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Abstract 

Bank et al. (1985) developed a one-step method, TR-BDF2, for the simulation of circuits and semiconductor 
devices based on the trapezoidal rule and the backward differentiation formula of order 2 that provides some 
of the important advantages of BDF2 without the disadvantages of a memory. Its success and popularity in the 
context justify its study and further development for general-purpose codes. Here the method is shown to be 
strongly S-stable. It is shown to be optimal in a class of practical one-step methods. An efficient, globally C l 
interpolation scheme is developed. The truncation error estimate of Bank et al. (1985) is not effective when 
the problem is very stiff. Coming to an understanding of this leads to a way of correcting the estimate and to 
a more effective implementation. These developments improve greatly the effectiveness of the method for very 
stiff problems. 

1. Introduction 

Because one-step methods have advantages for the solution of systems of ordinary differential 
equations arising in circuit and device simulation, the trapezoidal rule is the default method in popular 
packages like SPICE [22]. As usually implemented, the trapezoidal rule is not strictly a one-step 
method because the truncation error estimate makes use of two previously computed solution values. 
The method is not efficient for very stiff problems because it is not strongly stable. Many simulation 
packages resort to methods with memory, specifically the backward differentiation formulas, to obtain 
the strong stability necessary for the efficient solution of such problems. In the context of device 
simulation, Bank et al. [2] developed a method that provides the advantages of the second order 
backward differentiation formula, BDF2, without the disadvantages of a memory. A conventional 
integration with BDF2 is started with one step taken with a one-step method of order at least one. 
They noted that if this is followed by a second step taken with BDF2, the whole process can be 
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repeated cyclically to obtain a method with two internal steps and no memory. It is natural to use 
the trapezoidal rule for the first step because it provides a result of the same accuracy as BDF2 and 
has good stability. One of the things that makes a conventional BDF code efficient is the possibility 
of using the same simplified Newton iteration matrix for a number of steps. A key issue, then, is to 
arrange that this be true for the evaluation of the two different implicit formulas. This turns out to 
be possible when the two internal steps are of different lengths. The process might be described as a 
cyclic linear multistep method, LMM, but it is more naturally studied as a one-step method. Bank et 
al. showed their method, TR-BDF2, to be L-stable. They also found an error estimate that does not 
involve a memory, so that the method is genuinely one-step. 

The success and popularity of TR-BDF2 in device simulation justify its study and further devel- 
opment for general-purpose codes. Moreover, BDF2 is widely used in contexts such as the method 
of lines (MOL) solution of partial differential equations (PDEs) where a variant that is one-step 
would be very useful. For this reason, Carroll [6] studies a variant of TR-BDF2 for the solution of 
parabolic PDEs in one space dimension by the MOL. By regarding TR-BDF2 and its error estimate 
as a Diagonally Implicit Runge-Kutta, DIRK, pair, we can bring to bear a considerable theory for 
the study of its stability. It proves to be illuminating to derive an analogous formula based on the 
trapezoidal rule. By taking two steps of the same size with the trapezoidal rule, we obtain another 
DIRK formula, TRX2, for which we can derive a one-step error estimate like that used for TR-BDF2. 
A variant of the trapezoidal rule that is more one-step than conventional implementations is of some 
independent interest. 

As an implicit Runge-Kutta formula, TR-BDF2 is quite unusual because it involves an explicit 
stage. This complicates investigation of its stability because some of the standard theorems are not 
directly applicable. Among other results, we prove that TR-BDF2 is strongly S-stable. We also show 
that it is optimal in a class of computationally interesting one-step methods. In general-purpose codes, 
it is important that it be possible to achieve solution values between steps inexpensively. Indeed, we 
are developing a code that implements both TR-BDF2 and TRX2 for the MATLAB ODE suite [ 19]. 
Because event location is a feature of all the codes in this suite, any method implemented must 
provide for a continuous extension to the solution. We show how to obtain this for "free" with 
TR-BDF2 and TRX2 by means of globally C a piecewise polynomial interpolants. 

The trapezoidal rule and BDF2 have truncation errors that are multiples of y'". In conventional 
implementations this is estimated by a divided difference of approximate solution values, Yn. This 
requires approximations computed prior to the current step. To retain the one-step nature of TR- 
BDF2, the estimator of [2] forms a divided difference of approximations to the first derivative of 
the solution, fn  = f(x,,y,).  Although this has proved acceptable in practice, these approximations 
are not used in conventional BDF codes because it is well known [17] that they do not provide 
accurate approximations to the first derivative when the problem is very stiff. When we investigate 
TR-BDF2 and TRX2 in a manner usual for one-step methods, we view each step as being taken with 
two formulas and the error of the lower order formula estimated by comparison to the higher. The 
difficulty with the error estimate of [ 2] is then revealed in the poor stability of the companion formula 
of order 3. Once we understand the difficulties, we appreciate that if TR-BDF2 is implemented in 
the obvious way, the error estimator of [2] will limit severely the efficiency of the formula when 
integrating very stiff problems. After coming to an understanding of the difficulty, we develop practical 
remedies for both TR-BDF2 and TRX2. 
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2. T R - B D F 2  as  a D I R K  m e t h o d  

