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Transient Simulation of Silicon Devices and Circuits

RANDOLPH E. BANK, WILLIAM M. COUGHRAN,
ERIC H. GROSSE, DONALD 1.

Abstract—In this paper, we present an overview of the physical prin-
ciples and numerical methods used to solve the coupled system of non-
linear partial differential equations that model the transient behavior
of silicon VLSI device structures. We also describe how the same tech-
niques are applicable to circuit simulation. A composite linear multistep
formula is introduced as the time-integration scheme. Newton-iterative
methods are exploited to solve the nonlinear equations that arise at each
time step. We also present a simple data structure for nonsymmetric
matrices with symmetric nonzero structures that facilitates iterative or
direct methods with substantial efficiency gains over other storage
schemes. Several computational examples, including a CMOS latchup
problem, are presented and discussed.

I. INTRODUCTION

HE continuing advances in the microelectronics area

are closely linked to the ability to put an ever increas-
ing number of devices on a silicon chip. This increase in
packing density can only be achieved by a reduction of the
feature sizes of the individual building blocks, such as the
transistors, wires, contacts, etc. Recent very large scale
integrated (VLSI) projects such as the 1-Mbit dRAM and
32-bit microprocessors use design rules with minimum
feature sizes smaller than 1 ym. By the end of the decade,
circuits with 0.5-xm design rules will be fabricated. In the
laboratory, MOS devices with gate lengths as small as 0.25
pm have already been fabricated [1].

The development of future devices with submicron fea-
ture sizes relies heavily on the use of numerical simulation
programs. These programs, if applied properly, can have
a significant impact by drastically reducing the amount of
time necessary to optimize the device design and the tech-
nology.

The state-of-the-art of numerical device simulation has
advanced significantly in the last few years. In the past,
most simulations have concentrated on the behavior of the
active device regions of an integrated circuit (IC), such as
a MOSFET or a bipolar transistor. The continuing reduc-
tion in size of the active device regions, however, makes
it more and more difficult to ignore the surrounding par-
asitic components. Examples are the source/drain regions
of a MOSFET with the parasitic resistance and capaci-
tance components of the contact and junction areas. As a
result, device simulators are now routinely applied to ana-
lyze complex device structures such as complete inverter
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structures and parasitic bipolar devices in CMOS technol-
ogy.

The influence of parasitics becomes important if one is
to analyze the switching behavior of densely packed in-
tegrated circuits. Any realistic calculation of the transient
behavior of a MOSFET has to include the capacitive ef-
fects associated with junctions areas and conduction wires
[2].

This paper summarizes our approach to the numerical
simulation of complex two-dimensional silicon device
structures under transient operating conditions. We also
describe how the same techniques are applicable to circuit
simulation.

In Section II, we briefly outline the physical principles
and basic equations that govern the behavior of electrons
and holes in the presence of time-varying fields. We re-
strict our discussion to silicon devices. We also include
some observations on the validity of the basic equations
for the transient modeling problem. Finally, we mention
the form of the equations that occur in circuit simulation.

The numerical techniques used in our work are de-
scribed in Section III. We introduce a composite linear
multistep method for time integration, which has several
useful properties. We discuss the use of a Newton-Rich-
ardson iteration to solve the nonlinear equations that arise
at each time step efficiently. Finally, we describe a novel
data structure that takes advantage of nonsymmetric ma-
trices with symmetric nonzero structures, which occur
naturally in device and circuit simulation.

Section IV contains several representative examples of
actual simulations, including the switching of a submicron
MOSFET under realistic loading conditions and latchup
triggering in CMOS device structures.

Section V offers some conclusions.

II. Basic EQUATIONS

2.1. Physics of Trnsport in Time-Varying Fields
for Semiconductors

The applicability of numerical simulators to optimize the
behavior of device structures with active dimensions of 0.5
pm or less (for example, MOS channel lengths) depends
critically on the physical assumptions “built” into the pro-
grams.

In the following, we give a summary of the physical
foundation that constitutes the basis for most simulation
programs in use today. We restrict our discussion to de-
vices built on silicon substrates. For relevant results con-
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cerning I1I-V devices, we refer the reader to the literature
{31

For devices of interest, the theory of semiclassical
transport, based on the Boltzmann Transport equation
(BTE), is adequate. The basic concept underlying the BTE
formalism is the assumption of a distribution function
f(x, P; 1) that represents the density of charge carriers
{electrons and holes) in the six-dimensional phase space
with space coordinates x and momenta P.

The validity of the BTE depends on the various time
scales in the device under study. For silicon devices of cur-
rent and future interest, it can be assumed that 7, <<
T << 74 where 7, is the duration of a collision process, 7
is the mean free time between collisions, and 7, is the
transit time through the active device region. Even for to-
day’s most advanced circuits, this transit time is consid-
erably shorter than the clock frequencies used. A rough
estimate shows that for a silicon MOSFET with an active
channel length of 0.25 pum, the transit time from source to
drain is around 5 ps. For circuits built with these devices,
we can expect clock frequencies around 10 GHz.

The rigorous treatment of dynamic carrier flow using
the BTE is well beyond present computing capabilities.
Recently, several attempts have been made to obtain ac-
curate solutions to the BTE under some simplifying as-
sumptions. These calculations are typically based on
Monte Carlo calculations. A good survey of the state of
the art in this field can be found in this issue [4].

Results for the dynamic behavior of electrons and holes
can be obtained if one takes moments of the BTE [5] and
applies the relaxation term approximation to the Boltz-
mann equation. In the case of electrons, this leads to

P
nb) _ ngE — = (la)
at Tm
a [nP* 3 nkT,
il A = _ - E — £
at{ P 2nkTe} nq “ o av)

where n is the electron density, P is the electron momen-
tum, q is the electronic charge, E is the electric field, 7,
is the electron temperature, k is the Boltzmann constant,
and 7,, and 7, are the momentum and energy relaxation
times, respectively.

The dynamic behavior of electrons is governed by the
combined effects of momentum and energy relaxation, as
expressed in (1a) and (1b). In a sufficiently intense electric
field E, the drift velocity of electrons asymptotically ap-
proaches the value

g7k

v=— —— 2)
m

where m is the effective mass of the electron. This maxi-
mum velocity is never achieved, however, due to the rise
in electron temperature in the high electric field. The in-
crease in T, decreases the average values of the collision
time and the drift velocity. The difference in the magni-
tude of the momentum and energy relaxation times results
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Fig. 1. Average velocity as a function of distance for electrons.

in an actual overshoot of the drift velocity over its steady-
state value. For silicon devices, this phenomenon is of mi-
nor importance. Fig. 1 shows the results of a calculation
[6] of the average velocity as a function of distance for
electrons in two electric fields of 20 and 50 kV/cm. The
critical dimension is on the order of 200-300 A at room
temperature, a value considerably shorter than the most
advanced devices today.

