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1. INTRODUCTION 

Twenty years ago discussions of the relative merits of multistep versus Runge- 
Kutta (RK) methods made frequent references to the "difficulty" of starting a 
multistep method, that is, the cost of obtaining the additional k - 1 values needed 
to start a k-step method when just the initial value for the problem is available. 
Some early programs for constant-step, constant-order multistep methods used 
several RK steps to start. For example, a four-step Adams formula can be started 
with three fourth-order RK steps and a final function evaluation to obtain 
y',, i = 0, 1, 2, and 3, and y3 from yo. No error control was provided in such a 
program, but at that time the error control in most programs consisted of an 
external adjustment of the step by the user. Nordsieck [12] designed one of the 
first multistep methods with automatic starting, but the introduction of variable- 
order methods finally "solved" the problem because these methods can start at 
whichever order corresponds to a one-step method--usually first or second order 
(see, for example, Gear [6], Hindmarsh [9], Krogh [11], and Shampine and 
Gordon [13]). It is interesting to observe that Nordsieck's starting scheme, which 
consisted of integrating forward and backward over several steps several times, 
amounts to a variable-order scheme: because Adams metho~ls are used and 
because of the representation used, it can be shown that the order is increased at 
each step in the Nordsieck starter. 
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Starting at first or second order and relying on the order control to increase the 
order to an appropriate value is programmatically simple because the mechanism 
is already present in the program. It also has the advantage of providing local 
error control, which was not really present in the Nordsieck scheme. However, it 
is not very efficient for any but low accuracies as very small step sizes must be 
taken at low orders to maintain accuracy. This inefficiency is often offset by the 
improved efficiency of high-order multistep methods for many classes of problems 
(see Hull et al. [10]). However, there are large classes of problems, arising, for 
example, in simulation, in which there are frequent discontinuities in first or 
higher derivatives. Since multistep methods are based on polynomial interpola- 
tions over an interval of several steps, they break down when the interval includes 
a discontinuity in a derivative of degree lower than the polynomial. Hence a 
restart is necessary. One-step methods such as RK do not have this difficulty as 
long as a mesh point falls exactly on each discontinuity, and, therefore, RK 
methods are usually superior for these "nonsmooth" problems. 

This paper presents an RK-like technique for starting (or restarting) any of the 
currently popular automatic multistep ODE integrators at a high order. (An order 
4 starter is recommended for general use.) The technique uses fewer function 
evaluations than are used when a conventional RK method is applied repeatedly, 
and it provides some degree of error control as well as a good estimate of the step 
size to be used in the first step of the multistep method. 

Section 2 presents the idea in a non-RK framework to establish the existence 
of methods of the desired type and to derive an upper bound on the number of 
function evaluations needed in an explicit RK starter (1 + p ( p  - 1)/2 for a pth- 
order method). Section 3 examines the lower bound on the number of function 
evaluations in explicit RK starters for p _< 4 and suggests a particular fourth- 
order method that  uses six function evaluations (the lower bound). Section 4 
examines implicit RK starters which might be useful for some stiff problems and 
proves that  the minimum number of stages for a pth-order starter is p and that 
p-stage methods with desirable stability properties exist. However, most problems 
are not stiff immediately after a discontinuity because the fast transients are 
dominant. (It is important to remember that a problem is stiff only  when the 
fastest components are negligible. In the transient region a nonstiff integrator 
should be used.) Therefore, implicit methods are not generally recommended; 
Section 4 is present mainly for completeness. Section 5 discusses error estimation 
and step control, while the final section presents some numerical test results. 

2. STARTING BY EXTRAPOLATION 

If a k-value multistep method is to be started at p th  order, it is necessary to 
generate k - 1 additional starting values, and it is desirable that  these be accurate 
to the (p - 1)st o r p t h  order. In many codes k i sp  + 1 because an explicit pth- 
order predictor uses p + 1 values. We consider this case and examine techniques 
which generate p additionalpth-order accurate starting values. Some codes store 
values of the solution y and/or its derivative y '  at a set of p + 1 mesh points, 
some store backward differences, while others use the Nordsieck vector of scaled 
derivatives hJy(J)/j!. This is not important to our discussion because it is possible 
to compute any one set from another to pth-order accuracy. If we can generate 
hgy (~), j = O, . . . ,  p ,  with error no greater than O(hP+l), we can easily compute the 
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start ing values for any code. Our objective is to look for an explicit RK-like 
process of the form 

kz = h f ( yo  + Y. fl~-11kj), i -= 1 , . . . ,  q, 
1=1 (2.1) 

q 
hSy (') = ~. kj~,js + O(h~+l), s = 1 . . . .  ,p .  

J=l 

In this section we give an extrapolat ion technique for finding coefficients which 
satisfy (2.1) for which q = 1 + p ( p  - 1)/2. 

