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CONTRACTIVITY OF WAVEFORM RELAXATION RUNGE-KUTTA 
ITERATIONS AND RELATED LIMIT METHODS FOR DISSIPATIVE 

SYSTEMS IN THE MAXIMUM NORM* 

A. BELLENt, Z. JACKIEWICZt, AND M. ZENNARO? 

Abstract. Contractivity properties of Runge-Kutta methods are analyzed, with suitable inter- 
polation implemented using waveform relaxation strategy for systems of ordinary differential equa- 
tions that are dissipative in the maximum norm. In general, this type of implementation, which is 
quite appropriate in a parallel computing environment, improves the stability properties of Runge- 
Kutta methods. As a result of this analysis, a new class of methods is determined, which is different 
from Runge-Kutta methods but closely related to them, and which combines its high order of ac- 
curacy and unconditional contractivity in the maximum norm. This is not possible for classical 
Runge-Kutta methods. 

Key words. waveform relaxation, Runge-Kutta method, stability, contractivity, differential 
system 

AMS subject classifications. 65L05, 65L07 

CR classification. G1.7 

1. Introduction. Consider the initial-value problem for systems of ordinary dif- 
ferential equations (ODEs) 

(1.1) { y'(t)= f(t,V(t)), t ? to, 
Y(to)= Yo, 

f: [to, o0) x Rm --+ Rm, which are dissipative in the maximum norm. It is the purpose 
of this paper to study contractivity properties of various numerical methods obtained 
by applying continuous Runge-Kutta (CRK) methods to waveform relaxation (WR) 
iterations of the problem (1.1). We discuss the methods corresponding to a fixed 
number of WR iterations as well as the methods obtained in the limit as the iteration 
index goes to infinity. It is proved that if the underlying CRK method has some de- 
sirable stability properties with respect to the test equations with forcing terms, then 
the methods corresponding to a fixed number of WR iterations are unconditionally 
contractive in the maximum norm. This is the context of Theorems 4.2 and 4.3 in 
?4. Iterating the WR iterations to convergence leads to the new classes of one-step 
methods, which give the different treatment to the diagonal part of the ODE system 
(1.1). For this reason, we will call them diagonally split Runge-Kutta (DSRK) meth- 
ods. These methods differ from RK methods, and they are not even included in the 
class of general linear methods introduced by Butcher. It turns out that if the under- 
lying CRK methods have appropriate stability properties, then the DSRK methods 
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are also unconditionally contractive in the maximum norm. This is the context of 
Theorem 4.4 in ?4. This is remarkable since the unconditionally contractive methods 
are very difficult to construct. For example, it was demonstrated by Spijker [19] (see 
also Kraaijevanger [9]) that the requirement of unconditional contractivity leads in 
the case of RK methods to the very restrictive order barrier p < 1. These new DSRK 
methods overcome this barrier. In summary, the approach of this paper leads to the 
new numerical methods for systems of ODEs, which are at the same time of high 
order and unconditionally contractive. 

Dissipative systems arise in practice from semidiscretization of parabolic partial 
differential equations and are discussed by Verwer [8], Kraaijevanger [9], [10], and 
Renaut-Williamson [18]. Usually in real life applications the dimension m of the 
system is large and the application of traditional numerical techniques to such systems 
can be quite time consuming. This is most evident when the system (1.1) is stiff and, 
as a consequence, the use of implicit schemes is required. This involves the solution 
of large systems of nonlinear equations at each step of the integration. In the quest 
for improving the efficiency of numerical simulation, it was proposed to first use some 
continuous-time iterations (Picard-Lindelof iterations) to "decouple" the system (1.1) 
and then discretize the resulting subsystems. The resulting WR methods were first 
introduced by Lelarasmee [11] and Lelarasmee, Ruehli, and Sangiovanni-Vincentelli 
[12] for time domain analysis of large scale nonlinear dynamical systems. A survey 
of this technique with emphasis on simulation of large electrical circuits was written 
by White, Sangiovanni-Vincentelli, Odeh, and Ruehli [20]. The convergence theory 
of WR methods has been brought on a firm mathematical basis by Nevanlinna and 
his coworkers [14]-[17]. We also refer to Lie and Skalin [13] for related results. 

To date, most of the work on waveform relaxation methods was concerned with 
convergence, error estimation and control, acceleration of convergence of Picard- 
Lindelof iterations, and implementation advantages in a parallel computing environ- 
ment. Recently, the authors [4], [5] attempted the investigation of stability properties 
of numerical algorithms based on waveform relaxation techniques by considering a 
special two-dimensional test system with two real parameters. In [4] the time-point 
relaxation Heun method with linear interpolation was analyzed, implemented with 
fixed number of Picard-Lindelof iterations, as well as the method obtained in the 
limit as the iteration index goes to infinity. It was found that the region of absolute 
stability is increased as compared to the usual implementation. The time-point re- 
laxation method is a variant of waveform relaxation in which each window is equal to 
the stepsize used in numerical integration. In [5] they observed similar phenomena for 
Runge-Kutta methods of higher orders with interpolants given by natural continuous 
extensions (NCEs) defined by Zennaro [21]. A message one can get from such studies 
is that, in general, the new DSRK methods have better stability properties than the 
CRK methods from which they were derived. In this paper we consider much more 
general systems of ODEs and find out that this trend is confirmed. To be more spe- 
cific, we study contractivity properties of numerical methods obtained by applying 
first to the system (1.1) the Gauss-Jacobi (WRGJ), the Gauss-Seidel (WRGS), and 
successive-over-relaxation (WRSOR) continuous-time iterations, and then applying 
CRK methods to the resulting systems of ODEs. The discretized iterations obtained 
in this way will be denoted by WRGJRK, WRGSRK, and WRSORRK methods, re- 
spectively. It is demonstrated that under some technical assumptions these iterations 
are unconditionally contractive for dissipative systems (1.1) for any mesh {to, t1,... } 
if the underlying CRK method is semi ANf (0)-stable or semi Af(0)-stable. These 
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stability properties were introduced recently by Bellen and Zennaro [2] and Zennaro 
[23] to investigate contractivity properties of RK methods with respect to test equa- 
tions with forcing terms. Similar results are also obtained for DSRK methods, i.e., 
methods obtained in the limit from WRGJRK, WRGSRK, and WRSORRK methods 
as the iteration index goes to infinity. 

We also investigate contractivity properties of numerical iterations based on ex- 
plicit CRK methods. It is demonstrated that under some assumptions the regions 
of contractivity of such iterations and the corresponding DSRK method (which is 
implicit) contains the regions of ANf(0)- or Af(0)-stability of the underlying CRK 
formula. This again shows the potential of numerical WR iterations although the 
improvement is not as dramatic as in the implicit case (in particular, the result- 
ing implicit DSRK method cannot be unconditionally contractive). However, it may 
happen that the region of contractivity of WR iterations and DSRK methods is quite 
large even if the region of contractivity of the underlying explicit RK method is empty 
(compare the example corresponding to explicit three-stage RK method of order 3 in 
?6). 

Although the analysis of this paper is restricted only to the systems of ODEs that 
are dissipative in the maximum norm, we would like to stress that similar ideas are 
also applicable in more general situations. This approach may lead to new classes 
of one-step methods that treat different parts of the system (1.1) in different ways 
depending on particular characteristics of the problem. The resulting methods could 
be called split Runge-Kutta (SRK) methods. In the case of dissipative systems the 
diagonal elements of the Jacobian matrix are special and are given special treatment 
(this leads to DSRK methods), but in general it may be useful to consider different 
types of splitting if the properties of the underlying system of ODEs suggest to do so. 

The organization of this paper is as follows. In the next section we define 
continuous-time WRGJ, WRGS, and WRSOR iterations and the class of CRK meth- 
ods with interpolation given by NCEs introduced by Zennaro [21]. We also define 
discretized iterations WRGJRK, WRGSRK, and WRSORRK resulting from appli- 
cation of CRK methods to the corresponding systems of differential equations for 
continuous-time iterations. These discretized iterations are well defined for sufficiently 
small stepsize and for all finite windows and converge to the same limit denoted by 
DSRK method as the iteration index goes to infinity. 

