1) + [8ane(t", up) — gae(t™, uf)]  k=1,2,...
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Comments on the algorithm

UIZ——::% = gAt(tn’ UZ+1) + [gﬁne(tn’ UZ) - gAt(tna UZ)]
» Optimally we will have N processors.

» Example: if kK = 1 we recover the order m scheme. if, say k=3,
we have an order 3m scheme requiring 3 coarse computations
in serial, and 2 correction calculations in parallel.

» as k — N the parareal algorithm gives v}, ; = vy, producing a
solution with accuracy of gine.

» One would like to take large steps with ga;. Choosing an
appropriate implicit method is a popular choice.

Choices (to be discussed throughout the talk) must be made for k,
At, methods for ghne and ga, and the number of processors P.
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Example: model equation

Our problem is ¢/ = Aus.t. A< 0and u® =1.

Let the fine solution operator be exact gxine = g and the coarse
operator be a forward Euler scheme. Define z = AAt, thus

8Bfine = e?
gar=1+z=u] =(1+2)"=¢e*+ O(At)
og(u) =[e* —(1+2)]u

For the k = 2 iteration we have...
0 _ 1
u;
ul = (1+2) +0g(u?) = e EXACT!
w3 = (14 2)2+ (1 + 2)og(ud) + dg(ul) = €2 + O((At)?)

Scott Field Parareal Methods



Overview

Notation

Algorithm

Model equation example

The parareal algorithm

Example: model equation

upt =(L+2)" Y (14 2)"og ()
j=0

=(1+2)" > (A+2)" T -1+ 2)](1+2)
j=0

=(1+2)" +(n+1)(1+2)"[e* — (14 2)]
—elhz 4 O((At)?)

» From our first order FE, we now have a second order parareal
method! This example is representative of the general theory...
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Theory: Convergence, Stability, and Parameters
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Assumptions

Assume the coarse operator ga: is order m and Lipschitz:

lgne(t", u) — gas(t", v)| < (1 + LAt)|u —v| VYt e (0,tV)
lu(tV) — u| < C(AL)™ |ugl

It is also assumed that the function u remains bounded on (0, t").
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Convergence

Assume the fine solution operator is sufficiently accurate
approximation to the analytic operator so that we may replace

Sfine — &

Theorem: The order of accuracy of the parareal method with
coarse solution operator ga; and fine operator g is mk. (G. Bal
www.columbia.edu/ gh2030)

proof: By induction

k=1: This is just the order m coarse operator.
Assume for k: [u(tV) — ul| < C(A)™ |ug|
now show k = k+1:
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Convergence

k = k+1:

u(t") — | = [g(u(e"™ ))—gm(um) og(uy )|

= lgae(u(t"™)) — gar(upiy) — 0g(uy ) + dg(u(tN 1))

< lgae(u(t" ™) — gar(up )] + 108 (u 1) — dg(u(t" 1))
< (14 CAt)|u(tN- 1)—u2’+11|+C(At)m+1|uN—1— u(tN1)|
< (14 CAt)u(tV ) — u) Tt + C(At)m KTy

(V) — 4] < € (a1)™ED |y
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Stability

» Parareal methods prescribe a means for combining ODE
solvers. Thus a study of the stability region requires specifying
ga: and gene. Consider v/ = A\u

> Let gﬁne(tn’ un) = gﬁneun and gAt(t", Un) = EAtU"
» As shown in Stability of the Parareal Algorithm by Staff et al.
the parareal method becomes

k
n\  _ o L
UZ - Z (J) (gﬁne B gAt)j ggtj o = H(gAt)gﬁnev n, k) )\)UO
j=0

> Stability = maxy, x|H| <1
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Stability

» The authors go on to show that when A\ < 0 and real,

H| < Z QSN

= (‘gﬁne - gAt‘ + ‘gAt‘)n <1
= |gﬁne - gAt| + |gAt‘ < 1
» The conditions are:
1. |8ane| <1 — this is the usual stability requirement.
2. |gﬁne - 2gAt| < 1
> Example: gar = (1 — AAt) ™! and Zne = (1 + A5E)10
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Stability