Let  y7 ,  i = 0 . . . . .  m, be the results obtained from the application of the 
forward Euler  method  for m steps to the differential equat ion y '  -- f ( y ,  t), y(O) 
= yo, using step size h~ = H i m .  We assume tha t  f h a s  as many  partial  derivatives 
as needed. (For example, bounded fourth partial  derivatives are needed for the 
four th-order  method.)  T h e n  it is known tha t  there  exists an asymptot ic  error  
expansion of the form 

P 
ym = y(ihm) + ~ hqeq(ihm) + O(Hp+I), (2.2) 

q=l 

where eq(t) are functions tha t  satisfy certain differential equat ions and have  a 
number  of bounded derivatives. (Details can be found in S te t te r  [15], but  are not  
impor tan t  to our discussion. All we need to know is tha t  this expansion exists and 
tha t  the eq are differentiable.) I t  follows from trivial algebra tha t  there  exist 
numerical  differentiation formulas from m + 1 equally spaced points of the form 

( H )  m P ( H )  
hkmZ (k) = ~,, d~kz(~hm) + ~. Cskh'mZ (~) + O ( H  p+I) (2.3) 

t--0 ~=k+l 

for m _> k, where z is any function with p + 1 bounded'derivat ives.  The  d,~ are 
the differentiation formula coefficients and the c~k are the coefficients of  the error  
terms. Define 

D k ~ d m = z k Y ,  • ( 2 . 4 )  

Substi tut ing (2.2) into (2.4) with k = m = p,  applying (2.3) to resulting terms of 
the form ~f-o d~pz(ihp) with z equal to y and eq, and dropping te rms of order  
O(HP+~), we find tha t  

D~ = h p,,(p)[H'~ + O(HP+~). (2.5) 

Since the left-hand side of (2.5) can be calculated, we can form an asymptotical ly 
correct  value for HPy(P)(H/2).  

p--1 Next  we examine Dp-~ and D~ -~. By making the same substitutions, we arrive 
at the relations 

p-i ~p-l~.(p-1) l,p ~(p-~) Cpphpp_ly (p), Dp-i = , ~ p - l j  + , ~ p - 1 ~ 1  - ( 2 . 6 a )  

D~-~ = h~- ly  (t,-1) + h~e ~v-1) _ %ph~y (P), (2.6b) 

where functions are evaluated at  H / 2  unless s ta ted otherwise, and terms in 
O ( H  p+~) have been dropped, as they  are in the remainder  of this discussion. 
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Equat ion  (2.5) yields an  asymptot ica l ly  correct  value of HPy (~) which can be 
subs t i tu ted  into (2.6) to get a pair  of  equat ions  which can be solved for asymp-  
totically correct  values of  HP-ly (p-l) and HPe~ p-~). 

This  process  can be repeated.  At  the  next  s tep we examine D ~  -2 for m =- p - 
2, p - 1, and p.  We get th ree  equat ions  which can be solved for Hp-2y(p-2), 
HP- l e?  -2), and HPe~ -2). 

T h e  "cos t"  of  this process in t e rms  of funct ion evaluat ions  can be seen to be 1 
+ p ( p  - 1)/2 because  the interval  H is in tegra ted  by  Euler ' s  m e t h o d  using m 
steps of  size H i m  for m -- p,  p - 1 , . . . ,  1. T h e  first  of these  takes  p evaluat ions  
o f f ,  bu t  subsequent  ones take  p - 2, p - 3, . . . ,  0 because  the  initial value o f y '  
only has  to be calculated once. An example  of  this is p resen ted  in Sect ion 3, where  
it is shown t h a t  this is equivalent  to an explicit R K  method .  

3. EXPLICIT RUNGE-KUTTA METHODS 

T h e  ext rapola t ion  technique of Sect ion 2 can be viewed as a R u n g e - K u t t a  
method .  We first i l lustrate this for the  case p = 3. Le t  h ffi HI3  and consider an  
au tonomous  system. We have  

y~ = yo + hf(yo) ffi yo + kl ,  where kl -- hf(yo),  

y~ = y~ + hf(y~)  • yo + k~ + k2, where  k2 ~ hf(y~),  

y~ ffi y~ + hf(y~)  ffi yo + k~ + k2 + k3, where k3 -- hf(y~),  

y2 _= yo + ~hf(yo) =- yo + ~k~, 

y2 2 = y2 + ]hf(y2)  = yo + ~k~ + ~k4, where  k4 = hf(y2) ,  

y] ffi yo + 3hf(yo) = yo + 3ko. 

(3.1) 

We use the  difference formula  given 
eva lua ted  a t  t ~- 3h/2. O(h 4) t e rms  are neglected. 