In ?3 we prove that the DSRK method has the same order of convergence as 
the underlying RK method and that the interpolants associated with it satisfy the 
properties of NCEs. 

In ?4 we formulate sufficient conditions for contractivity of WRGJRK, WRGSRK, 
and WRSORRK iterations and in ?5 we investigate the conditions for the unique solv- 
ability of the systems of algebraic equations that define DSRK method for arbitrary 
stepsize h, and the conditions for the convergence of discretized WR iterations. These 
results are independent of the length of the window (which may even be unbounded) 
and the number of steps. 

In ?6 we present some examples of unconditionally contractive methods of orders 
2 and 3 and discuss explicit methods up to the order 4. Finally, in ?7 some concluding 
remarks are given. 

2. Continuous-time and discretized waveform relaxation iterations. In 
this section we will discuss the iterative methods (continuous-time and discretized) 
for the solution of the system (1.1). Assume that the kth iterative solution yk(t) is 
given on some window [to, T], where in some cases T may be equal to infinity. Then 
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the continuous-time iterations WRG.J, WRGS, and WRSOR are defined recursively 
as follows: 

WRGJ iteration: 

(2.1) ~ d k| -dt = it(t) , k-Y,-(t),8k+1(t),yk+l(t),***, Iyk (t)), 
f dy =lt f_(,y t 

k 
yk+1(to) = Yo,i, 

i 1=1,2,... I,m,t C [to,T],k =0,1, ..; 
WRGS iteration: 

f'dyk+1 (t)_ 
(2~ ~~ . ) | = f (t, Yk1 + (t) I yk+1l(t) yk+ lt 

k 
1(t) ) . yk (t))k (2.2) dIt - 

_ i i 

t k+ 1 (to) =YO,a , Yi~~~Oi 

i =1, 2, . . ., Im,t [to) T], k =0,1, . . ; 
WRSOR iteration: 

Yi 
1 

J = fz (t, Yk+ 1(t)I. yk+ 1 (t), yk+ 1(t), Yk1 (t), * k ** Y(t)), 

(2.3) gi yk+i(to) yO,i, 

yk+l(t) - (1 w)yk(t) + Wpk+ (t), 

i =1,2... X m,t E [to,T], k = 0,1. 
Here w is a real parameter. Observe that for w = 1 WRSOR method reduces to 
WRGS iteration. 

It is evident that WRGJ method is quite appropriate for the implementation of 
numerical algorithms on parallel computers, since (2.1) is the decoupled system of 
ODEs and all the components can be handled simultaneously by different processors. 
As for the WRGS and WRSOR iterations, although at first sight one does not see any 
opportunities of exploiting some parallelism across the system due to the dependence 
of each component on the previous ones, it is still possible to take advantage of another 
type of parallelism across the time (see Bellen and Tagliaferro [1]). 

Let the grid to < t1 < ... < tn < tn+1 < ... be given and define the stepsize 

hn+1 = tn+- tn. To solve (2.1)-(2.3) numerically consider the class of v-stage CRK 
methods with interpolation given by NCEs. This class, applied to (1.1), takes the 
form 

v 

(2.4a) yrn+l =7(tn) + hn+iZarsf (tn + Cshn+1, Ysl+ ), r = 1, 2, ... , I, 

s=1 

(2.4b) TI(tn+l) = (tn) + hn+l1 bsf(tn + cshn+1, Yn+ 1) 
s=1 

(2.4c) (tn + Ohn+1) = 7(tn) + hn+1 E bs(0)f(tn + cshn+1, yn+l), 0 E [0, 1], 
s=1 

n = 0, 1,..., where cr = Ev=1 ars We restrict attention to the methods for which 
Cr E [0,1]. We recall from Zennaro [21] that the functions b5(0) in (2.4c) are polyno- 
mials of degree d, [(p + 1)/2] < d < p, where p is the nodal order of the method (2.4) 
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and [(p + 1)/2] stands for the integer part of (p + 1)/2. These functions satisfy the 
conditions 

b5(0) = 0 and b5(1) = b, s = 1,2, ...,v I, 

so that the piecewise polynomial function r(t) is continuous on the whole interval of 
integration and (2.4c) includes (2.4b) as a special case. This function 7r(t) will be 
referred to as an NCE of the numerical solution {q(tO), (tj), ... .} defined on the grid 

{to, tl, * .*.} 

Applying the CRK method (2.4) to the systems (2.1)-(2.3) along the mesh 
{to,tl,. . . ,tN} of the window [tO,tN := T] we obtain WRGJRK, WRGSRK, and 
WRSORRK discretized iterations defined by the following. 

WRGJRK method: 
(2.5a) 

v 

Yr,i = a+1(tn) +h Earsfi (tn+ cshj Nk(tn+ csh),.* * 
S=1 yk+1 - ~k+l(t '~?hN yftcr kt+ch'q t sh) 

111(tn + csh),Ys it,r+i(tn + c,h),...,r (tn +c.h)), 
(2.5b) 

v 

7 k+1 - 
(tn + Oh) = rk+1 (t,) + h bs(O)fi(tn + csh, 7j(tn + ckh),.. 

s=1 

77z- i(tn +cs h ),y+ k 
siX 1 (tn + cs h) ...... qk (tn + cs h) ) I 

r = 1,2, ... I,v,I= 1,2,..., m,n = 0,1,... I.,N-1,0 C [0,1],-k0,1, . ...; 
WRGSRK method: 

(2.6a) 
IJ 

yk+1 k j+lt+h7 
Yr +=t1 (tn) + h E ars fi (tn + c h, 7ql+ (tn + c,h) . . . 

s=1 

7 k+1 (tn + csh), Ysk+ k 1 (tn + csh) ,. *. * (tn + csh)), 
(2.6b) 

v 

i = (tn + h) = rjk+1(tn) + h E bs(0)fi(tn + c8h, rlj+1(tn + c8h),..., 
s=t1 

7j11 
(tn + 

c,h)yk1ktk?itn +c,h)), 
r = 1,2, ... ,I, I= 1,2,... , m, n = 0, 1... ,N- 1,0 C [0,1], k = 0, 1, ...; 

WRSORRK method: 

(r2 i+ 71i+1 (tn) + h E arsfi(tn + c,h, ,1 (tn + csh),.... 
(2.7a) s=1 

77 
k+1 (tn + csh), ys i rkl(tn + c5h), .*, ** (tn + c5h)), 

(2.7b) 

'q + (tn + Oh) = (1- w)qr(tn + Oh) 

+w (qk+1(tn) + h bs (0)fi(tn + c5h, 1k+ (tn + c,h),... 
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r = 1, 2, ... ,I, i = 1,2, ... , m, n = 0,1,... ,N - 1, 0 C [0,1], k = 0, 1, .... 
Here, r70(t) is a given initial guess (often chosen as the constant function yo). 

In the above formulas h = hn+l and for notational convenience we suppressed the 
dependence of yk+1 on the index n + 1. 

Using standard contraction principle arguments we can show that for sufficiently 
small h the methods (2.5)-(2.7) are well defined and have the same limit as k -* oo. 
This limit depends on the dimension m of the system (1.1) and is given by 
(2.8a) 

Yr,i = 7ji(tn) + h arsfi (tn + cshI 771(tn + csh),.. 
s=1 

7i -1l(tn+ cs h),XYs ,i X i+i1(tn+ cs h),..**X 1n(n+ sh 

(2.8b) 

71i (tn + Oh) = 7i (tn) + hE bs (0) fi (tn + cs h, 7i1 (tn + cs h),..., 
s=1 

?7i-l(tn + csh),Ys,iX7qi+l(tn + csh) ... qn71 (tn + cs h)), 

r = 1,2,... ,V,i = 1,2,...,m,n = 0,1,...,N - 1,0 C [0,1]. This method gives a 
special treatment to the diagonal part of the system (1.1) and will be called diagonally 
split Runge-Kutta (DSRK) method. This is a new class of one-step methods, different 
from CRK methods but strictly related to them, which as will be demonstrated in ?4 
is more promising with respect to stability properties. Observe that the method (2.8) 
is not even included in the class of general linear methods introduced by Butcher 
[7] (see also Burrage [6]). Although (2.8) was obtained as the limit of WRGJRK, 
WRGSRK, or WRSORRK iterations, this method is of interest in its own right. 

