Selguk J. Appl. Math. Sel¢uk Journal of
Vol. 2, No. 1, pp. 3-15, 2001 Applied Mathematics

Runge - Kutta Methods, Trees, and Maple

On a Simple Proof of Butcher’s Theorem and the
Automatic Generation of Order Conditions

Folkmar Bornemann

Center of Mathematical Sciences, Munich University of Technology, 80290 Munich,
Germany; e-mail: bornemann@ma.tum.de

February 9, 2001

Summary. This paper presents a simple and elementary proof of
Butcher’s theorem on the order conditions of Runge-Kutta methods.
It is based on a recursive definition of rooted trees and avoids com-
binatorial tools such as labelings and Faa di Bruno’s formula. This
strictly recursive approach can easily and elegantly be implemented
using modern computer algebra systems like Maple for automatically
generating the order conditions. The full, but short source code is
presented and applied to some instructive examples.

Key words: numerical solution of ODEs, Runge-Kutta methods,
recursive representation of rooted trees, Butcher’s theorem, automat-
ic generation of order conditions, computer algebra systems.

Mathematics Subject Classification (1991): 65-01, 656L06, 65Y99

1. Introduction

A first step towards the construction of Runge-Kutta methods is the
calculation of the order conditions that the coefficients have to obey.
In the old days they were obtained by expanding the error term in
a Taylor series by hand, a procedure which for higher orders sooner
or later runs into difficulties because of the largely increasing com-
binatorial complexity. It was a major break-through when Butch-
er [1] published his result of systematically describing order condi-
tions by rooted trees. The proof of this result has evolved very much
in meantime, mainly under the influence of Butcher’s later work [3]

4 Folkmar Bornemann

and the contributions of Hairer and Wanner [7,6]. In this paper we
will present a simple and elementary proof of Butcher’s theorem by
using very consequently the recursive structure of rooted trees. This
way we avoid lengthy calculations of combinatorial coefficients, the
use of tree-labelings, or Faa di Bruno’s formula as in [3,6]. Our proof
is very similar in spirit to the presentation of B-series by Hairer in
Chapter 2 of his lecture notes [5].

As early as 1976 Jenks [8] posed the problem of automatically
generating order conditions for Runge-Kutta methods using comput-
er algebra systems, but no replies were received. In 1988 Keiper of
Wolfram Research concluded that the method of automatically cal-
culating Taylor expansions by brute force was bound to be very ineffi-
cient. Naturally he turned to the elegant results of Butcher’s. Utilizing
them, he wrote the Mathematica package Butcher .m, which has been
available as part of the standard distribution of Mathematica since
then. This package was later considerably improved by Sofroniou [9]
and offers a lot of sophisticated tools.

While teaching the simple proof of Butcher’s result in a first course
on numerical ODEs, the author realized that the underlying recursive
structure could also be exploited for a simple and elegant computer
implementation. This approach differs from the work of Sofroniou in
various respects. We will present the full source code in Maple and
some applications.

2. Runge-Kutta methods

The Runge-Kutta methods are one-step discretizations of initial-value
problems for systems of d ordinary differential equations,

2’ = f(t,z), z(to) = o,

where the right-hand side f : [to, T] x 2 C R x R? — R? is assumed
to be sufficiently smooth. The continuous evolution z(t) = "z,
of the initial-value problem is approximated in steps of length 7 by
Pttty ~ ST, This discrete evolution Wit iz is defined as an

approximation of the integral-equation representation
t+7
¢t+7’7tm:m+/ f(o',¢0-7ti£) dU
¢

by appropriate quadrature formulas:

(1) PitTip — o + TZ b;k;, kL=flt+ceret+T Zaijkj

=1 7=1

Runge —Kutta Methods, Trees, and Maple 5

The vectors k; € R% i = 1,...,s, are called stages, s is the stage
number. Following the standard notation, we collect the coeflicients
of the method into a matrix and two vectors

A= (aij)ij € RSXS, b= (bl, e ,bs)T eR? ¢c= (Cl, e ,CS)T € R

The method is ezplicit, if A is strictly lower triangular. The method
has order p € N, if the error term expands to

@H_T’t;[) _ SZ—/H_T’t;I} — O(Tp+1).

In terms of the Taylor expansion of the error & — ¥, the vanishing of
all lower order terms in 7 just defines the conditions which have to
be satisfied by the coefficients A, b and ¢ of a Runge-Kutta method.
If we choose

L
ci = E aij,
3=1

it can be shown [6], that there is no loss of generality in considering
autonomous systems only, i.e., those with no dependence of f on t.
Doing so, the expressions #'7 7'z and ¥!*7*z are likewise independent
of t. We will write "2 and ¥"z for short, calling them the flow and
the discrete flow of the continuous resp. the discrete system.

