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Preface

This project was a 6-week long project supported by NOTUR. Specifically, the funding
came from the project: Emerging Technologies, Cluster Technologies, Impact of
future numerical algorithms and methods.

In order to narrow the scope of this limited effort, the Parareal algorithm was considered
an emerging technology in the algorithmic sense, and was chosen as the research topic.

The survey reported here is based on the author’s work in [13] and [12], and on the work
by several other authors. This survey represents, to the knowledge of the author, all the
published and some unpublished work on this algorithm. Included are presentations given
at the 15th International Conference on Domain Decomposition Methods held in Berlin
21-25 July 2003.
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Abstract

The Parareal algorithm is presented as in [3]. Important properties like convergence, stabil-
ity is discussed. Parallel properties like speed-up and efficiency is also presented. A short
resume of different problems on which the Parareal algorithm has been tested, is given.
Status quo of the algorithm is given, both based on the work presented so far, and also

on preliminary results given in 15th international conference in Domain Decomposition in
Berlin 2003.
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Notation

In order to avoid confusion and ambiguities, a short list of the most important notation is
presented here.

R all real numbers

7+
Gar
AT
Far
ot

all complex numbers

all complex numbers where the real value are less or equal to zero

all integers

all positive integers

coarse propagator of the Parareal algorithm

timestep of the coarse propagator Gar

fine propagator of the Parareal algorithm

timestep of the fine propagator Far

domain in space

initial time where we have an initial value for the ordinary differential equation

the end of the domain in time

N number of time decompositions — subdomains

r(2)

index spesifying a particular subdomain in time

iteration counter for the predictor-corrector scheme (Parareal algorithm)

number of time-steps for the fine propagator Far over one subdomain (s = %)

» initial value for subdomain n at iteration number k

identy matrix

stability function in general. When used in the Parareal context is means the stability
function of Gar.

stability function of Far in the Parareal context
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1 Introduction

Many of the governing equations describing mechanisms in nature are time-dependent.
Significant work have been spent on deriving computational methods for integration of these
in time. Most of the methods developed have one thing in common: they are sequential.
They need to compute the solution to the equations at one time-step in order to find the
answer at a later time-step. Time itself has been considered purely sequential.

Some work has been done on parallel solvers in time. But up to this point they have either
been highly specialized, or they have had an upper limit of the speed-up. By speed-up we
mean the wall-clock time for a parallel computation versus a serial computation.

In the context of solving time-dependent partial differential equations, a lot of parallel
algorithms have been developed for the spatial discretization. One successful class of
methods is called domain decomposition methods. These methods are attractive both in
a serial and a parallel context.

The point of departure for this work is the Parareal algorithm, first presented by Lions,
Maday and Turinici in 2001 (see [9]). We will present it as it is presented in the later work
of Maday and Turinici from 2002 (see [3]). It is an attempt to use Domain Decomposition
in time, creating a Time Decomposition. As for Domain Decomposition, the Parareal
algorithm uses a coarse and a fine grid in time. These two grids are combined in a predictor-
corrector scheme, creating an update for the entire time domain. The coarse grid and the
predictor-corrector update are strictly sequential. The fine grid on the other hand are
sequential only inside a sub-domain, and this allows for a parallel implementation of the
different sub-domains. The predictor-corrector scheme is iterated until convergence. The
Parareal algorithm is in principle problem independent. However, we will later discover
that there are indications that the algorithm is less favorable for some classes of problems,
namely problems with pure imaginary eigenvalues from the system matrix.

So why do we need this algorithm? The main reason is the need to solve important problems
faster then currently possible. Examples are problems where the solutions are needed in
real-time, e.g., flight /boat-simulators or control-problems. From this aspect, the algorithm
has gotten its name. Other examples are large time-dependent fluid simulations, long-
time weather-forecast, long-time planet orbit calculation etc. Another reason is the desire
to effectively use the new supercomputer/clusters scheduled for the next decade. As an
example the Red Storm project can be mentioned, which is assumed to use approximately
16’000 processors.

This work will focus on the following subjects
e Expected computational gain in a parallel implementation
e Known properties of the algorithm — possibilities/limitations

e Actual problems, on which the algorithm has been tested.



4 1 INTRODUCTION

Section 2 presents the algorithm as it is presented by Bal an Maday in [3]. There exists
other formulations, e.g. the one presented by Farhat and Chandesris in [4]. But these
different formulations are believed to be equivalent, so we will pay Farhat’s formulation no
more attention.