We summarize the above discussion in the following theorem (see also Theorem 
2.2 in Bellen and Zennaro [3]). 

THEOREM 2.1. Assume that the function f in (1.1) is continuous and satisfies 
the Lipschitz condition with respect to the second argument. Then there exists ho > 0 

such that, for all grids {to,t1, ... ,tN} such that max{hn+1: 0 < n < N - 1} < ho 
and all finite windows [to, tN := T], the following statements hold. 

(i) The numerical WRGJRK, WRGSRK, and WRSORRK iterations are well 
defined, i.e., the Iv x v-systems (2.5a), (2.6a), and (2.7a) have unique solutions 
{ yk'+1'' for i = 1, 2, ..., m,n== 0, 1,.,1 N-1, and k:= 0, 1,...; 

(ii) The limit DSRK method is well defined, i.e., the 2mv x 2mv system (2.8) has 
a unique solution {Yr,i}r=lji= and {r7i(tr + crh)}r1i,=; for all n = , 1,. .., N-; 

(iii) The numerical WRGJRK, WRGSRK, and WRSORRK iterations converge 
to the limit DSRK method (2.8) as k -* oo, i.e., 

lim sup I 1,k(t) -_ (t)I Io = 0. 
k-oo to <t<tN 

A common strategy to implement WRGJRK, WRGSRK, or WRSORRK methods 
is to fix a tolerance TOL and to iterate until 

max{f11,7kl(tn) -_ k(t)Iloo: 0 < n < N} < TOL. 

Of course, one should match the tolerance TOL with the accuracy of the method, i.e., 
with the choice of the grid {to, t1... ItN } on appropriately chosen window [to, T]. 
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These important aspects are not addressed in this paper and will be discussed else- 
where. 

We conclude this section with a few general remarks about numerical WR itera- 
tions. 

First of all, observe that a7k1+(t) given by (2.5b), (2.6b), or (2.7b), or i(t) given by 
(2.8b) are defined on the whole window [to, T] and not only on the grid {to, t1, ... , tN}. 
It is necessary to use these interpolants since integrating the ith component of (2.1), 
(2.2), or (2.3) by CRK method (2.4) we have to approximate the other components 
using the information from the previous iteration, and/or from the already compuited 
components in the present iteration, at nongrid points tn + c8h, s = 1, 2, ... ., . Simi- 
larly, integrating (1.1) by the DSRK method we have to compute the approximations 
7/(t) at t = tn + c5h, s = 1, 2, .. ., v. It is evident that these interpolants must be suffi- 
ciently accurate in order to maintain the nodal order p of the underlying RK method 
(2.4). 

Our second remark is that with the approach we have adopted the same stepsize 
h = h,+1 is used for all the components of the systems (2.1)-(2.3) or (1.1). Hence, we 
could also choose to approximate the other components of yk by means of the quan- 
tities yk and/or ySk'l instead of the quantities nN(tn + c,h) and/or jk+1(tn + c,h), 
respectively. This is exactly what Lie and Skalin f13] did. With this choice the limit 
method (2.8) degenerates into the CRK method (2.4). We have adopted a different 
strategy than Lie and Skalin, searching for new classes of one-step methods with bet- 
ter stability properties than the underlying RK methods. The results presented in 
?4 (compare in particular Theorems 4.1-4.3) as well as the examples presented in ?6 
give the evidence that this strategy has proven to be successful. 

The next observation is that if the underlying CRK method is a projection method 
(in particular, collocation), then we have ars = bs(cr), r, s = 1,2, ... ,v (see Zennaro 
[221) and, as a consequence, yk. = rqk(tn + csh). Therefore, also in this case, the 
DSRK method (2.8) degenerates to the CRK formula (2.4). 

We could also define WR iterations applying the CRK method (2.4) to the "pure" 
Picard iterations 

dy: 
k+ (t) -t( (k) (k)), dt -Jzk&Yi ,.YmI 

yk+1(to)=yo,, 

i = 1, 2. ..., m, t E [to, T], k = 0, 1, .... Then it is easy to see that the limit method 
would degenerate into the (classical) CRK method with the coefficient matrix 
[bs (cr)vrL v which, in general, differs from the coefficient matrix A of the under- 
lying method (2.4) (in fact, [bs(Cr)] = A if and only if (2.4) is a projection method). 
Hence, in view of the order barrier by Spijker [19] and Kraaijevanger [9] (compare ?4) 
the resulting method cannot have good contractivity properties. 

3. Order of accuracy of the DSRK method. To investigate the order of con- 
vergence of WR methods as k -+ oo, observe that the limit of WRGJRK, WRGSRK, 
or WRSORRK iterations on the window [to, T] is the same as the result of applying 
the limit DSRK method (2.8) in a step-by-step fashion over the mesh {to, tl, ... , tN}. 
Therefore, without loss of generality, we can consider only the local discretization 
error of (2.8) over the step [tn, tn l. The WR iterations restricted to one step only 
are called time-point relaxation methods. 

We have the following theorem. 
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THEOREM 3.1. Assume that the function f in (1.1) is sufficiently smooth; the v- 
stage RK method (2.4a-b) has nodal order p and that the interpolant (2.4c) is an NCE 
of degree d. Then the DSRK method (2.8) also has nodal order p and the polynomial 
7- defined by (2.8b) satisfies the properties of the NCEs, i.e., 

(3.1) sup IIy'(t) - `(t)II0o - O(hd) 
tn <t<tn+l 

and 

(3.2) ] G(x)(y'(x) -71(x))dx = 0(hP+1)1 
n ~~~~~~~00 

as h -* 0, for every sufficiently smooth matrix-valued function G(x). Here, y is the 
local solution, i.e., the solution to y'(t)-f (t, y(t)),t C [tn, tn+11, Y(tn) = 71(tn) 

Proof. By Theorem 2.1 the method (2.8) is well defined for sufficiently small h, 
and using standard arguments it follows that rj(t), which is a polynomial of degree d 
on [tn, tn+], is uniformly bounded together with all its derivatives as h + 0. 

Consider the initial-value problem 

|w,l (t) = fi (t , r/ 1 (t), / (t),I wi (t ) v t1il (t) *v1m( M))v 

Wi(tn) =_ -7i(tn), 

t c [tn, tn+ 1. It is clear that the application of the CRK method (2.4) yields exactly 
(2.8). Hence, r7 defined by (2.8b) is an NCE. Since r1 is bounded together with all 
of its derivatives, this property is inherited by the functions wi(t) defined by (3.3). 
Using the properties of the NCEs (see Zennaro [21]) we obtain 

(3.4) sup Iw'(t) - 71'(t)I = O(hd), 
tn <t <tn+l 

ftn+1 

(3.5) / g(x) (w'(x) - '(x) )dx = 0(hP+'), 
tn 

as h -* 0, for every sufficiently smooth (scalar) function g(x). Here, p is the nodal 
order of the underlying RK method (2.4a-b). We also have (see again [21]) 

(3.6) slup jwi (t) - -i (t)I = O(hd+1) 
tn ?<t<tn+l 

and 

/tn+1 

(3.7) ] g(X)(wj(X)- -j(x))dx =O(hP+') 
tn 

as h -* 0, for every sufficiently smooth (scalar) function g(x). 
Using the nonlinear variation-of-constants formula of Grobner and Alekseev we 

get, in vector notation, 

t 

y(t)-r7(t) = (t, x) (f (x, -1(x)) - '(x)) dx, 
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where K(t, x)- [Kij(t, x)]Tj=4 is a variational matrix depending on the function -(t), 
such that K(t, t) = I (the identity matrix) for all t > tn1. Hence, 

y (t) -47 (t) = OK(tx (X)(f()) -z '(x))dx 

+f(ti (t)) - (t) 

and for every matrix-valued function G(x) = [Gij(x)]>i.= we have 

/tn+ 1 

j/n+i G (x) (y'(x) - 71'(x))dx 
tn~ ~ t O x 

- j}!.8+ J,, G(x) & K((x () Th i()) -'())dx 

+ j G (x) (f (x, (x)) - j'(x))dx. 
tn 

Changing the order of integration in the double integral on the right-hand side of the 
above equality yields the relation 

Itn+1 

G (x) (y'(x) - 7j'(x))dx 
Jtn ~~t 1t+1x 

= ftn+1 ftn+1 G()&KQ(, x) (f(X, ())-'(x))d<dx 

rtn+ 1 

+ G G(x) (f (x, 7(x)) )- 7(x)) dx. 

