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C H A P T E R12
Theory of
Constrained
Optimization

The second part of this book is about minimizing functions subject to constraints on the
variables. A general formulation for these problems is

min
x∈IRn

f (x) subject to

{
ci (x) � 0, i ∈ E,

ci (x) ≥ 0, i ∈ I,
(12.1)

where f and the functions ci are all smooth, real-valued functions on a subset of IRn , and
I and E are two finite sets of indices. As before, we call f the objective function, while ci ,
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i ∈ E are the equality constraints and ci , i ∈ I are the inequality constraints. We define the
feasible set � to be the set of points x that satisfy the constraints; that is,

� � {x | ci (x) � 0, i ∈ E; ci (x) ≥ 0, i ∈ I}, (12.2)

so that we can rewrite (12.1) more compactly as

min
x∈�

f (x). (12.3)

In this chapter we derive mathematical characterizations of the solutions of (12.3). As
in the unconstrained case, we discuss optimality conditions of two types. Necessary condi-
tions are conditions that must be satisfied by any solution point (under certain assumptions).
Sufficient conditions are those that, if satisfied at a certain point x∗, guarantee that x∗ is in
fact a solution.

For the unconstrained optimization problem of Chapter 2, the optimality conditions
were as follows:

Necessary conditions: Local unconstrained minimizers have ∇ f (x∗) � 0 and
∇2 f (x∗) positive semidefinite.

Sufficient conditions: Any point x∗ at which ∇ f (x∗) � 0 and ∇2 f (x∗) is positive
definite is a strong local minimizer of f .

In this chapter, we derive analogous conditions to characterize the solutions of constrained
optimization problems.

LOCAL AND GLOBAL SOLUTIONS

We have seen already that global solutions are difficult to find even when there are
no constraints. The situation may be improved when we add constraints, since the feasible
set might exclude many of the local minima and it may be comparatively easy to pick the
global minimum from those that remain. However, constraints can also make things more
difficult. As an example, consider the problem

min (x2 + 100)2 + 0.01x2
1 , subject to x2 − cos x1 ≥ 0, (12.4)

illustrated in Figure 12.1. Without the constraint, the problem has the unique solution
(0,−100)T . With the constraint, there are local solutions near the points

x (k) � (kπ,−1)T , for k � ±1,±3,±5, . . ..

Definitions of the different types of local solutions are simple extensions of the corre-
sponding definitions for the unconstrained case, except that now we restrict consideration
to the feasible points in the neighborhood of x∗. We have the following definition.
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Figure 12.1 Constrained problem with many isolated local solutions.

A vector x∗ is a local solution of the problem (12.3) if x∗ ∈ � and there is a
neighborhood N of x∗ such that f (x) ≥ f (x∗) for x ∈ N ∩�.

Similarly, we can make the following definitions:

A vector x∗ is a strict local solution (also called a strong local solution) if x∗ ∈ � and there
is a neighborhood N of x∗ such that f (x) > f (x∗) for all x ∈ N ∩� with x 	� x∗.

A point x∗ is an isolated local solution if x∗ ∈ � and there is a neighborhood N of x∗

such that x∗ is the only local solution in N ∩�.

Note that isolated local solutions are strict, but that the reverse is not true (see
Exercise 12.2).

SMOOTHNESS

Smoothness of objective functions and constraints is an important issue in character-
izing solutions, just as in the unconstrained case. It ensures that the objective function and
the constraints all behave in a reasonably predictable way and therefore allows algorithms
to make good choices for search directions.

We saw in Chapter 2 that graphs of nonsmooth functions contain “kinks" or “jumps”
where the smoothness breaks down. If we plot the feasible region for any given constrained
optimization problem, we usually observe many kinks and sharp edges. Does this mean that
the constraint functions that describe these regions are nonsmooth? The answer is often
no, because the nonsmooth boundaries can often be described by a collection of smooth
constraint functions. Figure 12.2 shows a diamond-shaped feasible region in IR2 that could
be described by the single nonsmooth constraint

‖x‖1 � |x1| + |x2| ≤ 1. (12.5)

It can also be described by the following set of smooth (in fact, linear) constraints:

x1 + x2 ≤ 1, x1 − x2 ≤ 1, −x1 + x2 ≤ 1, −x1 − x2 ≤ 1. (12.6)

Each of the four constraints represents one edge of the feasible polytope. In general, the con-
straint functions are chosen so that each one represents a smooth piece of the boundary of �.
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Figure 12.2
A feasible region with a
nonsmooth boundary can be
described by smooth constraints.

Nonsmooth, unconstrained optimization problems can sometimes be reformulated as
smooth constrained problems. An example is the unconstrained minimization of a function

f (x) � max(x2, x), (12.7)

which has kinks at x � 0 and x � 1, and the solution at x∗ � 0. We obtain a smooth,
constrained formulation of this problem by adding an artificial variable t and writing

min t s.t. t ≥ x, t ≥ x2. (12.8)

Reformulation techniques such as (12.6) and (12.8) are used often in cases where f is a
maximum of a collection of functions or when f is a 1-norm or ∞-norm of a vector
function.

In the examples above we expressed inequality constraints in a slightly different way
from the form ci (x) ≥ 0 that appears in the definition (12.1). However, any collection of
inequality constraints with ≥ and ≤ and nonzero right-hand-sides can be expressed in the
form ci (x) ≥ 0 by simple rearrangement of the inequality.

12.1 EXAMPLES

To introduce the basic principles behind the characterization of solutions of constrained
optimization problems, we work through three simple examples. The discussion here is
informal; the ideas introduced will be made rigorous in the sections that follow.

We start by noting one important item of terminology that recurs throughout the rest
of the book.
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Definition 12.1.
The active set A(x) at any feasible x consists of the equality constraint indices from E

together with the indices of the inequality constraints i for which ci (x) � 0; that is,

A(x) � E ∪ {i ∈ I | ci (x) � 0}.

At a feasible point x , the inequality constraint i ∈ I is said to be active if ci (x) � 0
and inactive if the strict inequality ci (x) > 0 is satisfied.

A SINGLE EQUALITY CONSTRAINT

❏ EXAMPLE 12.1

Our first example is a two-variable problem with a single equality constraint:

min x1 + x2 s.t. x2
1 + x2

2 − 2 � 0 (12.9)

(see Figure 12.3). In the language of (12.1), we have f (x) � x1 + x2, I � ∅, E � {1}, and
c1(x) � x2

1 + x2
2 − 2. We can see by inspection that the feasible set for this problem is the

circle of radius
√

2 centered at the origin—just the boundary of this circle, not its interior.
The solution x∗ is obviously (−1,−1)T . From any other point on the circle, it is easy to
find a way to move that stays feasible (that is, remains on the circle) while decreasing f .
For instance, from the point x � (

√
2, 0)T any move in the clockwise direction around the

circle has the desired effect.
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Figure 12.3
Problem (12.9), showing
constraint and function
gradients at various feasible
points.
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We also see from Figure 12.3 that at the solution x∗, the constraint normal ∇c1(x∗) is
parallel to ∇ f (x∗). That is, there is a scalar λ∗1 (in this case λ∗1 � −1/2) such that

∇ f (x∗) � λ∗1∇c1(x∗). (12.10)

❐

We can derive (12.10) by examining first-order Taylor series approximations to the
objective and constraint functions. To retain feasibility with respect to the function c1(x) �
0, we require any small (but nonzero) step s to satisfy that c1(x + s) � 0; that is,

0 � c1(x + s) ≈ c1(x)+∇c1(x)T s � ∇c1(x)T s. (12.11)

Hence, the step s retains feasibility with respect to c1, to first order, when it satisfies

∇c1(x)T s � 0. (12.12)

Similarly, if we want s to produce a decrease in f , we would have so that

0 > f (x + s)− f (x) ≈ ∇ f (x)T s,

or, to first order,

∇ f (x)T s < 0. (12.13)

Existence of a small step s that satisfies both (12.12) and (12.13) strongly suggests existence
of a direction d (where the size of d is not small; we could have d ≈ s/‖s‖ to ensure that
the norm of d is close to 1) with the same properties, namely

∇c1(x)T d � 0 and ∇ f (x)T d < 0. (12.14)

If, on the other hand, there is no direction d with the properties (12.14), then is it likely that
we cannot find a small step s with the properties (12.12) and (12.13). In this case, x∗ would
appear to be a local minimizer.

By drawing a picture, the reader can check that the only way that a d satisfying (12.14)
does not exist is if∇ f (x) and∇c1(x) are parallel, that is, if the condition∇ f (x) � λ1∇c1(x)
holds at x , for some scalar λ1. If in fact ∇ f (x) and ∇c1(x) are not parallel, we can set

d̄ � −
(

I − ∇c1(x)∇c1(x)T

‖∇c1(x)‖2

)
∇ f (x); d � d̄

‖d̄‖ . (12.15)

It is easy to verify that this d satisfies (12.14).
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By introducing the Lagrangian function

L(x, λ1) � f (x)− λ1c1(x), (12.16)

and noting that ∇xL(x, λ1) � ∇ f (x) − λ1∇c1(x), we can state the condition (12.10)
equivalently as follows: At the solution x∗, there is a scalar λ∗1 such that

∇xL(x∗, λ∗1) � 0. (12.17)

This observation suggests that we can search for solutions of the equality-constrained
problem (12.9) by seeking stationary points of the Lagrangian function. The scalar quantity
λ1 in (12.16) is called a Lagrange multiplier for the constraint c1(x) � 0.

Though the condition (12.10) (equivalently, (12.17)) appears to be necessary for
an optimal solution of the problem (12.9), it is clearly not sufficient. For instance, in
Example 12.1, condition (12.10) is satisfied at the point x � (1, 1)T (with λ1 � 1

2 ), but
this point is obviously not a solution—in fact, it maximizes the function f on the circle.
Moreover, in the case of equality-constrained problems, we cannot turn the condition
(12.10) into a sufficient condition simply by placing some restriction on the sign of λ1. To
see this, consider replacing the constraint x2

1 + x2
2 − 2 � 0 by its negative 2− x2

1 − x2
2 � 0 in

Example 12.1. The solution of the problem is not affected, but the value of λ∗1 that satisfies
the condition (12.10) changes from λ∗1 � − 1

2 to λ∗1 � 1
2 .

A SINGLE INEQUALITY CONSTRAINT

❏ EXAMPLE 12.2

This is a slight modification of Example 12.1, in which the equality constraint is
replaced by an inequality. Consider

min x1 + x2 s.t. 2− x2
1 − x2

2 ≥ 0, (12.18)

for which the feasible region consists of the circle of problem (12.9) and its interior (see
Figure 12.4). Note that the constraint normal ∇c1 points toward the interior of the feasible
region at each point on the boundary of the circle. By inspection, we see that the solution
is still (−1,−1)T and that the condition (12.10) holds for the value λ∗1 � 1

2 . However,
this inequality-constrained problem differs from the equality-constrained problem (12.9)
of Example 12.1 in that the sign of the Lagrange multiplier plays a significant role, as we
now argue.

