
ELS~rIF~R

MATHEMATICAL
Available online at www.sciencedirect.com AND

8CIENCE~ @ D I R E C T e COMPUTER
MODELLING

Mathematical and Computer Modelling 40 (2004) 1157-1169
www.elsevier.com/locate/mcm

Construction of Explicit Runge-Kutta
Pairs with Stiffness Detect ion

M. SOFRONIOU
Wolfram Research Inc., 100 Trade Center Drive

Champaign, IL 61820, U.S.A.
marks©wolfram, com

C. SPALETTA
Mathematics Department, Bologna University
Piazza Porta S. Donato 5, 40127 Bologna, Italy

giulia¢cs, unibo, it

A b s t r a c t - - E x p l i c i t Runge-Kut ta schemes are the methods of choice for solving nonstiff systems of
ordinary differential equations at low to medium tolerances. The construction of optimal formulae has
been the subject of much research. In this article, it will be shown how to construct some low order
formula pairs using tools from computer algebra. Our focus will be on methods tha t are equipped
with local error detection (for adaptivity in the step size) and with the ability to detect stiffness. It
will be demonstrated how criteria governing 'optimal ' tuning of free parameters and matching of the
embedded method can be accomplished by forming a constrained optimization problem. In contrast
to s tandard numerical optimization processes our approach finds an exact (infinite precision) global
minimum. Quanti ta t ive measures will be given comparing our new methods with some established
formula pairs. (~) 2005 Elsevier Ltd. All rights reserved.

K e y w o r d s - - O r d i n a r y differential equations, Initial value problems, Runge-Kut ta methods, Stiff-
ness detection, Symbolic computation, Computer algebra systems, Computer generation of numerical
methods.

1. I N T R O D U C T I O N

A framework for explicit Runge-Kutta methods is being implemented as part of an ongoing over-
haul of MATHEMATICA~S differential equation solver NDSolve. One of our goals was to establish
a unified environment for a whole class of methods of different orders. This helps to provide
a uniform basis for comparing methods, reduces the potential for programming errors, and al-
lows the optimization of a single implementation from which all methods benefit. Furthermore,
specification of additional Runge-Kutta methods can be accomplished by simply entering the
appropriate coefficients.

It is well known that explicit Runge-Kutta methods are not suitable for the numerical solu-
tion of stiff differential equations. One of the features that we wanted to incorporate in our
implementation was automatic stiffness detection. In this way users are provided with run-time
information about when the choice of method is inappropriate. It also becomes possible to switch
between stiff and nonstiff Runge-Kutta methods [1].

0895-7177/05/$ - see front mat ter (~) 2005 Elsevier Ltd. All rights reserved. Typeset by AA/tS-~X
doi:10.1016/j.mcm.2005.01.010

1158 M. SOFRONIOU AND G. SPALETTA

Many high order schemes in the literature are capable of using the stiffness detection device that
we have chosen because the necessary condition arises naturally in the simplifying assumptions

that axe adopted in the derivation. However, there was a lack of methods at low order with the

required property. One goal of this article is to fill this void.
Many methods, especially at high order, are constructed by a numerical search to constrain

free parameters. This often requires reasonable starting values and the numerical optimization
process is not guaranteed to detect local minima. Another aim of this article is to use ideas that
axe common in algebraic geometry to derive appropriate methods. These tools are rigorous in
the sense that they enable precise statements about the methods tha t are constructed.

This article is organized as follows. Section 2 introduces some definitions and notation. Sec-

tion 3 describes the properties of explicit Runge-Kutta methods that will be considered. Details
of the derivation process in M A T H E M A T I C A a r e given in Section 4 and new methods are described
in Section 5. The Appendix contains some formula pairs tha t have been used for comparison

purposes.
All computations in this article were carried out using an AMD Athlon machine at 800 MHz

with 1152 MB of RAM running RedHat Linux 6.2. Version 5.0 of MATHEMATICA has been used

except where otherwise stated.

2 . D E F I N I T I O N S

The most common application of numerical methods for systems of ordinary differential equa-

tions of dimension n E N is to initial value problems

y '(t) = f (t , y(t)), f :]~ × ~'~ --, I~ n, (1)

y(t0) = y0. (2)