This can be written in the form 
rtn+1 tn+1 

(39) G(x)(y'(x) - '(x))dx j H(x)(f(x, ?j(x)) - Th'(x))dx, 
tn tn 

where 

H(x) = G(x) + f 
G(Q) &KQ x) d<. 

The matrix-valued function H(x) = [Hij(x)]}.=1 depends on 7 and is also uniformly 
bounded together with all its derivatives as h - - 0. 

Writing (3.8) in componentwise form we obtain 

yl~l (t) - y~l J(t) ft (fj (x, (x)) - ij (x))dx + fi (t (t)) - l(t) 
j-1 nr 

rJt dKj(t,x)(f.(x_(x) 

j=1 n 
O 
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Hence 
(3.10) 

y(t(t) - (t) - if K t (DfiI (wj)(x) -- (x)) -w(x) + (x)) dx 

_ fi(t, v()) (wi(t) - -i(t)) + w'(t) - -'(t) + O(h2d+2). 

Similarly, writing (3.9) in componentwise form we obtain 

m t'n+ 1 
E Gij (x) (yj (x) - j(x))dx 
j=1 

m tn+1 

Hij (x) (fj (x, -(x)) - f(j 1(x)) dx 
j=1 tn 

m tn+l1 
= E t ~Hij (x) (fj (x, -(x) )fj (x, 1 (x), , -l() ( + () * m()) 
j=1 tn 

+w' (x) -Y j(x))dx. 

Hence, 

m tn+ 1 
E Gij (x) (yj (x) -7j (x) dx 
j=1 tn 

(3 .11 ) - JX Hij(x) (0f (Hi(.) ) (w (x) -(j x)) -w' (x) + (x)") dx 
j=1 n /9j 

+O(h2d+3). 

Since all the functions appearing in (3.10) and (3.11) are uniformly bounded with all of 
their derivatives as h -+ 0, (3.4), (3.6), and (3.10) yield (3.1). Moreover, since 2d > p 
(see [21]), (3.5), (3.7), and (3.11) yield (3.2). Finally, putting G(x) = I in formula 
(3.2) it follows that the nodal order or DSRK method (2.8) is p. This completes the 
proof. 0 

4. Contractivity properties of WR iterations. In this section we investigate 
how to choose the CRK method (2.8) in such a way that the resulting WRGJRK, 
WRGSRK, and WRSORRK iterations have desirable contractivity properties with 
respect to the nonlinear systems (1.1), which are dissipative in the maximum norm. 
This means that if y(t) and z(t) are solutions to 

{ y'(t) = f(t, Y(t)), t > to, (4.1)_ 
y(to) = yo, 

and 

(4.2) { z'(t) = f(t,z(t)), t > to, 

Z(to) = zo, 
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then 

(4.3) Ily(t) - Z(t)lOO -< ?IYo - zollOO, t > to, 

where for y C Rm the maximum norm is defined by IIYII = max{ lyi 1 < i < m}. 
We have the following result about the dissipativity of the system (1.1) in any norm 

on Rm (in particular for the maximum norm 11 I,,) 
THEOREM 4. 1. Assume that the function f(t, y) in (1.1) is of class C1 for t > to 

and y C Rm. Then the problem (1.1) is dissipative in a given norm 11 11 on Rm if and 
only if 

bt(J(t,y)) < 0O 

where J(t, y) is the Jacobian matrix 

[) dtj ] j=1 

and where, for any matrix A, ,u(A) is a logarithmic norm defined by 

/1(A)= lim _ +EA -1 

Proof. If ,u(J(t, ,u)) < 0, then the system (1.1) is dissipative in a given norm H * 

in view of Theorem 1.5.2 in Dekker and Verwer [8]. 
Assume next that (1.1) is dissipative in 11 Then it follows from Theorem 5.1 

in Kraaijevanger [9] that 

(4.4) liZ - y - e(f(t, z) - f(t, Y)) I > Ilz - Yll 

for all c > O, t c R, and all y, z C Rm. For fixed y and z = y + 6u, 8 > 0, we have 

fi (t, z) -fi (t, y) = , __ 
_y + u) _ 

j=1 0Y 

i=1,2,...,m. Hence, 

(4.5) f (t, z) - f (t, y) = J(t, y, 6)6u, 

where 

[ DYJ ] ~I j=l 

Substituting (4.5) into (4.4), dividing by 8 and taking the limit as 8 - 0+ we obtain 

I - CJ(t, y))ull > lull, 

c > 0, y, u C Rm. This leads to 

(I - cJ(t, y))-1 |l min 11 (I-cJ(t, y))uII > 1 
IluII=1 
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for sufficiently small 6 > 0, or 

11 (I-e EJ(t, YWI- 11 _< 1. 

Expanding (I - 6J(t, y))-1 in powers of 6 we obtain 

III + EJ(t, Y) II + o(62) <? 

for sufficiently small 6 > 0. Hence, 

III + J(t, Y)II -1 + 0(6) < 0, 

and taking the limit as 6 -- 0+ we obtain ,u(J(t, y)) < 0, which is our claim. 0 
Since the logarithmic norm o,u(A) corresponding to 11 * Iloo is 

( m 
[o,(A) i-<n 

mx ii + : laiaj) 
j=1 

(compare [8]), it follows from Theorem 4.1 that the system (1.1) is dissipative in the 
maximum norm if and only if 

(4.6) E | t fi (t. y) | < _ ayi (Y9 
37=1 

i=1, 2, . . . ,m, for all t > to and y e Rm. 
We denote the class of dissipative systems by F*. Important special subclasses of 

are dissipative linear systems, both with constant and nonconstant coefficients (i.e., 
f (t, y) = Ay and f (t, y) = A(t)y, respectively). For these classes the matrices A and 
A(t) are (weakly) diagonally dominant with negative diagonal elements. As already 
mentioned in the introduction such systems arise in applications, for example, from 
semidiscretization of parabolic partial differential equations (see [8]-[10] and [18]). 

The numerical methods that inherit the property (4.3) are said to be contractive. 
To be more precise, we have the following definition. 

DEFINITION 4.1. A one-step method is said to be unconditionally contractive 
in the maximum norm if, whenever it is applied to the systems (4.1) and (4.2) with 
f e JF* and with any stepsize h = h1 > 0, it yields approximations 'q(to + h) and 

((to + h) to y(to + h) and z(to + h) such that 

(4.7) H?7(to + h) - ((to + h) Ioo < Ilyo - zoII. 

Unconditional contractivity is a very desirable but strong property of numerical 
methods for ODEs, and it should not be surprising that such methods are very difficult 
to construct. For example, it was demonstrated by Spijker [19] (see also Kraaijevanger 
[9]) that the requirement of unconditional contractivity (4.7) leads in case of RK 
methods to the very restrictive order barrier p < 1. It will be demonstrated that the 
new class of DSRK methods introduced in this paper break this order barrier (see ?6 
for examples of such methods of order 2 and 3). 