3. Elementary differentials and rooted trees

The Taylor expansions of both the phase flow #"2 and the discrete
flow Y7 are linear combinations of elementary differentials like

& f ofi , 0f;
323@323‘7313]9 ‘ 3mlfl ‘ fm ‘ fk

Oz,

F'UERPRD=D

ijklm

We will use the short multilinear notation of the left hand side for
the rest of the paper.

An elementary differential can be expressed uniquely by the struc-
ture of how the subterms enter the multilinear maps. For instance,
looking at the expression f”(f'f, f'f, f) we observe that f"” must be
a third derivative, since three arguments make it three-linear. This
structure can be expressed in general by rooted trees, e.g.,

expressing f'f"(f, f), expressing f"(f'f, f).

6 Folkmar Bornemann

Every node with n children denotes a nth derivative of f, which is
applied as a multilinear map to further elementary differentials, ac-
cording to the structure of the tree. We start reading off this structure
by looking at the root. This defines a recursive procedure, if we ob-
serve the following: Having removed the root and its edges, a rooted
tree 8 decomposes into rooted subtrees 3y, ..., 3, with strictly less
nodes. The roots of the subtrees 34, ..., 3, are exactly the n children
of #’s root. This way a rooted tree 8 can be defined as the unordered
list of its successors

(2) ﬁ:[ﬁlaaﬁn]a #ﬁ:]-—I_#ﬁl—l'—l'#ﬁn

Here, we denote by #3 the order of a rooted tree 3, i.e., the number
of its nodes. The root itself can be identified with the empty list,
o =[]

An application of this procedure shows for the examples above
that f'(f"(f, f)) is expressed by [[©, ®]] and f(f'(f), f) is expressed
by [[®], ®]. The reader will observe the perfect matching of paren-
theses and commas. In general the relation between a rooted tree
B =[pi,...,0Bn) and its corresponding elementary differential f(*)(z)
is recursively defined by

FO@) = fP (@) - (FP (@), FP) (@)

The dot of multiplication denotes the multilinear application of the
derivative to the n given arguments. Due to the symmetry of the n-
linear map f(™, the order of the subtrees i, ... , 3, does not matter,
which means, that f(®) depends in a well-defined way on 3 as an
unordered list only.

From © = [] we deduce f(®) = f. Analogously, each of the re-
cursive definitions in the following will have a well-defined meaning
if applied to the single root @ = [], mostly by using the reasonable
convention that empty products evaluate to one and empty sums to
zero—a convention that is also observed by most computer algebra
systems.

4. A simple proof of Butcher’s theorem

We are now in a position to calculate and denote the Taylor expansion
of the continuous flow @7 in a clear and compact fashion.

Lemma 1. Given f € CP(2,R9) the flow "¢ expands to

#0
a:—a:—l—ZT ag fO)(z) + O(rP1),
#P<p

Runge —Kutta Methods, Trees, and Maple 7

The coefficients B! and ag belonging to a rooted tree B = [, ..., Bx]
are recursively defined by

(3) Bl=#B) B! ... Bl ap=Loag ... ap,

By 6 we denote the number of different ordered tuples (81, ... ,[Bx)
which correspond to the same unordered list § = [B1, ..., Bnl.

Proof. The assertion is obviously true for p = 0. We proceed by
induction on p. Using the assertion for p, the multivariate Taylor
formula and the multilinearity of the derivatives we obtain

#6 "
f(®"z)=f m+27aﬁf +O(rP™)
#06<p
P
1 " 7-#,31 T#,Bn
OILTLE D SRR oy
n=0 #651<p #ﬁn<p
+0(rP11)
P
1 PP+ A # B
DI DY R N A

n=0 " #f1+..+#Ln<p

FO - (£P0, L,) O

n=0 B=[B1,...,Bn]
#B<p+1 e
-1
-y [; F& 4+ ot
#B<p+1 '

Plugging this into the integral form of the initial value problem we
obtain

$—$—|-/ f@o d0—$—|- Z Fagf —|—O(Tp+2)
#B8<p+1

which proves the assertion for p+ 1. O

A likewise clear and compact expression can be calculated for the
Taylor expansion of the discrete flow.

8 Folkmar Bornemann

Lemma 2. Given f € CP(£2,R%) the discrete flow ¥z expands to
Ve =2+ Z T#ﬁaﬁ T AP f(ﬁ)(:zz) +O(rPth).
#B<p
The vector AP) € R*, B = [B4, ..., By, is recursively defined by

(4) Agﬁ):<A-A(ﬁl)>-...-(A-A(ﬁn)), i=1,...,s.