» Parareal methods work best when there is (numerical or
analytic) dissipation. Consider the k' term in H
(Z) |Bine — 8atl*|8at|™ k.
» For k << n, (Z) < n* is a good bound.
» Thus a desirable property would be
n¥|gane — Bat|¥|8ac|"F < 1
» Terms 2 and 3 must compensate for the presence of nk. We
must have
1. |8as] < (1 + cAt)ermin(rat)?.1)]
2. |Bhne — Bat| < cmin(|AAL[™ 1)
» v >0 and 3> 1 chosen to satisfy e™7"n* < 1 and
‘)\At‘k(m—l—l) nke—n'y|)\At|ﬁ <1
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Stability

Guillaume Bal:“The parareal algorithm [...] may generate
instabilities. "
2 stage, 3 third order RK-Radau method (A-stable)

Fig. 3. Stability plots using Radau3 for both Gar and Far. The x-axis is Re(pAT)
and the y-axis is Im(pAT). The dark regions represent the regions in the complex
plane where (6) is satisfied. Here, N = 1000, and s = 10 (left) and s = 1000 (right).
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Choosing the parameters wisely

In Bal Parallelization In Time of ODEs, the author attempts to
optimize

» Speedup S = (full fine resolution)/ (parallel algorithm)

» Efficiency E = S/P, where P = processors. Best case E =1

Assuming an order 1 course and fine solution operator, the main
points are as follows

» E<(k—1)71
» S can be unbounded at the expense of E

Proposes a “mult-level” parareal method to improve S and E
(essentially applies k=2 case hierarchically).
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Setup

WELELRSET T Rzl

Problem and Code

Consider the model problem, with a BE coarse solution operator
and the exact operator use as the fine operator. The Matlab code
is

Tlambda = -1; TF=1; nsteps=2e3;
h=TF/nsteps; dts = 0.0:h:TF;
y=100;

solution=zeros(1,nsteps+1);
correction = zeros(1l,nsteps+1);
solution(l, 1)=y;

coarse = (1-h*lanbda)A-1;

fine = exp(Tanbda*h);
corrector = fine - coarse;

tic
for k=1: 10| %nunber of refinements
for ii=1: nsteps %nunber of
y = coarse®y + currectwn( ),
solution(l,i+1)=y; % s
end
%compute corrections at each co
correction = corrector®solution;
y=solution(1);
error(k) = solution(end)-100%exp(Tanbda®TF)
end
toc
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What have other people used parareal for?

» Martin Gander: Fourier transformed heat and wave equations.
For the latter an exact solution operator was used in place of
a fine operator.

» Guillaume Bal: Exponential funcion, harmonic oscillator,
Brownian motion. Typical speedup and efficiency

we obtain for M = 1 that
dr =7211077, AT =9067107°, P=10341, S=3987, E =040,
and for M = 20 that

dT =7.21107°, AT =43510"", P=1149, §=1123, E =098.

M = number of parareal algorithms used to get to Tipay
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What have other people used parareal for?

» Bruce Boghosian, Paul Fischer, Frederic Hecht, Yvon Maday:
Navier-Stokes equations when diffusion dominant. Speed up
10-20.

» Guilaume Bal and Qi Wu (2008-2009): Symplectic parareal
methods for long time orbital integrations.

» It turns out that even when the coarse and fine solution
operators are symplectic, their sums are not necessarily. So
these methods require one to somehow express the parareal
algorithm as a composition of sympletic operators. It is not
known what the best way to do this is.
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Advantages and Disadvantages

Advantages
» Allows speed up ODE solver (compared to coarse scheme with
similar accuracy).
» Given a coarse and fine scheme, straightforward to implement.
Disadvantages
» Ideally the number of processors should scale Neoarse-
» Stability region is not simply related to that of geoarse-
» Requires one to save the solutions history, or at least
coordinate the corrector step appropriately.
» Requires a good understanding of the eigenvalues and stability
regions on a case by case basis
» Staff: “No multistage scheme has been found that makes the
parareal algorithm stable for all [pure imaginary] eigenvalue”
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Summary

» The parareal algorithm is relatively new, and is an active area
of research. Applications to PDEs and ODE systems with
conserved quantities are two developing areas.

» Basic theory is known: order is mk, and stability can be
cumbersome or (worst) unstable.

» The standard algorithm allows a time-domain decomposition,
whereby the high accurate corrections can be done in parallel.

» Numerous extension and modifications are possible.

» Speed up for ODEs appears to be a good example of
usefulness: 10-1000x
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