❐
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As before, we conjecture that a given feasible point x is not optimal if we can find a
small step s that both retains feasibility and decreases the objective function f to first order.
The main difference between problems (12.9) and (12.18) comes in the handling of the
feasibility condition. As in (12.13), the step s improves the objective function, to first order,
if ∇ f (x)T s < 0. Meanwhile, s retains feasibility if

0 ≤ c1(x + s) ≈ c1(x)+ ∇c1(x)T s,

so, to first order, feasibility is retained if

c1(x)+∇c1(x)T s ≥ 0. (12.19)

In determining whether a step s exists that satisfies both (12.13) and (12.19), we
consider the following two cases, which are illustrated in Figure 12.4.

Case I: Consider first the case in which x lies strictly inside the circle, so that the strict
inequality c1(x) > 0 holds. In this case, any step vector s satisfies the condition (12.19),
provided only that its length is sufficiently small. In fact, whenever ∇ f (x) 	� 0, we can
obtain a step s that satisfies both (12.13) and (12.19) by setting

s � −α∇ f (x),

1

∆
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x

∆

c
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f

Figure 12.4 Improvement directions s from two feasible points x for the problem
(12.18) at which the constraint is active and inactive, respectively.
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for any positive scalar α sufficiently small. However, this definition does not give a step s
with the required properties when

∇ f (x) � 0, (12.20)

Case II: Consider now the case in which x lies on the boundary of the circle, so that
c1(x) � 0. The conditions (12.13) and (12.19) therefore become

∇ f (x)T s < 0, ∇c1(x)T s ≥ 0.

The first of these conditions defines an open half-space, while the second defines a closed
half-space, as illustrated in Figure 12.5. It is clear from this figure that the intersection of
these two regions is empty only when ∇ f (x) and ∇c1(x) point in the same direction, that
is, when

∇ f (x) � λ1∇c1(x), for some λ1 ≥ 0. (12.21)

Note that the sign of the multiplier is significant here. If (12.10) were satisfied with a negative
value of λ1, then ∇ f (x) and ∇c1(x) would point in opposite directions, and we see from
Figure 12.5 that the set of directions that satisfy both (12.13) and (12.19) would make up an
entire open half-plane.

∆

1

∆

Any
direction, to first order

d

c

f

in this cone is a good search

Figure 12.5 A direction d that satisfies both (12.13) and (12.19) lies in the
intersection of a closed half-plane and an open half-plane.
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The optimality conditions for both cases I and II can again be summarized neatly
with reference to the Lagrangian function L defined in (12.16). When no first-order feasible
descent direction exists at some point x∗, we have that

∇xL(x∗, λ∗1) � 0, for some λ∗1 ≥ 0, (12.22)

where we also require that

λ∗1c1(x∗) � 0. (12.23)

Condition (12.23) is known as a complementarity condition; it implies that the Lagrange
multiplier λ1 can be strictly positive only when the corresponding constraint c1 is active.
Conditions of this type play a central role in constrained optimization, as we see in the
sections that follow. In case I, we have that c1(x∗) > 0, so (12.23) requires that λ∗1 � 0.
Hence, (12.22) reduces to ∇ f (x∗) � 0, as required by (12.20). In case II, (12.23) allows λ∗1
to take on a nonnegative value, so (12.22) becomes equivalent to (12.21).

TWO INEQUALITY CONSTRAINTS

❏ EXAMPLE 12.3

Suppose we add an extra constraint to the problem (12.18) to obtain

min x1 + x2 s.t. 2− x2
1 − x2

2 ≥ 0, x2 ≥ 0, (12.24)

for which the feasible region is the half-disk illustrated in Figure 12.6. It is easy to see that
the solution lies at (−√2, 0)T , a point at which both constraints are active. By repeating the
arguments for the previous examples, we would expect a direction d of first-order feasible
descent to satisfy

∇ci (x)T d ≥ 0, i ∈ I � {1, 2}, ∇ f (x)T d < 0. (12.25)

However, it is clear from Figure 12.6 that no such direction can exist when x � (−√2, 0)T .
The conditions ∇ci (x)T d ≥ 0, i � 1, 2, are both satisfied only if d lies in the quadrant
defined by∇c1(x) and∇c2(x), but it is clear by inspection that all vectors d in this quadrant
satisfy ∇ f (x)T d ≥ 0.

Let us see how the Lagrangian and its derivatives behave for the problem (12.24) and
the solution point (−√2, 0)T . First, we include an additional term λi ci (x) in the Lagrangian
for each additional constraint, so the definition of L becomes

L(x, λ) � f (x)− λ1c1(x)− λ2c2(x),
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Figure 12.6
Problem (12.24), illustrating the
gradients of the active constraints
and objective at the solution.

where λ � (λ1, λ2)T is the vector of Lagrange multipliers. The extension of condition
(12.22) to this case is

∇xL(x∗, λ∗) � 0, for some λ∗ ≥ 0, (12.26)

where the inequality λ∗ ≥ 0 means that all components of λ∗ are required to be nonnegative.
By applying the complementarity condition (12.23) to both inequality constraints, we obtain

λ∗1c1(x∗) � 0, λ∗2c2(x∗) � 0. (12.27)

When x∗ � (−√2, 0)T , we have

∇ f (x∗) �
[

1

1

]
, ∇c1(x∗) �

[
2
√

2

0

]
, ∇c2(x∗) �

[
0

1

]
,

so that it is easy to verify that ∇xL(x∗, λ∗) � 0 when we select λ∗ as follows:

λ∗ �
[

1/(2
√

2)

1

]
.

Note that both components of λ∗ are positive, so that (12.26) is satisfied.
We consider now some other feasible points that are not solutions of (12.24), and

examine the properties of the Lagrangian and its gradient at these points.
For the point x � (

√
2, 0)T , we again have that both constraints are active (see

Figure 12.7). However, it s easy to identify vectors d that satisfies (12.25): d � (−1, 0)T

is one such vector (there are many others). For this value of x it is easy to verify that the
condition ∇xL(x, λ) � 0 is satisfied only when λ � (−1/(2

√
2), 1)T . Note that the first

component λ1 is negative, so that the conditions (12.26) are not satisfied at this point.
Finally, we consider the point x � (1, 0)T , at which only the second constraint c2 is

active. Since any small step s away from this point will continue to satisfy c1(x + s) > 0, we
need to consider only the behavior of c2 and f in determining whether s is indeed a feasible
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Figure 12.7
Problem (12.24), illustrating
the gradients of the active
constraints and objective at a
nonoptimal point.

descent step. Using the same reasoning as in the earlier examples, we find that the direction
of feasible descent d must satisfy

∇c2(x)T d ≥ 0, ∇ f (x)T d < 0. (12.28)

By noting that

∇ f (x) �
[

1

1

]
, ∇c2(x) �

[
0

1

]
,

it is easy to verify that the vector d � (− 1
2 ,

1
4

)T
satisfies (12.28) and is therefore a descent

direction.
To show that optimality conditions (12.26) and (12.27) fail, we note first from (12.27)

that since c1(x) > 0, we must have λ1 � 0. Therefore, in trying to satisfy ∇xL(x, λ) � 0,
we are left to search for a value λ2 such that ∇ f (x)− λ2∇c2(x) � 0. No such λ2 exists, and
thus this point fails to satisfy the optimality conditions.

❐

12.2 TANGENT CONE AND CONSTRAINT QUALIFICATIONS

In this section we define the tangent cone T�(x∗) to the closed convex set � at a point
x∗ ∈ �, and also the set F(x∗) of first-order feasible directions at x∗. We also discuss
constraint qualifications. In the previous section, we determined whether or not it was
possible to take a feasible descent step away from a given feasible point x by examining
the first derivatives of f and the constraint functions ci . We used the first-order Taylor
series expansion of these functions about x to form an approximate problem in which both
objective and constraints are linear. This approach makes sense, however, only when the
linearized approximation captures the essential geometric features of the feasible set near
the point x in question. If, near x , the linearization is fundamentally different from the
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feasible set (for instance, it is an entire plane, while the feasible set is a single point) then
we cannot expect the linear approximation to yield useful information about the original
problem. Hence, we need to make assumptions about the nature of the constraints ci that
are active at x to ensure that the linearized approximation is similar to the feasible set, near
x . Constraint qualifications are assumptions that ensure similarity of the constraint set �

and its linearized approximation, in a neighborhood of x∗.
Given a feasible point x , we call {zk} a feasible sequence approaching x if zk ∈ � for all

k sufficiently large and zk → x .
Later, we characterize a local solution of (12.1) as a point x at which all feasible

sequences approaching x have the property that f (zk) ≥ f (x) for all k sufficiently large,
and we will derive practical, verifiable conditions under which this property holds. We lay
the groundwork in this section by characterizing the directions in which we can step away
from x while remaining feasible.

A tangent is a limiting direction of a feasible sequence.

Definition 12.2.
The vector d is said to be a tangent (or tangent vector) to � at a point x if there are a

feasible sequence {zk} approaching x and a sequence of positive scalars {tk} with tk → 0 such
that

lim
k→∞

zk − x

tk
� d. (12.29)

The set of all tangents to � at x∗ is called the tangent cone and is denoted by T�(x∗).

It is easy to see that the tangent cone is indeed a cone, according to the definition
(A.36). If d is a tangent vector with corresponding sequences {zk} and {tk}, then by replacing
each tk by α−1tk , for any α > 0, we find that αd ∈ T�(x∗) also. We obtain that 0 ∈ T�(x)
by setting zk ≡ x in the definition of feasible sequence.

We turn now to the linearized feasible direction set, which we define as follows.

Definition 12.3.
Given a feasible point x and the active constraint set A(x) of Definition 12.1, the set of

linearized feasible directions F(x) is

F(x) �
{

d
∣∣ dT∇ci (x) � 0, for all i ∈ E,

dT∇ci (x) ≥ 0, for all i ∈ A(x) ∩ I

}
.

As with the tangent cone, it is easy to verify that F(x) is a cone, according to the definition
(A.36).

It is important to note that the definition of tangent cone does not rely on the algebraic
specification of the set �, only on its geometry. The linearized feasible direction set does,
however, depend on the definition of the constraint functions ci , i ∈ E ∪ I .
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We illustrate the tangent cone and the linearized feasible direction set by revisiting
Examples 12.1 and 12.2.