The TR-BDF2 method and associated error estimate derived by Bank et al. [2] can be viewed as 
an implicit Runge-Kutta pair of orders 2 and 3, more specifically, a Diagonally Implicit Runge-Kutta, 
DIRK, 2 (3) pair: 

0 0 0 
d d 0 
w w d 

w w d 

(1 - w ) / 3  (3w+ 1)/3 d/3  

where y = 2 - x/~, d = y/2,  and w = v/2/4. We use the standard terminology for Butcher arrays 

b T 

Singly Diagonally Implicit Runge-Kutta (SDIRK) methods, i.e., DIRK methods for which the 
diagonal elements of A are the same, are attractive because all the implicit stages in a step can be 
evaluated using the same simplified Newton iteration matrix. TR-BDF2 is almost an SDIRK method. 
The diagonal elements of A are the same except for the first. However, since the first stage is explicit, 
there is no nonlinear equation to be solved for its evaluation. Moreover, the formula is First-Same- 
As-Last, FSAL, meaning that the first stage of a step is the same as the last stage from the end of 
the previous step. 

In a certain sense, TR-BDF2 is optimal in the class of 3-stage DIRK methods. To fix notation, let 
the general 3-stage DIRK method be given by 

cl al,l 0 0 

C2 a2,1 a2,2 0 

c3 a3,1 a3,2 a3,3 

bl b2 b3 

As we see it, the advantages of TR-BDF2 are: 
(i) It is First-Same-As-Last (FSAL), hence there are only two implicit stages to evaluate per 

step, not three. 
(ii) The same simplified Newton iteration matrix can be used to evaluate all the implicit stages. 

(iii) It provides a "free" asymptotically correct error estimate. 
(iv) It is L-stable (in fact, strongly S-stable). 
(v) All the stages are evaluated within the step interval, i.e., 0 ~< ci ~< 1, for i = 1,2, 3. 

We do not want to give up any of these properties. The first two require the general 3-stage DIRK 
method to have the form 
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0 0 0 

c2 a2,1 b3 

1 bl bz 

bl b2 

bl b2 

0 

0 

b3 

b3 

b3 

For the third, the primary result must satisfy the order conditions up to order two and the companion 
formula, the order conditions up to order three. In the formulation of  [ 11 ], this is 

1 - bTe = 0 ==~ bl + b2 + b3 = 1, 

- b'rc = 0 ~ b2c 2 + b 3 - 1 

AT 
1 - b e = 0 ==~ bl + b 2  + b3 = 1, 

^T 
I b c = 0 : : : : : ~  b 2 c 2 + b  3 - i 

- - ~ o  c = 0 = = ~  6 

gT (½c2 _ Z c )  = o ~ ~2c2 (~c2 - b3) + ~ (~ - b2¢~ - b~) = O. 

Consistency also requires that c2 = a2,1 + b3. It is easy to show that this system of  equations leads to 
the one-parameter family 

0 0 

0 ~ 0 

30 - 02 - 1 
1 

2O 
30 - 02 - 1 

20 
3 0 -  1 

6O 

0 0 

0 
o 

1 - 0  0 

2O 
1 - 0  0 

2o 
1 2 -  30 

6 0 ( 1 - 0 )  6 ( 1 - 0 )  

The stability function for the primary result in this family is 

R2(hA) = 1 + h A b X ( l -  h A A ) - l e  

(02 - 4 0  + 2) (hA) 2 + 4 ( 1  - 0)hA + 4 

( 2 -  OhA) 2 

(02 - 40 + 2) 
, 02 as [ha I --, o¢. 

Here I and e denote the identity matrix and vector of  all ones, respectively, of  appropriate size. The 
method is L-stable only if 02 - 40 + 2 = 0. Thus, 0 = 2 4- v/2. Since 2 + v/2 > 1, the final advantage 
requires that 0 = 2 - v/-2, which leads to TR-BDF2. 
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It is clear from this discussion that no second order DIRK method of fewer stages can have all the 
desired properties. In particular, the second order formula from [ 1 ] 

d d 0 
l l - d d  

- d d  

is strongly S-stable, but admits no embedded third order companion, even with the addition of a 
FSAL stage. In his numerical tests, Alexander estimates the local error by doubling. This provides a 
quality estimate, but is expensive in several respects and makes the formula much less attractive in 
practice than its good stability properties would suggest. 

In [5,6], the trapezoidal rule in TR-BDF2 is replaced by the 0 method 

yn+r=yn+Th[(1-O) f (xn ,y~)+Of(x~+r ,yn+. / ) ] ,  0 < 0 ~ <  1. 

The resulting family of Runge-Kutta formulas forms a subset of those considered here. Unfortunately, 
the only member of this family that admits an embedded, asymptotically correct error estimate is 
TR-BDF2 itself. In particular, the error estimate of [5] is not asymptotically correct unless 0 = 1/2. 

The choice 0 = 1/2 in our one-parameter family results in the pair 

0 0 0 0  
I I I 0 

1 1 _ t  1_ 
4 2 4  

I 1 1  

I 2 1  

Because the primary result here is equivalent to a double step of the trapezoidal rule, we call this 
method TRX2. It shares most of the advantages of TR-BDF2, but lacks L-stability (it is not damped 
at infinity). 