To include in our discussion the explicit methods as well we also consider the set 
JF*(p) C F* of functions f which satisfy (4.6) and the additional condition 

af2(t, ) >y 
ayi 
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i = 1,2,... ,m,t > to,y E Rm, for some p > 0. This class Jc*(p) is included in the 
class F(p) defined by Kraaijevanger [9]. 

DEFINITION 4.2. The region of (conditional) contractivity in the maximum norm 

of a one-step method for ODEs is the maximum interval [-R, 0] such that whenever 

the method is applied to (4.1) and (4.2) with f E F*(p), p > 0, and with any stepsize 

such that 0 < ph < R, it yields approximations 7(to + h) and ((to + h) to y(to + h) 
and z(to + h) for which (4.7) holds. 

It will be demonstrated that the WRGJRK, WRGSRK, and WRSORRK iter- 

ations are contractive if the underlying RK method (2.4a)-(2.4b) as well as the in- 

terpolant (2.4c) satisfy the so-called properties of Af (0)-stability or ANf (0)-stability. 

These properties are generalizations of A-stability and AN-stability and were recently 

introduced and investigated by Bellen and Zennaro [2] and Zennaro [23]. The relevant 

definitions are reproduced below. 

DEFINITION 4.3. The region of Af(0)-stability of the RK method (2.4a)-(2.4b) 

is the maximal segment [-r, 0] such that the matrix I - xA is nonsingular and 

|1 + xbT(I - xA)-lel + llxbT(I - xA)-ll = 1 

for -r < x < 0. The method (2.4a)-(2.4b) is said to be Af (0)-stable if r = +00. Here, 

A = [aij] ,1 is the coefficient matrix of RK method (2.4a)-(2.4b), b = [b, b2,.. ,]T 

is the vector of weights, and e := [1, 1,..., I]T E RV. 
DEFINITION 4.4. The region of ANf (0)-stability of the RK method (2.4a)-(2.4b) 

is the maximum segment [-r, 0] such that the matrix' I- AX is nonsingular and 

1I + b TX(I - AX)el + IlbTX(I - AX)-1'I1 = 1 

for -r < xi < 0,i = 1,... ,V, where X = diag (xl,x2,...,x>). The method is said to 

be ANf (0)-stable if r = +oo. 

Remark. In [2] the above condition was formulated in the equivalent form 

1 + bT(I - XA)-1Xel + jibT(I - XA)-1Xlll = 1, -r < xi <0, i = 1,..., . 

Similar definitions are given for the interpolants and for CRK methods. 

DEFINITION 4.5. The region of Af (0)-stability of the CRK method (2.4) at the 

point 0 is the maximum segment [-r(0), 0] such that the matrix I - xA is nonsingular 

and 

I1 + xb(O)T(I - xA)-lel + tIxb(0)T(I - xA)-jl l1, 

for -r(0) < x < 0, where b(0)T = [b1 (0), b2(0), ... , bv(0)]T . The CRK method is said 

to be Af(0)-stable at the point 0 if r(0) = +oo. The segment [-R*, 0], where R* = 

min{r(cl), r(c2), .. ., r(cv), r(1)} is said to be the region of semi Af (0)-stability of the 

CRK method (2.4). The CRK method is said to be semi Af(0)-stable if R* = +oo. 

Note that r(1) = r of the Definition 4.3. 

DEFINITION 4.6. The region of ANf(0)-stability of the CRK method (2.4) at the 

point 0 is the maximum segment [-r(0), 0] such that the matrix I - AX is nonsingular 

and 

11 + b(0)TX(I - AX)-'el + IIb(0)TX(I - AX)-'II, = 1 

for -r(0) < xi < 0, i = 1,.. ., Iv. The CRK method is said to be ANf (0)-stable at the 

point 0 if r(0) = +o?. The segment [-R*,0], where R* = min{r(cl);r(c2),. . . r(c,), 
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r(l)} is said to be the region of semi ANf (O)-stability of the CRK method (2.4). The 
CRK method is said to be semi ANf (0)-stable if R* = +oo. Note that r(l) = r of 
Definition 4.4. 

The above definitions are relevant to the scalar test equations with forcing terms 

(4.8) y'(t) Ay(t) + g(t), t > to, 

y y(to) =yo, 

and 

(4.9) 
f y'(t) A(t)y(t) + g(t), t > to, 

y(to) = yo, 

respectively. It is known (compare [2]) that if A < 0 and A(t) < 0 their solutions 
satisfy tlle inequalities 

(4.10) ly(t)l < max {lyol, sup W }, t > to, 
to<x<t -A 

and 

(4.11) y(t)l <maxlyol sutp (x), } 
to?x?t -A(x) 

respectively. It was demonstrated by Bellen and Zennaro [2] that if hA c (-r(O), 0), 
where r(O) is as in Definition 4.5, then the numerical approximation r(to + Oh) to the 
solution y(to + Oh) of (4.8), furnished by the CRK method (2.4) satisfies 

ln(t + h)j m r gyl mx1(to + Crh)l 
17/(to + h)I ? maxjYoii' lr<v -A 

which is a discrete analogue of (4.10). Similarly, if hA(t) c (-r(O), 0), where r(O) 
is as in Definition 4.6, then the numerical approximation q(to + Oh) to the solution 
y(to + Oh) of (4.9), furnished by CRK method (2.4), satisfies the inequality 

Jr(to +Oh) I max lyoI, max1(o+Ch 
O<r<v?-A(to + Crh) } 

which is the discrete analogue of (4.11). 
To study contractivity properties of WR iterations, we will make the following 

assumptions. 
(Hi) The function f in (4.1) is sufficiently smooth, f c ,F*(p) for some p > 0, 

and 

(4.12) f(t IY) < 0, i = 1,2,... ,m, 
a9yi 

for all t > to and y c Rm. 
(H2) The mesh {to, t,... ., tN} is such that 

p max hn+1 < R*, 
O<n<N- 1 
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where hn+l= ti+, - t7 and [-R*, 0] is the region of semi ANf (0)-stability of the 
CRK method (2.4). 

It follows from Theorem 2.1 that the WRGJRK, WRGSRK, and WRSORRK are 
well defined for sufficiently small stepsize h. Zennaro [23] proved a stronger result that 
these iterations are well defined if the function f satisfies (4.12) in H1 and the mesh 
{ to, t1, . . ., tN} satisfies H2. The next two theorems are concerned with contractivity 
properties of these WR iterations. 

THEOREM 4.2. Assume H1, H2, and that the initial approximations r/3 and C) to 
the solutions y and z of (4.1) and (4.2), respectively, are such that 

11T(t) - C)(t) IO <? IIYo - zollI 

for t c [tO, tN]. Then the numerical approximations rk and Ck generated by the 
WRGJRK, WRGSRK, and WRSORRK, 0 < w < 1, iterations satisfy the inequality 

(4.13) max I1rk (tn + Oh) _ k(tn + 0h)Jo < IIyo - zolloo 
Oc {c1 ,C21 ,. . . C, ,1 

for n 0 O, 1, ... , N - 1. In particular, if R* = +oo (i.e., the underlying CRK method 
(2.4) is semi ANf (0)-stable) then (4.13) holds for any problems (4.1) and (4.2) with 
f c F* satisfying (4.12) and for any mesh {to, t1,... ,tN}- 

Proof We will prove this theorem only for WRGJRK iteration by using the 
induction on the iteration index k and on the step index n. The other two cases can 
be treated in a similar way just by adding the induction on the component index i. 

