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A b s t r a c t - - E x p l i c i t  Runge-Kut ta  schemes are the methods of choice for solving nonstiff systems of 
ordinary differential equations at low to medium tolerances. The construction of optimal formulae has 
been the subject  of much research. In this article, it will be shown how to construct some low order 
formula pairs using tools from computer algebra. Our focus will be on methods tha t  are equipped 
with local error detection (for adaptivity in the step size) and with the ability to detect stiffness. It 
will be demonstrated how criteria governing 'optimal '  tuning of free parameters  and matching of the 
embedded method can be accomplished by forming a constrained optimization problem. In contrast  
to s tandard numerical optimization processes our approach finds an exact (infinite precision) global 
minimum. Quanti ta t ive measures will be given comparing our new methods with some established 
formula pairs. (~) 2005 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - O r d i n a r y  differential equations, Initial value problems, Runge-Kut ta  methods, Stiff- 
ness detection, Symbolic computation, Computer  algebra systems, Computer  generation of numerical 
methods. 

1. I N T R O D U C T I O N  

A framework for explicit Runge-Kutta methods is being implemented as part of an ongoing over- 
haul of MATHEMATICA~S differential equation solver NDSolve. One of our goals was to establish 
a unified environment for a whole class of methods of different orders. This helps to provide 
a uniform basis for comparing methods, reduces the potential for programming errors, and al- 
lows the optimization of a single implementation from which all methods benefit. Furthermore, 
specification of additional Runge-Kutta methods can be accomplished by simply entering the 
appropriate coefficients. 

It is well known that explicit Runge-Kutta methods are not suitable for the numerical solu- 
tion of stiff differential equations. One of the features that we wanted to incorporate in our 
implementation was automatic stiffness detection. In this way users are provided with run-time 
information about when the choice of method is inappropriate. It also becomes possible to switch 
between stiff and nonstiff Runge-Kutta methods [1]. 

0895-7177/05/$ - see front mat ter  (~) 2005 Elsevier Ltd. All rights reserved. Typeset by AA/tS-~X 
doi:10.1016/j.mcm.2005.01.010 
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Many high order schemes in the literature are capable of using the stiffness detection device that  
we have chosen because the necessary condition arises naturally in the simplifying assumptions 

that  axe adopted in the derivation. However, there was a lack of methods at low order with the 

required property. One goal of this article is to fill this void. 
Many methods, especially at high order, are constructed by a numerical search to constrain 

free parameters.  This often requires reasonable starting values and the numerical optimization 
process is not guaranteed to detect local minima. Another aim of this article is to use ideas that  
axe common in algebraic geometry to derive appropriate methods. These tools are rigorous in 
the sense that  they enable precise statements about  the methods tha t  are constructed. 

This article is organized as follows. Section 2 introduces some definitions and notation. Sec- 

tion 3 describes the properties of explicit Runge-Kutta  methods that  will be considered. Details 
of the derivation process in M A T H E M A T I C A  a r e  given in Section 4 and new methods are described 
in Section 5. The Appendix contains some formula pairs tha t  have been used for comparison 

purposes. 
All computations in this article were carried out using an AMD Athlon machine at 800 MHz 

with 1152 MB of RAM running RedHat  Linux 6.2. Version 5.0 of MATHEMATICA has been used 

except where otherwise stated. 

2 .  D E F I N I T I O N S  

The most common application of numerical methods for systems of ordinary differential equa- 

tions of dimension n E N is to initial value problems 

y '( t )  = f ( t ,  y(t)),  f :  ]~ × ~'~ --, I~ n, (1) 

y(t0) = y0. (2) 