When L-stability is not needed, we expect TRX2 to be somewhat more efficient than TR-BDF2 in 
terms of evaluations of f because it has a smaller truncation error. Using the approach of [ 11 ], it is 
found that (asymptotically) TRX2 is roughly 25% more efficient than TR-BDF2. We do see this in 
practice. Of course, when stiffness is severe, L-stability is crucial and TR-BDF2 enjoys an enormous 
advantage over TRX2. 

3. Stability 

It is shown in [2] that TR-BDF2 is L-stable. A number of other stability concepts have been 
identified as being useful for the study of implicit Runge-Kutta methods, and we ask which, if any, 
TR-BDF2 possesses. The first theorem proves negative results for a class of formulas that includes 
TR-BDF2, and the second proves that the method is strongly S-stable. 

Theorem 1. Consider an FSAL DIRK method of s stages 
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where all the elements o f  c are distinct (i.e. the method is nonconfluent, [9] ) and the stages have 
been arranged so that the first row of  A is zero. I f  bl ~ O, then the method is neither AN-stable nor 
B-stable nor algebraically stable. 

Proof. In the notation of [9, p. 196], let 

K ( Z )  = 1 + b T z ( I  -- A Z ) - l e ,  

where Z = diag(zl . . . . .  zs) with Re(zi) ~< 0. Let zi = 0, for i/> 2. It follows directly that 

K ( Z )  = 1 + bjzl ,  

which is not bounded, hence the method is not AN-stable. Lack of B-stability and algebraic stabil- 
ity follow from [9, Corollary 12.14], which says that for nonconfluent Runge-Kutta methods, the 
concepts of AN-stability, B-stability, and algebraic stability are equivalent. [] 

Theorem 2. TR-BDF2 is strongly S-stable. 

/ 
= lim [1 d0 

Izl-~0 \ 
and 

Proof, The A-stability of TR-BDF2 is shown in [2, p. 440]. In the notation of [ 14], let 

C~o= lim ( 1 - b T ( a - z l ) - ' e )  and boT= lim b x ( a - z l ) - l E ( z ) ,  
Izl~O Izl-~o 

where in our case E ( z )  = d i a g ( - z , y ,  1) and the limits are taken with Re(z)  < 0. By direct 
evaluation we get 

d 2 -  z "~ 

boT= lim ( w z  2 wyz d ) T 
Izl-o ( d - z )  2 ' -  ( d - z ) Z ' d - z  = ( 0 ' 0 ' l ) T "  

By [14, Theorem 2.1], it follows that TR-BDF2 is S-stable. Since we have do = 0, [14, Theorem 
2.2] implies that the method is strongly S-stable if it is stiffly accurate, i,e. if 

lira f l (z ,  Go, Gl, G2) = 0, 
IzL~o 

where in our case 

G O -~ 
g(x ,  + h) - g (x , )  

h 
IT  

GI = ( g ' ( x , ) ,  g(x ,  + yh) - g(x~) Go , 
"yh 
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G2 = (O,g ' (x .  + T h ) , g ' ( x .  + h)) T , 

27 

f l (  z, Go, Gi,  G2) = - G o  + bT ( A - z l )  -I E(  z ) ( G I  - -  zG2) .  

Here we are using the scalar test problem y' = g'(x) + A(y  - g(x ) ) .  After some tedious calculation, 
it is found that 

z2v~(x . )  + z v z ( x . )  

( d _ z ) Z  ' 
f l (Z,  Go, Gi, G2) = 

where 

and 

vl ( x . )  = w g ' ( x . )  + w y g ' ( x .  + y h )  + d g ' ( x .  + h) - Go, 

U2(Xn) = dGo - w y  g(x"  + y h )  - g ( x . )  _ d2g,(x,  ' + h) .  
hy  

Since v j ( x . )  and U2(Xn) are independent of z, limlzl-~Ofl(z, Go, G i , G 2 )  = 0, and the result fol- 
lows. [] 

Because TRX2 can be viewed as a double step of the trapezoidal rule, which is otherwise known 
as the second order Lobatto IIIA formula, [ 14, Theorem 4.4] implies that TRX2 is S(a)-s table  with 
a C (0, 7r/2). 

4. I n t e r p o l a t i o n  

Extending an implicit Runge-Kutta method so as to obtain accurate solution values between steps 
is generally not obvious and often not possible. However, the origin of TR-BDF2 suggests an easy 
way to obtain these values. At each step TR-BDF2 provides three solution values and three derivative 
values that are all second order accurate. Let x.+~ = x.  + yh  and x.+l = x. + h. Correspondingly, 
let y,,, y.+~,, and Y.+l denote the approximations to y(x , , ) ,  y(x.+./) ,  and y(x .+l  ), respectively, and 
let z., z.+r, and z.+l denote the approximations to h y ' ( x . ) ,  hy'(Xn+r), and hy ' ( x .+ l ) ,  respectively. 
It is natural to obtain intermediate values by interpolating these approximations. Indeed, there are 
numerous possibilities. A particularly attractive option is to use cubic Hermite interpolation, as it is 
efficient and results in a globally C I interpolation scheme. The interpolant is given by 