D] = y] - 3y~ + 3y~ - yo =- h3y (3), 

Dg -- y~ - y~ - y~ + yo =- 2h2y (2) + 2hae~ 2), 

D 2 = y 2 _ 2 y 2 + y 0 _ _  - -  y(2)+ el2), 

h 3 
D~ ffi y~ - y ~  ffi hy(1) + h2el ~) + h3e~)+  ~ y(3), 

9h2e~1) ~ + 9  D~ = y~ - yo ffi 3hy (~) + ~ + h3e~ ~) h3y (3), 

27 h3y (3) D~ 1 =- y l  - yo =- 3hy (~) + 9h2et ~) + 27h3e~ 1) + ~-~ 

F rom these  we can solve for hSy ~ to get 

h3y (3) = D~ + O(h4), 

h2y (2) = ~D~ - ~D 2 + O(h4), 

hy (1) .= ~n~ - ~D 2 + ~DI + ~na3 + O(h4). 
ACM Transactmns on Mathematical  Software, Vol 6, No 3, September 1980 
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From {3.2) and {3.1) the D~ can be expressed as combinations of the ki,  
hence {3.3) is equivalent to an R K  method with q = 4, the matrix off l  coefficients 
given by 

0 0 0 0 
1 0 0 0 

B =  1 1 0 0 (B,J} 

o o o  

and the matrix of F coefficients given by 

I 
- I  - ~  1 

r3/2 = ~ 0 --2 
~ 1 = {g , s } .  

- 2  __4 0 3 

This gives estimates for the derivatives at H I 2  = 3h/2.  Estimates of the deriva- 
tives and /or  function values to the same order of accuracy can be obtained at  any 
point within a constant  multiple of the interval H. We used the midpoint  above 
to take advantage of symmetry,  but  for convenience in the discussion below we 
consider the problem of computing the derivatives at the origin. In tha t  case the 
matrix above becomes 

I 1  _ 5  1 3 

0 3 - 2  
F o =  0 0 1 

o o 

Obviously, the estimate for hy'(O) is simply kl. 
In the example above it took 4 function evaluations for third order. Using the 

technique of Section 2, it would take 7 function evaluations for fourth order and 
11 for fifth order. It is well known tha t  Runge-Kut t a  methods  of third, fourth, 
and fifth orders are possible with 3, 4, and 6 function evaluations, respectively. 
This natural ly raises the question, "Can the first p derivatives be found to 
accuracy O(h  p+I) with fewer than  the 1 + p ( p  - 1)/2 function evaluations used 
by the technique of Section 2?" {Note tha t  this is not the same problem as finding 
embedded RK methods  of several orders such as the R K  Fehlberg method. See 
Bettis [1].) For p _ 3 the answer is no, but  for p = 4 it is possible in six function 
evaluations but  no less. The cases p = 1 and p = 2 are trivial. The problem is 
examined in detail for p = 3 below and for p = 4 in the appendix of [8], on which 
this paper is based. 

3.1 Nonexistence of a Three-Stage Method of Third Order 

In the following discussion all variables are evaluated at  t = 0, y ffi yo, unless 
specified otherwise. Thus we can write hy'  = h f  = k l .  For a system of m equations 
in the dependent  variables yl, y2 . . . . .  ym, 

h2y " = h 2 Y. '. {3.4) 
l=1 
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We write the r ight-hand side as h2flf. Similarly, 

h3y,,, h3 of of 'x\  
= f ' f i  ÷-~y~-~y~h) ,,j=l 

= h3(f2f 2 + f i r )  (definition of f2). 

Writing a, = ~=1 fl,j, the k, in (2.1) can be expanded to 

kl = h f, 
2 

k2 = h f  + voh2flf  + 2 h3f2f2 + O(h4)' 

k3 = h f  + a2h2flf + - ~  h3f2f 2 + a~fl2zh3f2f + O(h4). 

Therefore, the second equation of (2.1) can be writ ten as 

(3.5) 

(3.6) 

I llo iI [1°°1 0 al a2 0 1 0 
0 ~ / 2  a~/2 F =  0 0 1 (3.7) 

0 alf122 0 0 1 

where F is the matrix [ ~,,s]. The  rows of this equation correspond to the terms f, 
flf, fff2, and f i r ,  respectively. Clearly, the first column of F is [1, 0, 0] w and the 
first row is such tha t  the sum of all rows is [1, 0, 0]. Thus,  the fLrst row and 
column can be calculated if values can be found to satisfy the remaining six 
equations in (3.7). Therefore, we drop the first row and column in {3.7} to get 

a~ P ~-- (3.8) 
~,~22J 

where F is now a 2 by 2 matrix. If  this is to have a solution, ~/I~22 ~ 0. The 
equation in the (3, l) position of (3.8) implies y2, = 0. Then  the equation in the 
(2, i) position implies y,~ = 0 so tha t  it is impossible to satisfy the equation in the 
(1, l) position. Hence, a three-stage third-order method  does not  exist. However, 
we have demonstra ted the existence of a four-stage method. 