Under the condition of transients that vary slowly com-
pared to the transit time, (1) can be further simplified.
This leads to continuity equations of the form

%+V-(nv)=G-R. 3
at
As Blotekjaer has shown, the velocity v can be written as
D
v=—wE)E ~ «—S’;@ Vn (4a)
or
1
v = —uwE)E —~ ;V [ D(E)n] (4b)

where the mobility u and the diffusivity D> are viewed as
local quantities and instantaneous functions of the electric
field.

The question of whether (4a) or (4b) is correct has been
discussed in [5]. In our work, we have used (4a). It con-
stitutes the usual drift-diffusion transport equation that has
been successfully used in device modeling for the last two
decades.

2.2. Semiconductor Equations

On the basis of the arguments given above, we can write
the basic equations of semiconductor transport in the fol-
lowing form.

The Poisson equation

eV - E= —eV =p )

relates the total space charge p to the divergence of the
electric field E, which defines the electrostatic potential ¥
as

E = —Vy. 6)
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Under the assumption of total ionization, the total space
charge p is given by

)

where N = Nj; — Nj is the net concentration of electri-
cally active impurities, g is the electronic charge, and n
and p are the electron and hole densities, respectively.
The connection between the behavior of the carrier
densities and the electric field is given by the current
equations for electrons and holes (see (3) and (4a)):

p=—qn—p+N)

J. = qu.nE + gD, Vn (8a)

J, = qu.pE — qD,Vp (8b)

where u, and u, are the electron and hole mobilities, re-
spectively, and D, and D, are the corresponding diffusion
coefficients. Both mobilities and diffusion coefficients de-
pend on the temperature, the doping level, and the electric
field.

Under the assumption of Boltzmann statistics, the elec-
tron and hole concentrations can be written as

n = n;, exp {——-—’“kT } (9a)
P = nj exp {MkT (9b)

where we have defined the quasi-fermipotentials ¢, and ¢,
[7]. The factor n,, is the effective intrinsic carrier concen-
tration [8]. For low doping, »;, approaches the intrinsic
carrier concentration n;.

Assuming the Einstein relation [9] for both electrons and
holes

D=y %}Z (10)

Equation (8) can be rewritten using (9) as
o = —quanVé, (11a)
b = —qupVe,. (11b)

The continuity equations for electrons and holes are then
given by

1 on

-=V-J, -G+ R+ — =
g J o 0 (123)
i dp
-V-J,~-G+R+ =
p I o 0 (12b)

where G and R represent generation and recombination
processes, respectively.

In the time-dependent case, the equation of total-cur-
rent continuity couples the change in electric-field strength
to the current densities. It is given by

oE
V'JT=V‘<E—

o +J,,> =0 (13
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where J; is the total current, which consists of both the
conduction components J, and J, and the displacement
current edE/9t. Equation (13) can be derived from the time
derivative of (5) combined with (12).

The boundary conditions for semiconductor devices are
given by neutrality and equilibrium conditions, namely,

pn = n, (14)
and
n-p+N=0 (15
Thus at a Dirichlet contact, the three potentials are
V=V + Vi (162)
¢, = ¢, = VO (16b)

where V}; and V_(f) are the built-in and contact voltages,
respectively. When external circuit elements are applied
to the device, the contact voltage becomes an unknown
and is given by

1 d
g V@ = Va0l + Co V) = Vo)

+SFV-Jdl=O )
where R, C, and V, (1) are the resistance, capacitance, and
applied voltage, respectively, and I' is an appropriate con-
tour surrounding the contact.

The complete set of semiconductor equations is given
by (5), (8), and (12) combined with appropriate initial and
boundary conditions. Together they form a system of cou-
pled, nonlinear, partial differential equations (PDE’s),
which are usually written in dimensionless form. We have
followed the work of de Mari [10] by normalizing all spa-
tial dimensions to the intrinsic Debye length L, =

ekT/gn;, all densities to the intrinsic concentration n;,
and all voltage terms to k7/q. Hence, we will make use
of the normalized electrostatic potential ¥ and the nor-
malized quasi-Fermi levels v and w of electrons and holes,
respectively.

Once, the equations are spatially discretized [11], [12],
the time-dependent problem is governed by an implicit
system of ordinary differential equations

%Q(Z(f)) + fie, 2t)) = 0 (18)
where
u
z={ v (19)
w

u, v, and w are now grid functions representing discrete
spatial values at time ¢, and

q(x) =| e (20
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This system is a simple differential-algebraic system since
dq/dz is singular, which follows from the time-indepen-
dence of the u equation. (See [13]-[15] for detailed dis-
cussions of differential-algebraic equations.)

2.3. Circuit Equations
A circuit is governed by Kirchhoff’s current and voltage
laws as well as constitutive relations. The current law is
Ai =0 2n

where A € R"*™ is the circuit’s reduced-incidence matrix
[16] and i € R™ is the vector of branch currents. The volt-
age law implies that
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where the three columns correspond to the dependency
edges introduced by the voltage differences.

We can write A = [A, Ag] where A, and Ay corre-
spond to T, and the remainder of the circuit, respectively.
We can partition w, i, and K similarly as ul =
(i, ug), i’ = (i, i§), and

K, O
K, = (28)
0 KvR

where u; € R* represents T;’s terminal voltages and K,
is 7y’s linearized constitutive relation. Then the reduced-

v=Au (22) tableau matrix can be formally block factored as
I 0 K,AT I 0071 0o K,Al

M =| 0 I KgpA} |=] 0 I 0|0 I KA} (29)
A[ AR O Al 0 I 0 AR "A]KU]AIT

where u € R" and v € R™ are the node and branch voltages,
respectively. The constitutive relations are of the form

Kivy=i- <d£t q(v) + f(v)) =0eR" (23

for voltage-controlled elements that are “‘quasi-static.”
If the constitutive relations are linearized about a point,
the resulting equations are

8 + K, 00 = s (24)

where K, = 3K/dv € R” ™" and s is a source vector. The
circuit equations can be summarized in matrix notation as

I K,A"|[6i
e[y 50 -
0 du

which makes use of the substitution v = A”u [17], [18].
M, is the reduced-tableau matrix.

In particular, if the quasi-static approximation is as-
sumed, the currents of a transistor 7 are given by

25

Lo = g;q(vl(?)) + fo,)) € R? (26)
where the components of i, are the currents associated
with the source, gate, and drain terminals and v, =
(g — Uy, u, — ug, u, — u,)’ € R’ represents the appropri-
ate differences of terminal (node) voltages. Only three
currents enter into the constitutive relation because Kir-
chhoff’s current law insures that 7’s four terminal cur-
rents sum to zero. Hence, the portion of the reduced-in-
cidence matrix associated with 77 is

1 0 0

0 1 0
@7

0 0 1

-1 -1 -1

which forms a small part of the usual nodal matrix in the
lower right block; this process is repeated to assemble the
transistors into the nodal matrix [18]. Capacitors and re-
sistors can be treated in the same fashion. We will restrict
our attention to these elements and grounded voltage
sources.