P ( x )  = (12 3 - -  2v2)ra (x )  + (3/.'2 - -  v3)r2(x )  a t- v l r ( x )  + Vo, 

where, for x. ~< x ~< x.+~,, 

Vo = Yn, Vl = TZn, v2 = y n + ~ - - y n - - V l ,  

X - -  X n 

v3 = "r(z.+~ - z . ) ,  and r ( x )  - - -  
yh  
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and, for x,+r ~< x ~< xo+l, 

v0 = yo+r, vl = (1 - ~/)z,+r, v2=Yn+l--Yn+r--Vl, 

X --  Xn+, y 
v3 = (1 - 'V)(z~+l - z n + r ) ,  and r ( x )  = 

(1 - T ) h "  

5. Evaluation 

Let h = hn denote the current step size. The definition of the formula includes the explicit stage 
z,, = h f ( x ~ , y n ) .  At the start or at a restart, the stage must be formed in this way, and it can be 
formed in this way at any step. A less obvious way to form the stage after a step has been taken is 
to obtain it from a simple rescaling of the value of z computed as the last stage in the previous step, 

zn = (h/hn-I)Z~n-1)+l.  

In common terminology, the obvious way of proceeding evaluates the last stage of a step in P ( E C ) k  
mode, and an additional evaluation E is made as it is used at the beginning of the next step. (The 
number of corrections k is not fixed.) Thus, the stage at the beginning of the step is computed by a 
P ( E C ) k E  scheme. Evaluated in this way, the formula is not FSAL. As NCrsett and Thomsen [ 13] 
point out, P ( E C ) k E  schemes are preferred for nonstiff problems and for stiff problems P ( E C )  k 
schemes are better. This is easily understood [ 17, pp. 416-417] - - the  additional evaluation amplifies 
stiff components unless the stage has been evaluated very accurately. We look closely at this in 
Section 6. 

For the initial guess of the first implicit stage, we take 0 z,+ r = z~. This is a crude approximation, 
and ordinarily it is possible to obtain an initial guess by extrapolating the derivative of the interpolant 
from the end of the previous step. However, this would add overhead and introduce a form of 
memory. It might be worth the trouble if the average number of iterations were reduced substantially, 
but our experiments have shown that at loose tolerances it often results in a worse guess, leading 
to more iterations and more work. It is consistently helpful at more stringent tolerances, but such 
circumstances are beyond the recommended purview of second order methods. 

For any k we take 

yk+~ = (y, + dz~) + dzk,+~. 

Then z,,+r is computed by the simplified Newton iteration 

( I  h d J )  A k k k and _k+l k A k. - = h f ( x , + ~ ,  Y,+r) - Zn+~ zn+~ = z~+~ + 

Here J ~ a f l a y .  It is crucial that zn+r be defined as the result of this iteration and not as 
hf(x , ,+r ,  yn+r) for reasons amplified in Section 6. The smoothed derivative zn+r is computed to 
an accuracy of r. How the accuracy is assessed is discussed in [ 16]. Below we discuss the selection 
of a suitable value for ~-. 

The initial guess for the final stage is obtained by extrapolating the derivative of the cubic Hermite 
interpolant to values at x, and x~+ r. This leads to 

z,,+,° = ( 1.5 + x/2)z, + (2.5 + 2x/2)zn+r - (6 + 4.5V'2) (y~+r - y ~). 
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(The corresponding guess for TRX2 is 5z. + 8z.+ r - 24(y.+r - y . ) . )  
For any k we take 

Y~+I = (Y. + wz.  + wz.+r) + dzkn+l, 

and the simplified Newton iteration becomes 

( I  hdJ)  A k hf(Xn+l, ~+1 ) k and _k+l k A k. - -  _~ - -  Z n +  1 Z,n+l ---~ Z n +  1 + 

As with the computation of zn+r, this quantity is computed to an accuracy of 7". 
An important practical matter is deciding when to terminate the iteration for z,+r and z,+~. Conven- 

tionally this has been done when it appears that the quantities have been computed to a fraction K of 
the tolerance e placed on the local error. A value of K = 0.1 is representative. NCrsett and Thomsen 
[ 13] build on their earlier work with Houbak [12] to deduce a reasonable value for K from the 
coefficients of formula and its companion. Unfortunately, their work is not immediately applicable to 
our situation because of the explicit stage and our use of a smoothed derivative from a previous step. 
A reasonable way to select K can be deduced easily. In terms of the scaled derivatives, the estimated 
local error is 

est = (bl -- b l ) z .  + ( b 2  - b2)zn+T + ( b 3  - b3)Zn+l. 

If each of  the smoothed derivatives is computed to an accuracy^ of 7" = Ke, this estimate will be 
evaluated with an error no greater than (Ib~ - bll + Ib2 - b21 + Ib3 - b31)KE. Since the sum here is 
equal to 2/3,  if we take K = 1/2, we can expect the estimate to be evaluated with an error no bigger 
than E/3, which should be small enough to judge adequately the success of the step. 

6. Er ror  estimation 

The local error is estimated by comparing the result of the second order formula to that of the 
embedded third order formula. This provides an asymptotically correct estimate as the step size tends 
to zero, but it is not clear that the estimate is useful when the step size is not "small". The situation 
can be studied in a way that resembles closely the analysis of absolute stability. With the same 
care necessary when interpreting the results of an analysis of absolute stability, insight and useful 
guides for practice can be obtained. Although our attention is focussed on TR-BDF2 and a one-step 
estimate of its error, investigation of a corresponding estimate for TRX2 is illuminating and of some 
independent interest. 