2

2

Proof. Because of the definition (1)of the discrete flow we have to
prove that the stages k; expand to

k; = Z T#ﬁ_laﬁ Al(ﬁ)f(ﬁ) + O(7P).
#B<p
This is obviously the case for p = 0. We proceed by induction on p.
Using the assertion for p, the definition of the stages k;, the multi-
variate Taylor formula and the multilinearity of the derivatives we
obtain

kk=fle+T Z T#ﬁ_laﬁ <A-A(5)>. f(ﬁ)_|_0(7.p)

2

#B8<p
p
:Z%f(n), Z T#'Blaﬁl <AA(ﬁ1)>l f(,Bl),”‘
n=0 " #61<p

ey Y gy, (A'A(ﬁ")>i FE | £ o(rPHY
#0Bn<p

p
1
:Zﬁ Z pEOE AR -‘_‘-aﬁn,<A-A(ﬁ1)>i-
n=0 " #B1+..+#Ln<p

(A . A(m)) £ <f(51), L ,f(ﬁn)> +O(r Y
b ' 5
SN e B, A O 0
n=0 :3:[,317~~~7,8n] -
#B<p+1 =ag
= Y e AP FO Lo,
#B<p+1

which proves the assertion for p+ 1. O

Comparing the coefficients of the elementary differentials in the
expansions of both the phase flow and the discrete flow, we immedi-
ately obtain Butcher’s theorem [1].

Runge —Kutta Methods, Trees, and Maple 9

Theorem 1 (Butcher 1963). A Runge-Kutta-method (b, A) is of
order p € N for all f € CP(£2,R%), if the order conditions

bTAB) = 1/p!

are satisfied for all rooted trees B of order #8 < p.

5. Generating order conditions with Maple

The recursive constructions underlying the proof of Butcher’s theo-
rem can easily be realized using modern computer algebra systems
like Maple. We assume that the reader is familiar with this particular
package.

The recursive data-structure of a rooted tree itself can be realized
by self-reference as a list of rooted trees,

> ‘type/tree‘:=list(tree): f:=[]:
Conveniently, we have given a name to the root ® = []. Because
Maple’s lists are ordered, we have to sort the trees recursively before
testing for equality:

TreeSort:=proc(beta: :tree)

sort (map(TreeSort,beta));
end: # TreeSort

Now, here is an example for the tree representing the elementary dif-

ferential f(f"(, £'(£)), f) = £"(f, £'(£(£), f))- The corresponding

tree is obtained by erasing all the derivatives f (") from the expression
and replacing parentheses (...) by [...]:
> betal1]l:=[[f,[£f]1]1,f]: betal2]:=[f,[[£f],£]1]:
> evalb(TreeSort(betal[1l])=TreeSort(betal2]));
true

The definition (2)of the order #0 is simply expressed by the recursive
procedure

TreeOrder:=proc(beta: :tree)
option remember;
1+‘+¢ (op(map(TreeOrder,beta)));
end: # TreeOrder

As an example, we take the tree that represents the elementary dif-
ferential f"'(f"(f'(f), f'(£), f),):
> beta:=[[[£],[£f],f],f]: TreeOrder(beta);
8
The definition (3)of 3! is analogously expressed by:

10 Folkmar Bornemann

TreeFactorial:=proc(beta: :tree)

option remember;

TreeOrder (beta)* ‘*‘ (op(map(TreeFactorial,beta)));
end: # TreeFactorial

The above used tree 3 of order 8 gives:

> TreeFactorial(beta);
192
For the sake of completeness we also express the recursive defini-
tion (3)of ag using Maple:

TreeAlpha:=proc(beta: :tree)
option remember;
local n;
n:=nops(beta);
nops (combinat [permute] (beta,n))/n!*
“x‘ (op(map(TreeAlpha,beta)));
end: # TreeAlpha

An application to the above example yields:
> TreeAlpha(beta);
1

2
We are now ready to map the recursive definition (4)of .A(®) and of
the order condition 87 A®) = 1/8! to Maple:

Treel:=proc(beta: :tree,no: :posint)
option remember;
local vars,val,son;
vars:=[i,j,k,1l,m,p,q,r,u,v,w];
val:=1;
for son in beta do
val:= val*Sum(a[vars[no],vars[no+1]]=*

TreehA(son,no+1) ,vars[no+1]=1. .s8);

od;
val;

end: # Treeld

TreeOrderCondition:=proc(beta: :tree)
Sum(b[i]*TreehA(beta,1),i=1..s8)=
1/TreeFactorial(beta);
end: # TreeOrderCondition

The coordinate index for the vector A(®) can be chosen from the
list [1,j,k,1,m,p,q,r,u,v,w] and is passed by number as the sec-

Runge —Kutta Methods, Trees, and Maple 11

ond argument to Treel. The order condition belonging to the above
example is obtained as follows:

> TreeOrderCondition(beta);

E E E E 2 E E 1
St (S (S an) (Sain) (oo - 1
=1 7=1 =1 =1 k=1 7=1

Even the typesetting of this formula was done completely automati-
cally, using Maple’s ability to generate TEX-sources.