Equation (1) defines a family of solutions. A specific solution is fixed by specifying the initial 

state, or initial conditions (2). The initial value problem (1),(2) varies continuously with time. 
In order to solve the problem, an approximate solution is sought at fixed output  points in a finite 

time range. 
Denote the s-stage explicit Runge-Kutta  method for the approximate solution to the initial 

value problem (1),(2) at t~+l = tn + h by 

g l  = Y n ,  

kl  = f ( t~ ,  gl) ,  
i - -1  

g~ = yn + h E ai , jk j ,  i = 2 , . . . , s ,  (3) 

k~ = f ( t~  + cih, gi), 

Y,,+t = Y~ + h ~ b~ki. 
i=1 

The coefficients of the method are free parameters tha t  are usually chosen to satisfy a Taylor 
series expansion through some order in the step size h. It  has become customary to denote the 
method coefficients c = [c~] T, b = Ibm] T, and A = [a~,j] using a Butcher  table. For an explicit 
Runge-Kut ta  method the matr ix  A is strictly lower triangular and the Butcher table has the 

following form. 
0 

C2 

Cs-- 1 

Cs 

0 0 .." 0 0 
a2,1 0 •. • 0 0 

: " . .  " . .  : : 

a s - - l , 1  a s - l , 2  • .  • 0 0 

a s , 1  a s , 2  • " " a s , s - 1  0 

bl b2 " "  b8-1 b8 
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We will assume the general convention that  the row-sum conditions hold 

i - 1  

=Za ,j, i=2, . . . ,s .  (4) 
j = l  

These have the effect that  all points at which the function f is evaluated are first order ap- 
proximations to the solution. Conditions (4) are also a useful device appearing naturally in the 
derivation of high order Runge-Kutta  methods. 

Let the local solution u(t) at (tn, yn) be defined by 

u'(t)  = f ( t ,  y( t)) ,  u(t,~) = y,~. 

For sufficiently smooth f ,  a Taylor expansion about (t~, Yn) yields expressions for the local error 

~'p-t- 1 "Pp-]- 2 

u(tn-~-h)-yn+ 1 : hp+l ~-~ T~(p+I) Dj(p+I) Jr- h p+2 ~ T (,+2)D(p+2)j --j Jc 0 (h  p't-3) . 

j=1 j = l  

The D} i) are elementary differentials of order i (see [2-5]) and the T (i) are the truncation error 
coefficients. The ri are natural numbers denoting the number of distinct elementary differentials 
of order i. The principal local truncation error coefficients are given by the terms of order h p+I. 

The T (i) depend on the coefficients of the explicit Runge-Kutta  method and are independent of 
the differentiai equation. An explicit Runge-Kutta  method is said to be of order p if the Taylor 

series for the exact solution and the approximate solution coincide through terms in h p 

Ilu(t~ + h) - Y~+ll[ ~ Ch p+I. 

3. M E T H O D  P R O P E R T I E S  

Choices of reasonable criteria for constructing explicit Runge-Kutta  methods are somewhat 
subjective. Shampine states that  [5] 

Certain of the constraints described can be translated into mathematical  constraints, but 
most are sufficiently vague that  one must explore the space of parameters in a heuristic 
way. 

The criteria tha t  have been chosen in the sequel will be explained and precisely formulated as 

mathematical  constraints. Unless otherwise stated, the Euclidean norm ]lv]l of a vector v will be 
implied throughout.  

Error estimation can be accomplished by considering (3) and using a linear combination of the 

same function values with a second set of weights D~ in place of bi. This gives rise to embedded 
explicit Runge-Kutta  pairs of methods, where the higher order method usually has order p >_ 2 
and the lower order method has order/3 = p - 1. Such methods are commonly denoted as a pair 
of order p(/3). 

An estimate of the error of the formula of order/3 can be found by considering the difference 
from the formula of order p as 

8 

i=1 

A norm of this vector furnishes a scalar quantity tha t  can be used to estimate the local error 

and adjust the step size in an adaptive fashion. In an implementation, the norm commonly 
incorporates user prescribed relative and absolute tolerances. 

Denote the principal local truncation error of the higher order formula of order p as T (p+I) = 

[T(P+I)] T and of the embedded formula of order/3 = p - 1 as 2b(p). The secondary truncation 

error of the embedded method will be denoted as ~(p+l). 
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Assuming that/5 = p - 1, then quantitative measures governing a suitable choice of coefficients 

for the embedded method of the pair are [5] 

B - -  ~%(p÷ 1) 

, T ( P )  ' 

C = 2~(P+1) - T(p+I) 

A small value of B ensures that the leading term in the expansion of the local error is likely to 

dominate for comparatively large step sizes. A small value of G ensures an accurate estimate of 

the local truncation error for large step sizes. 