❏ EXAMPLE 12.4 (EXAMPLE 12.1, REVISITED)

Figure 12.8 shows the problem (12.9), the equality-constrained problem in which the
feasible set is a circle of radius

√
2, near the nonoptimal point x � (−√2, 0)T . The figure

also shows a feasible sequence approaching x . This sequence could be defined analytically
by the formula

zk �
[
−
√

2− 1/k2

−1/k

]
. (12.30)

By choosing tk � ‖zk − x‖, we find that d � (0,−1)T is a tangent. Note that the objective
function f (x) � x1 + x2 increases as we move along the sequence (12.30); in fact, we have
f (zk+1) > f (zk) for all k � 2, 3, . . .. It follows that f (zk) < f (x) for k � 2, 3, . . ., so x
cannot be a solution of (12.9).

Another feasible sequence is one that approaches x � (−√2, 0)T from the opposite
direction. Its elements are defined by

zk �
[
−
√

2− 1/k2

1/k

]
.

It is easy to show that f decreases along this sequence and that the tangents corresponding
to this sequence are d � (0, α)T . In summary, the tangent cone at x � (−√2, 0)T is
{(0, d2)T | d2 ∈ IR}.
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For the definition (12.9) of this set, and Definition 12.3, we have that d � (d1, d2)T ∈
F(x) if

0 � ∇c1(x)T d �
[

2x1

2x2

]T [
d1

d2

]
� −2

√
2d1.

Therefore, we obtain F(x) � {(0, d2)T | d2 ∈ IR}. In this case, we have T�(x) � F(x).
Suppose that the feasible set is defined instead by the formula

� � {x | c1(x) � 0}, where c1(x) � (x2
1 + x2

2 − 2)2 � 0. (12.31)

(Note that � is the same, but its algebraic specification has changed.) The vector d belongs
to the linearized feasible set if

0 � ∇c1(x)T d �
[

4(x2
1 + x2

2 − 2)x1

4(x2
1 + x2

2 − 2)x2

]T [
d1

d2

]
�
[

0

0

]T [
d1

d2

]
,

which is true for all (d1, d2)T . Hence, we have F(x) � IR2, so for this algebraic specification
of �, the tangent cone and linearized feasible sets differ.

❐

❏ EXAMPLE 12.5 (EXAMPLE 12.2, REVISITED)

We now reconsider problem (12.18) in Example 12.2. The solution x � (−1,−1)T is
the same as in the equality-constrained case, but there is a much more extensive collection
of feasible sequences that converge to any given feasible point (see Figure 12.9).

2

x1

x

Figure 12.9
Feasible sequences converging to a particular
feasible point for the region defined by
x2

1 + x2
2 ≤ 2.
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From the point x � (−√2, 0)T , the various feasible sequences defined above for the
equality-constrained problem are still feasible for (12.18). There are also infinitely many
feasible sequences that converge to x � (−√2, 0)T along a straight line from the interior of
the circle. These sequences have the form

zk � (−
√

2, 0)T + (1/k)w,

where w is any vector whose first component is positive (w1 > 0). The point zk is feasible
provided that ‖zk‖ ≤

√
2, that is,

(−
√

2+ w1/k)2 + (w2/k)2 ≤ 2,

which is true when k ≥ (w2
1 + w2

2)/(2
√

2w1). In addition to these straight-line feasible
sequences, we can also define an infinite variety of sequences that approach (−√2, 0)T

along a curve from the interior of the circle. To summarize, the tangent cone to this set at
(−√2, 0)T is {(w1, w2)T |w1 ≥ 0}.

For the definition (12.18) of this feasible set, we have from Definition 12.3 that
d ∈ F(x) if

0 ≤ ∇c1(x)T d �
[
−2x1

−2x2

]T [
d1

d2

]
� 2

√
2d1.

Hence, we obtain F(x) � T�(x) for this particular algebraic specification of the feasible
set.

❐

Constraint qualifications are conditions under which the linearized feasible set F(x)
is similar to the tangent cone T�(x). In fact, most constraint qualifications ensure that these
two sets are identical. As mentioned earlier, these conditions ensure that the F(x), which is
constructed by linearizing the algebraic description of the set � at x , captures the essential
geometric features of the set � in the vicinity of x , as represented by T�(x).

Revisiting Example 12.4, we see that both T�(x) and F(x) consist of the vertical axis,
which is qualitatively similar to the set � − {x} in the neighborhood of x . As a further
example, consider the constraints

c1(x) � 1− x2
1 − (x2 − 1)2 ≥ 0, c2(x) � −x2 ≥ 0, (12.32)

for which the feasible set is the single point � � {(0, 0)T } (see Figure 12.10). For this point
x � (0, 0)T , it is obvious that that tangent cone is T�(x) � {(0, 0)T }, since all feasible
sequences approaching x must have zk � x � (0, 0)T for all k sufficiently large. Moreover,
it is easy to show that linearized approximation to the feasible set F(x) is

F(x∗) � {(d1, 0)T | d1 ∈ IR},
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Figure 12.10 Problem (12.32), for which the feasible set is the single point of
intersection between circle and line.

that is, the entire horizontal axis. In this case, the linearized feasible direction set does not
capture the geometry of the feasible set, so constraint qualifications are not satisfied.

The constraint qualification most often used in the design of algorithms is the subject
of the next definition.

Definition 12.4 (LICQ).
Given the point x and the active setA(x) defined in Definition 12.1, we say that the linear

independence constraint qualification (LICQ) holds if the set of active constraint gradients
{∇ci (x), i ∈ A(x)} is linearly independent.

Note that this condition is not satisfied for the examples (12.32) and (12.31). In general, if
LICQ holds, none of the active constraint gradients can be zero. We mention other constraint
qualifications in Section 12.6.

12.3 FIRST-ORDER OPTIMALITY CONDITIONS

In this section, we state first-order necessary conditions for x∗ to be a local minimizer
and show how these conditions are satisfied on a small example. The proof of the result is
presented in subsequent sections.

As a preliminary to stating the necessary conditions, we define the Lagrangian function
for the general problem (12.1).

L(x, λ) � f (x)−
∑

i∈E∪I
λi ci (x). (12.33)

(We had previously defined special cases of this function for the examples of Section 12.1.)
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The necessary conditions defined in the following theorem are called first-order con-
ditions because they are concerned with properties of the gradients (first-derivative vectors)
of the objective and constraint functions. These conditions are the foundation for many of
the algorithms described in the remaining chapters of the book.

Theorem 12.1 (First-Order Necessary Conditions).
Suppose that x∗ is a local solution of (12.1), that the functions f and ci in (12.1) are

continuously differentiable, and that the LICQ holds at x∗. Then there is a Lagrange multiplier
vector λ∗, with components λ∗i , i ∈ E ∪ I , such that the following conditions are satisfied at
(x∗, λ∗)

∇xL(x∗, λ∗) � 0, (12.34a)

ci (x∗) � 0, for all i ∈ E, (12.34b)

ci (x∗) ≥ 0, for all i ∈ I, (12.34c)

λ∗i ≥ 0, for all i ∈ I, (12.34d)

λ∗i ci (x∗) � 0, for all i ∈ E ∪ I . (12.34e)

The conditions (12.34) are often known as the Karush–Kuhn–Tucker conditions, or
KKT conditions for short. The conditions (12.34e) are complementarity conditions; they
imply that either constraint i is active or λ∗i � 0, or possibly both. In particular, the
Lagrange multipliers corresponding to inactive inequality constraints are zero, we can omit
the terms for indices i /∈ A(x∗) from (12.34a) and rewrite this condition as

0 � ∇xL(x∗, λ∗) � ∇ f (x∗)−
∑

i∈A(x∗)

λ∗i ∇ci (x∗). (12.35)

A special case of complementarity is important and deserves its own definition.

Definition 12.5 (Strict Complementarity).
Given a local solution x∗ of (12.1) and a vector λ∗ satisfying (12.34), we say that the

strict complementarity condition holds if exactly one of λ∗i and ci (x∗) is zero for each index
i ∈ I . In other words, we have that λ∗i > 0 for each i ∈ I ∩A(x∗).

Satisfaction of the strict complementarity property usually makes it easier for algorithms to
determine the active set A(x∗) and converge rapidly to the solution x∗.

For a given problem (12.1) and solution point x∗, there may be many vectors λ∗ for
which the conditions (12.34) are satisfied. When the LICQ holds, however, the optimal λ∗

is unique (see Exercise 12.17).
The proof of Theorem 12.1 is quite complex, but it is important to our understanding

of constrained optimization, so we present it in the next section. First, we illustrate the KKT
conditions with another example.
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x2

x1

Figure 12.11 Inequality-constrained problem (12.36) with solution at (1, 0)T .

❏ EXAMPLE 12.6

Consider the feasible region illustrated in Figure 12.2 and described by the four
constraints (12.6). By restating the constraints in the standard form of (12.1) and including
an objective function, the problem becomes

min
x

(
x1 − 3

2

)2

+
(

x2 − 1

2

)4

s.t.

⎡
⎢⎢⎢⎢⎣

1− x1 − x2

1− x1 + x2

1+ x1 − x2

1+ x1 + x2

⎤
⎥⎥⎥⎥⎦ ≥ 0. (12.36)

It is fairly clear from Figure 12.11 that the solution is x∗ � (1, 0)T . The first and second
constraints in (12.36) are active at this point. Denoting them by c1 and c2 (and the inactive
constraints by c3 and c4), we have

∇ f (x∗) �
⎡
⎣ −1

−1

2

⎤
⎦ , ∇c1(x∗) �

[
−1

−1

]
, ∇c2(x∗) �

[
−1

1

]
.

Therefore, the KKT conditions (12.34a)–(12.34e) are satisfied when we set

λ∗ � (
3
4 ,

1
4 , 0, 0

)T
.

❐
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12.4 FIRST-ORDER OPTIMALITY CONDITIONS: PROOF

We now develop a proof of Theorem 12.1. A number of key subsidiary results are required,
so the development is quite long. However, a complete treatment is worthwhile, since these
results are so fundamental to the field of optimization.

RELATING THE TANGENT CONE AND THE FIRST-ORDER FEASIBLE
DIRECTION SET

The following key result uses a constraint qualification (LICQ) to relate the tangent
cone of Definition 12.2 to the set F of first-order feasible directions of Definition 12.3. In
the proof below and in later results, we use the notation A(x∗) to represent the matrix whose
rows are the active constraint gradients at the optimal point, that is,

A(x∗)T � [∇ci (x∗)]i∈A(x∗), (12.37)

where the active set A(x∗) is defined as in Definition 12.1.

Lemma 12.2.
Let x∗ be a feasible point. The following two statements are true.

(i) T�(x∗) ⊂ F(x∗).