3.2 Fourth-Order Methods 

Equation (3.4) must  be satisfied as identities in each of the elementary differen- 
tials of f of orders up to p. This leads to a large system of nonlinear equations for 
large p. The  number  of e lementary differentials for p _< 5 are given in Table I. 
The  elementary differentials are represented in a prefix operator notation: for 
example, f3 is a ternary operator given by 

m m ~ oaf 
£ .  - -  f3 abe -'- ,~1 ~ = k-, Oy, OyjOyk a'bJck' 

where m is the dimension of the system and a, b, and c are the three vector 
operands of f3. For an alternative notation due to Butcher,  see Stet ter  [14, 
p. l l l f f . ] .  There are 8 elementary differentials of orders up to 4. The  second 
ACM Transactions on Mathematical Software, Vol 6, No 3, September 1980 
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Table I. Elementary  Differentials of  f 

Order Number  Representa t ion 

1 1 f 
2 1 f~f 
3 2 h f ,  f i f  
4 4 f~f~, Af, f ~, f, A f ,  f~f 
5 9 AP, 5f, f 3, hf~f3,f~5, f2fif2, 

A( f,f)L f, Af~f2,fiAf 2, f IP  

equat ion of {2.1) can be wri t ten as 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 1 0 

A F =  
0 0 0  1 
0 0 0  3 
0 0 0  1 
0 0 0 1 

where the rows correspond to f, flf ,  f2 f  2, f ir ,  f3 f  a, f f f l f  2, f l f2 f  ~, and f i r ,  
respectively. For  a q-stage method  A is an 8 by q matr ix  whose entries are 
completely de termined by the flu, and F is a q by 4 matrix. As before, the first 
row and column of all matr ices can be discarded because the first row of A is 
[1, 1, . . . ,  1] and the first column is [1, 0, . . . ,  0] w. This  leaves a sys tem of 21 
nonlinear equations in 3(q - 1) + q(q  - 1)/2 unknowns. Counting unknowns is 
of no direct value in determining the existence of solutions, al though it  can be a 
guide to the prospects. Although for q = 5 there  are 21 equat ions  in 22 unknowns, 
it is shown in the appendix to [8] tha t  no solution exists. However,  for q = 6, 
when there  are 21 equat ions in 30 unknowns, there  exists a 9-parameter  family of 
solutions. This  is given in the appendix to [8]. A part icular  case of this is 

B = 

0 0 0 0 0 0 
1 0 0 0 0 0 
0 2 0 0 0 0 
~ o ~ o o  o 
½ 1 ½ 2 0 0  
~ 2 ¼ t 2 0 

F = 

i --~, ~ --~ 
0 0 0 0 
o ½ -~  
o ~ - ~  
0 - 3  ~ -~ 
0 1 - ~  

Naturally,  one wonders about  higher order  techniques. For  example, since 
there  are 17 e lementary  differentials of orders up to 5, we are led to a system of 
16 by 4 equations {after discarding the first row and column) in (q + 8)(q - 1)/2 
unknowns. Nine is the first value of q for which the number  of unknowns exceeds 
the number  of equations, but  it  is not  known whether  a solution exists for q = 9; 
nei ther  does it seem practically impor tant  since the increase in the amount  of 
work does not  seem to justify the small increase in order. 
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4. IMPLICIT RUNGE-KUTTA METHODS AND STIFF EQUATIONS 

It is well known that explicit methods do not function well for stiff equations. 
However, immediately after a discontinuity a differential equation is not normally 
stiff because the solution is in a transient region where the step must be small to 
control stability. This can be seen by considering the equation 

y '  ffi ~(y - F(t)) + g(t),  (4.1) 

where g = F'  almost everywhere and h << 0. Its solution is 

y ffi ce xt + F(t). (4.2) 

After a short time, the value of the term c e  xt is small compared with the value of 
F, so the behavior of F dominates the solution. However, if there is a discontinuity 
in the right-hand side of (4.1) at some i, and this discontinuity is not consistent 
with g = F',  then the solution {4.2) will have a discontinuity in c and F, making 
the first term significant for another short time. If this is the case, the explicit 
methods discussed earlier should be used. However, in some cases the disconti- 
nuity may not stimulate the rapidly decaying components sufficiently so that a 
step size large compared with 1/~ can be used in principle. If the explicit methods 
of the previous sections are applied to (4.1), we obtain approximations to the 
scaled derivatives of F plus polynomials in h~,. For example, if the six-stage 
method of order 4 is used, the approximation to the p t h  derivative of y will be 

hPy(~) ffi hPF(p) + c(h~) p + O(h 5) + cO(hS~ 5) + 0(h5~4), 

where the O(h ~) term depends on derivatives ofF,  but not on c and k; the O(hSk ~) 
is independent of the derivatives of F, but the O(hS~k 4) term has coefficients which 
depend on the derivatives of F. If c is small, we would like the p th  derivatives of 
F to dominate this expression. However, if h~, is large, the 0(h5~ 4) term may well 
dominate. For these problems it is worth considering implicit RK methods. It is 
known (Butcher [2]) that q-stage implicit RK methods can achieve order 2q. It 
is also known (Ehle [4]) that such methods are A-stable. In fact, we are not 
concerned with A-stability or its variants such as stiff stability because only a 
single RK step is taken, while A-stability is concerned with the limiting behavior 
as the number of steps becomes infinite. What we do need are approximations to 
the first p scaled derivatives that are not contaminated with errors due to large 
Jacobian elements when the corresponding components of the solution are absent, 
but  which give some indication when the components are present because in the 
latter case we must reduce the step size to handle the transients. Thus, if we are 
allowed a local error of ~, we can ignore components whose size is smaller than 
E, provided they do not contaminate the solution. However, components of size 
larger than E must be integrated correctly. We follow the usual practice of doing 
a linear analysis for the test equation y '  -= ky and ask that the approximations to 
the scaled derivatives be bounded for all ~, in the negative half-plane. Suppose 
that the approximation to the p th  scaled derivative is bounded by t~p when the 
method is applied to the test equation with y(0) ffi 1. Then a scaled derivative 
larger than ESp can be used as an indication that there is a significant compo- 
nent which must be integrated correctly by step-size reduction. 
ACM Transactions on Mathematical  Software, Vol 6, No 3, September 1980 
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When a q-stage implicit RK method  is applied to the test  equation, we calculate 
terms of the form 