In summary, the assembly of the individual circuit ele-
ments into global circuit equations yields

d%‘l(u) +ft,w) =0 (309

where the explicit time-dependence of f comes from the
boundary conditions, that is, grounded voltage sources.
In general, ¢° = 3q/du is singular so this represents a
differential-algebraic system, possibly of nontrivial index
[19].

III. NUMERICAL PROCEDURES

We will concentrate our exposition on the semiconduc-
tor equations but we will note where the circuit-simulation
problem differs.

For a discussion of numerical methods suitable to static
device and circuit simulation see [11], [20], [18], [12] (and
also [21]). Some of these techniques are important for the
time-dependent case and are briefly reviewed below. We
will not discuss the spatial discretization used but the
reader should be aware that it is based on the box method
over a triangulated domain.

3.1 Time-Stepping Scheme

We make use of a trapezoidal rule/backward-differen-
tiation-formula (TR-BDF2) composite method. Consider
integrating (18) (or (30)) from ¢t = f,to . =1, + h,.
We apply TR to go fromr = ¢, to t, + vh,

2qn+'y + ”YhnfrH-'y = 2qn - 'Yhnfn- (31)
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Fig. 2. Data layout for a single time step.

where g, = ¢(z,), etc. This implicit scheme has a Jacobian
of the form 2q; ., + vh, f,.,. We then apply the second-
order backward-differentiation formula (BDF2) to go from
t=1t,+ yh,tot, .,

(2 - 'Y)qn+1 + (1 - 'Y)hnfln*l

= v sy (32)

-y A =g,
This implicit scheme has a Jacobian of the form (2 —
g1 + (A — yYh,f,,. The data layout for the com-
posite time step is sketched in Fig. 2.
The TR and BDF2 Jacobians have the same form if
2_2-7 (33)
vy ol—-y
which implies vy = 2 — V2 = 0.59. We assume this value
of  for the remainder of this paper. As long as ¢ and f
vary slowly, it is possible to reuse Jacobian factorizations
while still using quadraticaily convergent algorithms for
the associated nonlinear equations (see the discussions of
Newton—-Richardson below).
A couple of remarks are relevant at this point. Consider
applying a one-step method

Yor1 & A(h)\)yn (34)

where (hopefully) y, = y(nh), to the usual scalar test
problem

dy
— = )\
dr

with Re A < 0. Recall that the one-step method is said to
be A-stable if |A(hN)| < 1 [22]; in other words, growing
solutions are not allowed. Much is known about the prop-
erties of A-stable methods. For example, Dahlquist showed
that the A-stable multistep method with the smallest local
truncation error is the second-order TR.

A-stability may not be strong enough for extremely stiff
problems. If TR is applied to (35) with Re A << 0, then
successively computed values will tend to be of the same
magnitude with opposite sign (v,,, = —y,) unless the
temporal discretization parameter is very small; such re-
strictions on h are what one wishes to avoid with stiff
problems. In other words, TR solutions may decay at the
wrong rate and, without proper error control, “ringing”
effects may occur, which can be exacerbated by a nonlin-
ear problem.

A one-step method, y, ., = A(hN)y,, is said to be L-
stable if it is A-stable and [A(AN)| — 0 as |AN| — oo [22].
BDF2 is known to be L-stable so there are no restrictions
on h for (35), unlike TR. However, BDF2 has a higher
truncation error than TR and is more difficult to imple-
ment (restart) since it is not a one-step method.

(35)
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The composite TR-BDF2 procedure is an easily re-
started, second-order, one-step algorithm, which is nearly
as simple to implement as TR. Furthermore, the scheme
inherits the L-stability of BDF2, as shown below, which
make its suitable for very stiff problems requiring moder-
ate accuracy.

Proposition: The TR-BDF2 method ((31) and (32))
with y = 2 — V2 is L-stable.

Proof: Let z = hA. After some manipulation, the
composite formula applied to (35) is found to be

L+ ad-yik+t20-y
W=+ - +22 -7

AR)Y,- (36)

Obviously, |4(z)] — 0 as |z| = . Moreover, A(z) does
not have a pole for Re z < 0 since the denominator has a
double positive root at z = 2/y = 3.4. Consider the case
when z is purely imaginary, that is, z = ib. Then

Yny1 =

[1+ (1 —9Pb>+4 2 — y)
22 =) = v = b + (F — 2)%?

< 1.

lA(ib)|* =

(37

For any ¢ > 0, there is an R, > 0 such that |A(z)] < ¢
for {z||z] = R. and Re z < 0}. The result follows from
the maximum modulus principle. ]

In order to regulate the stepsize h,,, we need to estimate
the local truncation error (LTE). There are several alter-
natives, which are all based on the principle truncation
error term. (In general error estimation for differential-
algebraic systems is much more difficult than for simple
ODE’s [13], 123].)

After some manipulation of Taylor series, the principal
truncation term for a step of TR from ¢, to t, + vh, fol-
lowed by a step of BDF2 from ¢, + vh, to ¢, is found
to be

Chig ()

where

—3yt + 4y =2
C= = —0.04.
122 — )
Note that |C(y)| is minimized when 0 < y =2 — 2 <
1.
One possibility is to directly compute an estimate for
the third derivative g¢¥. A divided difference of the three
available f values gives

(38)

2 (3)
h.q

ST U=y o -y

(= for, Y (39)

Another possibility is to use polynomial extrapolation
as a predictor and to estimate the error as the difference
between the predicted and corrected values [24], [13],
[23].

A final possibility is to use a second step of TR from
=1, + ’Yhn to byt
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9n+1 — Qn+y +fn+1 +fn+'y
1 - vh, 2

and then employ the classical Milne’s device [22] to ap-
proximate the LTE. The method composed of TR followed
by another step of TR has a principal truncation term of
the form Chlq™, which is precisely what is required for
Milne’s device. The use of Newton-Richardson (see the
next subsection) makes it possible to avoid factoring the
Jacobian associated with the final TR step.

In our limited experience, we have found that the di-
vided-difference estimator

Thty = 2Chn [7_1 n 771 (r - 7)_1fn+7
+ (1 = ful = Chyg? @1

approximates the LTE reasonably well and is inexpensive
to compute. Note that the error estimator gives an indi-
cation of the truncation error in terms of g; in the semi-
conductor case, the portion of 7 associated with the po-
tential u is zero.