The following condition can be used to compare the relative accuracy of two methods # and 

of order p [6]: 

w(v) \ ) (5) 

The work W can be estimated by the number of function evaluations required by the method. 
The following criteria have been chosen for the construction of explicit Runge-Kut ta  methods 

(see [7] for an example of an alternative). 

® The higher order formula has order p with the minimal number of stages. 
• The higher order formula is as accurate as possible, or at least close to the method which 

minimizes the norm of the principal t runcation error, lIT (p+I) H. This is justified by the 
fact that  the solution will be propagated by the higher order method (local extrapolation). 

• No principal error terms in the embedded formula vanish. This ensures tha t  the embedded 
scheme is never of order r >/5, which would result in defective error estimation for some 

problems. 
• By construction, embedded methods have ratios B and C which are small. 
• The first same as last (FSAL) device is used. This has the advantage that in (3), when 

a step is accepted, the last stage ks can be reused at the next step as kl which saves a 

function evaluation. The chosen form of FSAL does not contribute to the accuracy of the 

higher order formula, which actually reduces to an (s - I) stage method, but it allows 

for an embedded method to be constructed. For example, it is known that no embedded 

formula of order three exists for a four stage fourth-order explicit Runge-Kutta method 

(see for example [3, Section II.4, exercise 2]). On the other hand, an FSAL strategy enables 

the construction of an embedded method into a scheme with effectively four stages (see 

Section 5.3). 
• Following [1,8-10] we construct methods with a facility for detecting stiffness by directly 

estimating the dominant eigenvalue A of the Jacobian o r of a problem. An alternative 
strategy for stiffness detection is described in [11]. Let v approximate the eigenvector 

corresponding to ), and consider an estimate of the form 

II f( t ,y  + v) - f ( t , y ) l  t 

By consistency (first order) and (4), a FSAL method has cs = 1. Imposing the additional 

condition cs-1 = 1, a suitable value which approximates )~ is then obtained from (3) with 

only some additional storage as 

[1ks - ks-11[ 
P -= I[g~ - g~- l [ [  

The denominator here corresponds to several applications of the power method applied 
to hY, which yields a good approximation to the eigenvector corresponding to the leading 
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The 
here. 

eigenvalue A (see [3]). As an example, let IOSI denote the boundary of the linear stability 

function. Whenever hp > IOSI, then stability rather than local accuracy is restricting the 
choice of step size and the problem is considered to be stiff. 
The choice c~ # cj., ci,c~ E {c2,... ,cs-1} ensures that the method samples at distinct 
intermediary values. This makes it more likely that unexpected changes in the solution, 
such as discontinuous, will be revealed. 

following Butcher table is used to summarize the free parameters of the methods of interest 

0 

C2 

1 

1 

0 0 

a2,1 0 

as-l,1 as-l,2 

bl b2 

0 0 

0 0 

: 

0 0 

bs-1 0 

bl b2 bs-1 0 

/'1 4 /'s 

(6) 

4. D E R I V A T I O N  P R O C E S S  

The solutions to the order conditions often contain free parameters. In order to obtain specific 
methods we need a way of imposing additional constraints. One way of eliminating the freedom 
of choice is to minimize the principal local truncation error [2,3,12-14]. 

The traditional approach for finding optimal methods uses numerical minimization routines to 
search for local minima on a predefined grid (e.g., [12]). The problem here is that the objective 
function can be highly nonlinear and there is no guarantee that a locally found minimum on a 
finite grid will actually be the best method. The minimization may not converge, given poor 
starting values for example, and if no solutions are obtained numerically that does not mean that 
none exist. 

In this article, we will be concerned with how to derive methods that minimize the truncation 
error using a technique based upon cylindrical algebraic decomposition which effectively breaks 
up parameter spaces into cylindrical regions [15,16]. There are numerous advantages to this 
approach. In particular, it furnishes a global minimum for a given search region and furthermore, 
the minimum and parameter values are given in exact form. 