P(h)t)  
R (h~) = Q(h~)  y '  (4.3) 

where 

Q(#) -- d e t ( I -  gB) = 1 + al/z + . . .  + aq# q 

is a polynomial  of degree q in # whose coefficients are completely determined by  
the matr ix  B of coefficients fl,j, and P(/z) is a polynomial  of degree no greater  than  
q. (See Gear  [7].) T h e  scaled derivatives calculated using an implicit form of (2.1) 
take a similar form: the ith scaled derivative will be 

P~(hh) 

Q(h;~) " 

Note  tha t  the denominator  is determined by B and so is independent  of i. For  
consistency with p t h  order, the p t h  scaled derivative must  take the asymptot ic  
form (hh) p + O(hp+l), from which we see tha t  

Pp(#) = #p + O(#P+'). 

Hence we conclude tha t  the number  of stages q must  be at  least p. We demon- 
s trate  below tha t  the desired propert ies can be achieved with q = p. Since the 
approximation to the ith scaled derivative must  also have order  p,  we see tha t  

#' + O(/F +1) = P,(#) 
1 + a~g + . . .  + aq# q" 

Since P, is a polynomial, it follows tha t  

P,(#) = g' + a~# '+1 + . . .  + ap-,~t p + O(#°+1). (4.4) 

If q = p, the P, are completely de termined by the B matrix,  and as h k = tt 
approaches infinity, the approximations to the ith scaled derivatives approach 
ap_,/ap where ao = 1. In particular, the estimate for the p t h  scaled derivative 
approaches 1/ap.  This  is the value of 8p which we would like to be of modera te  
size. Note  also tha t  the rational approximations P,(g) /Q(#)  are bounded for all # 
in the negative half-plane if the zeros of Q(v) are in the right half-plane and ap is 
nonzero. 

The  existence of p-stage, p th-order  implicit methods  can be demonst ra ted  
without  reference to e lementary  differentials. Assume for the momen t  tha t  we 
have the exact values g, of the hf(y( to  + ha,)). If the a, are all different, the 
interpolat ion coefficients fl,j can be chosen so tha t  

P 

y(to) + ~, fl,jgj = y(to + ha,) + O(hP+l). (4.5) 
1=1 

Hence  
P 

hf(y(to)  + ~, fl,~g~) = g, + O(hP+2). 
j--1 
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Therefore, a solution of 
P 

k, = hf(y(to) + ~ fl,jkj) (4.6) 
j = l  

gives an O(h p+2) accurate approximation to g,. With these p approximations to 
hy' a t p  different points, we can obtain approximations to hSy ~ at to with error no 
greater than O(hP+l). These determine the y,s coefficients uniquely. 

It remains to show that the root condition for Q is satisfied. Since the fl,~ 
coefficients were completely determined by the a~ in the process above, and these 
in turn determine the Q polynomial, we can consider the zeros of Q to be functions 
of the a,. The existence of a coefficients for which the root condition is satisfied 
can be demonstrated by considering the Butcher implicit RK methods. The a are 
the Gaussian quadrature points. For this it is known that  Q is a degree p 
polynomial, all of whose roots are in the right half-plane because the method is 
A-stable (see Ehle [4]). Thus we see that  by using the fl,~ corresponding to the 
Butcher methods, the y~s can be chosen to achieve pth-order accuracy. We have 
also shown that  no fewer than p stages can be used. 

The cost of these implicit RK methods is high because a set of p nonlinear 
systems of equations must be solved simultaneously, so it is questionable whether 
such methods have any application. For this reason, plus the fact that  most of 
the time the problem is not stiff in the starting region, we concentrate on explicit 
methods. 

5. ERROR ESTIMATES AND STEP SELECTION 

A useful algorithm must include a technique to estimate the error and to adjust 
the step size. In the RK starting technique there are two step sizes to be chosen, 
the step size for the RK process and the first step size for the multistep method. 
The computational process we propose is as follows. Details are given later. 

(1) "Guess" a step size hR for the RK process based on knowledge ofyo andy~. 
(2) Execute the RK starting process using hR to compute the k,. 
(3) Estimate the effect of truncation and roundoff errors in the RK step from the 

computed k,. If these errors are too large, adjust hR and repeat step (2). 
(4) Estimate the step size hM for the first multistep step from the k,. 