The stability of the companion used for error estimation is much less satisfactory than that of 
TR-BDF2. The same is true of TRX2. Specifically, the stability function for the second order result 
of TR-BDF2 applied to the scalar test equation y' = ay is 

1 + ha(1 - T) 2 (I  + x/2) 
Rz(ha)  = (1 - dha)  2 ~ ha as Ihal --* 

and the stability function of the companion is 

1 + 2 ( 1  - y ) h a +   a2(a- 1) (ha )  3 VF2ha 
R3(ha)  = (1 - dha)  2 ,.~ - - - ~ -  as Ihal  ~ ~ .  
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For TRX2, the stability function for the second order result is 

R2(hA) ( 4 + h ~ A ) 2  = -- ~ 1 as Ihal ~ c~, 

and the stability function for the companion is 

- ( h A )  3 + 3(hA) 2 + 24(hA) + 48 
/~3 ( h a )  = 

3 ( h a )  2 - 2 4 ( h a )  + 48 

1 
- ~ h A  as IhAI ---+ c~. 

Other investigations have shown that a mismatch in behavior at infinity leads to an unsatisfactory 
error estimate when the problem is stiff and considered what might be done about it. The present 
situation has much in common with Scraton's [ 15] one-step estimate of the error of Wolfbrandt's 
[21 ] one-step W-method of order two. Chua and Dew [7] and Zedan [23] suggest a modification 
to Scraton's estimator to correct the behavior at infinity and so allow a code based on Wolfbrandt's 
formula to use a step size more appropriate to the formula. We present here a similar modification 
to the error estimator of [2] for TR-BDF2. Among implicit Runge-Kutta formulas, TR-BDF2 is 
very unusual because it has an explicit stage. We shall see that because of this, how the formula is 
evaluated can have a profound effect on the estimation of error and the cost of the integration. 

As in the analysis of absolute stability, we restrict our attention to problems of the form 

y' = J y + g ,  

where g is a constant vector. The Jacobian J is a constant matrix that is assumed to have a complete set 
of eigenvectors with eigenvector vi corresponding to eigenvalue Ai. It is supposed that the eigenvalues 
are nonzero and that when accuracy permits a step size h, either Ih,~,l is "small" or Re(A/) < 0. 
This class of problems is simple enough that we can work out all the details needed to understand 
the behavior of a numerical method. We require that the method performs adequately on this class of 
equations and hope that its behavior will be similar for more general problems. 

The assumptions imply the existence of a constant solution of the differential equation, namely 
q = _ j - i g .  The local solution u ( x )  is the solution with u(xn)  = Yn. Its value at xn+l = x, + h is 

u ( x ,  + h) = q + exp(hJ )  (y,  - q). 

Because the methods being investigated are linear for linear problems and exact for the constant 
solution, the numerical solution obtained with TR-BDF2 satisfies 

y,,+~ = q + R2(hJ) (y~  - q) .  

Similarly, the companion formula results in 

Y*,+t = q + R3(hJ) (Yn  - q)" 

The local error of the step is then 

u(x~ + h) - Y,+l = ( exp(hJ )  - R 2 ( h J ) )  (y~ - q),  

and it is estimated by 

est = Y:+l - Yn+l = (R3 (hJ )  - R2(hJ)  ) (yn - q) .  
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These expressions can be understood more easily when the vectors are written in terms of  the basis 
of eigenvectors. To this end, suppose that 

y, - q = ~ o-j,,vj. 
J 

The local error then becomes 

u(x,,+~ ) - Yn+I = ~ (exp(hAj) - R2(hAj ) )  o'y, nvj, 
J 

and the estimate becomes 

est = Y~+l - Y,+1 = ~ ( R 3 ( h A j )  - R2(hAj)) o'j,,vj. 
J 

As h ---* 0, 

R3( h/~j) -- R2( h/[j) 
---~1, 

exp(hAj) - Rz(hAj) 

reflecting the fact that the estimator is asymptotically correct. The difficulty with the estimator of 
[2] is exposed when we ask about the "stiff" components, those for which IhAj[ >> 1. The factor 

exp(hAi) - R2(hAj) in the local error behaves like 2(1 + v ~ ) ( h A j )  - t ,  but the corresponding factor 

in the estimate behaves like - ( v ~ / 3 ) ( h A j ) .  Clearly the error in the stiff components is grossly 
overestimated. The situation is similar with TRX2: The factor in the local error behaves like - 1  and 
the corresponding factor in the estimate behaves like - (hA j ) / 3 .  

It is easy to modify the estimate to improve it for stiff components while preserving its accuracy 
as h ~ 0. This is done by noting that the practical evaluation of the formula is accomplished by a 
simplified Newton iteration that involves repeated solution of linear equations using a factorization of 
a matrix I - h d J .  Let us define a modified error estimate Est as the solution of 

( I  - h d J )  Est = est. 

This estimate is obtained at a modest cost because the matrix is already factored. The cost is especially 
low in the MATLAB computing environment because linear algebra is comparatively fast. In terms 
of the eigenvectors, 

R 3 ( h A j )  - R 2 ( h A j )  "~ 
Est = j ~  \ T - dh-~j ] o-j,.vj. 

