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Overview

◮ Proposed by Lions, Maday, Turinici in 2001

◮ Parareal = “Parallel in time” ODE solver

◮ Low order accurate solution obtained via serial computation
to a final time

◮ e.g foreward Euler

◮ Corrections to low order solution done in parallel
◮ e.g. on a finer temporal grid
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Notation and Problem Statement

◮ u′ = f (t, u) on coarse mesh tn = n∆t. n = 0, 1, ..., N
IC u0 = u(t0)

◮ Three flavors of solution operator
◮ Analytic: u(tn+1) = g(tn, u(tn))
◮ Numerical, coarse with order m: un+1 = g∆t(t

n, un)
◮ Numerical, fine: un+1 = gfine(t

n, un)

◮ One might choose the fine solution operator such that
∆t/100, or use a method with an order of accuracy higher
than m.

◮ δgn(u) = gfine(t
n, u) − g∆t(t

n, u)

◮ Introduce a correction iteration label un+1
k , where k = 1, 2, ....

k will denote the number of refinements, and
un+1
1 = g∆t(t

n, un).
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Algorithm

After choosing a temporal discretization and schemes g∆t and gfine,
the following iterative procedure comprises the parareal algorithm

1. compute un+1
1 = g∆t(t

n, un) in serial

2. compute the corrections δgn(un
1 ) = gfine(t

n, un
1) − g∆t(t

n, un
1 )

in parallel

3. add the prediction and correction terms as
un+1
2 = g∆t(t

n, un
2 ) + δgn(un

1 )

4. repeat steps 2 and 3, incrementing the iteration label and
using u0

k+1 = u0 as the initial condition.

Or more compactly
un+1
k+1 = g∆t(t

n, un
k+1) + [gfine(t

n, un
k ) − g∆t(t

n, un
k )] k = 1, 2, ...
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A Time Domain Decomposition
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Comments on the algorithm

un+1
k+1 = g∆t(t

n, un
k+1) + [gfine(t

n, un
k ) − g∆t(t

n, un
k )]

◮ Optimally we will have N processors.

◮ Example: if k = 1 we recover the order m scheme. if, say k=3,
we have an order 3m scheme requiring 3 coarse computations
in serial, and 2 correction calculations in parallel.

◮ as k → N the parareal algorithm gives un
k+1 = un

k , producing a
solution with accuracy of gfine.

◮ One would like to take large steps with g∆t . Choosing an
appropriate implicit method is a popular choice.

Choices (to be discussed throughout the talk) must be made for k,
∆t, methods for gfine and g∆t , and the number of processors P.
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Example: model equation

Our problem is u′ = λu s.t. λ < 0 and u0 = 1.

Let the fine solution operator be exact gfine = g and the coarse
operator be a forward Euler scheme. Define z = λ∆t, thus

gfine = ez

g∆t = 1 + z ⇒ un
1 = (1 + z)n = ez + O(∆t)

δg(u) = [ez − (1 + z)] u

For the k = 2 iteration we have...
u0
2 = 1

u1
2 = (1 + z) + δg(u0

1) = ez EXACT!
u2
2 = (1 + z)2 + (1 + z)δg(u0

1) + δg(u1
1) = e2z + O((∆t)2)
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Example: model equation

un+1
2 =(1 + z)n+1 +

n
∑

j=0

(1 + z)n−jδg(uj
1)

=(1 + z)n+1 +

n
∑

j=0

(1 + z)n−j [ez − (1 + z)] (1 + z)j

=(1 + z)n+1 + (n + 1)(1 + z)n [ez − (1 + z)]

=e(n+1)z + O((∆t)2)

◮ From our first order FE, we now have a second order parareal
method! This example is representative of the general theory...
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Theory: Convergence, Stability, and Parameters
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Assumptions

Assume the coarse operator g∆t is order m and Lipschitz:

|g∆t(t
n, u) − g∆t(t

n, v)| ≤ (1 + L∆t)|u − v | ∀t ∈ (0, tN)

|u(tN) − uN
1 | ≤ C (∆t)m |u0|

It is also assumed that the function u remains bounded on (0, tN).
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Convergence

Assume the fine solution operator is sufficiently accurate
approximation to the analytic operator so that we may replace
gfine → g

Theorem: The order of accuracy of the parareal method with
coarse solution operator g∆t and fine operator g is mk. (G. Bal
www.columbia.edu/ gb2030)

proof: By induction

k=1: This is just the order m coarse operator.

Assume for k: |u(tN) − uN
k | ≤ C (∆t)mk |u0|

now show k ⇒ k+1:
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Convergence

k ⇒ k+1:

|u(tN) − uN
k+1| = |g(u(tN−1)) − g∆t(u

N−1
k+1 ) − δg(uN−1

k )|

= |g∆t(u(tN−1)) − g∆t(u
N−1
k+1 ) − δg(uN−1

k ) + δg(u(tN−1))|

≤ |g∆t(u(tN−1)) − g∆t(u
N−1
k+1 )| + |δg(uN−1

k ) − δg(u(tN−1))|

≤ (1 + C∆t)|u(tN−1) − uN−1
k+1 | + C (∆t)m+1|uN−1

k − u(tN−1)|

≤ (1 + C∆t)|u(tN−1) − uN−1
k+1 | + C (∆t)m(k+1)+1|u0|

∴ |u(tN) − uN
k+1| ≤ C (∆t)m(k+1) |u0|
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Stability