Equation (1) defines a family of solutions. A specific solution is fixed by specifying the initial

state, or initial conditions (2). The initial value problem (1),(2) varies continuously with time.
In order to solve the problem, an approximate solution is sought at fixed output points in a finite

time range.
Denote the s-stage explicit Runge-Kutta method for the approximate solution to the initial

value problem (1),(2) at t~+l = tn + h by

g l = Y n ,

kl = f (t~ , gl) ,
i - -1

g~ = yn + h E ai , jk j , i = 2 , . . . , s , (3)

k~ = f (t~ + cih, gi),

Y,,+t = Y~ + h ~ b~ki.
i=1

The coefficients of the method are free parameters tha t are usually chosen to satisfy a Taylor
series expansion through some order in the step size h. It has become customary to denote the
method coefficients c = [c~] T, b = Ibm] T, and A = [a~,j] using a Butcher table. For an explicit
Runge-Kut ta method the matr ix A is strictly lower triangular and the Butcher table has the

following form.
0

C2

Cs-- 1

Cs

0 0 .." 0 0
a2,1 0 •. • 0 0

: " . . " . . : :

a s - - l , 1 a s - l , 2 • . • 0 0

a s , 1 a s , 2 • " " a s , s - 1 0

bl b2 " " b8-1 b8

Construction of Explicit Runge-Kutta Pairs 1159

We will assume the general convention that the row-sum conditions hold

i - 1

=Za ,j, i=2, . . . ,s . (4)
j = l

These have the effect that all points at which the function f is evaluated are first order ap-
proximations to the solution. Conditions (4) are also a useful device appearing naturally in the
derivation of high order Runge-Kutta methods.

Let the local solution u(t) at (tn, yn) be defined by

u'(t) = f (t , y(t)) , u(t,~) = y,~.

For sufficiently smooth f , a Taylor expansion about (t~, Yn) yields expressions for the local error

~'p-t- 1 "Pp-]- 2

u(tn-~-h)-yn+ 1 : hp+l ~-~ T~(p+I) Dj(p+I) Jr- h p+2 ~ T (,+2)D(p+2)j --j Jc 0 (h p't-3) .

j=1 j = l

The D} i) are elementary differentials of order i (see [2-5]) and the T (i) are the truncation error
coefficients. The ri are natural numbers denoting the number of distinct elementary differentials
of order i. The principal local truncation error coefficients are given by the terms of order h p+I.

The T (i) depend on the coefficients of the explicit Runge-Kutta method and are independent of
the differentiai equation. An explicit Runge-Kutta method is said to be of order p if the Taylor

series for the exact solution and the approximate solution coincide through terms in h p

Ilu(t~ + h) - Y~+ll[~ Ch p+I.

3. M E T H O D P R O P E R T I E S

Choices of reasonable criteria for constructing explicit Runge-Kutta methods are somewhat
subjective. Shampine states that [5]

Certain of the constraints described can be translated into mathematical constraints, but
most are sufficiently vague that one must explore the space of parameters in a heuristic
way.

The criteria tha t have been chosen in the sequel will be explained and precisely formulated as

mathematical constraints. Unless otherwise stated, the Euclidean norm]lv]l of a vector v will be
implied throughout.

Error estimation can be accomplished by considering (3) and using a linear combination of the

same function values with a second set of weights D~ in place of bi. This gives rise to embedded
explicit Runge-Kutta pairs of methods, where the higher order method usually has order p >_ 2
and the lower order method has order/3 = p - 1. Such methods are commonly denoted as a pair
of order p(/3).

An estimate of the error of the formula of order/3 can be found by considering the difference
from the formula of order p as

8

i=1

A norm of this vector furnishes a scalar quantity tha t can be used to estimate the local error

and adjust the step size in an adaptive fashion. In an implementation, the norm commonly
incorporates user prescribed relative and absolute tolerances.

Denote the principal local truncation error of the higher order formula of order p as T (p+I) =

[T(P+I)] T and of the embedded formula of order/3 = p - 1 as 2b(p). The secondary truncation

error of the embedded method will be denoted as ~(p+l).

1160 M. SOFRONIOU AND G. SPALETTA

Assuming that/5 = p - 1, then quantitative measures governing a suitable choice of coefficients

for the embedded method of the pair are [5]

B - - ~%(p÷ 1)

, T (P) '

C = 2~(P+1) - T(p+I)

A small value of B ensures that the leading term in the expansion of the local error is likely to

dominate for comparatively large step sizes. A small value of G ensures an accurate estimate of

the local truncation error for large step sizes.

The following condition can be used to compare the relative accuracy of two methods # and

of order p [6]:

w(v) \) (5)

The work W can be estimated by the number of function evaluations required by the method.
The following criteria have been chosen for the construction of explicit Runge-Kut ta methods

(see [7] for an example of an alternative).

® The higher order formula has order p with the minimal number of stages.
• The higher order formula is as accurate as possible, or at least close to the method which

minimizes the norm of the principal t runcation error, lIT (p+I) H. This is justified by the
fact that the solution will be propagated by the higher order method (local extrapolation).