Given a per component LTE estimate, we can predict a
new candidate stepsize h*, expected to satisfy a specified
error tolerance, by

=0 (40)

h* = h,r'? 42)
where

€avt,i = €RIQnivril €4 43)

N 2
2L (Taru
Ni=1\e,11,;

in the device-simulation case and

and

(44)

sl
llewsllz

is often used in the circuit-simulation case. Here the sec-
ond subscript on ¢ represents the component and ez and
€4 are absolute- and relative-error parameters, respec-
tively, while the 1/3 reflects the second-order nature of the
scheme. In our device simulator, we do not sum over the
trivial portion of g associated with the potential . Equa-
tion (44) represents a so-called root-mean-squared (RMS)
norm that is better able to deal with the scaling problems
associated with the semiconductor equations whereas (45)
is a rather “greedy” norm that assumes a well-behaved
solution. In other words, (44) reacts to large relative
changes in small values, which occurs when a large part
of a device is quiescent, but dominates ||g,+||», While
small regions of the device are active.

If r < 1 (say not more than 2), the LTE is acceptable;
otherwise the step is repeated with 4, < 0.9h*, where the
0.9 is a ‘““paranoia” factor. If for some reason the nonlin-
ear equations cannot be solved in a small fixed number of
iterations (see the next subsection), the step is repeated
with h, < h,/2. If the step is accepted, the next stepsize
is taken as h,,, = min (8,h*, 2h,) subject to minor ad-
justments as mentioned below; 8, is taken to be 1 and 0.9

(45)
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for the semiconductor and circuit problems, respectively.
This last rule restricts the rate of increase in order to avoid
stepsize oscillations.

Since input wave forms often have natural breakpoints
that should be sampled exactly at the corners for graphical
reasons, we have employed the device described by Gear
[25]}, which further limits the stepsize. In particular, if the
integration is to stop at fy,,, we take

lstch"— t
r(tslop - f)/h,,+| - 61

where ¢ is a small multiple of the machine epsilon and
[ ] denotes the integer ceiling function.

Some circuit-analysis packages try to get away with
much simpler stepsize control schemes. One choice is to
cut back the stepsize when the previous time step took
more than a certain number of Newton iterations and to
increase the stepsize when the previous step took less than
another certain number of Newtons. This approach tries
to maintain a ‘‘reasonable” number of Newtons per time
step. If this simple procedure is applied to a linear RC
network, the Newton procedure will always converge in
one iteration resulting in continual stepsize increases and,
thereby, arbitrarily bad truncation errors. The problem of
local stepsize control is thrust upon the user. Moreover,
some device simulators employ a constant stepsize speci-
fied by the user, which the experiments in Section IV sug-
gest must be costly.

hn 1 < (46)

3.2. Nonlinear Equation Solution

The nonlinear equations that arise at each time step are
solved with the damped-Newton scheme of Bank and Rose
[26]. When solving g(z) = 0, the algorithm computes a
change by

gy = —& CY))
where g; = (9g(2)/02)(z;) and g, = g(z,), and then forms
Ze+1 = It 5K (48)

where 0 < s, < 1 is chosen to satisfy the sufficient de-

crease condition

_ |18+ 1]l
&l

and ¢, is the machine epsilon. (One strategy for selecting
s, is described in [18].) Note that extrapolation is em-
ployed to get an initial guess zq at each time step. We stop
the Newton iteration if ||g,|| < eg||gol] or ||x.||/]|z.]] =
ER/Z.

The Newton-Richardson (NR) procedure discussed by
Bank and Rose [26] offers inexpensive quadratic conver-
gence, especially for successive transient solution steps as
the values are changing slowly. The NR scheme starts with
a given splitting

1 (49)

> EASk

g = M, — N, (50)

where ||M'N|| = ||[I — M;'gi|} < p < 1forallk. In
our applications, M, represents the LU factors of an old
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Jacobian. x; is found by an inner iteration given by
M Xn — Xpm-0) = —(@iXim-1 T+ &0 (5D

where x,o = 0; x; = x,,, for some m;. The inner iteration
is terminated when

|8t + &l gl

ledl = %l

where 0 < o < 1 is experimentally determined.

Newton-Richardson has the potential for substantial
savings in CPU time, but requires roughly the same
amount of storage as the full damped-Newton scheme
where g; is factored each time. NR uses additional resid-
ual computations, Jacobian (times a vector) multiplica-
tions, and backsolves with the LU factors represented by
M, to save matrix factorizations. The NR iteration does
not compute the solution to (47) exactly so more (outer)
Newton iterations may be required. It is possible to decide
to use NR or full Newton based on timings made at run
time.

(32)
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For the sparse matrices arising from the semiconductor
and circuit equations, a; # O typically implies that a; #
0, but not necessarily that a; = a;.

Our data structure, which is also employed in PLTMG
[28], is a variant of the usual Yale Sparse Matrix Package
(YSMP) data structure (IA, JA, A) for storing symmetric,
positive-definite, sparse matrices {29]-[31]. Let n be the
number of nonzeroes in the strict upper triangle of A. Our
data structure consists of a single integer array JA of length
n + n + 1 and a real array A of length n + n + 1 if the
matrix is symmetric, and 29 + n + 1 if the matrix is
nonsymmetric. Note that the symbol A is used for both
the original matrix and the array that contains the nonzero
entries.

Let r; be the number of nonzeroes in the strict upper
triangular part of row { so

Then the entries of JA and A are defined as follows:

J (column index of ay) for JA[i] < k < JA[i + 1], l<i=sn

JA[1] = n + 2
JAi+ N =JAlll +r, forl si<n
Alll = a; forl =i=<n
—1, for diagonal matrices
Aln + 1] = < 0, for symmetric matrices
n, for nonsymmetric matrices
JA[k] =
Alk] = a; for JA[i] < k < JA[i + 1], l=<i=sn

In a transient simulation, one M, will not work for all
time steps, but the matrices g; change less when the trun-
cation error request is small. A fixed strategy of how often
to factor can be used or the convergence rate of the inner
iteration (equation (51)) can be estimated so as to do a
factorization only when necessary. There is a small over-
head cost associated with estimating the convergence rate
of (51).

When the cost of forming g, and gix and backsolving
with known LU factors is significantly less expensive than
factoring g¢, NR is superior to the full damped-Newton
procedure. This is the case for the semiconductor problem
because matrix factorizations dominate the computation
(see the discussion in the next section). On the other hand,
our experimental circuit simulator makes use of tensor-
product variation-diminishing splines [27] for its transis-
tor models and model evaluation dominates the computa-
tion time except for large (more than 1000 nodes) circuits.