Section 3 presents important numerical properties like convergence, stability and parallel
properties like speed-up and efficiency.

Section 4 presents some of the different problems of which the Parareal algorithm has been
tested. Speed-up results are presented in the cases where it is estimated.

Section 5 presents impressions from the 15th international conference in Domain Decom-
position in Berlin where the Parareal algorithm was presented in large scale.

Section A presents a proof of equivalence between the formulation in [4] and [3] for the
autonomous differential equation.



2 The Parareal Algorithm

In order to understand the implications of the Parareal algorithm (PA), it is imperative
that the theory on which the algorithm is based is understood. First, the algorithm will
be presented as in [3]. Then some properties of the algorithm will be pointed out.

2.1 Basic ideas

We want to solve the general problem

Wy Ay=0 (1)
y(to) = yO le (tOvT)7

where A is an operator from a Hilbert space V into V'. The strategy is to do a time
decomposition in the spirit of domain decomposition. We define the decomposition as

to="Ty <1} <"'<Tn:77,AT<Tn+1 <Ty=T.
We are now free to rewrite our problem (1) as

aait" + Ay, =0 (@)
y(T,5) =M te(Th, Thi),

for any n = 0,..., N —1. The collection of solutions of (2) {yo,y1,.-.,yn — 1} is connected
to the solution y of the original problem (1) if and only if, for any n =0,..., N —1

)\n = y(Tn)a

or written with the syntax of (2) as
An = yn—l(Tn) with y—l(TO) = Yo.

We now assume that A is time-independent, and introduce the propagator Far such that
for any given p, Far(u) is the solution at time AT of (1) with y° = u. We are now in a
position to write (2) in a matrix form

I 0 0 0 Ao y°
~Far L 0 ... 0 Ay 0
0 —Far I 0 .. o =] 0| (3)
: L. .0 : :
0 o 0 —Far 1 AN—1 0

or in matrix notation

MA = F.
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Normally an inversion of a triangular system involves O(N) solutions. It’s now we introduce
our iterative scheme that allows us to construct a sequence A* that converges toward the
exact solution of (3). We discretize (2) using a coarse propagator Gar and a numerical
scheme, e.g. an implicit Euler scheme:

Gar(p) — p
—t 4+ A =0
AT + AGar(p) = 0,
where Gar is an approximation of Far. Our predictor-corrector scheme is then defined as
Xy = Far(Ap21) + Gar(\i1) — Gar(AiZ1), (4)

where the subscript n is the time-subdomain number in (2), and the superscript k is the
iteration-number. Notice that Far is calculated from A*, which is known. This implies
that Far can be implemented in parallel. Gar on the other hand is calculated from the
previous (in time-partition) A from this iteration, and is therefore strictly serial. As for
Far we introduce the matrix

=
(@]
(a]
(@]

—Gar I 0 0
M= 0  —Gar I 0 (5)
0 oo 0 —Gar I

and write the iterative procedure in the matrix form
AFFT = AR 4 M ' Res”,
where the residual Res® is defined by Res* = FF — MAF.

Convergence of Algorithm 1 can be tested using || AT — AF ||< tol Vn as a test criterion.

2.2 Properties of the algorithm

We will now try to outline some of the most important properties of this algorithm. Some
are really obvoius, and some are perhaps not so obvious.

Remark 1 The Parareal algorithm is a pure parallel algorithm, and has no value in a
serial computation.

This is in contrast to standard domain decomposition methods which are used in serial
computation as well.

Remark 2 The Parareal algorithm converges towards a serial solution using the same
solver and same discretization in time (and space for PDE’s) as Far.
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Algorithm 1 The Parareal algorithm

Ab < Yo
fort=0: N—1do
Ay Gar(A?)
end for
solve Far(AY) in parallel on ¢ = 0,..., N — 1 processors with one fine subproblem per
processor
k<« 0
while true do
Ao e A
fort=0: N—-1do
solve Gap(AFHh)
M= Gar(NTY) + Far(Af) = Gar(Af)
end for
if convergence then
break
end if
solve Far(A¥*1) in parallel on i = 0,..., N — 1 processors with one fine subproblem
per processor
k—k+1
end while

It is important to bear in mind that even if the Parareal algorithm converges towards
machine accuracy, the result is never more accurate then a serial computation. This means
that when the same order of error is reached, futher iterations is superfluous.