• No principal error terms in the embedded formula vanish. This ensures tha t the embedded
scheme is never of order r >/5, which would result in defective error estimation for some

problems.
• By construction, embedded methods have ratios B and C which are small.
• The first same as last (FSAL) device is used. This has the advantage that in (3), when

a step is accepted, the last stage ks can be reused at the next step as kl which saves a

function evaluation. The chosen form of FSAL does not contribute to the accuracy of the

higher order formula, which actually reduces to an (s - I) stage method, but it allows

for an embedded method to be constructed. For example, it is known that no embedded

formula of order three exists for a four stage fourth-order explicit Runge-Kutta method

(see for example [3, Section II.4, exercise 2]). On the other hand, an FSAL strategy enables

the construction of an embedded method into a scheme with effectively four stages (see

Section 5.3).
• Following [1,8-10] we construct methods with a facility for detecting stiffness by directly

estimating the dominant eigenvalue A of the Jacobian o r of a problem. An alternative
strategy for stiffness detection is described in [11]. Let v approximate the eigenvector

corresponding to), and consider an estimate of the form

II f(t ,y + v) - f (t , y) l t

By consistency (first order) and (4), a FSAL method has cs = 1. Imposing the additional

condition cs-1 = 1, a suitable value which approximates)~ is then obtained from (3) with

only some additional storage as

[1ks - ks-11[
P -= I[g~ - g~- l [[

The denominator here corresponds to several applications of the power method applied
to hY, which yields a good approximation to the eigenvector corresponding to the leading

Construction of Explicit Runge-Kutta Pairs 1161

The
here.

eigenvalue A (see [3]). As an example, let IOSI denote the boundary of the linear stability

function. Whenever hp > IOSI, then stability rather than local accuracy is restricting the
choice of step size and the problem is considered to be stiff.
The choice c~ # cj., ci,c~ E {c2,... ,cs-1} ensures that the method samples at distinct
intermediary values. This makes it more likely that unexpected changes in the solution,
such as discontinuous, will be revealed.

following Butcher table is used to summarize the free parameters of the methods of interest

0

C2

1

1

0 0

a2,1 0

as-l,1 as-l,2

bl b2

0 0

0 0

:

0 0

bs-1 0

bl b2 bs-1 0

/'1 4 /'s

(6)

4. D E R I V A T I O N P R O C E S S

The solutions to the order conditions often contain free parameters. In order to obtain specific
methods we need a way of imposing additional constraints. One way of eliminating the freedom
of choice is to minimize the principal local truncation error [2,3,12-14].

The traditional approach for finding optimal methods uses numerical minimization routines to
search for local minima on a predefined grid (e.g., [12]). The problem here is that the objective
function can be highly nonlinear and there is no guarantee that a locally found minimum on a
finite grid will actually be the best method. The minimization may not converge, given poor
starting values for example, and if no solutions are obtained numerically that does not mean that
none exist.

In this article, we will be concerned with how to derive methods that minimize the truncation
error using a technique based upon cylindrical algebraic decomposition which effectively breaks
up parameter spaces into cylindrical regions [15,16]. There are numerous advantages to this
approach. In particular, it furnishes a global minimum for a given search region and furthermore,
the minimum and parameter values are given in exact form.

The derivation process here is carried out in two phases. In both phases an optimization
problem is formed involving the square of the Euclidean norm, since avoiding square roots is
computationally more efficient. The first phase consists of solving the order conditions to con-
struct methods of order p; an optimization problem is formed to derive the method that minimizes
the objective function]]T(p+I)]I2. The second phase constructs another optimization problem to
derive the embedded (lower order) scheme; the objective function to be minimized is II B N 2+ I I CII2.

The MATHEMATICA package Butcher .m addresses the issue of forming order conditions and
related constraints for deriving Runge-Kutta methods using Butcher's rooted tree formalism [17].
Computation of the local truncation error can be accomplished using the function ButcherPrin-
c ipa lError (see Section 4.1). The package derives equations for the free parameters of a method,
but does not attempt to find solutions.

Nonlinear algebraic equations can be solved by forming Grbbner bases which are simpler and
contain all the solutions of the original system (see, for example, [18]). It should be noted
that the reduction process in forming a Grbbner basis is sensitive to the order of elimination
of the variables. Furthermore, the time required to obtain solutions grows exponentially with

1162 M. SOFRONIOU AND C. SPALETTA

the number of variables and with the number of solutions of the system according to B4zout's
theorem [19]. Separate cases arise for each nonlinear branch encountered. Similar comments
apply to the complexity of cylindrical algebraic decomposition. For moderate sized problems,

however, Gr6bner bases and cylindrical algebraic decomposition are a very powerful technique.

4.1. T h i r d - O r d e r O p t i m a l M e t h o d

This section illustrates a MATHEMATICA session for deriving the optimal third-order three
stage explicit Runge-Kut ta method with the property that one of the free parameters is used to

equip the method with a stiffness detection facility.