3.3. Linear Equation Solution

Let A = (a;) € R"™". We assume A is sparse with a
symmetric nonzero structure; that is, both a; and a;; are
to be treated as nonzero elements if |a;| + |a;| > 0. We
further assume that the diagonal elements a;; are nonzero.

and if the matrix is not symmetric
< JA[i + 11, l=i=<n

JA[1] through J4[n + 1] represent the same information
as YSMP’s IA array. The remainder of JA corresponds to
YSMP’s JA array for symmetric matrices. In the A array,
the diagonal is stored first, followed by the strict upper
triangle stored row-wise. If the matrix is not symmetric,
then this is followed by the strict lower triangle stored col-
umn-wise. The matrix type is specified by A{n + 1]. Since
A has a symmetric nonzero structure, the column indices
for the upper triangle are identical to the row indices for
the lower triangle and, hence, need not be duplicated.

As an example, let # = 5 and

r_an ap az 0 0—
ay an 0 ay O
A= a3y 0 ay ay ass (53)
0 ap an aw O
__0 0 as; 0 ass
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Then
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
JA 7 9 10 12 12 12 2 3 4 4 5
A an ax ass 44 | Gss 5 a2 | 4u3 a4 34 | d3s | an l 031—[ a42 ‘ a43 ‘ as3
Diagonal 7 Upper Lower

Compared to the YSMP scheme, this data structure
saves n integer storage locations if the matrix is symmet-
ric and n + 7 storage locations if it is nonsymmetric be-
cause we store the diagonal elements separately, avoiding
indices, and take advantage of the symmetric nonzero
structure. In addition to saving storage, this data structure
allows certain economies in matrix algorithms. Some ex-
amples are discussed below.

Sparse matrix multiplication is fundamental to most it-
erative methods. To illustrate our data structure, consider
the following matrix multiplication algorithm (where in-
dention is used to denote nesting)

procedure spmult (n, JA, A, x,

ishift + A[ln + 1]
fori <~ 1ton

yli] < Al x[1]
if ishift = 0

Ishift < ishift

ushift < 0

fori < 1ton

where P is a permutation matrix, D is diagonal, and L and
U are unit lower and upper triangular, respectively. Such
factorizations are known to be well defined when A + AT
is positive definite. The permutation matrix P is chosen
by the minimum degree algorithm [30], [33]. The main
disadvantage of this scheme is that, without pivoting, the
numerical stability cannot be guaranteed for general non-
symmetric matrices.

Our data structure for storing the LDU factorization
consists of two arrays JU and U, which are analogous to
JA and A. In the array U, the diagonal entries of D are
stored in the first n locations, followed by the strict upper

y)

for k < JA[i] to JA[i + 1] — 1
J < JAlk]
yli) < ylil + Alk + Ishiftlx[j]
ylil < yljl + Alk + ushift}x[i]

This algorithm computes y = Ax for a diagonal, symmet-
ric, or nonsymmetric matrix A. In the nonsymmetric case,
y = ATx may be computed by setting Ishift = 0 and ushift
ishift. Note that the overhead cost in indirect address-
ing is reduced since each reference to JA for a column
(row) index corresponds to two floating-point operations
rather than one.

Many iterative methods access the lower triangle (L),
upper triangle (U), and diagonal (D) entries of A sepa-
rately. With SSOR [32], for example, linear systems of the
form By = ¢ where B = (D + wL)D™! (D + wU) occur.
Since D, L, and U are stored separately, it is easy to im-
plement efficient algorithms for solving the required linear
systems. The standard sparse data structure requires a
(partial) ordering of the column indices for each row in
the JA array and an extra pointer array of length n to allow
easy access to D, L, and U separately; otherwise column
indices must be continually searched.

Consider a sparse factorization of the form

PAP" = LDU (54)

triangular part of U stored row-wise. This is followed by
the strict lower triangular part of L stored column-wise in
the nonsymmetric case. As before, Uln + 1] is used to
specify the matrix type. If there are v nonzeros in the
strict upper triangular portion of the matrix U, then the
array Uis of lengthn + 1 + vorn + 1 + 2», depending
on whether the storage of L is required.

If JU were exactly analogous to JA, then its length
would be n + 1 + » since row indices for L need not be
stored. However, considerable integer storage can be saved
using a compressed storage scheme [30], which does not
store duplicate sequences of column indices for the filled-
in matrix. This requires n extra pointers. In typical non-
symmetric PDE problems of moderate size, JU in roughly
20-30 percent of the length of U, using the compressed
scheme.

To compute the factorization, a sparse variant of the
Crout reduction technique [34] is used. It is most efficient
to compute the entries of the ith row of U and the ith
column of L in temporary (expanded) vectors of length n
and, then, to transfer the final results to the array U, as
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in the YSMP approach. The resulting procedure produces
twice as many floating-point operations per indirect ad-
dress (through JU) compared to the analogous YSMP rou-
tines. Hence, a significant fraction of the addressing over-
head is saved. Once A has been factored, the forward- and
back-substitution (backsolve) algorithms are easily de-
scribed in terms of our data structure; the same code can
be used to solve either Ax = b or A’x = b.

The data structure described above may be easily ex-
tended to block matrices. Such matrices arise in solving
systems of PDE’s on the same grid and in finite element
methods with several degrees of freedom associated with
each grid point. The JA array is constructed to reflect the
symmetric nonzero structure of a single equation. We will
consider two different partitions of the matrix A. In any
case, the matrix multiplication and Crout algorithms are
applicable, with scalar operations replaced by matrix op-
erations.

For block iterative methods [32], [35], it is often con-
venient to partition the full matrix into k* block matrices.
For example, the matrix associated with the semiconduc-
tor equations can be partitioned into a 3 X 3 block matrix
with the upper left block corresponding to the Laplacian
operator in the u equation. Each block matrix will then
have the sparse structure described by a single JA with
different values of A[n + 1]; moreover, one JU is suffi-
cient.

Another possibility is to treat A as a sparse n X n matrix
with dense £ X k blocks. Each column index in JA then
refers to a k X k block in A. It is quite apparent that the
economics of space and work will be larger with increas-
ing k. For nonsymmetric systems with n >> 75, JA re-
quires about 1/2k” of the storage of A. For matrix multi-
plication, each indirect address now produces 2k? floating-
point operations.

We will now present some numerical experiments to il-
lustrate the efficacy of our data structure. For comparison,
all of our experiments were repeated with (vintage) non-
symmetric YSMP codes using compressed storage. In
subsequent tables, total storage requirements are sepa-
rated into integers and reals. Computation times are sep-
arated into: (1) “‘symbolic factorization’—the time re-
quired for a minimum-degree ordering, reordering of the
sparse matrix, and computing the symbolic factorization;
(2) “‘numeric factorization” —the time to compute the nu-
merical factorization; and (3) “backsolve’’—the time to
perform a forward and back substitution. For each grid,
the upper row are our results, labeled BLSMP, while the
lower row pertains to YSMP. All experiments were per-
formed on a Cray-1A using the CFT 1.11 compiler.