It is clear that (4.13) is satisfied for k = 0 and 0 < n < N - 1. Assume that 
(4.13) is true for fixed iteration index k and for all 0 < n < N - 1, and we will show 
that this is also true for the iteration index k + 1 and 0 < n < N - 1. This will be 
accomplished if we are able to show that the inequality 

(4.14) 11 7k+ 1 (tn) _ k+ l (tn)Illo < IIYO - ZOlloo 

implies (4.13), since (4.14) is clearly satisfied for n = 0. 
Subtracting WRGJRK iterations applied to (4.1) and (4.2), respectively, we ob- 

tain 

yk+1 Z zk+l - k+l(t - _ k(t( + h A (yk+l -zk+l 
r,z ,i tR+i t n) (i tn) + hS arsAiist , 

s=1 

i m 

+h E ars Aijs(k(tn + csh) - j(tn + csh)), 
s=1 3=1 

3=z 

r= 21 2..., o,i= 1,2, ...,Iml and 

(tn + Oh) - (+1(tn + Oh) 
- k+l (tn) 

- 
I (tn) 

+ h bs (O)Aiis(Ysi+ - Z i1) 
s=1 

v m 

+ h > bs (0) >3 Aijs (tn + cs h) (tn + c h)), 
s=1 3=1 

3=1 
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i =1, 2, ... ., m, 0 C [O, 1], where 

-fi (tn + cs h, yis ) 
3 

09~yj 

i,j 1, 2, ..., m, s 1,2, ... ,I, and the -yis's are suitable vectors that result from 
the application of the mean value theorem. 

Put 

Xij= hdiag (Aijl, Aij2, A * jv) 
yk+1 = - k+1 yk+1 yk+l1T 

i ~ -L li I 2, i . . I * V,i 

i -l 1,i 'X 2,i X v,iJ 

7/ik = 7(tn + c1 h), 7Zi(tn + CAI) .. , 7qi(tn + cvh)] 

= [(tn + c1h), 
k 

(tn + C2h), *,Y(tn + ch)]y. 

Then 

yk+1 zk+1 Z (kk+l &1 

m 

+AXii (Yik+1 _ Z2k+1) + A Xij (r k 

3=1 

and 

7q k+1(tn + Oh) - (tn + Oh) 

= k+1 (tn) - 1 (tn) i 'i 

m 

+ b(O)TXii (yk+1 Z+l ))+b(O)TZXij_j(k ) 
,j=1 
32 

It follows from H1and H2 that hAjir > -hp > -R*,r r1,2, ...v,. This means that 
Xii belongs to the region of semi ANf (0)-stability of the underlying CRK method 
(2.4). In particular, the matrix I - AXii is nonsingular and 

yk+ 1 - 
zk+ 1=(I- AXii) i (tn ) i (tn)) 

m 

+ (I-AXii)-A Z Xij(r 
3=1 
3=z 

Substituting this relation into the expression for q1k+1(tn + Oh) - ik+(tn + Oh), after 
some computations we get 

q k+1 (tn + Oh) - + (tn + Oh) = (1 + b(O)TXi(I -AXii) 'e) (k+l (tn)- + (tn)) 

m 

+b(O)TX,(I -AXii) 1X7i1 ZXij(r' - 

,j-1 3 
= 



WAVEFORM RELAXATION RUNGE-KUTTA ITERATIONS 515 

Using the H6lder inequality luTvl < IIuIIjIIvII,, the above equation leads to the fol- 
lowing estimate 

(tn+ Oh) - (2k+1(tn+ Oh)I 

I 1 + b(O)TX22(I - AXii)1e l+l (tn)k-+l 

m 

+ |b(O)TX,,(I- AXX) 1 1I|X271 S Xij(jk _ (jk) I)c 
3=1 
3=z 

i 1, 2, ... , m, 0 C [0, 1]. Taking into account that 

llX - 
X'jj (j 

_ 
qjk) 

|| 3 max | -Aijr (jk (tn + Crh) -(j (tn + Crh)) 
~X~1X~J (~ - ~ ~ 1<r< -Aiir 

we get 

il(t? + Oh) - + (tn + Oh)I 

< (11 + b(0)TX2,(I - AXii)-lel + Ilb(O)TXi(I - AXti)-1H1) 

l,qk+l 
E 3 7= 1 Aijr I7jk(tn + Crh) k(tn + Crh) I 

x max i { 1(tn) -(+(tn) |, max 3=2 -iir 

i = 12, .... , m, 0 C [0, 1]. Since Xii belongs to the region of semi ANf (0)-stability of 
the method (2.4) we have 

I1 + b(O)TX,' (I - AXi)-lel + IIb(0)TX22(I -AXii)-11 1, 

i=1, 2, . . I mI for 0c {cl, c2, ..., 1}. Hence, 

i+(tn + Oh) -i + (tn + Oh) 

i,fk+l ma ZT=1 Aijr I ?7k (tn + Cr h) ~jk tn +Cr h)j < max {|+(tn) _(+(tn )| max 3J=z 

i = 1,2, ..., m, C {Cl, C2, ..., C,1}. Taking into account that 

m 

1:lijrl < -Aiir r 1, 2, .. ., IJ, 
3=1 
32z 

(recall that f c F*), the induction hypothesis (4.13) and the condition (4.14) we 
obtain 

1+(tn + Oh)- + (tn + Oh)I ? lyo - zol1o, 

i = 1,2, ..., m, 0 c {c1, c2, .. , cv, 1}. This proves (4.13) with k replaced by k + 1. It 
is also clear that if the CRK method is semi ANf (0)-stable, then (4.13) is satisfied 
for any mesh {to, t1, .... , tN}. This completes the proof. O 
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If &fi/&yi are negative and constant, we can obtain the desirable property of 
contractivity in the maximum norm requiring, instead of ANf (0)-stability of CRK 
method, the weaker property of Af (0)-stability. To be more precise, consider the 
following hypotheses. 

(H*) The function f in (4.1) is sufficiently smooth, f C J?*(p) for some p > 0, 
and there exist negative constants Ai such that 

(4.15) f(t,y) Ai i = 1,2,...,m, 
ayi 

for all t > to and y C Rm. 
(H2) The mesh {to, t1,.. , tN} is such that 

p max hn+i < R*, 
O<n<N-1 

where hn+1 = tn+- tn and [-R*, 0] is the region of semi Af (0)-stability of the CRK 
method (2.4). 

We have the following analogue of Theorem 4.2. 
THEOREM 4.3. Assume H*, H2, and that 

11a(t)- (?(t)llKO ? K1yo - zolloo 

fort c [to, tN]. Then the numerical approximations rk and (k generated by WRGJRK, 
WRGSRK, and WRSORRK, 0 < w < 1, iterations satisfy (4.13). In particular, if 
R* = +oo (i.e., the underlying CRK method (2.4) is semi Af (0)-stable), then (4.13) 
holds for any problems (4.1) and (4.2) with f c F* satisfying (4.15) and for any mesh 

{tO,tl,- -.- ,tN I}- 

Proof. Proceeding similarly as in the proof of Theorem 4.2, we obtain 

ikl(tn+ Oh)- + (tn + Oh)j 
< (11 + xb(O)T(I - xA)-lel + llxb(O)T(I - xA)-1111) 

3TX=i Aijr T(tn + cr h) _ k(tn + crh)l 
x max ilqk+l (tn) 

1 
+(trj) 1, maxE 3= A 

i = 1,2, .. ., m, where x hAi. Since hAi > -ph > -R* it follows that x belongs to 
the region of semi Af(0)-stability of the method (2.4), and by the usual arguments 
the conclusion follows. 0 

Remark. The above results (Theorems 4.2 and 4.3) are independent of the length 
of the window [to, tN := T] and on the number of steps N. In fact, they are valid for 
sequences of mesh points {to, t1, ... ., tn,. . .} on the unbounded window [to, +oo) . 

We conclude this section with the following result about the region of (conditional) 
contractivity of the DSRK method (2.8). 