We discuss this process for the fourth-order explicit method proposed in Section 
3. The ideas extend to other methods without difficulty. 

In the numerical solution of ordinary differential equations all error estimation 
and step-size control techniques are based on some model of the problem. This 
may be an asymptotic model in which the first nonvanishing term in a Taylor 
series for the error is estimated and all higher order terms are neglected, but in 
many cases this is not the model used. Consider, for example, the RK Fehlberg 
methods [5] in which two approximations of different orders are computed, say 
yA ---- Y + O(h 4) and YB = Y + O(hS). This is a (3-4) method. The difference 
between yA and yB gives an asymptotically correct estimate of the O(h 4) error in 
YA, but in most codes the more accurate yB is used as the result, so the underlying 
model uses the assumption that  the error in yB is related to that  in ya. Multistep 
methods in which the corrector order exceeds the predictor order by 1 use a 
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similar assumption because the predic tor-correc tor  difference is an est imate of 
derivatives of order  one lower than  those tha t  appear  in the corrector  error. We 
are going to use a similar model; namely, we assume tha t  by controlling a lower 
order  derivative we can control  the higher order derivatives tha t  appear  in the 
error  terms. (One could perform extra computat ional  steps to est imate the error  
terms asymptotical ly exactly, but  then  one would correct  the answers to remove 
those errors, or, as V. Kahan  of the University of California at  Berkeley has  put  
it succinctly, "One should compute  an est imate of the uncertainty, not  the error.") 

With this model, we assume tha t  the error  in the mult is tep me thod  is 
re la ted to 

CMh~ I] y(4)H, 

where CM is the error  coefficient of the method  used and hM is the step size to be 
used. This  is to be controlled to be less than  the desired tolerance ~ so if we know 
CM and y(4), we choose hM so tha t  

hM = r (4) ii ' (5.1) 

where r < i is a "safety factor" which sets hM smaller than indicated by the 
model. 

Although we compute an O(h) accurate estimate ofy (4) in the RK process', we 
cannot use it directly in (5.1) because it is not uncommon for some initial 
derivatives to be zero. This would lead to an infinite step hM. To overcome this 
problem, we add further assumptions to our model, namely, that the sth derivative 
y(') approximately satisfies the relationship 

HY (s) II = hsl]:Yll, s = 1 . . . .  , 4  (5.2) 

for some h, where I])~ ]] is an est imate of the norm of y to be discussed later. 
Therefore ,  we replace the fourth derivative norm I]y (4) H used in {5.1) with ]]~(4)H 
given by 

,-, L l l-Tii-J (5.m 

= fly H. 

This can be computed from the output of the RK step. 
Now we come to a study of the RK step errors and the determination of hR. In 

fact, we are not concerned about the actual errors, only about their influence on 
the subsequent multistep method. Our model assumes that the truncation error 
in the computed  value o fh~y  (s) can be est imated by CsRh4R II :Y (4)]1, S = 2, 3, and 4. 
Calculation of the h~Ry (~) also involves t runcat ion errors when the k, te rms are 
differenced. The  error  will have a bound of the form G~ H hRy' H u, where 

6 

2=1 

and u is the roundoff  error  in computing f (y) .  When the h~y (~) te rms are used in 
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the multistep method (directly if a Nordsieck vector is used, or indirectly to 
compute y~, s -- 1 . . . . .  k, i f y  values are used), the errors introduced by the RK 
process are multiplied by powers of hMIhR to change the step size and by 
coefficients of the multistep method. We would like to keep the errors introduced 
by the RK process somewhat smaller than the permitted error tolerance in the 
multistep method. Therefore, we must require that  the truncation and rounding 
errors in h~My (~) are bounded by g~e where the g~ coefficients are determined by 
the coefficients of the multistep method and the fraction of the error tolerance e 
that  the RK process is permitted to generate in subsequent multistep values. 
Thus we require that 

[hM]S<_gs~ (5.4) CsRh4R II Y ") II 

and 

, r h M 1  s 
G~lih.y II u[~-;~ ] -< g~E (5.5) 

for the truncation and roundoff error estimates, respectively. If we use the model 
form for II y(~)II given by (5.2) and (5.3) and use the value of hM given by (5.1), the 
truncation error restriction (5.4) becomes 

C~R(h~X4,,:~,I)(4-~)I4[ r ]" -- g.E (4-~)/4. (5.6) 

For s -- 4 this gives 

r CMg4 ] 114 
r <_ L-~-~ J " (5.7) 

This means that the safety factor r must be restricted. For s = 2 and 3, (5.6) gives 
[- ~ 1- fil/_4 "1 s-] 4/(4--s) 

h~X ' l lYn_< , /~"  / ~M / / . (5.8) 
LC.~L r ] J 

The left-hand side can be calculated in the RK step using (5.3). If (5.8) is not 
satisfied, hR must be reduced to reduce the RK truncation error. Note that  the 
program calculates ~4 by (5.3) and makes the simple test 