(ii) If the LICQ condition is satisfied at x∗, then F(x∗) � T�(x∗).

PROOF. Without loss of generality, let us assume that all the constraints ci (·), i �
1, 2, . . . , m, are active at x∗. (We can arrive at this convenient ordering by simply dropping all
inactive constraints—which are irrelevant in some neighborhood of x∗—and renumbering
the active constraints that remain.)

To prove (i), let {zk} and {tk} be the sequences for which (12.29) is satisfied, that is,

lim
k→∞

zk − x∗

tk
� d.

(Note in particular that tk > 0 for all k.) From this definition, we have that

zk � x∗ + tkd + o(tk). (12.38)

By taking i ∈ E and using Taylor’s theorem, we have that

0 � 1

tk
ci (zk)

� 1

tk

[
ci (x∗)+ tk∇ci (x∗)T d + o(tk)

]
� ∇ci (x∗)T d + o(tk)

tk
.
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By taking the limit as k → ∞, the last term in this expression vanishes, and we have
∇ci (x∗)T d � 0, as required. For the active inequality constraints i ∈ A(x∗) ∩ I , we have
similarly that

0 ≤ 1

tk
ci (zk)

� 1

tk

[
ci (x∗)+ tk∇ci (x∗)T d + o(tk)

]
� ∇ci (x∗)T d + o(tk)

tk
.

Hence, by a similar limiting argument, we have that ∇ci (x∗)T d ≥ 0, as required.
For (ii), we use the implicit function theorem (see the Appendix or Lang [187, p. 131]

for a statement of this result). First, since the LICQ holds, we have from Definition 12.4 that
the m×n matrix A(x∗) of active constraint gradients has full row rank m. Let Z be a matrix
whose columns are a basis for the null space of A(x∗); that is,

Z ∈ IRn×(n−m), Z has full column rank, A(x∗)Z � 0. (12.39)

(See the related discussion in Chapter 16.) Choose d ∈ F(x∗) arbitrarily, and suppose that
{tk}∞k�0 is any sequence of positive scalars such limk→∞ tk � 0. Define the parametrized
system of equations R : IRn × IR → IRn by

R(z, t) �
[

c(z)− t A(x∗)d

Z T (z − x∗ − td)

]
�
[

0

0

]
. (12.40)

We claim that the solutions z � zk of this system for small t � tk > 0 give a feasible sequence
that approaches x∗ and satisfies the definition (12.29).

At t � 0, z � x∗, and the Jacobian of R at this point is

∇z R(x∗, 0) �
[

A(x∗)

Z T

]
, (12.41)

which is nonsingular by construction of Z . Hence, according to the implicit function
theorem, the system (12.40) has a unique solution zk for all values of tk sufficiently small.
Moreover, we have from (12.40) and Definition 12.3 that

i ∈ E ⇒ ci (zk) � tk∇ci (x∗)T d � 0, (12.42a)

i ∈ A(x∗) ∩ I ⇒ ci (zk) � tk∇ci (x∗)T d ≥ 0, (12.42b)

so that zk is indeed feasible.
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It remains to verify that (12.29) holds for this choice of {zk}. Using the fact that
R(zk, tk) � 0 for all k together with Taylor’s theorem, we find that

0 � R(zk, tk) �
[

c(zk)− tk A(x∗)d

Z T (zk − x∗ − tkd)

]

�
[

A(x∗)(zk − x∗)+ o(‖zk − x∗‖)− tk A(x∗)d

Z T (zk − x∗ − tkd)

]

�
[

A(x∗)

Z T

]
(zk − x∗ − tkd)+ o(‖zk − x∗‖).

By dividing this expression by tk and using nonsingularity of the coefficient matrix in the
first term, we obtain

zk − x∗

tk
� d + o

(‖zk − x∗‖
tk

)
,

from which it follows that (12.29) is satisfied (for x � x∗). Hence, d ∈ T�(x∗) for an
arbitrary d ∈ F(x∗), so the proof of (ii) is complete. �

A FUNDAMENTAL NECESSARY CONDITION

As mentioned above, a local solution of (12.1) is a point x at which all feasible sequences
have the property that f (zk) ≥ f (x) for all k sufficiently large. The following result shows
that if such a sequence exists, then its limiting directions must make a nonnegative inner
product with the objective function gradient.

Theorem 12.3.
If x∗ is a local solution of (12.1), then we have

∇ f (x∗)T d ≥ 0, for all d ∈ T�(x∗). (12.43)

PROOF. Suppose for contradiction that there is a tangent d for which ∇ f (x∗)T d < 0. Let
{zk} and {tk} be the sequences satisfying Definition 12.2 for this d . We have that

f (zk) � f (x∗)+ (zk − x∗)T∇ f (x∗)+ o(‖zk − x∗‖)

� f (x∗)+ tkdT∇ f (x∗)+ o(tk),
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Figure 12.12
Problem (12.44), showing various
limiting directions of feasible
sequences at the point (0, 0)T .

where the second line follows from (12.38). Since dT∇ f (x∗) < 0, the remainder term is
eventually dominated by the first-order term, that is,

f (zk) < f (x∗)+ 1
2 tkdT∇ f (x∗), for all k sufficiently large.

Hence, given any open neighborhood of x∗, we can choose k sufficiently large that zk lies
within this neighborhood and has a lower value of the objective f . Therefore, x∗ is not a
local solution. �

The converse of this result is not necessarily true. That is, we may have∇ f (x∗)T d ≥ 0
for all d ∈ T�(x∗), yet x∗ is not a local minimizer. An example is the following problem in
two unknowns, illustrated in Figure 12.12

min x2 subject to x2 ≥ −x2
1 . (12.44)

This problem is actually unbounded, but let us examine its behavior at x∗ � (0, 0)T . It is
not difficult to show that all limiting directions d of feasible sequences must have d2 ≥ 0, so
that∇ f (x∗)T d � d2 ≥ 0. However, x∗ is clearly not a local minimizer; the point (α,−α2)T

for α > 0 has a smaller function value than x∗, and can be brought arbitrarily close to x∗

by setting α sufficiently small.

FARKAS’ LEMMA

The most important step in proving Theorem 12.1 is a classical theorem of the
alternative known as Farkas’ Lemma. This lemma considers a cone K defined as follows:

K � {By + Cw | y ≥ 0}, (12.45)
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b2

b1

b3
b2

b1

b3

g

g

d

Figure 12.13 Farkas’ Lemma: Either g ∈ K (left) or there is a separating hyperplane
(right).

where B and C are matrices of dimension n × m and n × p, respectively, and y and w are
vectors of appropriate dimensions. Given a vector g ∈ IRn , Farkas’ Lemma states that one
(and only one) of two alternatives is true. Either g ∈ K , or else there is a vector d ∈ IRn such
that

gT d < 0, BT d ≥ 0, CT d � 0. (12.46)

The two cases are illustrated in Figure 12.13 for the case of B with three columns, C null,
and n � 2. Note that in the second case, the vector d defines a separating hyperplane, which
is a plane in IRn that separates the vector g from the cone K .

Lemma 12.4 (Farkas).
Let the cone K be defined as in (12.45). Given any vector g ∈ IRn , we have either that

g ∈ K or that there exists d ∈ IRn satisfying (12.46), but not both.

PROOF. We show first that the two alternatives cannot hold simultaneously. If g ∈ K , there
exist vectors y ≥ 0 and w such that g � By +Cw. If there also exists a d with the property
(12.46), we have by taking inner products that

0 > dT g � dT By + dT Cw � (BT d)T y + (CT d)T w ≥ 0,

where the final inequality follows from CT d � 0, BT d ≥ 0, and y ≥ 0. Hence, we cannot
have both alternatives holding at once.

We now show that one of the alternatives holds. To be precise, we show how to
construct d with the properties (12.46) in the case that g /∈ K . For this part of the proof,
we need to use the property that K is a closed set—a fact that is intuitively obvious but not
trivial to prove (see Lemma 12.15 in the Notes and References below). Let ŝ be the vector
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in K that is closest to g in the sense of the Euclidean norm. Because K is closed, ŝ is well
defined and is given by the solution of the following optimization problem:

min ‖s − g‖2
2 subject to s ∈ K . (12.47)

Since ŝ ∈ K , we have from the fact that K is a cone that αŝ ∈ K for all scalars α ≥ 0. Since
‖αŝ − g‖2

2 is minimized by α � 1, we have by simple calculus that

d

dα
‖αŝ − g‖2

2

∣∣∣∣
α�1

� 0 ⇒ (−2ŝT g + 2t ŝT ŝ
)∣∣

α�1
� 0

⇒ ŝT (ŝ − g) � 0. (12.48)

Now, let s be any other vector in K . Since K is convex, we have by the minimizing property
of ŝ that

‖ŝ + θ(s − ŝ)− g‖2
2 ≥ ‖ŝ − g‖2

2 for all θ ∈ [0, 1],

and hence

2θ(s − ŝ)T (ŝ − g)+ θ2‖s − ŝ‖2
2 ≥ 0.

By dividing this expression by θ and taking the limit as θ ↓ 0, we have (s − ŝ)T (ŝ − g) ≥ 0.
Therefore, because of (12.48),

sT (ŝ − g) ≥ 0, for all s ∈ K . (12.49)

We claim now that the vector

d � ŝ − g

satisfies the conditions (12.46). Note that d 	� 0 because g /∈ K . We have from (12.48) that

dT g � dT (ŝ − d) � (ŝ − g)T ŝ − dT d � −‖d‖2
2 < 0,

so that d satisfies the first property in (12.46).
From (12.49), we have that dT s ≥ 0 for all s ∈ K , so that

dT (By + Cw) ≥ 0 for all y ≥ 0 and all w.

By fixing y � 0 we have that (CT d)T w ≥ 0 for all w, which is true only if CT d � 0. By
fixing w � 0, we have that (BT d)T y ≥ 0 for all y ≥ 0, which is true only if BT d ≥ 0. Hence,
d also satisfies the second and third properties in (12.46) and our proof is complete. �
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By applying Lemma 12.4 to the cone N defined by

N �
⎧⎨
⎩

∑
i∈A(x∗)

λi∇ci (x∗), λi ≥ 0 for i ∈ A(x∗) ∩ I
⎫⎬
⎭ , (12.50)

and setting g � ∇ f (x∗), we have that either

∇ f (x∗) �
∑

i∈A(x∗)

λi∇ci (x∗) � A(x∗)T λ∗, λi ≥ 0 for i ∈ A(x∗) ∩ I, (12.51)

or else there is a direction d such that dT∇ f (x∗) < 0 and d ∈ F(x∗).