Remark 3 Given that Gar and Far are convergent and stable for the chosen schemes
and timestep 0t and AT. Then, for iteration k (assuming k = 0 is first iteration)

| ys —yp ||~ eps, t € (to, KAT),
where eps is the machine accuracy. This means that

H Ys — Yp HN eps, te (thT)a

_ T—t . .
at N —1 =2 — 1 iterations.
Like Conjugated Gradient the Parareal algorithm is exact at a maximum number of itera-
tions.

Remark 4 Assume the computational cost of computing Gar forn=0...N —1 on one
processor is roughly the same as computing Far for one subdomain. Then convergence has
to be reached for k < N/2, in order to achieve speedup.
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Assuming 2 iterations before convergence, we need close to 10 processors to achieve a good
speedup. Obviously, the Parareal algorithm is not useful for a two-processor implemen-
tation. By accelerating Gar, by e.g. using a coarse spatial discretization for PDE’s; the
speed-up will increase for the same number of processors N and iterations k. This allows
for a speed-up for as few as 4 processors.

Remark 5 Gar doesn’t have to be computed using the same equations as Far. We are free
to modifie the model by e.qg. removing highly oscillating terms that is totally undersampled
by AT, or use a coarser spatial discretization if we are evaluation a PDE. This will not
affect the overall accuracy of the algorithm, only the convergence-rate.

Gar has in a sense several degrees of freedom, meaning we have some freedom in the choice
of equation and spatial discretization of Gar.

Remark 6 We are free to choose what kind of ode-solver we want for Gar and Far. The
only requirement s that, of course, the chosen methods have to be convergent and stable
for the spesified stepsizes AT and dt.

This means we e.g may use an implicit solver for Gar, and a fast explicit solver for Far.
Later we will present results restricting the choice of GG in order to achieve stability for the
Parareal algorithm.

Remark 7 The algorithm favors single-step methods.

The Parareal algorithm consists of /V individual problems with its own initial values. The
startup problems of the multi-step schemes disfavours them in the Parareal algorithm con-
text. Singel-step schemes, which suffers from no start-up problems, are therefore preferable.



3 Convergence, Stability and Speed-up properties of
PA

We will in this section present some of the most important convergence, stability and
theoretical speed-up results.

3.1 Convergence

If a numerical scheme is not convergent, it is of no use. It is therefore imperative that
convergence is established. The work presented in this subsection is not done by the
author. Proofs will not be presented, so the interested reader is referred to the references.

In [3] the convergence is analyzed for the autonomous differential equation
v =npy, y(0) =y, <0 (6)

Proposition 1 Let u(t) be the solution of (6) and N be the solution from the Parareal
algorithm (4), and that the coarse propagator Gar uses a scheme of order m > 1. Then
the error terms €* satisfy the following estimate

‘gm < CknkJrlZ(erl)(kJrl)

where z = pAT. In particular, we have N\& = u(T) + O(z™* 1) and y*(t) = u(t) +
O(nk2m+Uk) “where y*(t) is the results from the Parareal algorithm at sub-domain n and
iteration k.

This means that the Parareal algorithm turns the coarse propagator Gar of order m into
a scheme of order (m + 1)(k + 1). Notice that this is the convergence to the serial version,
and not to the exact solution. The Parareal algorithm is never more accurate then the
serial version.

3.2 Stability

Stability is beside convergence the most important property of an initial value problem
solver. If the algorithm is not stable, we can not trust the results. It is therefore imperative
that the stability properties is investigated. This is done by the author in [13] and [12].
Farhat and Chandesris do, in [4], also present an investigation of the stability for an
autonomous problem, using a different approach.

The core of the stability analysis is the predictor-corrector scheme

Ay = Far(MZ1) + Gar(Ni_y) — Gar(AiTh). @)
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A stability analysis is performed on the autonomous differential equation

v =py, y0)=yo, <0 (6)

The exact solution to this problem is y = e*y,. Since u < 0, this is a decaying function
for increasing ¢. The numerical solution of (6) is an approximation to the exact solution.
It is well known that a numerical scheme is only exact for small time-steps. By choosing to
large time-steps, some numerical schemes approximates this as an increasing exponential
function instead of an decreasing. Obviously this is something we want to prevent. A
numerical scheme that approximates an non-increasing exponential function for the chosen
time-step is called stable.