A simple Poisson equation on an m X m grid with cen-
tered finite differences was chosen as a test problem. This
leads to a symmetric positive-definite matrix of order n =
m* with an average of 5 nonzeros per row, although the
symmetry was ignored. Table I shows the effect of indirect
addressing on overall computation time and the effect of
the data structure on storage. Furthermore, our data struc-
ture requires half the integer storage of YSMP, even with
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TABLE 1
SINGLE NONSYMMERTRIC 5-POINT LAPLACE EQUATION (SCALAR)
Storage CPU time (seconds)
Grid Unknowns | Method | Integer | Reat Symbolic Numeric Backsolve
Factorization | Factorization
[TO x 10 100 BLSMP 572 1215 0122 00592 00136
YSMP 1168 1214 0176 00615 00119
—
20 x 20 400 BLSMP 2643 | 7427 0601 0431 00685
YSMP 5352 7248 0841 0497 00626
I 30 %30 900 BLSMP 6266 20277 146 439 01761
YSMP 12594 19948 203 170 0164
40 x 40 1600 BLSMP 11461 40695 270 37 .0343
YSMP 23004 40804 377 414 0326
50 x 50 2500 BLSMP 18281 § 71805 441 650 0591
YSMP 36636 69944 608 806 0547
— |
60 x 60 3600 BLSMP 26788 114333 653 i 118 0923
YSMP 53608 | 113234 906 1.56 0869
70 x 70 4900 BLSMP 36846 | 167369 912 1.95 133
YSMP J 7]9244L 168088 1.27 2.68 127
41——-——————————1~——j
i 80 x 80 6400 BLSMP 48581 | 237541 1.22 319 187
YSMP 97474 | 243552 171 4.68 181
90 x 90 8100 BLSMP 61863 | 312609 1.57 4.40 245
YSMP 123892 | 312264 218 6.06 232
1 . ; B S
100 x 100 ‘ 10000 BLSMP 76670 ! 401257 1.95 6.07 312
YSMP 153752 | 406546 273 8.64 300

compressed storage. The real storage requirements of the
two methods is approximately the same, with minor vari-
ations due to the minimum-degree algorithms.

For both codes, the time for computing the ordering is
about the same. The timing differences for the numerical
factorization reflect the increased number of floating-point
operations per indirect address in our implementation. As-
suming that this time difference is due only to elimination
of indirect addresses, their cost may be estimated. For the
largest computed grid (n = 10%), roughly 42 percent of
our code was spent computing indirect addressing while
indirect addressing accounted for almost 55 percent of the
total computing time for YSMP. Clearly, a substantial
fraction of the total time goes into non-floating-point work.
The backsolve times are about the same for both codes.
Since the backsolve must be done sequentially, our data
structure does not reduce the amount of indirect address-
ing required. For this experiment the Cray-1 was run in
scalar mode (vectorization disabled) and, thus, timing re-
sults should be (qualitatively) applicable to other ma-
chines.

We repeated our Poisson experiments with a vectorized
version of the code that was written for our semiconductor
device simulator [12] and makes use of several sparse
BLAS [36], which are generally two to three times faster
than scalar BLAS. The results are summarized in Table II.

The storage requirements for both codes are obviously
the same as before. In comparing the YSMP times for sca-
lar mode and vector mode, it is clear that the CFT com-
piler was unable to do much vectorization, which is to be
expected. Neither symbolic factorization routine benefits
much from vectorization. Our numerical factorization code
benefits from reduction in indirect addressing and vecto-
rization. It is important to note that some of the potential
speedup is offset by the nonnumerical overhead required
to initiate the vector operations. This overhead was esti-
mated by running our code in scalar mode and was roughly
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TABLE 11
SINGLE NONSYMMETRIC 5-POINT LAPLACE EQUATION (VECTORIZED)

Storage CPU time (seconds)

Grid Unknowns Method Integer Symbolic

Factorization

Numeric Backsolve

Factorization

10 x 10 100 BLSMP 572

YSMP 1168

400 BLSMP
YSMP

1215
1214

.0134
0175

.00625
.00602
0413
0484

000959
00117

2643
5352

7427
7248

0638
0838

00390
00617

900 BLSMP
YSMP

6266
12594

20277 152 122

19948 202 165
— —
40695 2717 262

40804 375 .402

00918
0161

40 x 40 1600 BLSMP

YSMP

11461
23004

0169
0320

2500 BLSMP

YSMP
BLSMP
YSMP

Wr 446 500
69944 | 606 780

18281
36636

0276
0538

3600 26788

53608

114333
113234

167369

168088
237541
243552

651 859
903 1.51

0413
0856

899 1.35
1.26

0579
2.58 125
0785
178
.10y
228
127
296

48581
97474

1.19
170

YSMP

90 x 90 8100 BLSMP

YSMP

61863
123892

312609
312264

1.52
217

100 x 100 10000 BLSMP

76670
l YSMP

153752

401257
406546

1.88
272

TABLE III
THREE COUPLED NONSYMMETRIC 5-POINT EQUATIONS (VECTORIZED)

F
Storage CPU time (seconds)
Grid Unknowns | Method | Integer Real Symbolic Numeric Backsolve
Factorization | Factorization
—
5x5 75 T BLSMP 107 1620 00256 00722 00134
YSMP 758 1611 .0200 .0103 .00133
10 x 10 300 BLSMP 572 10935 .013 0528 00654
YSMP 3796 10926 103 100 00812
15 x 15 675 BLSMP 1433 31248 0165
YSMP 9366 30807 0222
20 x 20 1200 BLSMP 2643 66843 .0326
YSMP 17256 65232 0461
25 x 25 1875 BLSMP 4228 11348 103 699 0529
YSMP 27350 11969 835 1.87 0783
30 x 30 2700 BLSMP 6266 182493 152 1.27 0825
YSMP 40554 179532 1.24 351 124
- A f—
35 x 35 3675 BLSMP 2691 272178 2n 2.12 119
YSMP 56092 272151 1.76 6.42 187
40 x 40 4800 BLSMP 11461 366255 277 2.88 158
YSMP 73842 | 367236 232 8.95 252

equal to the overhead reduction of the previous example.
Thus for the smaller grids, the factorization times for both
codes are equal. The benefits of vectorization are realized
for the large problems where our code ran two times faster
than YSMP. The situation is similar for the backsolve pro-
cedure.