PROOF OF THEOREM 12.1

Lemmas 12.2 and 12.4 can be combined to give the KKT conditions described in
Theorem 12.1. We work through the final steps of the proof here. Suppose that x∗ ∈ IRn is a
feasible point at which the LICQ holds. The theorem claims that if x∗ is a local solution for
(12.1), then there is a vector λ∗ ∈ IRm that satisfies the conditions (12.34).

We show first that there are multipliers λi , i ∈ A(x∗), such that (12.51) is satisfied.
Theorem 12.3 tells us that dT∇ f (x∗) ≥ 0 for all tangent vectors d ∈ T�(x∗). From
Lemma 12.2, since LICQ holds, we have that T�(x∗) � F(x∗). By putting these two
statements together, we find that dT∇ f (x∗) ≥ 0 for all d ∈ F(x∗). Hence, from Lemma 12.4,
there is a vector λ for which (12.51) holds, as claimed.

We now define the vector λ∗ by

λ∗i �
{

λi , i ∈ A(x∗),

0, i ∈ I\A(x∗),
(12.52)

and show that this choice of λ∗, together with our local solution x∗, satisfies the conditions
(12.34). We check these conditions in turn.

• The condition (12.34a) follows immediately from (12.51) and the definitions (12.33)
of the Lagrangian function and (12.52) of λ∗.

• Since x∗ is feasible, the conditions (12.34b) and (12.34c) are satisfied.

• We have from (12.51) that λ∗i ≥ 0 for i ∈ A(x∗) ∩ I , while from (12.52), λ∗i � 0 for
i ∈ I\A(x∗). Hence, λ∗i ≥ 0 for i ∈ I , so that (12.34d) holds.

• We have for i ∈ A(x∗) ∩ I that ci (x∗) � 0, while for i ∈ I\A(x∗), we have λ∗i � 0.
Hence λ∗i ci (x∗) � 0 for i ∈ I , so that (12.34e) is satisfied as well.

The proof is complete.
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12.5 SECOND-ORDER CONDITIONS

So far, we have described first-order conditions—the KKT conditions—which tell us how
the first derivatives of f and the active constraints ci are related to each other at a solution x∗.
When these conditions are satisfied, a move along any vector w from F(x∗) either increases
the first-order approximation to the objective function (that is, wT∇ f (x∗) > 0), or else
keeps this value the same (that is, wT∇ f (x∗) � 0).

What role do the second derivatives of f and the constraints ci play in optimality
conditions? We see in this section that second derivatives play a “tiebreaking” role. For
the directions w ∈ F(x∗) for which wT∇ f (x∗) � 0, we cannot determine from first
derivative information alone whether a move along this direction will increase or decrease
the objective function f . Second-order conditions examine the second derivative terms in
the Taylor series expansions of f and ci , to see whether this extra information resolves the
issue of increase or decrease in f . Essentially, the second-order conditions concern the
curvature of the Lagrangian function in the “undecided” directions—the directions w ∈
F(x∗) for which wT∇ f (x∗) � 0.

Since we are discussing second derivatives, stronger smoothness assumptions are
needed here than in the previous sections. For the purpose of this section, f and ci ,
i ∈ E ∪ I , are all assumed to be twice continuously differentiable.

Given F(x∗) from Definition 12.3 and some Lagrange multiplier vector λ∗ satisfying
the KKT conditions (12.34), we define the critical cone C(x∗, λ∗) as follows:

C(x∗, λ∗) � {w ∈ F(x∗) | ∇ci (x∗)T w � 0, all i ∈ A(x∗) ∩ I with λ∗i > 0}.

Equivalently,

w ∈ C(x∗, λ∗) ⇔

⎧⎪⎨
⎪⎩

∇ci (x∗)T w � 0, for all i ∈ E,

∇ci (x∗)T w � 0, for all i ∈ A(x∗) ∩ I with λ∗i > 0,

∇ci (x∗)T w ≥ 0, for all i ∈ A(x∗) ∩ I with λ∗i � 0.

(12.53)

The critical cone contains those directions w that would tend to “adhere” to the active
inequality constraints even when we were to make small changes to the objective (those
indices i ∈ I for which the Lagrange multiplier component λ∗i is positive), as well as to the
equality constraints. From the definition (12.53) and the fact that λ∗i � 0 for all inactive
components i ∈ I\A(x∗), it follows immediately that

w ∈ C(x∗, λ∗) ⇒ λ∗i ∇ci (x∗)T w � 0 for all i ∈ E ∪ I . (12.54)

Hence, from the first KKT condition (12.34a) and the definition (12.33) of the Lagrangian
function, we have that

w ∈ C(x∗, λ∗) ⇒ wT∇ f (x∗) �
∑

i∈E∪I
λ∗i w

T∇ci (x∗) � 0. (12.55)
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Figure 12.14
Problem (12.56), showing
F(x∗) and C(x∗, λ∗).

Hence the critical cone C(x∗, λ∗) contains directions from F(x∗) for which it is not clear
from first derivative information alone whether f will increase or decrease.

❏ EXAMPLE 12.7

Consider the problem

min x1 subject to x2 ≥ 0, 1− (x1 − 1)2 − x2
2 ≥ 0, (12.56)

illustrated in Figure 12.14. It is not difficult to see that the solution is x∗ � (0, 0)T , with
active set A(x∗) � {1, 2} and a unique optimal Lagrange multiplier λ∗ � (0, 0.5)T . Since
the gradients of the active constraints at x∗ are (0, 1)T and (2, 0)T , respectively, the LICQ
holds, so the optimal multiplier is unique. The linearized feasible set is then

F(x∗) � {d | d ≥ 0},

while the critical cone is

C(x∗, λ∗) � {(0, w2)T |w2 ≥ 0}.
❐
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The first theorem defines a necessary condition involving the second derivatives: If
x∗ is a local solution, then the Hessian of the Lagrangian has nonnegative curvature along
critical directions (that is, the directions in C(x∗, λ∗)).

Theorem 12.5 (Second-Order Necessary Conditions).
Suppose that x∗ is a local solution of (12.1) and that the LICQ condition is satisfied. Let

λ∗ be the Lagrange multiplier vector for which the KKT conditions (12.34) are satisfied. Then

wT∇2
xxL(x∗, λ∗)w ≥ 0, for all w ∈ C(x∗, λ∗). (12.57)

PROOF. Since x∗ is a local solution, all feasible sequences {zk} approaching x∗ must have
f (zk) ≥ f (x∗) for all k sufficiently large. Our approach in this proof is to construct a
feasible sequence whose limiting direction is w and show that the property f (zk) ≥ f (x∗)
implies that (12.57) holds.

Since w ∈ C(x∗, λ∗) ⊂ F(x∗), we can use the technique in the proof of Lemma 12.2
to choose a sequence {tk} of positive scalars and to construct a feasible sequence {zk}
approaching x∗ such that

lim
k→∞

zk − x∗

tk
� w, (12.58)

which we can write also as (12.58) that

zk − x∗ � tkw + o(tk). (12.59)

Because of the construction technique for {zk}, we have from formula (12.42) that

ci (zk) � tk∇ci (x∗)T w, for all i ∈ A(x∗) (12.60)

From (12.33), (12.60), and (12.54), we have

L(zk, λ
∗) � f (zk)−

∑
i∈E∪I

λ∗i ci (zk)

� f (zk)− tk
∑

i∈A(x∗)

λ∗i ∇ci (x∗)T w

� f (zk), (12.61)

On the other hand, we can perform a Taylor series expansion to obtain an estimate of
L(zk, λ

∗) near x∗. By using Taylor’s theorem expression (2.6) and continuity of the Hessians
∇2 f and ∇2ci , i ∈ E ∪ I , we obtain

L(zk, λ
∗) � L(x∗, λ∗)+ (zk − x∗)T∇xL(x∗, λ∗) (12.62)

+ 1
2 (zk − x∗)T∇2

xxL(x∗, λ∗)(zk − x∗)+ o(‖zk − x∗‖2).
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By the complementarity conditions (12.34e), we have L(x∗, λ∗) � f (x∗). From (12.34a),
the second term on the right-hand side is zero. Hence, using (12.59), we can rewrite (12.62)
as

L(zk, λ
∗) � f (x∗)+ 1

2 t2
k wT∇2

xxL(x∗, λ∗)+ o(t2
k ). (12.63)

By substituting into (12.63), we obtain

f (zk) � f (x∗)+ 1
2 t2

k wT∇2
xxL(x∗, λ∗)w + o(t2

k ). (12.64)

If wT∇2
xxL(x∗, λ∗)w < 0, then (12.64) would imply that f (zk) < f (x∗) for all k sufficiently

large, contradicting the fact that x∗ is a local solution. Hence, the condition (12.57) must
hold, as claimed. �

Sufficient conditions are conditions on f and ci , i ∈ E ∪I , that ensure that x∗ is a local
solution of the problem (12.1). (They take the opposite tack to necessary conditions, which
assume that x∗ is a local solution and deduce properties of f and ci , for the active indices
i .) The second-order sufficient condition stated in the next theorem looks very much like
the necessary condition just discussed, but it differs in that the constraint qualification is
not required, and the inequality in (12.57) is replaced by a strict inequality.

Theorem 12.6 (Second-Order Sufficient Conditions).
Suppose that for some feasible point x∗ ∈ IRn there is a Lagrange multiplier vector λ∗

such that the KKT conditions (12.34) are satisfied. Suppose also that

wT∇2
xxL(x∗, λ∗)w > 0, for all w ∈ C(x∗, λ∗), w 	� 0. (12.65)

Then x∗ is a strict local solution for (12.1).

PROOF. First, note that the set C̄ � {d ∈ C(x∗, λ∗) | ‖d‖ � 1} is a compact subset of
C(x∗, λ∗), so by (12.65), the minimizer of dT∇2

xxL(x∗, λ∗)d over this set is a strictly positive
number, say σ . Since C(x∗, λ∗) is a cone, we have that (w/‖w‖) ∈ C̄ if and only if w ∈
C(x∗, λ∗), w 	� 0. Therefore, condition (12.65) by

wT∇2
xxL(x∗, λ∗)w ≥ σ‖w‖2, for all w ∈ C(x∗, λ∗), (12.66)

for σ > 0 defined as above. (Note that this inequality holds trivially for w � 0.)
We prove the result by showing that every feasible sequence {zk} approaching x∗ has

f (zk) ≥ f (x∗) + (σ/4)‖zk − x∗‖2, for all k sufficiently large. Suppose for contradiction
that this is not the case, and that there is a sequence {zk} approaching x∗ with

f (zk) < f (x∗)+ (σ/4)‖zk − x∗‖2, for all k sufficiently large. (12.67)
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By taking a subsequence if necessary, we can identify a limiting direction d such that

lim
k→∞

zk − x∗

‖zk − x∗‖ � d. (12.68)

We have from Lemma 12.2(i) and Definition 12.3 that d ∈ F(x∗). From (12.33) and the
facts that λ∗i ≥ 0 and ci (zk) ≥ 0 for i ∈ I and ci (zk) � 0 for i ∈ E , we have that

L(zk, λ
∗) � f (zk)−

∑
i∈A(x∗)

λ∗i ci (zk) ≤ f (zk), (12.69)

while the Taylor series approximation (12.63) from the proof of Theorem 12.5 continues to
hold.