The derivation process here is carried out in two phases. In both phases an optimization 
problem is formed involving the square of the Euclidean norm, since avoiding square roots is 
computationally more efficient. The first phase consists of solving the order conditions to con- 
struct methods of order p; an optimization problem is formed to derive the method that minimizes 
the objective function ]]T(p+I)]I2. The second phase constructs another optimization problem to 
derive the embedded (lower order) scheme; the objective function to be minimized is II B N 2+ I I CII2. 

The MATHEMATICA package Butcher .m addresses the issue of forming order conditions and 
related constraints for deriving Runge-Kutta methods using Butcher's rooted tree formalism [17]. 
Computation of the local truncation error can be accomplished using the function ButcherPrin- 
c ipa lError  (see Section 4.1). The package derives equations for the free parameters of a method, 
but does not attempt to find solutions. 

Nonlinear algebraic equations can be solved by forming Grbbner bases which are simpler and 
contain all the solutions of the original system (see, for example, [18]). It should be noted 
that the reduction process in forming a Grbbner basis is sensitive to the order of elimination 
of the variables. Furthermore, the time required to obtain solutions grows exponentially with 
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the number of variables and with the number of solutions of the system according to B4zout's 
theorem [19]. Separate cases arise for each nonlinear branch encountered. Similar comments 
apply to the complexity of cylindrical algebraic decomposition. For moderate sized problems, 

however, Gr6bner bases and cylindrical algebraic decomposition are a very powerful technique. 

4.1. T h i r d - O r d e r  O p t i m a l  M e t h o d  

This section illustrates a MATHEMATICA session for deriving the optimal third-order three 
stage explicit Runge-Kut ta  method with the property that  one of the free parameters is used to 

equip the method with a stiffness detection facility. 

Load a package for deriving order conditions and related quantities. 
In[l]:= Needs ["NumericalMath'Butcher' "] ; 

Set the form of methods of interest. 

In[2]:= SRungeKuttaMethod -- Explicit; 

Define a function for computing the square of the Euclidean norm of a vector. 

In[3] :-- EuclideanNormSquared [x_?VectorQ] := Dot Ix, x] ; 

Choose the order p and the number of stages s of the method. Since the FSAL device is used, 

the higher order method can be derived with s - 1 stages 

In[a]:= p = 3; 
In[5]:= s = 4; 

Specify a transformation rule that  embodies the criterion for stiffness detection. 

In[6]:= stiffnesscondition = { Cs_ 1 --+ i}; 

Compute the order conditions for the higher order method and impose the stiffness criterion. 

In[7]:= rkoc  = RungeKut t a0 rde rCond i t ions  [p, s - l ] ;  
In[8]:= rkoc  = F l a t t e n [ r k o c ]  / .  s t i f f n e s s c o n d i t i o n  

Out[8] = {bl +b2+b3 == 1, b3 + b2c2 = =  1, a3,2b3c2 = =  1 b3+  b2c~ == 1} 
Define the variables at run time by converting the order conditions to polynomials. 

In[9]:= v a r s  = V a r i a b l e s [ r k o c  / .  Equal --+ S u b t r a c t ] ;  

Compute the vector of terms in the principal local error and impose the stiffness criterion. 

In[10]:=Tp = ButcherPrincipalError[p, s--l] /. stiffnesscondition; 

Form the square of the Euclidean norm of the principal error terms. 