To better understand the derivation of the stability properties of PA, we start by deriving
the stability properties for to well known numerical schemes, namely explicit and implicit
Euler. Applied to our differential equation, the two schemes can be written as

Yn = Yn—1 + AT uy,—1 explicit Euler
Yn = Yn—1 + AT py,, implicit Euler

where AT is the time-step By backward substituting for v,,_1, y,_2 etc. we may write it
as

=(1 —|—AT/¢) Yo = R(2)"yo explicit Euler

<1 iTM) = R(2)"yo implicit Euler
where z = AT and R(z) is called the stability function of the chosen scheme. Obviously
|R(z)| <1 will prevent the numerical schemes from blowing up for increasing ¢.

An interesting observation is the difference in time-step restriction for explicit and implicit
Euler, which can be seen in Figure 1. Obviously explicit Euler suffers from severe time-step
restrictions, while implicit Euler is stable for all possible choices of the time-step AT. The
coarse propagator Gar is forced to take unnatural large time-steps, which clearly indicates
that implicit Euler is a better choice then explicit Euler.

But what about PA? We need to write the predictor-corrector scheme (4) on the form
Xo = H(n, k,r, R)Xo,

where n is the specified sub-domain in time, k is the iteration number, r is the stabil-
ity function for the fine propagator Far, and R is the stability function for the coarse

propagator Gar.

To do this we start with the predictor corrector scheme given in (4).
Xy = Far(A21) + Gar(N_y) = Gar(X21) (4)
We discretize (4) using our choice for numerical scheme for Far and Gar and get

N = F(uSt)NETE + R(IAT)NE | — R(uAT)NE S (M

n—1
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0.5

-2.5 -2 -15 -1 -0.5 0 0.5 1 1 -0.5 0 0.5 1 15 2 25

(a) explicit Euler (b) implicit Euler

Figure 1: Stability domain for explicit and implicit Euler. The dark region is the stability
domain. The z-axis is the real axis, while the y-axis is the imaginary axis

where 7(udt) = r(udt)® is the stability function for the fine operator after s = £ fine
time-steps 0t. R(uAT) is the stability function for the coarse operator Gar where AT is
the coarse time-step. For simplicity we will write 7 = 7(udt) and R = R(uAT).

We rearrange (7) and write
M= RN 4 (F— R)NT = RAE |+ S0FT (8)

Obviously the recursion is solved like this:

PV \E
N LR NS
Mo AT . Al
I\ LN AN
LIPEE i S i S
)\’I;:L—4 )‘n:4 )‘n:4 )‘n:4 )‘n:4

The Pascal tree is recognized, and we may write (8) as
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where we identify the stability function as

k
H(n,k,r,R) = Z ( ) R”_l.
=0

Stability is achieved if

sup sup |H(n,k,r,R)| <1. 9)

1<n<N 1<k<N

The stability requirements needs to be derived.

Assume [(F — R)+ R| <1land |(Ff— R)— R| < 1.
k

S (5)e-nye

<

M-

=0 (?)’Uz"R)Vuani

< 3 (7)1 mpimr

— (F- R +|R])" <

3 |l

since |7 — R| + |R| is either |(F — R) + R| or |(F — R) — R| which are our assumptions.
|(T — R) + R| = || <1 is the stability restriction to the fine operator, and it should be
true independent of the use of the Parareal algorithm.

|(F — R) — R| = |2R — 7| < 1 can be rewritten as

Theorem 1 (Stability) Assume we want to solve the autonomous differential equation

y=py y0)=y 0>pelR

and that —1 < r, R < 1 where r = r(udt) is the stability function for the fine propagator
Far using time-step 6t and R = R(uAT) is the stability function for the coarse propagator
Gar using time-step AT . Then the Parareal algorithm is stable for all possible values of
sub-domains N and all number of iterations k < N as long as

F—1 7t 1

<R<
2 - 7 2

- s _ AT
where 7 = r(pdt)* and s = -

Notice that Theorem 1 is true for ode’s and system of ode’s where the eigenvalues of
the system matrix have pure real eigenvalues. For complex eigenvalues, (9) needs to be
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(b) N = 10, s = 1000