If d were not in C(x∗, λ∗), we could identify some index j ∈ A(x∗) ∩ I such that the
strict positivity condition

λ∗j∇c j (x∗)T d > 0 (12.70)

is satisfied, while for the remaining indices i ∈ A(x∗), we have

λ∗i ∇ci (x∗)T d ≥ 0.

From Taylor’s theorem and (12.68), we have for this particular value of j that

λ∗j c j (zk) � λ∗j c j (x∗)+ λ∗j∇c j (x∗)T (zk − x∗)+ o(‖zk − x∗‖)

� ‖zk − x∗‖λ∗j∇c j (x∗)T d + o(‖zk − x∗‖).

Hence, from (12.69), we have that

L(zk, λ
∗) � f (zk)−

∑
i∈A(x∗)

λ∗i ci (zk)

≤ f (zk)− λ∗j c j (zk)

≤ f (zk)− ‖zk − x∗‖λ∗j∇c j (x∗)T d + o(‖zk − x∗‖). (12.71)

From the Taylor series estimate (12.63), we have meanwhile that

L(zk, λ
∗) � f (x∗)+ O(‖zk − x∗‖2),

and by combining with (12.71), we obtain

f (zk) ≥ f (x∗)+ ‖zk − x∗‖λ∗j∇c j (x∗)T d + o(‖zk − x∗‖).
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Because of (12.70), this inequality is incompatible with (12.67). We conclude that d ∈
C(x∗, λ∗), and hence dT∇2

xxL(x∗, λ∗)d ≥ σ .
By combining the Taylor series estimate (12.63) with (12.69) and using (12.68), we

obtain

f (zk) ≥ f (x∗)+ 1
2 (zk − x∗)T∇2

xxL(x∗, λ∗)(zk − x∗)+ o(‖zk − x∗‖2)

� f (x∗)+ 1
2 dT∇2

xxL(x∗, λ∗)d‖zk − x∗‖2 + o(‖zk − x∗‖2)

≥ f (x∗)+ (σ/2)‖zk − x∗‖2 + o(‖zk − x∗‖2).

This inequality yields the contradiction to (12.67). We conclude that every feasible sequence
{zk} approaching x∗ must satisfy f (zk) ≥ f (x∗) + (σ/4)‖zk − x∗‖2, for all k sufficiently
large, so x∗ is a strict local solution. �

❏ EXAMPLE 12.8 (EXAMPLE 12.2, ONE MORE TIME)

We now return to Example 12.2 to check the second-order conditions for problem
(12.18). In this problem we have f (x) � x1+ x2, c1(x) � 2− x2

1 − x2
2 , E � ∅, and I � {1}.

The Lagrangian is

L(x, λ) � (x1 + x2)− λ1(2− x2
1 − x2

2 ),

and it is easy to show that the KKT conditions (12.34) are satisfied by x∗ � (−1,−1)T , with
λ∗1 � 1

2 . The Lagrangian Hessian at this point is

∇2
xxL(x∗, λ∗) �

[
2λ∗1 0

0 2λ∗1

]
�
[

1 0

0 1

]
.

This matrix is positive definite, so it certainly satisfies the conditions of Theorem 12.6. We
conclude that x∗ � (−1,−1)T is a strict local solution for (12.18). (In fact, it is the global
solution of this problem, since, as we note later, this problem is a convex programming
problem.)

❐

❏ EXAMPLE 12.9

For a more complex example, consider the problem

min −0.1(x1 − 4)2 + x2
2 s.t. x2

1 + x2
2 − 1 ≥ 0, (12.72)
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in which we seek to minimize a nonconvex function over the exterior of the unit circle.
Obviously, the objective function is not bounded below on the feasible region, since we can
take the feasible sequence

[
10

0

]
,

[
20

0

]
,

[
30

0

]
,

[
40

0

]
,

and note that f (x) approaches −∞ along this sequence. Therefore, no global solution
exists, but it may still be possible to identify a strict local solution on the boundary of the
constraint. We search for such a solution by using the KKT conditions (12.34) and the
second-order conditions of Theorem 12.6.

By defining the Lagrangian for (12.72) in the usual way, it is easy to verify that

∇xL(x, λ) �
[
−0.2(x1 − 4)− 2λ1x1

2x2 − 2λ1x2

]
, (12.73a)

∇2
xxL(x, λ) �

[
−0.2− 2λ1 0

0 2− 2λ1

]
. (12.73b)

The point x∗ � (1, 0)T satisfies the KKT conditions with λ∗1 � 0.3 and the active set
A(x∗) � {1}. To check that the second-order sufficient conditions are satisfied at this point,
we note that

∇c1(x∗) �
[

2

0

]
,

so that the set C defined in (12.53) is simply

C(x∗, λ∗) � {(0, w2)T |w2 ∈ IR}.

Now, by substituting x∗ and λ∗ into (12.73b), we have for any w ∈ C(x∗, λ∗) with w 	� 0
that w2 	� 0 and thus

wT∇2
xxL(x∗, λ∗)w �

[
0

w2

]T [ −0.4 0

0 1.4

][
0

w2

]
� 1.4w2

2 > 0.

Hence, the second-order sufficient conditions are satisfied, and we conclude from
Theorem 12.6 that (1, 0)T is a strict local solution for (12.72).

❐
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SECOND-ORDER CONDITIONS AND PROJECTED HESSIANS

The second-order conditions are sometimes stated in a form that is slightly weaker
but easier to verify than (12.57) and (12.65). This form uses a two-sided projection of the
Lagrangian Hessian ∇2

xxL(x∗, λ∗) onto subspaces that are related to C(x∗, λ∗).
The simplest case is obtained when the multiplier λ∗ that satisfies the KKT conditions

(12.34) is unique (as happens, for example, when the LICQ condition holds) and strict
complementarity holds. In this case, the definition (12.53) of C(x∗, λ∗) reduces to

C(x∗, λ∗) � Null
[∇ci (x∗)T

]
i∈A(x∗)

� Null A(x∗),

where A(x∗) is defined as in (12.37). In other words, C(x∗, λ∗) is the null space of the matrix
whose rows are the active constraint gradients at x∗. As in (12.39), we can define the matrix
Z with full column rank whose columns span the space C(x∗, λ∗);that is,

C(x∗, λ∗) � {Zu | u ∈ IR|A(x∗)|}.

Hence, the condition (12.57) in Theorem 12.5 can be restated as

uT Z T∇2
xxL(x∗, λ∗)Zu ≥ 0 for all u,

or, more succinctly,

Z T∇2
xxL(x∗, λ∗)Z is positive semidefinite.

Similarly, the condition (12.65) in Theorem 12.6 can be restated as

Z T∇2
xxL(x∗, λ∗)Z is positive definite.

As we show next, Z can be computed numerically, so that the positive (semi)definiteness
conditions can actually be checked by forming these matrices and finding their eigenvalues.

One way to compute the matrix Z is to apply a QR factorization to the matrix of
active constraint gradients whose null space we seek. In the simplest case above (in which
the multiplier λ∗ is unique and strictly complementary holds), we define A(x∗) as in (12.37)
and write the QR factorization of its transpose as

A(x∗)T � Q

[
R

0

]
� [

Q1 Q2

] [ R

0

]
� Q1 R, (12.74)

where R is a square upper triangular matrix and Q is n× n orthogonal. If R is nonsingular,
we can set Z � Q2. If R is singular (indicating that the active constraint gradients are
linearly dependent), a slight enhancement of this procedure that makes use of column
pivoting during the QR procedure can be used to identify Z .
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12.6 OTHER CONSTRAINT QUALIFICATIONS

We now reconsider constraint qualifications, the conditions discussed in Sections 12.2 and
12.4 that ensure that the linearized approximation to the feasible set � captures the essential
shape of � in a neighborhood of x∗.

One situation in which the linearized feasible direction set F(x∗) is obviously an
adequate representation of the actual feasible set occurs when all the active constraints are
already linear; that is,

ci (x) � aT
i x + bi , (12.75)

for some ai ∈ IRn and bi ∈ IR. It is not difficult to prove a version of Lemma 12.2 for this
situation.

Lemma 12.7.
Suppose that at some x∗ ∈ �, all active constraints ci (·), i ∈ A(x∗), are linear functions.

Then F(x∗) � T�(x∗).

PROOF. We have from Lemma 12.2 (i) that T�(x∗) ⊂ F(x∗). To prove thatF(x∗) ⊂ T�(x∗),
we choose an arbitrary w ∈ F(x∗) and show that w ∈ T�(x∗). By Definition 12.3 and the
form (12.75) of the constraints, we have

F(x∗) �
{

d
∣∣ aT

i d � 0, for all i ∈ E,

aT
i d ≥ 0, for all i ∈ A(x) ∩ I

}
.

First, note that there is a positive scalar t̄ such that the inactive constraint remain
inactive at x∗ + tw, for all t ∈ [0, t̄], that is,

ci (x∗ + tw) > 0, for all i ∈ I\A(x∗) and all t ∈ [0, t̄].

Now define the sequence zk by

zk � x∗ + (t̄/k)w, k � 1, 2, . . . .

Since aT
i w ≥ 0 for all i ∈ I ∩A(x∗), we have

ci (zk) � ci (zk)− ci (x∗) � aT
i (zk − x∗) � t̄

k
aT

i w ≥ 0, for all i ∈ I ∩A(x∗),

so that zk is feasible with respect to the active inequality constraints ci , i ∈ I∩A(x∗). By the
choice of t̄ , we find that zk is also feasible with respect to the inactive inequality constraints
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i ∈ I\A(x∗), and it is easy to show that ci (zk) � 0 for the equality constraints i ∈ E . Hence,
zk is feasible for each k � 1, 2, . . .. In addition, we have that

zk − x∗

(t̄/k)
� (t̄/k)w

(t̄/k)
� w,

so that indeed w is the limiting direction of {zk}. Hence, w ∈ T�(x∗), and the proof is
complete. �

We conclude from this result that the condition that all active constraints be linear is
another possible constraint qualification. It is neither weaker nor stronger than the LICQ
condition, that is, there are situations in which one condition is satisfied but not the other
(see Exercise 12.12).

Another useful generalization of the LICQ is the Mangasarian–Fromovitz constraint
qualification (MFCQ).