To generate all the order conditions for a given order p, we need a
device that constructs the set of all trees 8 with #3 < p. There are,
in principle, two different recursive approaches:

— root-oriented: generate all trees 3 of order #3 = p by first, listing
all integer partitions p — 1 = p1 + ...+ p,, n = 1,...,p — 1,
and next, setting 8 = [f31, ..., 3,] for all trees By, ..., B, of order
#61=p1 < p,...,#B = p, < p. These trees have already been
generated by the recursion.

— leaf-oriented: Add a leaf to each node of the trees 3 = [B1,-- -, 0B
of order #ﬁ = p — 1, increasing thereby the order exactly by one.
This can be done recursively by adding a leaf to every node of the
subtrees B4,..., On.

The root-oriented approach was chosen by Sofroniou [9] in his Math-
ematica package Butcher .m. It requires an efficient integer partition
package and the handling of cartesian products. The leaf-oriented
approach is as least as efficient as the other one, but much easier to
code:

Trees:=proc(order: :posint)
option remember;
local Replace,AddLeaf,all,trees;

Replace:=proc(new: :tree,old: :posint,beta: :tree)
sort (subsop(old=new,beta)); # order-independent. ..
end: # Replace

AddLeaf :=proc(beta: :tree)
option remember;
local val,child,new;
val:={sort([[],op(beta)])};
for child from 1 to nops(beta) do
new:=AddLeaf (betal[child]);
val:=val union map(Replace,new,child,beta);
od;

12 Folkmar Bornemann

val;
end: # AddLeaf

trees:={[1}; all:=[trees];
to order-1 do
trees:=‘union‘ (op(map(AddLeaf,trees)));
all:=[op(all) ,trees];
od:
all;
end: # Trees

Given an order p this procedure generates a list of the sets of trees
for each order ¢ < p, e.g.,

> Trees(4);

(03, L0003, L0000 10, 003 <00, 0, 00 (0o, 1, 01, (0, 013

For instance, the number of trees for each order p < 10 is given by
the entries of the following list:

> map(nops,Trees(10));
1,1, 2, 4,9, 20, 48, 115, 286, 719]
The number of order conditions for the order p = 10 can thus be
obtained by:

> 4+ (op(h));
1205

Finally, for concrete calculations one has to specify the number s
of stages. The following procedure then generates the specific set of
equations for ezplicit Runge-Kutta methods:

OrderConditions:=proc(order: :posint,stages: :posint)
option remember;
local eqgs,vars,auto,explicit;
explicit:=seq(seq(ali,j]=0,j=i..stages),
i=1..stages);
vars:=eval(seq(b[i],i=1..stages),
seq(seq(ali,jl,j=1..stages),i=1..stages),
seq(c[i],i=1..stages) ,explicit) minus {0};
auto:=eval(seq(sum(ali,jl,j=1..stages)=c[i],
i=1..stages) ,explicit);
eqs:=value(Eval (map(TreeOrderCondition,
‘union‘ (op(Trees(order)))),s=stages));
eqs:=eval(eval(eqs,explicit),auto);
eqs,auto,vars;
end: # OrderConditions

Runge —Kutta Methods, Trees, and Maple 13

This way, we can automatically generate and typeset the order con-
ditions for the classical explicit 4-stage Runge-Kutta methods of or-
der 4:

> OrderConditions(4,4): %[1];

1

{b1+by+bs+bs=1,bsaszass¢2 = 31

1 1
byez+bses+bycs =, by co® + b33’ + bycs® = n

1

bgag g co + by (ag,2¢2+ ayg 3c3) = 5

bs c3 as 22+ bycy (04,2 2+ a4 3 03) = ga

2 2 2y _
bsas g ce® 4 by(ag 2c2” +ayscs)—ﬁ,

1
by co® +byes® + bycy® = g}

Remark 1. Even in the more recent literature one can find examples
like [4], where order conditions for Runge-Kutta methods are gen-
erated by using a computer algebra system to calculate the Taylor
expansions of the flow and the discrete flow directly. This approach
is typically bound to scalar non-autonomous equations, i.e., d = 1.
Besides being ineflicient for higher orders, it is well-known [2] that
for p > 5 additional order conditions for general systems make an
appearance, which do not show up in the scalar case.