In a final experiment, the semiconductor equations were
discretized on an n X n grid. This results in a block n X
n matrix in which each block is 3 X 3. In particular, the
diagonal and off-diagonal blocks have the form

X X X x 0 0
a; = | x x x aj=|x x 0 (55)
X x x x 0 x

The block zero/nonzero structure is the same as in the
preceding examples. The results from our code and the
nonsymmetric YSMP are summarized in Table III; both
codes were run in vector mode.

The integer storage for our code is much smaller than

445

for YSMP due to blocking. For sufficiently large problems,
we would expect the ratio to approach 1/18. Since the
compressed storage scheme employed by YSMP is more
effective for the block system, this storage reduction is not
fully realized in the present example. The differences in
real storage reflect differences in ordering and again are
not significant.

The time for ordering and symbolic factorization now is
significantly smaller for the block method. This primarily
reflects the fact that our method orders blocks and takes
advantage of the symmetric nonzero pattern, and hence
has only about 1/18 of the computations to perform. Since
the construction of JU is performed only once in many
applications, this savings in computation time will have
little consequence. On the other hand, the total computa-
tional time is often dominated by the numerical factori-
zation. For the intermediate to large problems, the vec-
torized block method is two to three times faster than
YSMP. This reduction in computation time is primarily
due to two effects. First, the factorization routines in our
code require 1/18 of the indirect addressing required by
YSMP making the block method more numerically inten-
sive. For the smaller problems, the effect of this overhead
reduction is probably the dominant factor. Secondly, vec-
torization will play a larger role as the size of the problem
increases. As can be seen by comparing Tables 1I and I11,
the benefits of vectorization are enhanced by utilizing the
block structure of the matrix during factorization. Similar
comments apply to the backsolve phase.

Let us close this subsection with a discussion of some
specific iterative methods that are applicable to the semi-
conductor equations. We have found the Orthomin conju-
gate-gradient iteration [35], [37] with a previously fac-
tored Jacobian as the preconditioner to be effective,
particularly in the Newton-Richardson context. Alterna-
tively, an incomplete factorization can be performed, by re-
stricting the matrix factors to have the same structure as
the original matrix (allowing no fill-in), to provide a pre-
conditioner [35], [37]; generalized to block matrices as in
the coupled system, the algorithm allows some fill-in to
occur between the variables associated with each grid
point, but restricts the knot coupling to nearest neighbors.

IV. EXAMPLES

In this section, we shall illustrate the performance of
the above algorithms and techniques. The device examples
were run with a relative accuracy request of e = 1072
and the circuit problems with ez = 1072

4.1. MOSFET Switching

The first example to be considered is a transient simu-
lation of the switching behavior of a MOS inverter struc-
ture with resistive and capacitive load elements. Although
the transient behavior of MOSFET’s has attracted consid-
erable attention in the past, essentially all published pa-
pers rely on simplified analytical models [38]-{42]. Only
recently, numerical solutions of two-dimensional MOS-
FET structures have been reported [43]. In our work, we
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Fig. 3. Schematic of the loaded n-channel MOSFET.
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Fig. 4. Input and output node voltages for the loaded MOSFET.
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have extended the two-dimensional numerical solution to
include external parasitic elements that arise from inter-
connection lines, pad and/or I/O structures, etc. The idea
of coupling external circuit elements to device structures
is a powerful technique to study device behavior in the
circuit environment.

Fig. 3 gives a schematic representation of the circuit
being simulated. The driver device is a scaled n-channel
MOSFET optimized for a gate of length 0.5 um [2]. We
have simulated this rather simple circuit under three dif-
ferent loading conditions, each with a load resistance of
200 Q. The ideal case with a vanishing output capacitance
corresponds to an ‘‘unloaded” inverter stage. The two
other cases (C = 10 and 50 pF) are typical for an inverter
stage with fanouts of one and five.

Fig. 4 shows the simulated node-voltage waveforms at
the input and output nodes for the three cases. Att = 50
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Fig. 5. Currents for the loaded MOSFET.
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ps, the gate of the transistor is switched off and on with a
3-V pulse (see Fig. 4, dashed line). For case three, the
high loading capacitance prevents the stage from com-
pletely turning off. The corresponding currents for cases
one and three are compared in Fig. 5. For the purely re-
sistive case, the current I, through the load resistor fol-
lows the voltage excitation in a nearly ideal fashion. For
the capacitively loaded case, the curves labeled Ir, and
I¢, show the behavior of the currents through the external
elements. Note that a large part of the total current is
needed to charge and discharge the load capacitance. Fur-
thermore, it is evident that in case three the driver does
turn off completely during the low part of the gate pulse.
In a circuit environment, this situation could lead to a loss
of logic levels.

4.2 CMOS Latchup

The second example concerns the time-dependent be-
havior of a parasitic CMOS structure under triggering and
latchup conditions.

Fig. 6 shows the cross section of part of a CMOS in-
verter. The p”- region at the left is the p-tub contact, and
the n™-contact could be the source of an n-channel tran-
sistor. The p*-region at the right of the structure and the
substrate are at 3 V. This substrate consists of a highly
doped n-substrate and a n-epi layer. The left and middle
contact are initially grounded. The n-cathode, p-tub, and
n-substrate form a parasitic, vertical, bipolar n-p-n tran-
sistor. The p-anode, n-substrate, and the p-tub form a
parasitic, lateral, bipolar n-p-n device. The two coupled
bipolar devices form a p-n-p-n-thyristor structure with the
n*-cathode and the p*-anode at the right. Under ordinary
bias conditions, both bipolar devices are “off,”” and the
thyristor is turned off. In our example, we are triggering
latchup via an external voltage puise.

Fig. 7(a)-(f) illustrates the behavior of the electrostatic
potential and the electron and hole densities as a function
of time. (The colors are carefully chosen from the spec-
trum with dark blue representing small values and red
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Fig. 6. Cross section of a CMOS inverter, used for latchup simulation.

e f

Fig. 7. Electrostatic potential and electron and hole densities as a function
of time in the inverter cross section.

representing large values [44]. Unfortunately, the repro-
duction processes used to create Fig. 7 lost some of the
effect of the selected colors.) At ¢t = 0, a 0.5-ns ramp to
—2 V is applied to the emitter of the vertical n-p-n device.
This ramp turns on the vertical n-p-n transistor and elec-
trons flow in vertical direction to the collector substrate.
At t = 410 ps, the vertical n-p-n device is fully turned on
with the majority of the electrons flowing to the substrate.
Some of these electrons “‘spill over” into the n-epi be-
neath the p*-anode, making the internal voltage less pos-

itive until the anode begins to inject holes. This can be
clearly seen in Fig. 7(b). These holes travel through the
n-epi, which acts as base of the lateral p-n-p device. Most
of the holes enter the space-charge region between the p-
tub and the n-substrate (that is, the p-n-p’s base~collector
junction), turning on the p-n-p. At ¢ = 12.5 ns, the lateral
pnp device is completely turned on (Fig. (7¢)). The injec-
tion of holes into the p-tub forward biases the p-tub cath-
ode junction even more, sending more electrons into the
epi, thus getting more holes, and so forth (see Fig. (7¢)).
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Fig. 8. Contact currents as a function of time in the inverter cross section.