Definition 12.6 (MFCQ).
We say that the Mangasarian–Fromovitz constraint qualification (MFCQ) holds if there

exists a vector w ∈ IRn such that

∇ci (x∗)T w > 0, for all i ∈ A(x∗) ∩ I,

∇ci (x∗)T w � 0, for all i ∈ E,

and the set of equality constraint gradients {∇ci (x∗), i ∈ E} is linearly independent.

Note the strict inequality involving the active inequality constraints.
The MFCQ is a weaker condition than LICQ. If LICQ is satisfied, then the system of

equalities defined by

∇ci (x∗)T w � 1, for all i ∈ A(x∗) ∩ I,

∇ci (x∗)T w � 0, for all i ∈ E,

has a solution w, by full rank of the active constraint gradients. Hence, we can choose the
w of Definition 12.6 to be precisely this vector. On the other hand, it is easy to construct
examples in which the MFCQ is satisfied but the LICQ is not; see Exercise 12.13.

It is possible to prove a version of the first-order necessary condition result (Theo-
rem 12.1) in which MFCQ replaces LICQ in the assumptions. MFCQ gives rise to the nice
property that it is equivalent to boundedness of the set of Lagrange multiplier vectors λ∗ for
which the KKT conditions (12.34) are satisfied. (In the case of LICQ, this set consists of a
unique vector λ∗, and so is trivially bounded.)

Note that constraint qualifications are sufficient conditions for the linear approxima-
tion to be adequate, not necessary conditions. For instance, consider the set defined by x2 ≥
−x2

1 and x2 ≤ x2
1 and the feasible point x∗ � (0, 0)T . None of the constraint qualifications
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we have discussed are satisfied, but the linear approximation F(x∗) � {(w1, 0)T |w1 ∈ IR}
accurately reflects the geometry of the feasible set near x∗.

12.7 A GEOMETRIC VIEWPOINT

Finally, we mention an alternative first-order optimality condition that depends only on the
geometry of the feasible set � and not on its particular algebraic description in terms of the
constraint functions ci , i ∈ E ∪ I . In geometric terms, our problem (12.1) can be stated as

min f (x) subject to x ∈ �, (12.76)

where � is the feasible set.
To prove a “geometric” first-order condition, we need to define the normal cone to

the set � at a feasible point x .

Definition 12.7.
The normal cone to the set � at the point x ∈ � is defined as

N�(x) � {v | vT w ≤ 0 for all w ∈ T�(x)}, (12.77)

where T�(x) is the tangent cone of Definition 12.2. Each vector v ∈ N�(x) is said to be a
normal vector.

Geometrically, each normal vector v makes an angle of at least π/2 with every tangent
vector.

The first-order necessary condition for (12.76) is delightfully simple.

Theorem 12.8.
Suppose that x∗ is a local minimizer of f in �. Then

− ∇ f (x∗) ∈ N�(x∗). (12.78)

PROOF. Given any d ∈ T�(x∗), we have for the sequences {tk} and {zk} in Definition 12.2
that

zk ∈ �, zk � x∗ + tkd + o(tk), for all k. (12.79)

Since x∗ is a local solution, we must have

f (zk) ≥ f (x∗)
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for all k sufficiently large. Hence, since f is continuously differentiable, we have from Taylor’s
theorem (2.4) that

f (zk)− f (x∗) � tk∇ f (x∗)T d + o(tk) ≥ 0.

By dividing by tk and taking limits as k →∞, we have

∇ f (x∗)T d ≥ 0.

Recall that d was an arbitrary member of T�(x∗), so we have −∇ f (x∗)T d ≤ 0 for all
d ∈ T�(x∗). We conclude from Definition 12.7 that −∇ f (x∗) ∈ N�(x∗). �

This result suggests a close relationship between N�(x∗) and the conic combination
of active constraint gradients given by (12.50). When the linear independence constraint
qualification holds, identical (to within a change of sign).

Lemma 12.9.
Suppose that the LICQ assumption (Definition 12.4) holds at x∗. Then t the normal cone

N�(x∗) is simply −N , where N is the set defined in (12.50).

PROOF. The proof follows from Farkas’ Lemma (Lemma 12.4) and Definition 12.7 of
N�(x∗). From Lemma 12.4, we have that

g ∈ N ⇒ gT d ≥ 0 for all d ∈ F(x∗).

Since we have F(x∗) � T�(x∗) from Lemma 12.2, it follows by switching the sign of this
expression that

g ∈ −N ⇒ gT d ≤ 0 for all d ∈ T�(x∗).

We conclude from Definition 12.7 that N�(x∗) � −N , as claimed. �

12.8 LAGRANGE MULTIPLIERS AND SENSITIVITY

The importance of Lagrange multipliers in optimality theory should be clear, but what of
their intuitive significance? We show in this section that each Lagrange multiplier λ∗i tells us
something about the sensitivity of the optimal objective value f (x∗) to the presence of the
constraint ci . To put it another way, λ∗i indicates how hard f is “pushing” or “pulling” the
solution x∗ against the particular constraint ci .

We illustrate this point with some informal analysis. When we choose an inactive
constraint i /∈ A(x∗) such that ci (x∗) > 0, the solution x∗ and function value f (x∗) are
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indifferent to whether this constraint is present or not. If we perturb ci by a tiny amount, it
will still be inactive and x∗ will still be a local solution of the optimization problem. Since
λ∗i � 0 from (12.34e), the Lagrange multiplier indicates accurately that constraint i is not
significant.

Suppose instead that constraint i is active, and let us perturb the right-hand-side of this
constraint a little, requiring, say, that ci (x) ≥ −ε‖∇ci (x∗)‖ instead of ci (x) ≥ 0. Suppose
that ε is sufficiently small that the perturbed solution x∗(ε) still has the same set of active
constraints, and that the Lagrange multipliers are not much affected by the perturbation.
(These conditions can be made more rigorous with the help of strict complementarity and
second-order conditions.) We then find that

−ε‖∇ci (x∗)‖ � ci (x∗(ε))− ci (x∗) ≈ (x∗(ε)− x∗)T∇ci (x∗),

0 � c j (x∗(ε))− c j (x∗) ≈ (x∗(ε)− x∗)T∇c j (x∗),

for all j ∈ A(x∗) with j 	� i .

The value of f (x∗(ε)), meanwhile, can be estimated with the help of (12.34a). We have

f (x∗(ε))− f (x∗) ≈ (x∗(ε)− x∗)T∇ f (x∗)

�
∑

j∈A(x∗)

λ∗j (x∗(ε)− x∗)T∇c j (x∗)

≈ −ε‖∇ci (x∗)‖λ∗i .

By taking limits, we see that the family of solutions x∗(ε) satisfies

d f (x∗(ε))

dε
� −λ∗i ‖∇ci (x∗)‖. (12.80)

A sensitivity analysis of this problem would conclude that if λ∗i ‖∇ci (x∗)‖ is large, then the
optimal value is sensitive to the placement of the i th constraint, while if this quantity is
small, the dependence is not too strong. If λ∗i is exactly zero for some active constraint, small
perturbations to ci in some directions will hardly affect the optimal objective value at all;
the change is zero, to first order.

This discussion motivates the definition below, which classifies constraints according
to whether or not their corresponding Lagrange multiplier is zero.

Definition 12.8.
Let x∗ be a solution of the problem (12.1), and suppose that the KKT conditions (12.34)

are satisfied. We say that an inequality constraint ci is strongly active or binding if i ∈ A(x∗)
and λ∗i > 0 for some Lagrange multiplier λ∗ satisfying (12.34). We say that ci is weakly active
if i ∈ A(x∗) and λ∗i � 0 for all λ∗ satisfying (12.34).

Note that the analysis above is independent of scaling of the individual constraints.
For instance, we might change the formulation of the problem by replacing some active
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constraint ci by 10ci . The new problem will actually be equivalent (that is, it has the same
feasible set and same solution), but the optimal multiplier λ∗i corresponding to ci will
be replaced by λ∗i /10. However, since ‖∇ci (x∗)‖ is replaced by 10‖∇ci (x∗)‖, the product
λ∗i ‖∇ci (x∗)‖ does not change. If, on the other hand, we replace the objective function f by
10 f , the multipliers λ∗i in (12.34) all will need to be replaced by 10λ∗i . Hence in (12.80) we
see that the sensitivity of f to perturbations has increased by a factor of 10, which is exactly
what we would expect.

12.9 DUALITY

In this section we present some elements of the duality theory for nonlinear program-
ming. This theory is used to motivate and develop some important algorithms, including
the augmented Lagrangian algorithms of Chapter 17. In its full generality, duality theory
ranges beyond nonlinear programming to provide important insight into the fields of con-
vex nonsmooth optimization and even discrete optimization. Its specialization to linear
programming proved central to the development of that area; see Chapter 13. (We note that
the discussion of linear programming duality in Section 13.1 can be read without consulting
this section first.)

Duality theory shows how we can construct an alternative problem from the functions
and data that define the original optimization problem. This alternative “dual” problem is
related to the original problem (which is sometimes referred to in this context as the “primal”
for purposes of contrast) in fascinating ways. In some cases, the dual problem is easier to
solve computationally than the original problem. In other cases, the dual can be used to
obtain easily a lower bound on the optimal value of the objective for the primal problem.
As remarked above, the dual has also been used to design algorithms for solving the primal
problem.

Our results in this section are mostly restricted to the special case of (12.1) in which
there are no equality constraints and the objective f and the negatives of the inequality
constraints−ci are all convex functions. For simplicity we assume that there are m inequality
constraints labelled 1, 2, . . . , m and rewrite (12.1) as follows:

min
x∈IRn

f (x) subject to ci (x) ≥ 0, i � 1, 2, . . . , m.

If we assemble the constraints into a vector function

c(x)
def� (c1(x), c2(x), . . . , cm(x))T ,

we can write the problem as

min
x∈IRn

f (x) subject to c(x) ≥ 0, (12.81)
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for which the Lagrangian function (12.16) with Lagrange multiplier vector λ ∈ IRm is

L(x, λ) � f (x)− λT c(x).

We define the dual objective function q : IRn → IR as follows:

q(λ)
def� inf

x
L(x, λ). (12.82)

In many problems, this infimum is −∞ for some values of λ. We define the domain of q as
the set of λ values for which q is finite, that is,

D def� {λ | q(λ) > −∞}. (12.83)

Note that calculation of the infimum in (12.82) requires finding the global minimizer of the
function L(·, λ) for the given λ which, as we have noted in Chapter 2, may be extremely
difficult in practice. However, when f and −ci are convex functions and λ ≥ 0 (the case in
which we are most interested), the function L(·, λ) is also convex. In this situation, all local
minimizers are global minimizers (as we verify in Exercise 12.4), so computation of q(λ)
becomes a more practical proposition.