(c) N = 1000, s = 10 (d) N = 1000, s = 1000

Figure 2: Stability plot for complex eigenvalues for different choices of N and s, using Radau3
for both Gar and Far. The dark regions are the stability domain. The x-axis is
Re(pAT) and the y-axis is Im(uAT).
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fulfilled. This is done numerically in Figure 2. From Figure 2 we notice that the Parareal
algorithm is unstable for pure imaginary eigenvalues, and some complex eigenvalues where
the imaginary part is much larger then the real. No multistage scheme has yet been
found that makes the present formulation of the Parareal algorithm stable for all kind of
eigenvalues. This means that computation of some hyperbolic problems, and convection-
diffusion problem with highly dominant convection (e.g Navier-Stokes with high Reynolds
numbers) is probably unstable using the Parareal algorithm

It is believed that by introducing an rotation instead of an translation, the Parareal algo-
rithm will be stable for pure imaginary eigenvalues as well. This is ongoing research.

3.3 Speed-up, Efficiency and Restarted algorithm

For all parallel algorithms, the speed-up is the most important. How much faster is it
possible to calculate our problem assuming we have N processors? But Efficiency is also
of great importance since if the efficiency drops, it may be more efficient to use the rest of
the processors in the spatial domain, instead of the time-domain.

Both [2] and [4] presents an analysis of the possible speed-up and efficiency. But we will
only present the analyze from [2] since it is the most thorough.

For the reader who is not familiar with the term speed-up and efficiency in the context
of parallel computations, it can be defined as this: The speed-up is the ratio between the
wall-clock time of the serial and the parallel computation. The efficiency is the ratio of
this speed-up with the number of processors used.

The following results are derived in [2] assuming that the order of both Gar and Far are
1. The results can easily be extended to higher order schemes. The speed-up is defined as
T
5 1

S: pr—
N A L

The number of processors is given by P = % so that the efficiency is given by
1

(k—1) + kg

The speed-up assuming k > 1 is maximized for £ = 2 and AT = v2T¢t. From this it can
be deduced that

S = %ﬁz&, P =+VT2t, FE= %

This seems in a way that the efficiency is locked by the factor of 1. But Bal shows in [2]
that this can be overcome by introducing a multi-step system. We assume that we have a
scale of time steps such that

AT <A A T ... < AT KAT KT



3.3 Speed-up, Efficiency and Restarted algorithm

The speed-up of the multi-step algorithm is then given by

T

S = AnT
AoT AT Ap-1T
N(2(8% +...+ 822 + 2t

15

By using this multi-step method, which is implemented as a restarted algorithm (see [2]

for details), the efficiency can be close to 1.
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4 Problems on which PA have been tested

In this section we will present some problems on which the Parareal algorithm has been
tested, and point out promising and not so promising aspects. Notice that most of the
tests are done using simulated parallel implementation. Therefore no wall-clock time is
available, but a theoretical speed-up is usually presented based on the assumption that the
communication cost is neglectable compared to the computational cost.

4.1 Linear and nonlinear Parabolic problems

Parabolic problems is highly interesting since it covers a large class of problems in science
and engineering.

Linear parabolic problems have been tested in [13, 12].
Nonlinear parabolic problems is tested in [12] and [3].

The Parareal algorithm looks particularly promising for this kind of problems. As long as
the stability requirement in Theorem 1 is fulfilled, the convergence is fast. For parabolic
problems with eigenvalues where the imaginary part is highly dominant, it seems difficult
to fulfill the stability-requirement. This will be discussed in Section 4.8

4.2 Non-differential equation: The American Put

In [3] the pricing of an American option is solved using the Parareal algorithm. This
equation is of interest since it is frequently calculated in the financial world.

The actual equation calculated was the following.
min (Gyu — 92,u,u — g(x)) =0, (10)

with u(t = 0) = g(x) = max (e* — 1,0).

Notice that the results in [3] is based on a simulated parallel implementation, and therefore
no actual wall-clock time is presented. The speedup is based on an assumption that the
communication cost is neglectable compared to the computational cost. 3 iterations was
needed to reach same level of error as for the serial version, and therefore the speed-up
found was 6.25 based on an implementation on 50 processors.