Load a package for deriving order conditions and related quantities.
In[l]:= Needs ["NumericalMath'Butcher' "] ;

Set the form of methods of interest.

In[2]:= SRungeKuttaMethod -- Explicit;

Define a function for computing the square of the Euclidean norm of a vector.

In[3] :-- EuclideanNormSquared [x_?VectorQ] := Dot Ix, x] ;

Choose the order p and the number of stages s of the method. Since the FSAL device is used,

the higher order method can be derived with s - 1 stages

In[a]:= p = 3;
In[5]:= s = 4;

Specify a transformation rule that embodies the criterion for stiffness detection.

In[6]:= stiffnesscondition = { Cs_ 1 --+ i};

Compute the order conditions for the higher order method and impose the stiffness criterion.

In[7]:= rkoc = RungeKut t a0 rde rCond i t ions [p, s - l] ;
In[8]:= rkoc = F l a t t e n [r k o c] / . s t i f f n e s s c o n d i t i o n

Out[8] = {bl +b2+b3 == 1, b3 + b2c2 = = 1, a3,2b3c2 = = 1 b3+ b2c~ == 1}
Define the variables at run time by converting the order conditions to polynomials.

In[9]:= v a r s = V a r i a b l e s [r k o c / . Equal --+ S u b t r a c t] ;

Compute the vector of terms in the principal local error and impose the stiffness criterion.

In[10]:=Tp = ButcherPrincipalError[p, s--l] /. stiffnesscondition;

Form the square of the Euclidean norm of the principal error terms.

In[ll]:-- obj fun = EuclideanNormSquared [Tp] (1
Out[l l] = ~-~ + -- +a3,2b3c2 + ~ - + a3,2b3c 2 + - + b3 + b2c

Use Grbbner bases to reduce the previous result modulo the constraints defining the order

conditions. At higher orders it may be preferable to solve the order conditions and simplify the

objective function using each solution branch in place of this step.
In[12]:= objfun = PolynomialReduce[objfun, rkoc /. Equal --* Snbtract,vars];

In[13]:= objfun = Last [objfun]

1 (1 - 2b3 + 4b 2 - c2 + 6b3c 2 - 8b32c2 2 + c 4 - 4b3c 4 + 4b~ c4) Out[13] = ~-~
The function Minimize takes an objective function, a list of equalities and/or inequalities, and

a list of variables. The function returns a list of the minimum value and a list of parameters and
values tha t yield the minimum. Minimize uses cylindrical algebraic decomposition to find the

minimal solution for the principal error.
In[14]:= Timing [Experimental'Minimize [objfun, rkoc, vars]] { { { 1 1 } } } Out[14]= 0.55Second, 2-~' c 2 - ~ 1 ' b2 -~ 2 ' aa'2--+ 2' b3 "-* -6' bl --* -6 --

The result is a list of the time taken, the square of the Euclidean norm representing the minimal

solution, and the minimal solution.

Construction of Explicit Runge-Kutta Pairs 1163

4.2. D e r i v a t i o n o f E m b e d d e d M e t h o d s

Following on from Section 4.1, the order conditions for a second-order embedded method are
now constructed and values for the free parameters are then derived using constraints on the
truncation error.

Extract the minimal solution from the last result in 4.1.
In[15]:= minsol = Part [7.,2,2]

Construct a list of transformation rules for the lower order, embedded scheme.

In[16]:= lowsub = {bi_ -+ l~i, % - 1 -~ 1, Cs --+ l, as , j_ ~ b j } ;

Derive the order conditions for the embedded scheme.
In[17]:= rkoclow = R u n g e K u t t a 0 r d e r C o n d i t i o n [p - t , s] ;
In[18]:= rkoclow = F l a t t e n [r k o c l o w] / . lowsub / . minsol;

Determine the free parameters of the embedded scheme.
In[19]:= lowvars = V a r i a b l e s [r k o c l o w / . Equal ~ S u b t r a c t] ;

Solve the (linear system of) order conditions for the embedded method. A message is issued to
indicate that some of the parameters are unconstrained by the order conditions.

In[20]:= lowso l = F i r s t [So lve [rkoc low, lowvars]]
Out[20] = Solve::svars: Equations may not give solutions for all solve variables

{/h--+/~3 + b,, b2-+I- 2/~3- 2/~4}
Construct the primary and secondary truncation error terms for the embedded method.

In[21]:---- Tp ---- ButcherPrincipalError[p-l,s] /. lowsub /. lowsol /. minsol;

In[22]:= #s = ButcherPrincipalError[p,s] /. lowsub /. iowsol /. minsol;

Simplify the primary truncation error terms for the high order method derived in Section 4.1.