In[ll]:-- obj fun = EuclideanNormSquared [Tp] (1 
Out[ l l ]  = ~-~ + -- +a3,2b3c2 + ~ - + a3,2b3c 2 + - + b3 + b2c 

Use Grbbner bases to reduce the previous result modulo the constraints defining the order 

conditions. At higher orders it may be preferable to solve the order conditions and simplify the 

objective function using each solution branch in place of this step. 
In[12]:= objfun = PolynomialReduce[objfun, rkoc /. Equal --* Snbtract,vars]; 

In[13]:= objfun = Last [objfun] 

1 (1 - 2b3 + 4b 2 - c2 + 6b3c 2 - 8b32c2 2 + c 4 - 4b3c 4 + 4b~ c4) Out[13] = ~-~ 
The function Minimize takes an objective function, a list of equalities and/or  inequalities, and 

a list of variables. The function returns a list of the minimum value and a list of parameters and 
values tha t  yield the minimum. Minimize uses cylindrical algebraic decomposition to find the 

minimal solution for the principal error. 
In[14]:= Timing [ Experimental'Minimize [objfun, rkoc, vars] ] { { { 1 1 } } }  Out[14]= 0.55Second, 2-~' c 2 - ~ 1 '  b2 -~ 2 '  aa'2--+ 2' b3 "-* -6' bl --* -6 -- 

The result is a list of the time taken, the square of the Euclidean norm representing the minimal 

solution, and the minimal solution. 
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4.2. D e r i v a t i o n  o f  E m b e d d e d  M e t h o d s  

Following on from Section 4.1, the order conditions for a second-order embedded method are 
now constructed and values for the free parameters are then derived using constraints on the 
truncation error. 

Extract the minimal solution from the last result in 4.1. 
In[15]:= minsol = Part [7.,2,2] 

Construct a list of transformation rules for the lower order, embedded scheme. 

In[16]:= lowsub = {bi_  -+ l~i, % - 1  -~ 1, Cs --+ l, as , j_  ~ b j } ;  

Derive the order conditions for the embedded scheme. 
In[17]:= rkoclow = R u n g e K u t t a 0 r d e r C o n d i t i o n [ p - t , s ]  ; 
In[18]:= rkoclow = F l a t t e n [ r k o c l o w ]  / .  lowsub / .  minsol;  

Determine the free parameters of the embedded scheme. 
In[19]:= lowvars  = V a r i a b l e s [ r k o c l o w  / .  Equal ~ S u b t r a c t ] ;  

Solve the (linear system of) order conditions for the embedded method. A message is issued to 
indicate that  some of the parameters are unconstrained by the order conditions. 

In[20]:= lowso l  = F i r s t  [ So lve [ rkoc low,  lowvars]  ] 
Out[20] = Solve::svars: Equations may not give solutions for all solve variables 

{/h--+/~3 + b,, b2-+I- 2/~3- 2/~4} 
Construct the primary and secondary truncation error terms for the embedded method. 

In[21]:---- Tp ---- ButcherPrincipalError[p-l,s] /. lowsub /. lowsol /. minsol; 

In[22]:= #s = ButcherPrincipalError[p,s] /. lowsub /. iowsol /. minsol; 

Simplify the primary truncation error terms for the high order method derived in Section 4.1. 

In[23]:= Tp = Tp /. minsol; 

Derive an objective function for the embedded method and simplify the expression as a rational 
function. 

In[24]:= BSquared = EuclideanNormSquared[Ts]/EuclideanNormSquared[Tp]; 

In[25]:= CSquared = Euclidea/INormSquared[Ts -- Tp]/ 

EuclideanNormSquar ed[Tp]; 

In[26]:= objfun = Together[BSquared + CSquared] 

57 - + 24s4   - 396 4 + 256s4 4 + 740/   
Out[26] = 

2 (17 - 204/~3 + 612/~32 - 10864 + 648b3/~4 + 180/~42) " 

Find the minimal solution for the embedded scheme and also give the time taken to find the 
solution. 

In[27]:= Timing[ Min imize[ob j fun ,  rkoclow,  lowvars] ] { { 1 
Out[27] ---- 0.35 Second, (43 - 2 v / ~ ) ,  b4 --* (16 - v/~), /~3 --~ 1-~ 

4.3. F o u r t h - O r d e r  O p t i m a l  M e t h o d  

Unfortunately, the high complexity of the solution process outlined in Section 4.1 currently 
limits its application at higher order. However, when it is possible to solve the order equations 
explicitly progress can still be made, although the steps involved are somewhat more intricate. 
As illustrated, in this section an analytic expression for the optimal fourth-order scheme with 
four stages is used to simplify the objective function. It is well known that  there are four solution 
branches to the order conditions (see, for example, [3, Section II.1]). For brevity, we deal only 
with the main solution branch in terms of c2 and c3. The other solution branches can be treated 
similarly. 
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Define a function for computing the gradient of a scalar or vector valued function. 