E 
h~ h 4 <_ Kv IlYll (5.9) 

where 
F _ F f , i / A  1 s - l a / ( 4 - s )  

Ku=min ~" "~M ] ] 

Kv can be computed from the method coefficients once and for all. We get the 
roundoff error restrictions by making substitutions from (5.1) to (5.3) into (5.5) to 
find 

(hRk)l-SuGs <_ gs, (5.10) 
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which, for s = 2, 3, and 4, gives 

R > " 

- -  CM E J L g2 J 

> [u [u,y, l h X -L --M LT_I j L-gTI 
and 

(5.11) 

(5.12) 

-LO J J " (5.13) 

Each of the last three inequalities bound hR from below; that is, i f  hR is too small, 
the  roundoff  error  is too large and hR must  be increased. We are going to argue 
tha t  the last of these three inequalities is the dominant  one, al though a code 
could check all three cases with very little extra effort. If  we examine the first 
parenthesized te rm on the r ight-hand side of (5.11) and (5.12) we see tha t  they  
contain the t e rm u II:Yll/e. Since ~/II:Yll is the relative error  tolerance, we can 
reasonably demand tha t  this be greater  than  the relative roundoff  u in computing 
f. Hence  we conclude tha t  the first terms on the r ight-hand sides of {5.11) and 
(5.12) are no larger than  (u/CM) 2 and (U/CM) 3/2, while the first t e rm of the right- 
hand side of (5.13) is (U/CM) 4/3. The  lat ter  is the largest by order  of (U/CM) -1/6. 
The  second terms in the r ight-hand sides of (5.11)-(5.13) are all of order  1; so we 
conclude tha t  {5.13) is the most  str ingent condition. By setting 

[ur4G414/3 
KL = L J ' (5.14) 

which can be calculated from the method  coefficients, we have only to tes t  to see 
whether  

h~ h 4 >_ KL. (5.15) 

If  it is not, hR must  be increased to reduce roundoff  errors. 
Finally we come to the problem of "guessing" the first value of hR for the R K  

step. F rom the model  assumed in (5.2) we calculate a first approximation to h 
based on 

,x = !!y' II ( 5 . 1 6 )  IlYlI" 
This  can be done before hR is known. Now, on the basis of this estimate,  we 
evaluate an upper  bound for hR from (5.9) and a lower bound f rom (5.15). T h e  
initial hR used is the geometric mean  of these two bounds. If, af ter  the R K  step, 
one of the bounds is violated based on the new estimate of ~, the  geometric mean  
of the new bounds is used to redo the RK step. 

The re  are several programming considerations, tha t  is to say, heuristic solutions 
to awkward difficulties. If the initial est imate of h from (5.16) is too small, hR will 
be too large. This  problem is avoided by limiting hR to a maximum of 1. Because 
different components  in a system may be scaled very  differently, the norms used 
are scaled component  by component  so tha t  errors can be relative in each 
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component. Normally the scaling is proportional to values of the corresponding 
components of y with elements smaller than some tolerance being replaced by 
that  tolerance. L~ norms are used after this scaling. After this scaling, ]13 / II is taken 
to be 1. Finally, we might find that Kve < KL, in which case it is not possible to 
satisfy {5.9) and (5.15) simultaneously. This can be taken as an indication that • 
is too small. (Note from (5.14) that  KL = 0(u4/3), implying a request for an error 
tolerance e smaller than the roundoff.) In this case, it seems reasonable to reject 
the error request as too small. 

6. NUMERICAL IMPLEMENTATION AND TESTS 

A code has been appended to Hindmarsh's integrator [9] to implement this 
algorithm. The fourth-order starter is used to provide up to fourth derivatives so 
that the multistep method can start with an order-4 method. The coefficient 
values used are 

CM = 2~ for Adams, ¼ for BDF; 

CsR ~ , s f f i 2 , 3 ,  and4; 

gs -- ¼, s = 2, 3, and 4; 

u -- 8 unit rounding errors in the machine used; 

r ~ -½.  

This value of r does not violate (5.7). 
These values lead to 

KL ---- 71884/3 Adams, 

KL = 40.364/3 BDF, 

where 6 is the unit rounding error in the computer used, and 

Kuffi 24 Adams, 144 BDF. 

Admittedly, the choice of these coefficients is open to question; their only defense 
is an appeal to the model of errors and selection of safety factors. The tests that 
follow indicate that  they are a reasonable selection for at least some problems 
and tolerances. 

A nonlinear test equation was constructed for some of the tests as follows: 

Let y and u be s-element vectors, and let g(t) and p(u) be s-element vector 
functions, the former being a function of the scalar time variable t, and the 
latter being an invertible, componentwise function of the vector argument u. 
(For example, p(u) could be the exponential.) Let A and B be any matrices; A 
should be nonsingular. Define u by the equation 

u' f f i  A[B[A-lu  - g(t)] + g'(t)] 

and define y by 

y = p ( u ) .  