In[23]:= Tp = Tp /. minsol;

Derive an objective function for the embedded method and simplify the expression as a rational
function.

In[24]:= BSquared = EuclideanNormSquared[Ts]/EuclideanNormSquared[Tp];

In[25]:= CSquared = Euclidea/INormSquared[Ts -- Tp]/

EuclideanNormSquar ed[Tp];

In[26]:= objfun = Together[BSquared + CSquared]

57 - + 24s4 - 396 4 + 256s4 4 + 740/
Out[26] =

2 (17 - 204/~3 + 612/~32 - 10864 + 648b3/~4 + 180/~42) "

Find the minimal solution for the embedded scheme and also give the time taken to find the
solution.

In[27]:= Timing[Min imize[ob j fun , rkoclow, lowvars]] { { 1
Out[27] ---- 0.35 Second, (43 - 2 v / ~) , b4 --* (16 - v/~), /~3 --~ 1-~

4.3. F o u r t h - O r d e r O p t i m a l M e t h o d

Unfortunately, the high complexity of the solution process outlined in Section 4.1 currently
limits its application at higher order. However, when it is possible to solve the order equations
explicitly progress can still be made, although the steps involved are somewhat more intricate.
As illustrated, in this section an analytic expression for the optimal fourth-order scheme with
four stages is used to simplify the objective function. It is well known that there are four solution
branches to the order conditions (see, for example, [3, Section II.1]). For brevity, we deal only
with the main solution branch in terms of c2 and c3. The other solution branches can be treated
similarly.

1164 M. SOFRONIOU AND G. SPALETTA

Define a function for computing the gradient of a scalar or vector valued function.

In[28]:= Grad [f_?VectorQ,vars_?VectorO] := Outer [D, f,vars] ;

In[29]:= Grad If_, vars_?VectorQ] := Map [D If, #] •, vats] ;

Using a process similar to Section 4.1, it can be shown that the square of the Euclidean norm

of the principal error terms is given by the following expression.

I n [3 0] : = hum = 2 1 8 7 - 1 6 0 9 2 c2 + 4 8 5 7 3 c~ - 7 9 6 3 2 c~ + 7 9 1 9 6 c 4

- 4 8 0 8 0 c52 + 1 4 2 4 0 c6~ - 1 1 3 9 4 c3 + 8 1 7 5 6 c2 c3 - 2 3 5 8 7 2 c~ c3

+ 358208 c 3 c3 - 321196 c~ e3 + 179848 c~ c~ - 53600 c~ c3

+ 23355 e~ - 564988 c2 c~ ÷ 460716 c~ c~ - 653460 c~ c~

4 - 5 5 9 3 3 2 c 4 c 2 - - 2 5 5 7 0 4 c 5 c32 + 7 5 5 6 0 c 6 c32 - - 2 2 2 4 8 c33

+ 1 5 7 0 0 4 c2 c 3 - - 4 3 4 8 4 0 c~ c 3 + 5 9 8 5 8 4 c 3 c 3 - - 4 4 1 7 3 6 c 4 c 3

+ 195568 c~ c~ - 57120 c~ 4 + 8240 c~ - 58960 c~ c~
+ 1 6 6 3 8 0 c 2 c 4 - 2 3 4 1 6 0 c 3 c 4 + 1 7 7 6 8 0 c 4 c 4 - 8 1 6 0 0 c 5 c 4

+ 2 4 4 8 0 c62 c4;

In[31]:= den = 207360(-i + 2c2)2(3 - 4c2 - 4c3 + 6c2c3)2;

In[32]:= oh j fun = hum/den;

Define the free parameters.

In[33]:= vars = {c2,c3};

Find the gradient vector with respect to the free parameters.

In[34]:= minterms = Together [Grad [obj fun, vars]] ;

Necessary conditions for a minimum can be derived by setting the components of the gradient

to zero and solving the resulting equations. Here, we use a new feature of the function Reduce

that finds only real valued solutions of a system of equations.

In[35]:= eqs = And[Part [minterms, i] == 0, Part [minterms, 2] == 0,

c2 E Reals, c3 E Reals];

This shows the time taken to find the real solutions, of which there are four. The solutions are

fairly complicated so we have chosen not to display them.

In[36]:= Timing [Length [sols = {ToRules [Reduce [eqs, vars]] } ;]]

Out[36] = {25. Second, 4}

In order to determine which of the solutions, if any, is a minimum we need to compute the

Hessian matrix and see if it is positive definite. Derive the Hessian matrix.

In[37]:-- Hess = Together [Grad[minterms, vats]] ;

Define a function for determining if a matrix is positive definite.