In[28]:= Grad [f_?VectorQ,vars_?VectorO] := Outer [D, f,vars] ; 

In[29]:= Grad If_, vars_?VectorQ] := Map [D If, #] •, vats] ; 

Using a process similar to Section 4.1, it can be shown that the square of the Euclidean norm 

of the principal error terms is given by the following expression. 

I n [ 3 0 ] : =  hum = 2 1 8 7  - 1 6 0 9 2  c2 + 4 8 5 7 3  c~ - 7 9 6 3 2  c~ + 7 9 1 9 6  c 4 

- 4 8 0 8 0  c52 + 1 4 2 4 0  c6~ - 1 1 3 9 4  c3 + 8 1 7 5 6  c2 c3 - 2 3 5 8 7 2  c~ c3 

+ 358208 c 3 c3 - 321196 c~ e3 + 179848 c~ c~ - 53600 c~ c3 

+ 23355 e~ - 564988 c2 c~ ÷ 460716 c~ c~ - 653460 c~ c~ 

4 - 5 5 9 3 3 2  c 4 c 2 - -  2 5 5 7 0 4  c 5 c32 + 7 5 5 6 0  c 6 c32 - -  2 2 2 4 8  c33 

+ 1 5 7 0 0 4  c2 c 3 - -  4 3 4 8 4 0  c~ c 3 + 5 9 8 5 8 4  c 3 c 3 - -  4 4 1 7 3 6  c 4 c 3 

+ 195568 c~ c~ - 57120 c~ 4 + 8240 c~ - 58960 c~ c~ 
+ 1 6 6 3 8 0  c 2 c 4 - 2 3 4 1 6 0  c 3 c 4 + 1 7 7 6 8 0  c 4 c 4 - 8 1 6 0 0  c 5 c 4 

+ 2 4 4 8 0  c62 c4; 

In[31]:= den = 207360(-i + 2c2)2(3 - 4c2 - 4c3 + 6c2c3)2; 

In[32]:= oh j fun = hum/den; 

Define the free parameters. 

In[33]:= vars = {c2,c3}; 

Find the gradient vector with respect to the free parameters. 

In[34]:= minterms = Together [Grad [obj fun, vars] ] ; 

Necessary conditions for a minimum can be derived by setting the components of the gradient 

to zero and solving the resulting equations. Here, we use a new feature of the function Reduce 

that finds only real valued solutions of a system of equations. 

In[35]:= eqs = And[Part [minterms, i] == 0, Part [minterms, 2] == 0, 

c2 E Reals, c3 E Reals]; 

This shows the time taken to find the real solutions, of which there are four. The solutions are 

fairly complicated so we have chosen not to display them. 

In[36]:= Timing [Length [sols = {ToRules [Reduce [eqs, vars] ] } ; ] ] 

Out[36] = {25. Second, 4} 

In order to determine which of the solutions, if any, is a minimum we need to compute the 

Hessian matrix and see if it is positive definite. Derive the Hessian matrix. 

In[37]:-- Hess = Together [Grad[minterms, vats] ] ; 

Define a function for determining if a matrix is positive definite. 

In[38]:= PositiveDefinite [a_?Matrixq] :---- Apply [And,Positive [Eigenvalues [a]] ] ; 

Substituting the solutions into the Hessian matrix we can see that only three of them yield a 

positive definite matrix. Numerical approximations to the solutions are displayed. 

In[39]:= minsols = Select[N[sols] ,PositiveDefinite[Hess /. #]~] 

Out[39] = { { c 2  ~ 0.357739, c3 -~ 0.59149}, 
{c2 -~ 0.0747369, c3 -* 0.773749}, 
(c2 --* 0.57668, cs --~ 2.57771}} 

The  first minimum yields the smallest value of the objective function. 