4.3 Molecular-dynamics simulations

In [1] the Parareal algorithm is applied on a small molecular dynamic simulation example.
A asymmetric molecule A— A — B composed of three atoms of mass my4 = 1 and mp = 2 is
considered. The bound lengths between atoms are denoted by r44 and r4p5, and the angle
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A — A — B of the bounds is denoted . This molecule evolves on the potential surface U
given by

U(TAA,TAB,Q) = V(T’AA) + V(TAB) + f(@)

where V(r) = 4e[(o1/r)'* — (01/7)%] is the Lennard-Jones potential and

F(0) = (\/V2ma5)e0=m%/2%2 1 1)/ sin 02

The coarse operator Gar is implemented both using only a coarse time-step, and also
using a coarse physical model. The results look promising. But some properties, like the
symplectic behavior of the algorithm is not yet fully investigated. All the simulations here
is a simulated parallel implementation.

4.4 Optimal control for Partial differential equations

In [10] the scheme is reinterpreted as a preconditioning procedure on an algebraic setting
if the time discretization. This is done to extend the parallel methodology of the Parareal
algorithm to the problem of optimal control for partial differential equations. The chosen
test-equation is: Find y such that

0 0%y
a—i—a— vy, € (0,1)

y(0) = 102(1 — 2), € (0,100)
where v is the control and y is the indicator |1/2,2/3[. This is simulated so as to drive it
to the target y = sin 27x.

For reasons not discussed here (see [10] for details) the adjoint state is introduced. It is
written on the same form as (2). Let py_; be the solution over (Ty_1,Tx) of

{ _8pgt_1 + A*pny_1 =0 over (TNA,TN>
prn—1(T) = alyn—1(T) — y"),

and the collection p,, n =N —2, N —1,...,0 of solutions of

{ — % A*pn =0 over (T, Thy1)
pn(TnJrl) = sAT (yn(TnJrl) Ant1),

The following preconditioned gradient method is proposed in [10]:

UkJrl :Uz_p(vrli‘i‘B*pn) n (TnaTnJrl)? n:O""’N_ 1

n

A= N = MM R(T) = P (T), n=1,.. N -1

where M is given in (5). M~*(M~1)* is the preconditioner for the system.



4.5 Stochastic ordinary differential equations and filtering problems 19

The results are surprisingly promising. For only 25 iterations of the Parareal algorithm,
the cost-function used to measure the error is of the same order as after 100 iterations of
a serial version. This factor of 4 is multiplied to the parallel effect of using 100 processors.
The reason for this is not understood, and it is not expected that this reduction in iterations
will apply for more complex problems.

4.5 Stochastic ordinary differential equations and filtering prob-
lems

In [2] stochastic ordinary differential equations and filtering problems are computed. One
test-equations is the Geometric Brownian motion, defined as the solution of

dX(t) =rX(t)dt+ o X (t)dB(t), te (0,T),
X(0)=1,

where B(t) is an m-dimensional Brownian motion and ¢ so a mapping from [0, T] x R? to

M gsem, the set of dxm matrices. The results look promising. But as it is commented in [2]:
Let us mention however that when only statistical averages of the solution are required, such
as E[X (T)], it might be better to use the available number of processors to run independent
realizations of the random process using the fine time step dt.

But an interesting application where the solution of a stochastic equation for one realization
of the random process matters, is the filtering problem. Here [2] shows promising results.

4.6 Reservoir simulations

In [6], the Parareal algorithm is applied to a reservoir simulation. The simulations compute
pressure, temperature and molar mass. Molar mass needs a finer discretization in time
because of different time-scales in the system. Therefore the Parareal algorithm is applied
to this fine time-steps inside a coarse time-step for temperature and pressure.

By using 7'/6t = 16, and T/AT = 4, the acquired speed-up is 2, which is predicted by
the speed-up theory developed in [2]. It is worth noticing that [6] have an actual parallel
implementation where computational and communicational cost and speed-up is measured.

4.7 Fluid, structure and fluid-structure computations

In [4] fluid, structure and coupled fluid-structure models are computed. The results in this
article are based on real parallel implementations. The scheme presented is an alternative
algorithm, but as shown in Section A, the algorithm is equivalent to the Parareal algorithm
as it is presented in [4], at least for the autonomous differential equation. There exist no
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proof of equivalence for other type of equations, but it is believed that they are indeed
equivalent for other types as well.

For unsteady flow, [4] presents a speedup of 8.2 by using 20 processors. This is an efficiency
of 41%, which is not competiable with parallel methods in space, but assuming sufficient
number of processors this yields an additional speed-up.