In[38]:= PositiveDefinite [a_?Matrixq] :---- Apply [And,Positive [Eigenvalues [a]]] ;

Substituting the solutions into the Hessian matrix we can see that only three of them yield a

positive definite matrix. Numerical approximations to the solutions are displayed.

In[39]:= minsols = Select[N[sols] ,PositiveDefinite[Hess /. #]~]

Out[39] = { { c 2 ~ 0.357739, c3 -~ 0.59149},
{c2 -~ 0.0747369, c3 -* 0.773749},
(c2 --* 0.57668, cs --~ 2.57771}}

The first minimum yields the smallest value of the objective function.

In[40]:= objfun /. minsols

Ont[40] = {0.000143459, 0.000315109, 0.177558}

The exact value of the global minimum corresponds to roots of degree 28 polynomials.

5. N E W M E T H O D S

New formula pairs with stiffness detection are described in this section and relevant properties

axe compared with some existing methods.

Construction of Explicit Runge-Kutta Pairs 1165

5.1. M e t h o d s o f T y p e 2(1)

For methods of the form (6), the reduced order equations for a second order scheme are simply

1
bl -t- b2 = 1, b2 = 2 '

so that the unique solution, bl = b2 = 1/2, yields a method based on the improved Euler

scheme (see [4, p. 155]). This method satisfies IIT(3)II = v /12 ~ 0.186339. In contrast, it is
a simple exercise to show that the optimal two stage order two explicit Runge-Kutta method

occurs at c2 = 2/3 so that bl = 1/4, b2 = 3/4, and IlT(a)[[= 1/6 ~ 0.166667. This coincides
with the minimal solution of Ralston [14]. The requirement of stiffness detection has therefore

slightly compromised the accuracy of the formula. Using (5) we can quantify the expected
relative performance of the stiffness equipped scheme with the optimal scheme and show that the

difference is less than 3.8%.
It remains to choose a suitable embedded scheme. First order requires tha t the consistency

condition is satisfied which determines D1 in terms of b2 and b3. After simplification, the procedure
outlined in Section 4.2 then yields the following objective function to be minimized:

17 - 6062 + 72D~ - 84b3 + 144D2D3 + 144b] B 2 + C 2 =
36 (2 2 + - 1) 2

It is straightforward to show that the unique solution for a minimum is attained at /~2 = - 1 / 6 ,
b3 = 1/6 so that the resulting 2(1) method is given by

0 0

0 0

1

0

1

1

1

1 ~ 0

1
0

1 1
1

6

There is only one principal error term for the embedded method which is nonzero.

5.2. M e t h o d s o f T y p e 3(2)

The optimal third-order formula, which minimizes IIT(4)II, was derived in [20]. Some other

methods, none of which have the requisite structure for stiffness detection, are listed in the
Appendix.

The equations for a third-order method of the form (6) together with the square of the Euclidean

norm of the weighted principal error were given in Section 4.1 along with the minimal solution.
A procedure for deriving an embedded method of order twc was given in Section 4.2. The
resulting 3(2) method is as follows.

0 0

1 1

1 - 1

1

1

22 - v ~

72

0 0 0

0 0 0

2 0 0

2 1
o

2 1
o

14 + ~ / ~ --4 + x / ~ 16 -- v/-~

36 144 48

(7)

1166 M. SOFRONIOU AND G. SPALETTA

There are two principal error terms for the embedded method and both are nonzero.

Table 1 gives error coefficients of some existing pairs and the new scheme. In comparison, the

optimal third-order formula has lIT (4) II "~ 0.0418091 [20]. Again using (5) the expected relative

performance of the stiffness equipped scheme with the optimal scheme is within 9%.

Table 1. Error coefficients ~r 3(2) methods.

Method HT(4) II B C

(9) 0.0418111 1.34919 1.37721

(10) 0.0607170 1.16428 0.928293

(7) 0.0589256 0.444795 1.08853

5.3. M e t h o d s o f T y p e 4(3)

It is well known that a necessary condition for four stage fourth-order methods is c4 = 1
(see [2,3]). Therefore, there is no loss of generality in considering the form of stiffness detection

considered here for a five stage FSAL scheme.
Ralston used a numerical procedure to search for the optimum four stage fourth-order method;

despite the different weighting of the principal error, the proof in Section 4.3 shows that the
approximate coefficients found by Ralston correspond to the minimal method [14]. Since the
optimal method involves very complicated coefficients, we decided to select the method with

c2 = 2/5, c3 = 3/5 for which four of the fifth-order error terms vanish (a choice also found by

Ralston). We then used a procedure along the lines of Section 4.2 to equip the scheme with a

reasonable embedded method.

0 0 0 0 0

2
g o o o o

3 3
20 o o o

19 15 10
0 0

44 44 Ii

ii 25 25 ii
. . . .