THEOREM 4.4. Let the hypotheses of Theorem 4.2 be satisfied and let N = 1. 
Moreover, assume that the DSRK method is well defined and that the WRGJRK, 
WRGSRK, and WRSORRK, 0 < w < 1 iterations applied to (4.1) and (4.2) con- 
verge to the numerical solution defined by DSRK method (2.8). Then the region 
of (conditional) contractivity [-R,O] of the DSRK method (2.8) includes the region 
[-R*, 0] of semi ANf (0)-stability of the CRK method (2.4). In particular, if the CRK 
method is semi ANf (0)-stable, then the DSRK method is unconditionally contractive. 
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Proof. Computing the limit as k -* oo in (4.13) for 0 = 1 and n = 0 we obtain 

II71(to + h) - ((to + h)II, < IlIo - ZOIIcQ, 

which is the desired conclusion. U 
Theorems 4.2-4.4 suggest ways to construct numerical schemes with good con- 

tractivity properties in the maximum norm. Indeed, at least two possibilities have 
been opened. One consists of implementing the numerical WR iterations along a cer- 
tain window [to, tN], and the other is to advance in a step-by-step fashion with the 
new DSRK method. In the latter case, the resulting systems of nonlinear equations 
could be solved by some modification of the Newton method. Observe that the DSRK 
method is always implicit even if the underlying CRK method is explicit. Therefore, 
in this case the use of WR iterations seems to be more appropriate than the use of 
the corresponding DSRK method. 

Time-point relaxation methods, in which a fixed number of iterations is per- 
formed, are discussed in [4] and [5]. 

5. Existence of solutions of the algebraic equations in DSRK schemes. 
It follows from Theorem 2.1 in ?2 that the algebraic equations for the WRGJRK, 
WRGSRK, and WRSORRK iterations and for the limit DSRK method are well de- 
fined if the function f appearing in (1.1) is smooth enough and the stepsize h is 
sufficiently small. We have mentioned in ?4 that in case of numerical WR iterations 
Zennaro [23] proved a more useful result thlat these equations have unique sollutions 
if the assumptions of Theorem 4.2 are satisfied, i.e., if the function f satisfies H1 and 
the grid {to, tl, .. . , tN} is such that H2 holds. In this section we establish a similar 
result for DSRK method (2.8) imposing additional restrictions on the function f. We 
will also investigatc the convergence of the numerical WR iterations to the numerical 
solution defined by DSRK methods. 

Concerning the function f appearing in (4.1) and (4.2) assume that f c :F* and 
that there exists a constant q C (0,1) such that 

(5.1) & ? -q yy) 
3=2 

i 1,2, ... ,m, for t > to and y c Rm. Clearly, (5.1) is a stronger condition than 

(4.6). If f(t,y) = Ay or f(t,y) = A(t)y, the condition (5.1) means that the matrices 
A or A(t) are strongly diagonally dominant. 

We have the following theorem. 
THEOREM 5.1. Assume H1, H2, and that function f satisfies the condition (5.1). 

Then the limit DSRK method is well defined, i.e., the 2mv x 2mv system (2.8) has 
a unique solution {Yr,i}rV=ni l1 and {0(tn + crh)} i=Liforall n 0, 1,. .., N-1. 

Moreover, the WRGJRK, WRGSRK, and WRSORRK, 0 < w < 1, iterations converge 
to the limit DSRK method at tn + Oh, 0 C {ci2, . ...,c,1}, for n 0, 1,.. ., N-1. 

More precisely, 

max max JIk(tn + Oh) - 7(tn + Oh)II o 
(5-2) 

O<n<N-1 0E{c1,C2,---,Cv,J} 

<8k max IIr0(t)- 7(t) - , 
to <t<tN 

where 6 = q for WRGJRK and WRGSRK iterations and 6 1 - w(1 - q) for 
WRSORRK, 0 < w < 1, iterations. 
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Proof. As in Theorem 4.2 we will prove the result only for WRGJRK iterations. 
The other two cases can be treated in a similar way by an additional induction step 
on the component index i. 

Consider the mapping F, which assigns to the piecewise continuous function q k 

of degree d (the degree of NCE in (2.4c)) the piecewise continuous function Tqk+1 of 
the same degree d, defined by WRGJRK iteration (2.5). The fact that this mapping 
is well defined was proved by Zennaro [23]. It is clear that we can view F as the 
mapping 

F: RmN(v+l) t RmN(v+l) 

which assigns to the column vector 

uk = [(qk (tn + c1h), ... , rk(tn + cvh), X X(tn+1))n=),1,.. .,N-1] 

the column vector 

uk+1 = [(k+l?(tn + cih)... . 
1 i (tn c,h), .k+?l(tn?+))n=01 .N-1]T, 

tqk(to) 
- 

i1k+l(to) = yo. We will show that F is a contraction. Let ,k+l 
- 

((k), 

(k(to) 
- (k+1(to) = yo, be given and denote by vk+1 and vk the corresponding column 

vectors defined by the values of ,k+?1 and ,k at tn + Oh, 0 E {Cl, C2, ... , cv, 1}, nr 
0,1, .1. , N - 1. We will use induction on the step index n and assume that 

Ik+l (tn) _ ,k+l (tn) 

(5.3) < q max mECll ax 1 1r,k (tn+ ?Oh) - k (tn+ Oh) II0 

This assumption is clearly satisfied for n = 0. Proceeding as in the proof of Theorem 
4.2, we obtain 

?(t+ Oh) - i +(tn + Oh)I 

ZjE Ai |IAjrII (tn + Crh) -( (tn + crh)l 
< max 

I 
Tlk(tn) (tn)|, max 32 -'inrh 

i 1, 2, ..., m, 0 C {c1,c2, ...,c,},n 01, . ..., N- 1, where Aijr are defined as 
before. Taking into account that 

m 

E IAijrI < -qAiir 
j=1 
j=1 

(recall that f satisfies (5.1)) and the induction hypothesis (5.3) it follows that 

max max Ik+l (tn + Oh) - k+l (tn + Oh) lloo 
(5.4) ~~O<n< N-1 0E{cl,C2 , . .,c,, ,1 } 

< q max max 1,qk(tn + Oh) -_ k(tn + Oh)IIoo 

This means that 

IF(uk) - F(Vk)IIo < qIluk _ Vk- ) 
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and in view of q C (0,1) the mapping F is a contraction. Hence, since RmN(v+l) iS 
a complete metric space we can conclude that F has a unique fixed point u. This 
means that the DSRK method (2.8) is well defined. Moreover, it follows from (5.4) 
that the rate of the iterative process (2.5) is given by 

max max Ik+?1(tn + Oh) - 7(tn + Oh) I 
O<n<N-1 0E{C1,C2,. ..C ,)1} 

< q max max 1,qk(tn + Oh) - (tn + Oh) II0, O<n<N-1 0E{C1,C2,---,C>,)1 

which implies (5.2). This completes the proof. [ 
Remark. It is clear that the conclusion of Theorem 5.1 holds if we assume H1 

and H* instead of H1 and H2; compare with the proof of Theorem 4.3. Moreover, we 
would like to stress again that the above result is independent of the length of the 
windows [to, tN] and on the number of steps N. 

It follows from the results of [21] that the degree d of the NCE (2.4c) satisfies the 
inequality d < v*, where v* is the cardinality of the set {Cl, C2,... , 1, C}. Therefore, 
unless d = v* and 0, 1C {cC, c2,... , c>,}, the polynomial ;7(tn + Oh) is determined by 
interpolation at the points tn + Oh, 0 C {O, cl, ... , c>,I 1}. In this case we have 

max ~jt~?C max (t?O),, tn,<t<t,+, VW() 11 < C V* ax1 l(n + Oh)11loov 

where C is the norm of the relevant interpolation projector. As a consequence, by the 
linearity of the projector, the condition (5.2) implies 

(5.5) max I |k (t) _ 7(t) I _ C8' max I |0 (t) - j(t) IIoo 
tO?<t<?tN tO?<t<?tN 

Moreover, even if d = v* and 0, 1C {C1, C2, .. ., c>1}, the estimate (5.5) may still hold. 
To this purpose, it is sufficient to assume, for example, that the interpolant is ANf (0)- 
or Af (0)-stable for any 0 C [0, 1] and not only for 0 C {cl, C2, ... , cv, 1}. In this case 
the inequality (5.5) is satisfied with C= 1. 