For a structural dynamics model problem there were however some difficulties.

The problem which is solved is

d - - d
AN, (MDD MUK (9
dt \ ¢ -1 0 q

where ¢ denotes the vector of displacement degrees of freedoms, M, D and K denote the
finite element mass, Rayleigh damping, and stiffness matrices respectively, and [ is the
identity matrix. The scheme is in general not stable for this type of problems. In [4] a nice
argument is presented where it is showed that the predictor-corrector scheme generates a
resonance for the undamped problem. It is believed by the author of this report that this
resonance is closely connected to the instability for general problems with pure imaginary
eigenvalues, and eigenvalues with large relative imaginary part.

Fluid-structure problems is also considered. Not surprisingly, the result is the same as for
the structure problem. If instabilities occur in the structure part of the computation, it
will pollute the solution of the fluid problem.

4.8 Navier-Stokes and related equations

In [5] Navier-Stokes simulations is performed using the Parareal algorithm. The results are
exactly what the theory in Section 3.2 predicts. For small Reynolds numbers it works very
well, but for large Reynolds numbers it fails because of violation of the stability properties.
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5.1 General impression from DD15

The 15th conference in Domain Decomposition in Berlin was the first time the Parareal
algorithm was presented in wide scale. In total there were 1 invited talk and 5 minisympo-
sium talks which had the Parareal algorithm as the main subject. In addition, one other
main speaker covered the Parareal algorithm in part.

The impression from the author is that it is an algorithm that will receive a lot attention
from several new groups in the time to come, both from theoretical and applied groups.
The need to be able to use all the processors available from the scheduled supercomputers
(e.g the Blue Gene/L machine delivered 2004 which is supposed to have 65536 processors)
will make parallelization in time more attractive. This huge amount of processors makes
time-parallelization an addition to spatial parallelization instead of a competitor.

5.2 General conclusions of the applicability of the Parareal algo-
rithm

Except from a few problems like e.g. earth-quake simulations, turbulence simulations and
transient-flow simulations, the space is in most cases well parallelized using the available
number of processors. But the number is constantly increasing, and the desire to put them
to work turns the focus towards time-parallelization. Until now not much work has been
done on time-parallelization. Mainly because of spatial parallelization has been more effec-
tive. But in this new situation with 10* to 10° processors on a single cluster /supercomputer,
there is no doubt that the Parareal algorithm, as an time-parallel algorithm, tries to fill
the need for putting the increasing number of available processors to work.

For parabolic problems with eigenvalues having not a too large relative imaginary part, the
Parareal algorithm works efficiently. In [2], it is showed that a parallel efficiency of up to 1 is
possible, which makes the algorithm competitive with the best spatial parallel algorithms.
More research will be put into lowering the computational cost of the sequential part of
the algorithm, by e.g. introducing a spatial discretization for the coarse operator Gar.
This has already been investigated in [12] and [6], but more analysis is needed in order to
understand the implications for convergence and stability.

It has also been shown that it works for other classes of problems, like the non-differential
equation the American put, and optimal control problems. More analysis is needed before
all the implications is understood, but the numerical tests is promising.

But the Parareal algorithm is not flawless at this moment. The instability occurring for
complex eigenvalues with relative large imaginary part is a problem since many interesting
problems do possess this property. As examples, the following can be mentioned:
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e The Navier-Stokes equations with high Reynolds numbers
e Most hyperbolic equations and conservation laws

e Structural dynamic vibration problems

But a lot of work will be put into solving this difficulties. And if this is solved without
introducing additional flaws, the Parareal algorithm will pay a vital contribution to the
tool box of parallel algorithms.
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A Equivalence between Farhat’s formulation and stan-
dard Parareal algorithm for the autonomous differ-
ential equations

The purpose of this section is to prove the equivalence between Farhat’s formulation of a
parallel scheme in time, [4] and Bal and Maday’s formulation given in [3] and especially
[1], for the autonomous differential equation.

From [4] we extract the essence of the algorithm:

p=yp () =Y 1<i< Ny —1 (11)
Vi =y (T +CL Ci=a(l™) (12)
(T =c(TT)+ AL, (T =0, 1<i<N,y—1 (13)

Subscript k is the iteration counter, while superscript ¢ is a specified sub-domain in time.
N is the number of sub-domains in time. f is the number of fine time-steps over one
sub-domain. The algorithm is then presented in Algorithm 2 as it is presented in [4].