72 72 72 72

II 25 25 ii
. . . .

72 72 72 72

1251515 3710105 2519695 61105 119041

8970912 8970912 8970912 8970912 747576

(8)

There are four principal error terms for the embedded method and they are all nonzero.
Table 2 gives error coefficients of the new scheme and a method of Ncrsett given in the Ap-

pendix. In comparison, the optimal fourth-order formula has lIT (5) II ~ 0.0119775.

Table 2. Error coefficients for 4(3) methods.

Method IIT<5~II B C

(11) 0.0120655 1.03353 1.14612
(8) 0.0123216 0.830311 1.14218

6. C O N C L U D I N G R E M A R K S

A number of new low order schemes have been derived which are equipped with stiffness
detection and possess desirable properties when used in adaptive step mode. The derivation

Construction of Explicit Runge-Kutta Pairs 1167

process is a departure from standard numerical techniques and because of it precise statements
about existence and quality of solutions can be made.

The criteria chosen here are not sufficient to derive some methods of choice at high order
(see [21]). A further restrictiort that is often considered to reduce rounding error propagation is
that the magnitude of the coefficients does not become too large. It has not been necessary to
enforce such restrictions for the schemes derived here, but constraints could readily be added as
inequalities in Minimize during the optimization process.

The derivation of explicit Runge-Kutta methods with extended stability domains has not been
considered. If the method is often working near the border of the stability domain then explicit
methods based on Chebyshev nodes appear to be more suitable [22-26].

Shampine suggests that it may be desirable that the linear stability regions of the higher and
lower order methods are closely matched [5]. This can help to damp out oscillations when applied
to mildly stiff problems. We have chosen instead to use a PI controller of Gustafsson et al. [27,28]
which has the advantage that, since it is external to the method, it does not compromise the
choice of method coefficients. A MATHEMATICA package for the analysis of stability of numerical
methods for differential equations is described in [29].

Dense output has not been discussed since, for the low order schemes considered here, Hermite
cubic interpolation is usually sufficient.

The construction of Runge-Kutta methods is a fairly involved and mathematically challenging
topic despite the elegant formalism of Butcher [30]. We have not discussed issues related to
the derivation of high order methods and in particular the use of Butcher's simplifying assump-
tions which reduce the nonlinearity of the algebraic equations [2,3,31]. Details relating to the
implementation and use of simplifying assumptions in the package Butcher. m are given in [17,32].

There are several questions that can be raised for future investigation. What is the relative
performance of the optimal fourth-order five stage scheme compared with the fourth-order four
stage scheme given here? Can the process be extended to derive higher order optimal methods?
Certainly the solution process of Section 4.2 can be used to derive useful embedded schemes given
a high order solution. The derivation of explicit Runge-Kutta methods of order five and higher
remains very challenging and the approach that has been explored in this article is not yet able
to supplant numerical techniques.

A P P E N D I X

Some methods that have been used for comparison are now given. None of these methods cater
for the form of stiffness detection that has been chosen here.

A popular 3(2) pair of Bogacki and Shampine is used in the Texas Instruments TI-85 pocket
calculator, MATLAB, and RKSUITE [33].

0 0 0 0

1
o o o

3
o o o

2 1 4
5 5 o

2 1 4
5 5 0

7 1 1 1

(9)

The method is based on a third-order formula of Ralston [14] who used a variant of the principal
local truncation error, with a slightly different weighting, in the derivation of his methods.

.168 M. SOFRONIOU AND C. SPALETTA

A th ree s tage 3(2) m e t h o d of Sharp and Smar t , which is no t a F S A L pai r , is given by [7].

0 0 0

1
o o

- 1 2 0

3 1
o

1 1
o

(io)

A 4(3) pair of N0rsett, which is not FSAL pair, is given by [34].

0
3

9

16
25
32

0 0 0 0 0
3

o o o o

9
o o o o

125 325
0 0 0

672 326

371 200 1120
0 0

891 297 891

25 32 256 11
0 --

162 135 567 70

37 44 448
0 0

225 117 975

(II)

R E F E R E N C E S

1. J.C. Butcher, Order, stepsize and stifness switching, Computing 44, 209-220, (1990).
2. J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear

Methods, John Wiley and Sons, New York, (1987).
3. E. Hairer, S.P. Ncrsett and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, 2 nd edi-

tion, Springer-Verlag, New York, (1993).
4. J.D. Lambert, Numerical Methods for Ordinary Differential Systems. The Initial Value Problem, John Wiley

and Sons, New York, (1991).
5. L.F. Shampine, Numerical Solution of Differential Equations, Chapman and Hall, New York, (1994).
6. L.F. Shampine, Some practical Runge-Kutta formulae, Math. Comp. 46 (173), 135-150, (1986).
7. P.W. Sharp and E. Smart, Explicit Runge~Kutta pairs with one more derivative evaluation than the minimum,