It is clear from the definition that Est is asymptotically correct as h ~ 0 because est is. Now, 
however, when Ihajl >> 1, the factor for component j of the error estimate behaves like v /2 / (3d ) ,  
a much better approximation to the correct factor, though still not of the correct order. Because the 
discrepancy for TRX2 is not so strong, the process yields an error estimate with the correct order for 
this formula. 

As pointed out in [ 18], the estimate for TR-BDF2 could be improved with the solution of another 
linear system, namely ( I  - h d J ) E S T  = Est, in order to get the correct behavior at infinity. Since this 
does not seem to be necessary in practice, we try now to understand why. It is the stiff components 
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that are approximated very poorly. Whether this affects seriously the estimate of the local error 
depends on their relative size. For the model problem, the fact that TR-BDF2 is stiffly stable implies 
that these components are relatively small. This is not the case when integrating with TRX2 because 
it is not stiffly stable. To study the phenomenon for TR-BDF2, suppose that the step to x. was of 
size h._l. From 

y .  = q + R2(h._l  J)  (Y . - i  - q), 

we see that 

y,, - q =  ~ o'j,.uj = Z R2( h._lAj)o ' j ,n- ,v j ,  
J J 

hence that o'j,. = R2(h._ lAj )o ' j , . - l .  Because R2(h ._ tAj )  behaves like - 2 ( 1  + x/2)(hn_lAj) -l and 
I h,,-~ail >> 1, the stiff components are heavily damped at each step. 

If we were actually to solve a model problem with TR-BDF2, the stiff components would decay so 
rapidly that there would be little difference in the two error estimators. The question, then, is to what 
extent the model tells us what will happen for more general problems. It will turn out that how the 
formula is evaluated is crucial to this, but for the moment let us suppose that it is evaluated exactly. 
The argument then suggests that the effects of the stiff components will be damped strongly on all 
steps after the start, or restart, so that est is likely to be satisfactory, though perhaps not as accurate 
as Est. In contrast, when integrating with TRX2, the effects of stiff components are not damped out 
and modification of est is quite significant. 

In the analysis, it is assumed that y. satisfies exactly the formula for computing an approximate 
solution at x., and then the formula for the next step begins with the computation of f ( x . ,  y . ) .  It is 
computationally convenient to work with the scaled derivative z. = h f ( x ~ ,  y.)  and henceforth we do 
so. This is what we want, but what we actually compute in the step from x._~ to x. = x._t + h._~ is 
a value .~and then we form h f ( x . , y . ) .  The scheme for evaluating the formula is to produce a value 
.~. that agrees well with y.. However, this does not imply that the scaled derivative formed using it 
is close to the value we want. A mean value theorem gives 

h f ( x ~ , y n )  - h f ( x ~ , y n )  = h,.7" (Yn - Y ~ ) ,  

where ,.7 is the Jacobian of f with entries evaluated at different arguments near (x. ,  y . ) .  This shows 
that if the problem is stiff, the factor h f f  amplifies the stiff components. Since this excitation of 
the stiff components at each step counteracts the damping of these components provided by the stiff 
stability of the formula, modification of the error estimate is necessary to overcome it. When IIh,711 
is of modest size, the problem is not stiff and either estimate might be used effectively. When we 
evaluate the formula exactly, as for example when the Jacobian is constant, the stiff components are 
not excited to a degree that necessitates modification of the estimate. 

This matter is closely related to the issues discussed in [ 17, Section 2.3, Chapter 8]. The value y.  
we want is the solution of an algebraic equation of the form y. = h . - t i t f ( X n ,  Yn) + qJ" The  reference 
cited discusses the variable to be used in the computation, but the key point is to define a scaled 
derivative by 

"z,, = (Yn -- ~ )  / !  t "~ hn - l f ( x~ ,Yn )"  



M.E. Hosea, L.E Shampine /Applied Numerical Mathematics 20 (1996) 21-37 33 

After adjustment of the step size appearing here, this provides a convenient "smoothed" approximation 
to the desired scaled derivative. Now 

( h / h , _ l )  ~, - h f ( x , ,  y , )  = (h/hn-1)  ('Yn - Y,) / !  t. 

Since all quality solvers restrict the rate of increase of the step size for practical reasons, the difference 
between ~, and the desired scaled derivative is at most a small multiple of the difference between the 
approximate solution and the desired solution. In particular, stiff components are not excited by the 
explicit stage. Of course, at the start and at restarts, we must form directly h f ( x , , y , ) ,  but it is clear 
that the formula is evaluated very much more accurately in this manner when the problem is stiff. 

Because stiff components are not amplified when the smoothed scaled derivative is used, the 
damping provided by the stiffly stable formula TR-BDF2 allows the efficient solution of very stiff 
problems using est. It is valuable to use the smoothed scaled derivative with TRX2 as well, but that 
is not enough with this formula to permit the efficient solution of very stiff problems using est. 