As for iterative solutions of linear systems, it is possible to get results about 
the unique solvability of (2.8) and the convergence of numerical WR iterations under 
weaker conditions than those given in Theorem 5.1. Furthermore, it is possible to 
obtain the results about the different rates of convergence for the three types of WR 
iterations. In this paper we confine ourselves to the simple result given in Theorem 
5.1 and the generalizations mentioned above will be reported elsewhere. 

6. Examples of contractive methods. In this section we give some examples 
of unconditionally contractive numerical WR iterations and DSRK methods of order 
1, 2, and 3 generated by CRK methods (2.4) of the same order. Moreover, we also 
give some results about explicit methods up to order 4. All the examples listed here 
are taken from [2] and [23]. 

We begin with unconditionally contractive methods and recall that we have as- 
sumed cr C [0, 1], r = 1, ... , v for the CRK method (2.4). 

6.1. One-stage methods of order 1. The only Af(0)-stable and ANf(0)- 
stable RK method in this class is backward Euler. Since c1 = 1, no interpolation 
is necessary for it. However, this method is a collocation method and, therefore, as 
we already observed in ?2, the corresponding DSRK method (2.8) coincides with the 
backward Euler method itself. Thus, we have proved again the unconditional con- 
tractivity of the backward Euler method (see [9]). Furthermore, the corresponding 
numerical WR iterations are unconditionally contractive. 
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6.2. Two-stage methods of order 2. The Af(0)-stable RK methods in this 
class are also ANf (0)-stable and are characterized by the following Butcher tableau: 

C1 a11 c1 -all 

1 bi b2 

bi b2 

where 0 < cl < ,b1 1 b2 1-bl, and all > bi (see [2]). The linear 

interpolant, given by 

(6.1) bi(0) b10, 
b2(0) b20, 

is an NCE of these methods and is also semi ANf (0)-stable (more precisely, it is even 
ANf(0)-stable). Therefore, in view of Theorems 4.2 and 4.4, by choosing the same 
parameters in (2.8), we have a class of unconditionally contractive 2-stage DSRK 
methods of order 2. Moreover, the corresponding numerical WR iterations are un- 
conditionally contractive. 

6.3. Three-stage methods of order 3. Within this class, we give the following 
example of the ANf (0)-stable RK method: 

0 2 -2 1 
2 2 

1 - 2 -1 

1 1 2 1 
6 3 6 
1 2 1 
6 3 6 

see [23]. An ANf (0)-stable NCE of degree 2 of this method is given by 

b1(0) = 5 02+, 
6 

(6.2) b2(0) =022 

b3(0) - 102 
6 

Thus, the corresponding DSRK method (2.8) as well as the numerical WR iterations 
(2.5), (2.6), and (2.7) are unconditionally contractive. 

Next we consider the explicit RK methods and their regions of (conditional) 
contractivity. 

6.4. One-stage methods of order 1. The only explicit RK method in this 
class is the forward Euler metlhod. As for the implicit case, since c1 0, no inter- 
polation is necessary for it. Moreover, since it is again a collocation method, the 
corresponding DSRK method (2.8) coincides with the forward Euler method itself. 
Now, from [9] we know that its region of contractivity is [-1,0] and we can observe 
that, if we apply Theorem 4.4, we get the same result. In fact, its region of ANf (0)- 
stability is exactly [-1, 0]. 
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6.5. Two-stage methods of order 2. The RK methods in this class having 
nonempty region of Af (0)-stability are characterized by the following Butcher tableau: 

C2 C2 0 

b1 b2 

(see [23]), where 2 < C2 < 1, b2 1 1/2c2 and bi 1 - b2. For such methods, with the 
linear interpolant (6.1), the region of semi Af (0)-stability coincides with the region of 
semi ANf (0)-stability and is the segment [-2 + 2 X 0]. Hence, by Theorems 4.3 and 
4.4, the region of contractivity of the corresponding DSRK method (2.8) and of the 
numerical WR iterations contains the segment [-2 + 1, 0]. 

Observe tllat the best result is obtained for c2 = 1, that is, for the Heun method. 
In this case, the region of contractivity contains the segment [-1, 0], which is just the 
best we can get with classical two-stage RK methods of order 2 (see [9]). 

6.6. Three-stage methods of order 3. Within this class, we consider the 
following RK method: 

1 1 0 0 

l 4 0 

1 1 2 
6 6 3 

which, as has been proved in [9], has the maximum region of contractivity equal to 
[-1, 0]. This method with the NCE given by (6.2) is a CRK method whose region of 
semi Af (0)-stability is [-1, 0] and coincides with the region of semi ANf (0)-stability. 
Therefore, by Theorems 4.2 or 4.3 and Theorem 4.4 we find again that the region 
of contractivity of the corresponding DSRK method (2.8) and of the numerical WR 
iterations contains the segment [-1, 0]. 

We also consider the other well-known method: 

0 0 0 
2 2 

1 -1 2 0 

1 2 1 
6 3 6 

which, since a31 < 0, in view of the results in [9], has an empty region of contractivity. 
However, this method, together with the NCE of degree 2, 

b (0) 302+ 10 UlV-4 12 

(6.3) b2(0) - 102 ? 10, 
2 6 

1go2 I~ 
b3(0) 4 120 

is a CRK method whose region of semi Af (0)-stability is the segment [-1.59607 ... , 0] 
and whose region of semi ANf (0)-stability is the segment [-0.5, 0]. Therefore, in this 
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case, the region of contractivity of the corresponding DSRK method (2.8), and of 
the numerical WR iterations, contains the segment [-0.5, 0]. Moreover, for problems 
satisfying the hypothesis HI this region is enlarged to the segment [-1.59607 .. ., 0]. 

6.7. Four-stage methods of order 4. In [9] it is proved that, within this class, 
all classical RK methods have an empty region of contractivity. Unfortunately, we 
are not able to remove this negative result with our WR techniques. For example, 
whereas the well-known method 

2 2 

1 O 0 1 0 

*1 1 1 1 
6 3 3 6 

has the region of Af (0)-stability equal to the segment [-1.29559 .. ., 0] and the region 
of ANf (0)-stability is equal to the segment [-1, 0], all its NCEs have an empty region 
of Af (0)-stability at the point 0 = 2 and, hence, we cannot get any positive result. 

This situation is common to all explicit four-stage RK methods of order 4. Al- 
though there is clearly a potential for the discrete methods, the NCEs prevent us from 
getting DSRK methods with nonempty regions of contractivity. 

7. Concluding remarks; We have demonstrated that by using the waveform 
relaxation techniques it is possible to improve the contractivity properties of the 
Runge-Kutta methods. As indicated by the examples given in ?6, this is true for 
both implicit and explicit methods, although this is more evident in the former case. 
The examples of explicit methods also seem to indicate that the limits of the proposed 
technique come out from the interpolation (2.4c) rather than from the discrete method 
(2.4a)-(2.4b) itself. This view is further supported by the result proved in [23] by using 
the results in [9]: the upper bound on the order of DSRK method (2.8) (where (2.8c) 
is an NCE) with nonempty region of contractivity is 4. Once again, the bound is 
caused by the use of the NCEs. 

In view of the above remarks it seems to be of interest to extend the techniqlues of 
this paper to DSRK methods with other types of interpolation. Turning the problem 
around, we could also try to look for new interpolants that would lead to DSRK 
methods with optimal contractivity properties. 

Apart from stability and contractivity considerations other types of interpolation 
are of interest in many situations. This is the case if, for example, various components 
of the system (1.1) change at different rates and should be integrated by using different 
stepsizes for each component to improve the efficiency of the algorithm. In such cases 
NCEs are not the best choice since, in general, the uniform order of NCE is lower 
than the nodal order of the underlying discrete Runge-Kutta method. 
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