6. Examples of usage

The following simple procedure tempts to solve the order conditions
for a given order p and stage number s by using brute force, i.e.,
Maple’s solve-command. To simplify the task, the user is allowed to
supply a set pre of a priori chosen additional equations and assign-
ments that he thinks to be helpful.

RungeKuttaMethod:=proc(p: :posint,s::posint,pre: :set)
explicit methods only
local conds,auto,vars,eqs,sols,sol,val;
conds,auto,vars:=0rderConditions(p,s);
egs:=conds union auto union pre;
sols:=solve(eqs,vars);
val:=NULL;
for sol in sols do

14 Folkmar Bornemann

val:=val,[
a=matrix([seq([seq(eval(ali,jl,sol),j=1..i-1),
seq(0,j=i..s)],i=1..8)1),

b=vector([seq(eval(b[i],sol),i=1..8)]1),
c=vector([seq(eval(c[i],sol),i=1..8)1)];

od:

val;

end: # RungeKuttaMethod

This way we can simply generate the general explicit 2-stage Runge-
Kutta method of order p = 2:

> RungeKuttaMethod(2,2,{b[2]=theta});

0 0 11]
a=1]11 yb=[-0+1,0],c=10, ==
l l§§ 0] [20]

The next example is more demanding. In his book [3, p. 199] Butcher
describes an algorithm for the construction of explicit 6-stage meth-
ods of order p = 5. The choices cg = 1 and b, = 0 together with the
free parameters cs, c3, ¢4, ¢5 and ay3 yield a unique method. Butcher
provides a two-parameter example by choosing ¢y = u,c3 = 1/4,¢4 =
1/2,¢5 = 3/4, ay3 = v. By just passing this additional information to
Maple’s solve-command we obtain the following solution

> pre:={c[2]=u,c[3]=1/4,c[4]=1/2,c[5]=3/4,c[6]=1,

> b[2]=0,a[4,3]=v}:

> Run eKuttaMethod(5 6,pre): %4[1];

> W [2] hh31;

0 0 0 0 00]
u 0 0 0 00
1 -1+8u 11
2w 2 u 0 00
1 —2v+1 —4 12v—1
0 1 v+1+8vu u 12w v 0 00
8 u 8 u
3 —v+1-3ut+4dvu 3 v—-1 3 3 9 00
[[___v [
16 u 16 wu 4 4 16
1 6v+7+24vu—22u 1 6v—7 12 —1280
| 14 u 14w oY

7
16 2 1 11
b= ! 0,_6,_,_6,1,62 Oaua_a_a§a1
90’ ' 45’ 15’ 45’ 90 42" 4

This result shows that the coefficients as; and ass of Butcher’s so-
lution [3, p. 199] are in error, a fact that was already observed by

Sofroniou [9] using the Mathematica package Butcher.m.

Runge —Kutta Methods, Trees, and Maple 15

References

1. Butcher, J. C. (1963): Coeflicients for the study of Runge-Kutta integration
processes, J. Austral. Math. Soc. 3, 185-201.

2. Butcher, J. C. (1963): On the integration processes of A. Huta, J. Austral.
Math. Soc. 3, 202-206.

3. Butcher, J. C. (1987): The Numerical Analysis of Ordinary Differential Equa-
tions. Runge- Kutta Methods and General Linear Methods, John Wiley & Sons,
Chichester.

4. Gander, W. and Gruntz, D. (1999): Derivation of numerical methods using
computer algebra, SIAM Review 41, 577-593.

5. Hairer, E. (1999): Numerical Geometric Integration, Lecture notes of a course
given in 1998/99, http://www.unige.ch/math/folks/hairer/polycop.html.

6. Hairer, E., Ngrsett, S. P., and Wanner, G. (1993): Solving Ordinary Differ-
enttal Equations I. Nonstiff Problems, 2nd Edition, Springer-Verlag, Berlin,
Heidelberg, New York.

7. Hairer, E. and Wanner, G. (1974): On the Butcher group and general multi-
value methods, Computing 13, 1-15.

8. Jenks, R. J., (1976): Problem # 11: Generation of Runge-Kutta equations,
SIGSAM Bulletin 10, 6.

9. Sofroniou, M. (1994): Symbolic derivation of Runge-Kutta methods, J. Symb.
Comp. 18, 265-296.