7. Numerical examples 

Our experimental implementation of TR-BDF2 has a mixed error test with scalar relative and 
absolute error tolerances and a maximum norm. The experiments reported here all used a relative 
tolerance of r e  = .005 and an absolute tolerance of ae = 10 -1°. The code requires an analytical 
Jacobian for the equation. It selects a starting step size automatically and attempts to choose the 
largest step size that will satisfy an error per step criterion with the specified tolerances. The user 
specifies which of the local error estimates is to be used in the integration. In either case, at each 
step both e l  = Ilestll and 02 = IIEstll are computed, along with the local error, lo.  The local error of  
the step from x,  to x,+t = x ,  + h is estimated by comparing y,+~ to a more accurate result computed 
by another integration with the tolerances 0.1 x re ,  0.1 × ae and an initial step size of h/3 .  To 
assess the quality of the estimates, we computed both the maximum over all steps of a b s ( e l - l e )  
and the mean, and similarly for abs ( e2 -1e ) .  These quantities were then scaled by re .  The measures 
of cost recorded are the number of successful steps, the number of step failures due to the estimated 
size of the local error, the number of step failures due to failure of the simplified Newton iteration 
to converge, the number of function ( f )  evaluations, the number of evaluations of the Jacobian 
J = a f / O y ,  the number of LU decompositions, and the number of linear system solutions. A new 
Jacobian is formed only when the Newton iteration fails and the current Jacobian is out of date. To 
assess the quality of the solution, the maximum and average local error, scaled by re ,  are reported. 

All the sample calculations that follow were performed on a Sun SPARC10. We have done exper- 
iments integrating the equation 

/ = ( - 5 0 0  0 )  ( 5 0 0 c o s x - s i n x ' )  
0 - 1  Y + s i n x + c o s x  / 

on the interval [0, 12]. The initial values (1 ,0)  x yield the solution (cosx,  sinx) T, and with this 
choice there is no initial transient. This example differs from the model problems only in that the 
inhomogeneous term is not constant. Since the implicit stages are evaluated exactly, the way the first 
stage of each step is evaluated is not at issue. Table 1 gives the results for this problem using est and 
Est with TR-BDF2 and TRX2. For both formulas the runs using Est were more efficient in every 
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Table 1 
Sample problem # 1 
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TR-BDF2 TRX2 

est Est est Est 

Successful steps 52 40 44 33 
Error failures 19 7 14 3 
Iteration failures 0 0 0 0 
Function evaluations 204 139 163 105 
Jacobian evaluations 1 1 1 I 
LU decompositions 60 43 45 31 
Linear system solves 202 184 161 139 
Maximum estimate error 0.66 0.12 0.94 0.22 
Average estimate error 0.13 0.05 0.21 0.09 
Maximum local error 0.61 0.75 0.54 0.79 
Average local error 0.18 0.29 0.13 0.24 

measure of cost, including the total number of linear systems solved--the extra expense of forming 
E s t  was more than justified by the savings derived through reducing the number of unnecessary step 
failures. 

New phenomena appear if we allow J to vary. Now the way the first stage of each step is 
evaluated is important, and we have performed runs using a fully explicit first stage in each step 
(zn = h f ( x , ,  Yn)), a procedure we call EFS, as well as using the smoothed first stage obtained by 
taking advantage of the FSAL property (z, = (h/hn- l )Z(n-I)+l) ,  which we refer to as SFS. 

We consider the nonlinear test problem D4 of [ 8 ] 

Yl = -0.013yl - 1000ytY3, 
y~ = -2500y2y3, 
y~ = -0.013yl - 1000yly3 - 2500yzy3. 

It is to be solved on [0, 50] with initial values ( 1, 1,0) x. The results are given in Table 2. Integrations 
using est with EFS were very inefficient. The stiff components were excited by the evaluation of 
f ( x , , y , )  at each step, and the resulting errors were reflected in exaggerated local error estimates. 
Since these typically cause gratuitous step failures, the resulting inefficient integrations are character- 
ized by maximum estimate errors close to unity. It is revealing to inspect the behavior of est when 
the integration is controlled with Est. Then the maximum error in est observed using TR-BDF2 was 
763.56, and the average was 125.70. The corresponding statistics for TRX2 were 771.20 and 132.63. 
However, using SFS resulted in more efficient integrations, whether or not the error estimate was 
modified. Using TR-BDF2 with SFS and Est resulted in a very accurate error estimate. For TR-BDF2 
with SFS, it is unclear whether it is worthwhile to form Est. The matter is clearer with TRX2, which 
was integrated rather inefficiently with est, as evidenced by the maximum estimate error of 0.98. The 
maximum error in est observed when the modified estimate was used to control the integration was 
40.34, and the average error was 14.11. 