In[40]:= objfun /. minsols 

Ont[40] = {0.000143459, 0.000315109, 0.177558} 

The exact value of the global minimum corresponds to roots of degree 28 polynomials. 

5. N E W  M E T H O D S  

New formula pairs with stiffness detection are described in this section and relevant properties 

axe compared with some existing methods.  
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5.1. M e t h o d s  o f  T y p e  2(1) 

For methods of the form (6), the reduced order equations for a second order scheme are simply 

1 
bl -t- b2 = 1, b2 = 2 '  

so that  the unique solution, bl = b2 = 1/2, yields a method based on the improved Euler 

scheme (see [4, p. 155]). This method satisfies IIT(3)II = v /12 ~ 0.186339. In contrast, it is 
a simple exercise to show that  the optimal two stage order two explicit Runge-Kutta  method 

occurs at c2 = 2/3 so that  bl = 1/4, b2 = 3/4, and IlT(a)[[ = 1/6 ~ 0.166667. This coincides 
with the minimal solution of Ralston [14]. The requirement of stiffness detection has therefore 

slightly compromised the accuracy of the formula. Using (5) we can quantify the expected 
relative performance of the stiffness equipped scheme with the optimal scheme and show that  the 

difference is less than 3.8%. 
It remains to choose a suitable embedded scheme. First order requires tha t  the consistency 

condition is satisfied which determines D1 in terms of b2 and b3. After simplification, the procedure 
outlined in Section 4.2 then yields the following objective function to be minimized: 

17 - 6062 + 72D~ - 84b3 + 144D2D3 + 144b] B 2 + C 2 = 
36 (2 2 + - 1) 2 

It is straightforward to show that  the unique solution for a minimum is attained at /~2 = - 1 / 6 ,  
b3 = 1/6 so that  the resulting 2(1) method is given by 

0 0 

0 0 

1 

0 

1 

1 

1 

1 ~ 0 

1 
0 

1 1 
1 

6 

There is only one principal error term for the embedded method which is nonzero. 

5.2. M e t h o d s  o f  T y p e  3(2) 

The optimal third-order formula, which minimizes IIT(4)II, was derived in [20]. Some other 

methods, none of which have the requisite structure for stiffness detection, are listed in the 
Appendix. 

The equations for a third-order method of the form (6) together with the square of the Euclidean 

norm of the weighted principal error were given in Section 4.1 along with the minimal solution. 
A procedure for deriving an embedded method of order twc was given in Section 4.2. The 
resulting 3(2) method is as follows. 
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1 1 

1 - 1  
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22 - v ~  

72 

0 0 0 

0 0 0 

2 0 0 

2 1 
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2 1 
o 

14 + ~ / ~  --4 + x / ~  16 -- v/-~ 

36 144 48 

(7) 
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There are two principal error terms for the embedded method and both are nonzero. 

Table 1 gives error coefficients of some existing pairs and the new scheme. In comparison, the 

optimal third-order formula has lIT (4) II "~ 0.0418091 [20]. Again using (5) the expected relative 

performance of the stiffness equipped scheme with the optimal scheme is within 9%. 

Table 1. Error coefficients ~r 3(2) methods. 

Method HT(4) II B C 

(9) 0.0418111 1.34919 1.37721 

(10)  0.0607170 1.16428 0.928293 

(7) 0.0589256 0.444795 1.08853 

5.3. M e t h o d s  o f  T y p e  4(3)  

It is well known that  a necessary condition for four stage fourth-order methods is c4 = 1 
(see [2,3]). Therefore, there is no loss of generality in considering the form of stiffness detection 

considered here for a five stage FSAL scheme. 
Ralston used a numerical procedure to search for the optimum four stage fourth-order method; 

despite the different weighting of the principal error, the proof in Section 4.3 shows that  the 
approximate coefficients found by Ralston correspond to the minimal method [14]. Since the 
optimal method involves very complicated coefficients, we decided to select the method with 

c2 = 2/5, c3 = 3/5 for which four of the fifth-order error terms vanish (a choice also found by 

Ralston). We then used a procedure along the lines of Section 4.2 to equip the scheme with a 

reasonable embedded method. 