◮ Parareal methods prescribe a means for combining ODE
solvers. Thus a study of the stability region requires specifying
g∆t and gfine. Consider u′ = λu

◮ Let gfine(t
n, un) = ḡfineu

n and g∆t(t
n, un) = ḡ∆tu

n

◮ As shown in Stability of the Parareal Algorithm by Staff et al.
the parareal method becomes

un
k =





k
∑

j=0

(

n

j

)

(ḡfine − ḡ∆t)
j ḡ

n−j
∆t



 u0 = H(ḡ∆t, ḡfine, n, k, λ)u0

◮ Stability ⇒ max∀n,k |H| ≤ 1
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Stability

◮ The authors go on to show that when λ ≤ 0 and real,

|H| ≤
n

∑

j=0

(

n

j

)

|ḡfine − ḡ∆t|
j |ḡ∆t|

n−j

= (|ḡfine − ḡ∆t| + |ḡ∆t|)
n ≤ 1

⇒ |ḡfine − ḡ∆t| + |ḡ∆t| ≤ 1

◮ The conditions are:

1. |ḡfine| ≤ 1 → this is the usual stability requirement.
2. |ḡfine − 2ḡ∆t| ≤ 1

◮ Example: ḡ∆t = (1 − λ∆t)−1 and ḡfine = (1 + λ∆t
10 )10
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Stability

◮ Parareal methods work best when there is (numerical or
analytic) dissipation. Consider the kth term in H
(

n
k

)

|ḡfine − ḡ∆t|
k |ḡ∆t|

n−k .

◮ For k << n,
(

n
k

)

< nk is a good bound.

◮ Thus a desirable property would be
nk |ḡfine − ḡ∆t|

k |ḡ∆t|
n−k ≤ 1

◮ Terms 2 and 3 must compensate for the presence of nk . We
must have

1. |ḡ∆t| ≤ (1 + c∆t)e−γ[min(|λ∆t|β ,1)]

2. |ḡfine − ḡ∆t| ≤ cmin(|λ∆t|m+1, 1)

◮ γ > 0 and β ≥ 1 chosen to satisfy e−γnnk ≤ 1 and
|λ∆t|k(m+1)nke−nγ|λ∆t|β ≤ 1
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Stability

Guillaume Bal:“The parareal algorithm [...] may generate
instabilities. ”
2 stage, 3 third order RK-Radau method (A-stable)
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Choosing the parameters wisely

In Bal Parallelization In Time of ODEs, the author attempts to
optimize

◮ Speedup S = (full fine resolution)/ (parallel algorithm)

◮ Efficiency E = S/P, where P = processors. Best case E = 1

Assuming an order 1 course and fine solution operator, the main
points are as follows

◮ E ≤ (k − 1)−1

◮ S can be unbounded at the expense of E

Proposes a “mult-level” parareal method to improve S and E
(essentially applies k=2 case hierarchically).
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Problem and Code

Consider the model problem, with a BE coarse solution operator
and the exact operator use as the fine operator. The Matlab code
is
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What have other people used parareal for?

◮ Martin Gander: Fourier transformed heat and wave equations.
For the latter an exact solution operator was used in place of
a fine operator.

◮ Guillaume Bal: Exponential funcion, harmonic oscillator,
Brownian motion. Typical speedup and efficiency

M = number of parareal algorithms used to get to Tfinal

Scott Field Parareal Methods



Outline
The parareal algorithm

Properties: Convergence, Stability, and Parameters
Matlab Example

Conclusion

In the Literature
Advantages and Disadvantages
Summary

What have other people used parareal for?

◮ Bruce Boghosian, Paul Fischer, Frederic Hecht, Yvon Maday:
Navier-Stokes equations when diffusion dominant. Speed up
10-20.

◮ Guilaume Bal and Qi Wu (2008-2009): Symplectic parareal
methods for long time orbital integrations.

◮ It turns out that even when the coarse and fine solution
operators are symplectic, their sums are not necessarily. So
these methods require one to somehow express the parareal
algorithm as a composition of sympletic operators. It is not
known what the best way to do this is.
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Advantages and Disadvantages

Advantages

◮ Allows speed up ODE solver (compared to coarse scheme with
similar accuracy).

◮ Given a coarse and fine scheme, straightforward to implement.

Disadvantages

◮ Ideally the number of processors should scale Ncoarse.

◮ Stability region is not simply related to that of gcoarse.

◮ Requires one to save the solutions history, or at least
coordinate the corrector step appropriately.

◮ Requires a good understanding of the eigenvalues and stability
regions on a case by case basis

◮ Staff: “No multistage scheme has been found that makes the
parareal algorithm stable for all [pure imaginary] eigenvalue”
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Summary

◮ The parareal algorithm is relatively new, and is an active area
of research. Applications to PDEs and ODE systems with
conserved quantities are two developing areas.

◮ Basic theory is known: order is mk, and stability can be
cumbersome or (worst) unstable.

◮ The standard algorithm allows a time-domain decomposition,
whereby the high accurate corrections can be done in parallel.

◮ Numerous extension and modifications are possible.

◮ Speed up for ODEs appears to be a good example of
usefulness: 10-1000x

Scott Field Parareal Methods


	Outline
	The parareal algorithm
	Overview
	Notation
	Algorithm
	Model equation example

	Properties: Convergence, Stability, and Parameters
	Assumptions
	Convergence
	Stability
	Parameters

	Matlab Example
	Setup
	Results

	Conclusion
	In the Literature
	Advantages and Disadvantages
	Summary