The analysis says that there is no advantage to modification when the problem is not stiff. This 
was confirmed by our integration of the van der Pol equation 

Yl = Y2, 
y; = , ( 1 - - y ~ ) y 2 - - y , ,  
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Table 2 
Problem D4 

Explicit first stage 

TR-BDF2 

est  Est  

Smoothed first stage 

TRX2 TR-BDF2 TRX2 

est  Est  est  Est  est  Est  

Successful steps 1041 
Error failures 642 
Iteration failures 0 
Function evaluations 7603 
Jacobian evaluations 1 
LU decompositions 1619 
Linear system solves 6560 
Maximum estimate error 0.99 
Average estimate error 0.37 
Maximum local error 0.56 
Average local error 0.01 

26 2102 36 25 24 47 23 
0 990 0 0 0 2 0 
1 0 1 0 0 0 0 

155 14776 217 78 75 185 114 
2 1 2 1 1 1 1 

20 2700 30 18 17 29 16 
153 12672 215 76 97 183 135 
0.15 0.99 0.21 0.19 0.09 0.98 0.23 
0.04 0.40 0.07 0.07 0.02 0.35 0.06 
0.62 0.42 0.50 0.56 0.62 0.42 0.50 
0.13 0.03 0.15 0.11 0.12 0.04 0.09 

Table 3 
Nonstiff van der Pol problem 

Explicit first stage Smoothed first stage 

TR-BDF2 TRX2 TR-BDF2 TRX2 

est  Est  est  Est  est  Est  est  Est  

Successful steps 116 116 94 94 116 116 94 93 
Error failures 22 23 21 21 22 24 20 19 
Iteration failures 2 1 6 2 2 1 3 2 
Function evaluations 658 669 580 586 529 557 480 482 
Jacobian evaluations 3 2 7 3 3 2 7 3 
LU decompositions 92 96 98 92 98 99 100 86 
Linear system solves 540 690 484 605 527 695 478 592 
Maximum estimate error 0.27 0.32 0.52 0.26 0.41 0.41 0.44 0.89 
Average estimate error 0.07 0.07 0.11 0.07 0.08 0.07 0.11 0.11 
Maximum local error 1.16 0.96 1.50 0.95 1.33 0.89 1.34 1.78 
Average local error 0.38 0.38 0.36 0.36 0.38 0.37 0.35 0.36 

over the interval [0, 20] with initial values (0 ,0 .25 )  r and parameter • = 1, The results are given in 

Table 3. There was no significant difference in the number of  steps or function evaluations required, 

nor in the quality of  the estimates. 
The D4 problem is a scaled version of  a problem of  Robertson. Following [ 10],  we solve in the 

original variables: 

y~ = - 0 . 0 4 y l  + 104y2Y3, 

y; = 0.04yl - 104y2Y3 - 3 x 107y~, 
y; = 3 x 107y~. 

The equation is to be integrated over the interval [ 0 , 4 x  107] with the initial conditions ( 1 , 0 ,  0) r. 
The results are given in Table 4. This problem is quite stiff, and the TRX2 method simply could 
not handle it, nor could TR-BDF2 using EFS and e s t .  Each of  these unsuccessful runs was ter- 
minated after 50000 function evaluations. The run with TR-BDF2 using Est  and EFS was suc- 
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Table 4 
Robertson problem 
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Explicit first stage Smoothed first stage 

TR-BDF2 TRX2 TR-BDF2 TRX2 

est Est est Est est Est est Est 

Successful steps x 631 x x 84 76 x x 
Error failures x 3 x x 11 5 x x 
Iteration failures x 901 x x 9 10 x x 
Function evaluations x 5560 x x 462 399 x x 
Jacobian evaluations x 288 x x 9 10 x x 
LU decompositions x 1512 x x 79 77 x x 
Linear system solves x 5561 x x 460 478 x x 
Maximum estimate error x 0.29 x x 0.52 0.39 x x 
Average estimate error x 0.01 x x 0.14 0.14 x x 
Maximum local error x 0.69 x x 0.71 1.01 x x 
Average local error x 0.02 x x 0.31 0.41 x x 

cessful, but it was plagued with a large number  of  iteration failures and was very inefficient. It 
is important to appreciate that the reason TR-BDF2 has difficulty here is ult imately due to er- 
rors arising from not evaluating the formula exactly. Significant improvement  can be realized by 
reducing K and allowing more iterations, though the cost is still about twice that incurred with 
SFS. TRX2,  on the other hand, simply lacks sufficient stability to be effective on this prob- 
lem. 

The results obtained with SFS were superior, and this time we see improvement  with the modified 
error estimate. Some additional insight into the quality of  the solution can be obtained by measuring 
how well the numerical solution satisfies the conservation law satisfied by the exact solution, Yl + Y2 + 
Y3 = 1. The solution using SFS and Est  satisfied the conservation law at each step with a maximum 
deviation of  1.55 x 10 -15, about 14 times the unit roundoff. 

We are reluctant to compare our experimental code with any production-quality code, but it is 
useful to have a point of  reference. The Robertson problem is the sample problem distributed with 
VODE [4] ,  a production-quality variable order, variable coefficient BDF code, and it is interest- 
ing to note that given the same tolerances, VODE takes 400 steps, experiences 30 error failures, 
no iteration failures, 599 function evaluations, 9 Jacobian evaluations, 97 LU decomposit ions,  and 
598 linear system solves. At these tolerances the cost of  using TR-BDF2 compares rather favor- 
ably. 

8. C o n c l u s i o n  

TR-BDF2 implemented properly with the quality local error estimate and continuous extension 
given here is an attractive implicit one-step method. Indeed, these are the ingredients missing in the 
strongly S-stable methods thoroughly studied in [ 1 ]. In a simulation environment like S IMULINK 
[20] where restarts are common and linear algebra is unusually fast, it has a great deal to offer, 
especially since it is easy to combine the method in a single code with TRX2 for those simulations 
where damping at infinity is not appropriate [22, p. 304].  
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