SIAM J. Sci. Comp. 14 (2), 338-348, (1993).
8. L.R. Petzold, Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential

equations, SIAM J. Sci. Stat. Comp. 4, 136-148, (1983).
9. B.C. Robertson, Detecting stiffness with explicit Runge-Kutta methods, Report 193/87, Dept. Comp. ScL

University of Toronto, (1987).
10. G. Sottas, Dynamic adaptive selection between explicit and implicit methods when solving ODEs, Report

Sect. de Math., Universit~ de Centre (1984).
11. L.F. Shampine and K.L. Hiebert, Detecting stiffness with the Fehlberg (4,5) formulas, Computers Math.

Applic. 3, 41-46, (1977).
12. T.E. Hull and R.L. Johnston, Optimum Runge-Kutta methods, Math. Comp. 18, 306-310, (1964).
13. T.E. Hull, A search for optimum methods for the numerical integration of ordinary differential equations,

SIAM Rev. 9, 647-654, (1967).
14. A. Ralston, Runge-Kutta methods with minimum error bounds, Math. Comp. 16, 431-437, (1962).
15. C.E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decomposition, In Proc. 2 nd

GI Conf. Automata Theory and Formal Languages, Springer Lecture Notes in Computer Science 33, MR 55,
pp. 134-183, (1977).

16. J.H. Davenport, Y. Siret and E. Tournier, Computer Algebra: Systems and Algorithms for Algebraic Com-
putation, 2 nd edition, Academic Press, London, (1993).

Construction of Explicit Runge-Kutta Pairs 1169

17. M. Sofroniou, Symbolic derivation of Runge-Kutta methods, J. Symb. Comp. 18 (3), 265-296, (1994).
18. D.A. Cox, J.B. Little and D. O'Shea, Ideals, Varieties and Algorithms, 2 nd edition, Springer, New York,

(1997).
19. J. von zur Gathen and J. Gerhard, Modern Computer Algebra, Cambridge University Press, Cambridge,

(1999).
20. M. Sofroniou and G. Spaletta, Computer generation of numerical methods for ordinary differential equations,

In Recent Trends in Numerical Analysis, (Edited by D. Trigiante), Advances in the Theory of Computational
Mathematics, pp. 315-328, Nova Science Publishers, Huntington, NY, (2000).

21. J.H. Verner, Some Runge-Kutta formula pairs, SIAM J. Numer. Anal. 28 (2), 496-511, (1991).
22. A. Abdulle, Chebyshev methods based on orthogonal polynomials, PhD Thesis, Universit6 de Gen~ve (2001).
23. P.J. van der Houwen and B.P. Sommeijer, On the internal stability of explicit, m-stage Runge-Kutta methods

for large m-values, Z. Angew. Math. Mech. 60, 479-485, (1980).
24. V.I. Lebedev, Explicit difference schemes with time-variable steps for solving stiff systems of differential

equations, Soy. J. Numer. Anal. Math. Modell•g 4 (2), 111-135, (1989).
25. V.I. Lebedev, How to solve stiff systems of differential equations by explicit methods, In Numerical Methods

and Applications, (Edited by G.I. Marchuk), pp. 45-80, CRC Press, (1994).
26. A.A. Medovikov, High order explicit methods for parabolic equations, BIT 38, 372-390, (1998).
27. K. Gustafsson, M. Lundh and G. SSderlind, A PI stepsize control for the numerical solution of ordinary

differential equations, BIT 28, 270-287, (1988).
28. K. Gustafsson, Control theoretic techniques for stepsize selection in explicit Runge-Kutta methods, ACM

Trans. Math. Soft. 17, 533-554, (1991).
29. M. Sofroniou, Order stars and linear stability theory, J. Symb. Comp. 21 (1), 101-131, (1996).
30. K. Burrage, The work of John Butcher: An appreciation, Annals of Numerical Mathematics 1, 1-24, (1994).
31. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential Algebraic Prob-

lems, 2 nd edition, Springer-Verlag, New York, (1996).
32. MATHEMATICA 5 Standard Add-On Packages, Wolfram Media, Champaign, IL, (2004).
33. P. Bogacki and L.F. Shampine, A 3(2) pair of Runge-Kutta formulas, Appl. Math. Lett. 2, 1-9, (1989).
34. W.H. Enright, K.R. Jackson, S.P. Ncrsett and P.G. Thomsen, Interpolants for Runge-Kutta formulas, ACM

Trans. Math. Soft. 12 (3), 193-218, (1986).