TABLE IV
NUMERICAL PERFORMANCE FOR THE CMOS LaTrcHUP EXAMPLE

Fuli Newton | Newton-Richardson
-

Number of time steps | 226 243

Minimum 4, 2.778 x107'2 | 1.642 x107"2

Average h, 8.850 x107"" | 8.230 x307"

Maximum A, 4.567 x1071% | 4.518 x107'°

"Numbcr of restarts 2 6

Number of Newton 485 626
Iterations

Number of Newton 2576

Iterations/time step

Total CPU time 211 1.0
(relative units} B
| CPU time/time step 227 1.0
| CPU time/Newton 272 1.0 ]
205 )
e

2.146

Solve time/ 6.79

assembly time

Beginning at ¢ = 17.5 ns, the initial trigger pulse is turned
off in 0.5 ns. Fig. 7(e) shows the internal situation at t =
18 ns after the trigger pulse has been turned off. While
this process reduces the number of electrons injected into
the p-tub, there are too many mobile carriers in the p-tub
and the epi to stop the injection process totally. Although
we have returned to the initial bias conditions, the struc-
ture latches due to internal forward-biasing of the junc-
tions. The final potential and carrier distributions are
shown in Fig. 7(f).

Fig. 8 shows the time dependence of the contact cur-
rents. Once the structure begins to latch, the anode and
cathode current increase sharply. This increase results in
a strong coupling between the n-p-n and p-n-p devices,
corresponding to high injection conditions in the struc-
ture.

From the numerical point of view, transient latchup is a
stringent test for both the time-stepping algorithm and the
nonlinear and linear iterations. Table IV gives a summary
for the simulation and Fig. 9 shows the distribution of time
steps for the calculation. The size of the steps closely
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Fig. 9. Distribution of stepsizes for the latchup example.
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Fig. 10. One-bit full adder circuit.

tracks the behavior of the current; in other words, the steps
become small when the current changes rapidly.

The power of the Newton-Richardson (NR) iteration,
accelerated by Orthomin, becomes evident from the re-
sults in Table IV. The overall computation time is deter-
mined by two factors: the efforts expended in the outer
Newton loop and in the inner iteration (see (51)) to
‘“solve”” the linear system for the change. For the full
Newton simulation where the Jacobian is factored each
time, over 85 .percent of the computation time is spent in
solving linear systems. The effect of the NR iteration is
to trade the inner linear iterations for outer Newton iter-
ations. That is, the linear systems are solved 3.5 times
faster but to a lesser degree of accuracy. Thus a 30-percent
increase in the number of Newton iterations is required to
obtain the same accuracy. However, when combined with
a slight increase in the number of time steps, the NR it-
eration reduces the overall computation time by more than
a factor of two.

4.3. Ripple-Carry Adder

The final example we consider is a 64-bit ripple-carry
adder circuit made up of full-bit adders composed of
NAND’s (see Fig. 10). The outputs are lightly loaded. A
number of short pulses are input. For this problem, there
are 1152 unknowns and the underlying nodal equations are
a permutation of a small-bandwidth matrix. We experi-
mented with two Newton strategies for solving the nonlin-
ear equations at each time substep: (1) doing at most 5 full
(factoring the Jacobian every time) Newtons and (2) doing
a full Newton, followed by a Newton-Richardson step with
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TABLE V
SUMMARY OF TRANSIENT SIMULATIONS OF A 64-BIT RIPPLE-CARRY ADDER
Newton Time Jacobian i Jacobian Error Newton
Strategy Steps | Factorizations ! Backsolves | Failures | Failures
Newton(5) 123 542 ; 542 4 0
N-NR-N-NR(2) | 128 347 { 685 0 8

at most 5 inner iterations, followed by a full Newton, and
finally 2 Newton-Richardson steps. Table V summarizes
our results.

The Newton/Newton—Richardson (N/NR) procedure
saves 36 percent of the factorizations used by the Newton
approach, at the cost of doing 26 percent more backsolves
and a few additional function evaluations. The cost of the
function evaluations is such that both the N/NR and New-
ton strategies use roughly the same amount of time. In
other words, the cost of forming g and g’x and doing a
backsolve is not much cheaper than doing an additional
factorization. However, in more complex circuits with
more interconnections, the N/NR should prove more ef-
ficient as in the semiconductor case. This points out the
importance of an implementation to dynamically deter-
mine the relative costs of function evaluations, multiply-
ing the Jacobian times a vector, factoring the Jacobian, and
backsolving in order to optimize the nonlinear algorithm.

V. CONCLUSIONS

In this paper, we have discussed some of the relevant
physics that lead to the usual semiconductor equations.
Appropriate boundary conditions and the addition of ex-
ternal circuit elements have been considered. The circuit
equations also fit into the same general class of differen-
tial-algebraic systems.

We introduced an easily implemented one-step method,
composed of the trapezoidal rule and the second-order
backward-differentiation formula, for integrating time-de-
pendent equations. (Others have advocated the use of
backward-differentiation formulae for differential-alge-
braic systems [24], [45], [23], [15] while some others have
suggested cyclic multistep methods for differential equa-
tions [46], [47].) Second-order methods appear to be
nearly optimal for the device and circuit simulations we
have performed, which agrees with the previous experi-
ence for circuit analysis [48], [49]. The use of Newton-
iterative methods for improving the performance of the
overall time-integration has also been explored.

We demonstrated the effectiveness of a data structure
for sparse nonsymmetric’ matrices with symmetric non-
zero structures, which arise from PDE’s and circuit anal-
yses. The matrices are stored in diagonal, upper triangu-
lar, and lower triangular components with integer pointers
to only the upper triangular segments, which makes iter-
ative and direct methods simple to implement. In addition
to saving storage, indirect addressing is reduced since each
reference to a column or row index corresponds to two
floating-point operations rather than one. For sparse fac-
torizations and backsolves on a CRAY-1, non-floating-
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point computations represent roughly half of the total
computation time so vectorization can produce a savings
of a factor of two, at most. Further improvements in per-
formance must be accompanied by a reduction in over-
head, which can be obtained with block methods for sys-
tems of PDE’s. Numerical experiments indicate that a
factor of three reduction in computation time can be ob-
tained for the semiconductor equations.

The simulations we presented in the previous section,
including a CMOS latchup example, show the efficacy of
our techniques.
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