Hence the differential equation for y is 

y '  = p 'u ' .  
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fn evals fn evals 
EPS Hmdmarsh modified h in RK h for Adams start 

0 1D-02 6 9 0 13523D-02 0.44751D-01 
0.1D-03 9 10 0.10141D-02 0.25163D-01 
0.1D-04 11 13 0 76047D-03 0.14149]:)-01 
0 1D-05 16 14 0.57027D-03 0.79558D-02 
0 1D-06 20 17 0 42764D-03 0.44736D-02 
0.1D-07 26 20 0.32069D-03 0.25156D-02 
0 1D-08 32 23 0.24048D-03 0.14146D-02 
0.1D-09 40 28 0.18034D-03 0.79545D-03 
0 ID-10  50 36 0.13523D-03 0.44731D-03 
0.1D-11 62 43 0 10141D-03 0.25154D-03 

The  matr ix  B can be chosen to make the problem stiff or not, while the  function 
g can be chosen to get a var ie ty  of components  in the solution. The  matr ix  A 
serves to "mix up" the components,  and the nonlinear function p serves to 
bring in nonlinearities. 

The  data  in Table  II indicate the effect of the s tar ter  on the Hindmarsh  code 
when the problem described above was integrated over the  interval  (0.0, 0.I) 
using the Adams methods.  The  part icular  problem tried had three  components,  
p(u)  = exp(u), the matrices A and B were given by 

[ili] [i°i] A = - 1  , B = - 4  , 
1 - - 3  - 

and the vector  g.was [sin(t), t, (1 - t) /(1 + t) -1 ] .  The  initial values were y, = 1 
for i = 1, 2, and 3. 

The  errors in the two versions were not  significantly different. For  some values 
of the error  tolerance E P S  the original version was slightly more  accurate; in 
o ther  eases the modified version was better.  (Both versions gave errors approxi- 
mate ly  equal to EPS  in this problem.) The  second and third columns of Table  II 
indicate the number  of function evaluations used by the original Hindmarsh  code 
and the modified form for a range of error  tolerance parameters  EPS.  F rom this 
it can be seen tha t  the modification is beneficial only for small tolerances: it  
actually uses more function evaluations for large tolerances. This  is plausible 
since fourth order  is probably too high for the larger tolerances shown. However,  
even in those cases, the loss is very little and the actual  t ime lost is less because 
six of the function evaluations are used in the R K  star ter  with very  little overhead 
compared to the high overhead in the automatic  mult istep method.  

A number  of tests were run to determine whether  the step-size-selection scheme 
was appropriate.  A set of very simple equations, including a mildly stiff problem 
with stiffness ratio of about  100, were used. For  each problem, the following 
procedure was followed. For  each E P S  in the range 10 -m, m = 1, 2, . . . ,  11, the 
star ter  was executed with the R K  step size forced to be 2 -4, k = 1, 2 . . . .  ,15,  in 
turn. An error  was calculated by forming the difference between the t rue  solution 
at  a point  a distance hM f rom the origin and the value tha t  would be predicted 
using the starting values at the same point. Here  hM is the step size es t imated by 
the s tar ter  for the first Adams step. The  R K  step size tha t  led to the smallest 
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such error was selected for each EPS. This would be the most desirable one to 
have chosen. Then the RK starter was allowed to choose its own RK step size 
using the procedure given in Section 5. For nonstiff problems, the RK step size 
chosen automatically was within a factor of 2 of the optimum for EPS < 10 -3. 
However, as was pointed out in Section 5, the actual step size used for the RK 
starter is not that  critical; what is important is that  a good step size be chosen for 
the first application of the multistep method and that  the error due to the RK 
method be below the tolerance. The step size selected for the multistep method 
is almost independent of the RK step size because it depends only on the estimate 
made for ~, which is determined by the size of the calculated derivatives, not the 
errors in them. In all nonstiff cases, the error in the predicted value was well 
below the tolerance EPS. In the mildly stiff case, the recommended RK step size 
tended to be too large by a factor of about 4, and this led to an error greater than 
EPS when EPS was less than 10 -5. The worst case was an error 30 times too large 
when EPS was 10 -n. 

It should be noted that  one of the test problems was a problem that  would be 
stiff after its initial transient died out, but was such that  a small step size would 
be needed for accuracy initially. This gave results compatible with the nonstiff 
results. 

These limited tests indicate that  the method may have value for problems 
which do not start in a stiff region, as is true for most problems. An additional 
benefit is that  the scheme appears to give a reasonable estimate of the starting 
step size, neither too large nor too small. Detailed examination of the step sizes 
used in the original and modified Hindmarsh codes indicated that  the bulk of 
additional function evaluations were being used to arrive at a reasonable step 
size, not to maintain the requested error, while in the modified version, the initial 
step size selected by the starter seldom caused the error test to fail and was within 
a small factor of the step size ultimately chosen by either method at fourth order. 
It may be that  an improvement in the initial step-size-selection algorithm used in 
a code would be as effective as the proposed starter--or it may mean that  the 
major benefit in this starter is its ability to select the step size. 
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