Algorithm 2 Farhat’s algorithm
- Provide initial seed values Yy, 0 < i < Ny,.
for k=0,1,...do
- Using the updated seed values Y} as initial conditions, apply the chosen fine solver to
the differential equation on the fine time-grid, which generates the numerical values
vi, 0<i<f
- Evaluate the jumps A}, 1 <i < N, — 1 on the coarse time-grid equation (11). Stop
if all the jumps are sufficiently small
- Apply the chosen coarse propagator to problem (13) on the coarse time-grid in order
to compute the correction coefficients C,i, 1 << N, — 1.
- Update the seed values Y}, ;, 0 < i < N, — 1 using (12).
end for

We will here assume that the same numerical scheme used to calculate c(7%") is used to
find the initial seed values Yy, 0 <i < Ny,.

We will prove that this is equivalent to the predictor-corrector scheme given in [1], which
is

M= GNE |+ FAR - GA (4)

n—1

where the superscript k& is the iteration counter, and the subscript n is the specified sub-
domain in time. First we will rewrite (11), (12) and (13) using the same notation as used
in [1].
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AF=FYF —VFE 1<n<N,—1 (14)
Y = FY 4+ GV, (15)
VE L =GYE+ AF (1% =0, 1<n<N,—1 (16)

1 is changed with n and written as subscript instead of superscript, k is superscript instead
of subscript. ¢ (Ti+) is rewritten at the coarse propagator GY* where J* is the initial
value for the coarse propagator at sub-domain n for iteration k. The same is done for
the calculation on the fine tine-grid where y!(7T""!) is written as the fine propagator F'Y*
where Y is the seed value (initial value) for sub-domain n at iteration k. For simplicity
we combine (14) and (15) and get the following two coupled recursion equations

YE = FYy*l 4 gkl (17)
VE=GYF [+ FYF  —YF T =0, 1<n<N,—1 (18)

It can be shown that (4) can be written as

- 1
=0

A= i (”) (F — GYG" ). (19)

We want to show, by using induction, that Y* may be written on the same form
" /n
Yy = F—G)G"'Y,.
F=3 (M) - e

For n = k =1 it is quite easy:
YI=FY?+GY) =FYY, since Yi=0, 0<k< N, —1
This is the same as we get from (4), namely
M =GN+ FA)—G)N) = F\), since \j =yp, 0< k< Ny — 1
We assume that
Ynk:11 = GYf:; + Fyf:; - GYf:;
or the equivalent formulation based on (19),
k-1

yii=%" (” N 1) (G — F)iGr=i-y,, (20)

- 7
=0
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We are then left with proving that this is true for Y*.
Yy o= FY,5 + GV
= FY' !+ G*V )+ GFY)F) — Gy’f—f using (18)
= (F-Q)YM!'+GFYy + G*F
= (F-GQ)YH +GFY’€ > +G3y,’;’ §+G2 FY*! — G*YF7) using (18)
= (F-Q)Y*M'+G(F - Q)Y +G*FYr) + G?’yj;:;

This is done until we reach YF~! and Y. We may then write

n—2
Yé@ _ ZGZ(F o G)qu:ll—z‘ + anlFY'(')kfl + R" (l)sflj(RnY'(')kfl _ RnYE]kfll
=0 =0 ;6
n—1
= ) G(F-Q)Y} +GvF!
=0
We now use what we assumed correct in (20) and write
n—1
- e+ S - oL,
1=0
n—1 k—1
_ Gn)/ok_l—i-ZGZ(F—G Z( ) F G)jGn 1—j— zykz 1
1=0 j=
n—1 k-1 1
_ Gnykz 1 + ZZ ( ) F . G)j—HGn_l_j)/Ok_l
=0 5=0

n—1 .
= Gy 4 Z(F — GGy (” T 2) Yy

§=0 i=0 J

k—1
— Gnyk—1+ F_Gj+1Gn—1—j( n )Yk:—l
S r-apre ()

We do a change of variable, writing ¢ = j + 1 and get

:i()p

1=

This completes the proof L.

This proves that the algorithm presented in [4] is equivalent to the algorithm presented
in [3] for the autonomous differential equation. It is believed that they are equivalent for
other types of equations as well.