0 0 0 0 0 

2 
g o o o o 

3 3 
20 o o o 

19 15 10 
0 0 

44 44 Ii 

ii 25 25 ii 
. . . .  

72 72 72 72 

II 25 25 ii 
. . . .  

72 72 72 72 

1251515 3710105 2519695 61105 119041 

8970912 8970912 8970912 8970912 747576 

(8) 

There are four principal error terms for the embedded method and they are all nonzero. 
Table 2 gives error coefficients of the new scheme and a method of Ncrsett  given in the Ap- 

pendix. In comparison, the optimal fourth-order formula has lIT (5) II ~ 0.0119775. 

Table 2. Error coefficients for 4(3) methods. 

Method IIT<5~II B C 

(11)  0.0120655 1.03353 1.14612 
(8) 0.0123216 0.830311 1.14218 

6.  C O N C L U D I N G  R E M A R K S  

A number of new low order schemes have been derived which are equipped with stiffness 
detection and possess desirable properties when used in adaptive step mode. The derivation 
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process is a departure from standard numerical techniques and because of it precise statements 
about existence and quality of solutions can be made. 

The criteria chosen here are not sufficient to derive some methods of choice at high order 
(see [21]). A further restrictiort that is often considered to reduce rounding error propagation is 
that the magnitude of the coefficients does not become too large. It has not been necessary to 
enforce such restrictions for the schemes derived here, but constraints could readily be added as 
inequalities in Minimize during the optimization process. 

The derivation of explicit Runge-Kutta methods with extended stability domains has not been 
considered. If the method is often working near the border of the stability domain then explicit 
methods based on Chebyshev nodes appear to be more suitable [22-26]. 

Shampine suggests that it may be desirable that the linear stability regions of the higher and 
lower order methods are closely matched [5]. This can help to damp out oscillations when applied 
to mildly stiff problems. We have chosen instead to use a PI controller of Gustafsson et al. [27,28] 
which has the advantage that, since it is external to the method, it does not compromise the 
choice of method coefficients. A MATHEMATICA package for the analysis of stability of numerical 
methods for differential equations is described in [29]. 

Dense output has not been discussed since, for the low order schemes considered here, Hermite 
cubic interpolation is usually sufficient. 

The construction of Runge-Kutta methods is a fairly involved and mathematically challenging 
topic despite the elegant formalism of Butcher [30]. We have not discussed issues related to 
the derivation of high order methods and in particular the use of Butcher's simplifying assump- 
tions which reduce the nonlinearity of the algebraic equations [2,3,31]. Details relating to the 
implementation and use of simplifying assumptions in the package Butcher.  m are given in [17,32]. 

There are several questions that can be raised for future investigation. What is the relative 
performance of the optimal fourth-order five stage scheme compared with the fourth-order four 
stage scheme given here? Can the process be extended to derive higher order optimal methods? 
Certainly the solution process of Section 4.2 can be used to derive useful embedded schemes given 
a high order solution. The derivation of explicit Runge-Kutta methods of order five and higher 
remains very challenging and the approach that has been explored in this article is not yet able 
to supplant numerical techniques. 

A P P E N D I X  

Some methods that have been used for comparison are now given. None of these methods cater 
for the form of stiffness detection that has been chosen here. 

A popular 3(2) pair of Bogacki and Shampine is used in the Texas Instruments TI-85 pocket 
calculator, MATLAB, and RKSUITE [33]. 

0 0 0 0 
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o o o 
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2 1 4 
5 5 o 

2 1 4 
5 5 0 

7 1 1 1 

(9) 

The method is based on a third-order formula of Ralston [14] who used a variant of the principal 
local truncation error, with a slightly different weighting, in the derivation of his methods. 
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A th ree  s tage  3(2) m e t h o d  of Sharp  and Smar t ,  which is no t  a F S A L  pai r ,  is given by  [7]. 
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- 1  2 0 

3 1 
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1 1 
o 

(io) 

A 4(3) pair of N0rsett, which is not FSAL pair, is given by [34]. 
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(II) 
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