The dual problem to (12.81) is defined as follows:

max
λ∈IRn

q(λ) subject to λ ≥ 0. (12.84)

❏ EXAMPLE 12.10

Consider the problem

min
(x1,x2)

0.5(x2
1 + x2

2 ) subject to x1 − 1 ≥ 0. (12.85)

The Lagrangian is

L(x1, x2, λ1) � 0.5(x2
1 + x2

2 )− λ1(x1 − 1).

If we hold λ1 fixed, this is a convex function of (x1, x2)T . Therefore, the infimum with
respect to (x1, x2)T is achieved when the partial derivatives with respect to x1 and x2 are
zero, that is,

x1 − λ1 � 0, x2 � 0.
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By substituting these infimal values into L(x1, x2, λ1) we obtain the dual objective (12.82):

q(λ1) � 0.5(λ2
1 + 0)− λ1(λ1 − 1) � −0.5λ2

1 + λ1.

Hence, the dual problem (12.84) is

max
λ1≥0

−0.5λ2
1 + λ1, (12.86)

which clearly has the solution λ1 � 1.
❐

In the remainder of this section, we show how the dual problem is related to (12.81).
Our first result concerns concavity of q .

Theorem 12.10.
The function q defined by (12.82) is concave and its domain D is convex.

PROOF. For any λ0 and λ1 in IRm , any x ∈ IRn , and any α ∈ [0, 1], we have

L(x, (1− α)λ0 + αλ1) � (1− α)L(x, λ0)+ αL(x, λ1).

By taking the infimum of both sides in this expression, using the definition (12.82), and
using the results that the infimum of a sum is greater than or equal to the sum of infimums,
we obtain

q((1− α)λ0 + αλ1) ≥ (1− α)q(λ0)+ αq(λ1),

confirming concavity of q . If both λ0 and λ1 belong to D, this inequality implies that
q((1 − α)λ0 + αλ1) ≥ −∞ also, and therefore (1 − α)λ0 + αλ1 ∈ D, verifying convexity
of D. �

The optimal value of the dual problem (12.84) gives a lower bound on the optimal
objective value for the primal problem (12.81). This observation is a consequence of the
following weak duality result.

Theorem 12.11 (Weak Duality).
For any x̄ feasible for (12.81) and any λ̄ ≥ 0, we have q(λ̄) ≤ f (x̄).

PROOF.

q(λ̄) � inf
x

f (x)− λ̄T c(x) ≤ f (x̄)− λ̄T c(x̄) ≤ f (x̄),

where the final inequality follows from λ̄ ≥ 0 and c(x̄) ≥ 0. �
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For the remaining results, we note that the KKT conditions (12.34) specialized to
(12.81) are as follows:

∇ f (x̄)− ∇c(x̄)λ̄ � 0, (12.87a)

c(x̄) ≥ 0, (12.87b)

λ̄ ≥ 0, (12.87c)

λ̄i ci (x̄) � 0, i � 1, 2, . . . , m, (12.87d)

where ∇c(x) is the n × m matrix defined by ∇c(x) � [∇c1(x),∇c2(x), . . . ,∇cm(x)].
The next result shows that optimal Lagrange multipliers for (12.81) are solutions of

the dual problem (12.84) under certain conditions. It is essentially due to Wolfe [309].

Theorem 12.12.
Suppose that x̄ is a solution of (12.81) and that f and −ci , i � 1, 2, . . . , m are convex

functions on IRn that are differentiable at x̄ . Then any λ̄ for which (x̄, λ̄) satisfies the KKT
conditions (12.87) is a solution of (12.84).

PROOF. Suppose that (x̄, λ̄) satisfies (12.87). We have from λ̄ ≥ 0 that L(·, λ̄) is a convex
and differentiable function. Hence, for any x , we have

L(x, λ̄) ≥ L(x̄, λ̄)+∇xL(x̄, λ̄)T (x − x̄) � L(x̄, λ̄),

where the last equality follows from (12.87a). Therefore, we have

q(λ̄) � inf
x
L(x, λ̄) � L(x̄, λ̄) � f (x̄)− λ̄T c(x̄) � f (x̄),

where the last equality follows from (12.87d). Since from Theorem 12.11, we have q(λ) ≤
f (x̄) for all λ ≥ 0 it follows immediately from q(λ̄) � f (x̄) that λ̄ is a solution of
(12.84). �

Note that if the functions are continuously differentiable and a constraint qualification
such as LICQ holds at x̄ , then an optimal Lagrange multiplier is guaranteed to exist, by
Theorem 12.1.

In Example 12.10, we see that λ1 � 1 is both an optimal Lagrange multiplier for the
problem (12.85) and a solution of (12.86). Note too that the optimal objective for both
problems is 0.5.

We prove a partial converse of Theorem 12.12, which shows that solutions to the dual
problem (12.84) can sometimes be used to derive solutions to the original problem (12.81).
The essential condition is strict convexity of the function L(·, λ̂) for a certain value λ̂. We
note that this condition holds if either f is strictly convex (as is the case in Example 12.10)
or if ci is strictly convex for some i � 1, 2, . . . , m with λ̂i > 0.
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Theorem 12.13.
Suppose that f and −ci , i � 1, 2, . . . , m are convex and continuously differentiable on

IRn . Suppose that x̄ is a solution of (12.81) at which LICQ holds. Suppose that λ̂ solves (12.84)
and that the infimum in inf x L(x, λ̂) is attained at x̂ . Assume further than L(·, λ̂) is a strictly
convex function. Then x̄ � x̂ (that is, x̂ is the unique solution of (12.81)), and f (x̄) � L(x̂, λ̂).

PROOF. Assume for contradiction that x̄ 	� x̂ . From Theorem 12.1, because of the LICQ
assumption, there exists λ̄ satisfying (12.87). Hence, from Theorem 12.12, we have that λ̄

also solves (12.84), so that

L(x̄, λ̄) � q(λ̄) � q(λ̂) � L(x̂, λ̂).

Because x̂ � arg minx L(x, λ̂), we have from Theorem 2.2 that ∇xL(x̂, λ̂) � 0. Moreover,
by strict convexity of L(·, λ̂), it follows that

L(x̄, λ̂)− L(x̂, λ̂) > ∇xL(x̂, λ̂)T (x̄ − x̂) � 0.

Hence, we have

L(x̄, λ̂) > L(x̂, λ̂) � L(x̄, λ̄),

so in particular we have

−λ̂T c(x̄) > −λ̄T c(x̄) � 0,

where the final equality follows from (12.87d). Since λ̂ ≥ 0 and c(x̄) ≥ 0, this yields the
contradiction, and we conclude that x̂ � x̄ , as claimed. �

In Example 12.10, at the dual solution λ1 � 1, the infimum ofL(x1, x2, λ1) is achieved
at (x1, x2) � (1, 0)T , which is the solution of the original problem (12.85).

An slightly different form of duality that is convenient for computations, known as
the Wolfe dual [309], can be stated as follows:

max
x,λ

L(x, λ) (12.88a)

subject to ∇xL(x, λ) � 0, λ ≥ 0. (12.88b)

The following results explains the relationship of the Wolfe dual to (12.81).

Theorem 12.14.
Suppose that f and −ci , i � 1, 2, . . . , m are convex and continuously differentiable on

IRn . Suppose that (x̄, λ̄) is a solution pair of (12.81) at which LICQ holds. Then (x̄, λ̄) solves
the problem (12.88).
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PROOF. From the KKT conditions (12.87) we have that (x̄, λ̄) satisfies (12.88b), and that
L(x̄, λ̄) � f (x̄). Therefore for any pair (x, λ) that satisfies (12.88b) we have that

L(x̄, λ̄) � f (x̄)

≥ f (x̄)− λT c(x̄)

� L(x̄, λ)

≥ L(x, λ)+∇xL(x, λ)T (x̄ − x)

� L(x, λ),

where the second inequality follows from the convexity of L(·, λ). We have therefore shown
that (x̄, λ̄) maximizes L over the constraints (12.88b), and hence solves (12.88). �

❏ EXAMPLE 12.11 (LINEAR PROGRAMMING)

An important special case of (12.81) is the linear programming problem

min cT x subject to Ax − b ≥ 0, (12.89)

for which the dual objective is

q(λ) � inf
x

[
cT x − λT (Ax − b)

] � inf
x

[
(c − AT λ)T x + bT λ

]
.

If c − AT λ 	� 0, the infimum is clearly −∞ (we can set x to be a large negative multiple
of −(c − AT λ) to make q arbitrarily large and negative). When c − AT λ � 0, on the
other hand, the dual objective is simply bT λ. In maximizing q , we can exclude λ for which
c − AT λ 	� 0 from consideration (the maximum obviously cannot be attained at a point λ

for which q(λ) � −∞). Hence, we can write the dual problem (12.84) as follows:

max
λ

bT λ subject to AT λ � c, λ ≥ 0. (12.90)

The Wolfe dual of (12.89) can be written as

max
λ

cT x − λT (Ax − b) subject to AT λ � c, λ ≥ 0,

and by substituting the constraint AT λ− c � 0 into the objective we obtain (12.90) again.
For some matrices A, the dual problem (12.90) may be computationally easier to solve

than the original problem (12.89). We discuss the possibilities further in Chapter 13.
❐
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❏ EXAMPLE 12.12 (CONVEX QUADRATIC PROGRAMMING)

Consider

min
1

2
xT Gx + cT x subject to Ax − b ≥ 0, (12.91)

where G is a symmetric positive definite matrix. The dual objective for this problem is

q(λ) � inf
x

L(x, λ) � inf
x

1

2
xT Gx + cT x − λT (Ax − b). (12.92)

Since G is positive definite, since L(·, λ) is a strictly convex quadratic function, the infimum
is achieved when ∇xL(x, λ) � 0, that is,

Gx + c − AT λ � 0. (12.93)

Hence, we can substitute for x in the infimum expression and write the dual objective
explicitly as follows:

q(λ) � −1

2
(AT λ− c)T G−1(AT λ− c)T + bT λ.

Alternatively, we can write the Wolfe dual form (12.88) by retaining x as a variable and
including the constraint (12.93) explicitly in the dual problem, to obtain

max
(λ,x)

1

2
xT Gx + cT x − λT (Ax − b) (12.94)

subject to Gx + c − AT λ � 0, λ ≥ 0.

To make it clearer that the objective is concave, we can use the constraint to substitute
(c − AT λ)T x � −xT Gx in the objective, and rewrite the dual formulation as follows:

max
(λ,x)

−1

2
xT Gx + λT b, subject to Gx + c − AT λ � 0, λ ≥ 0. (12.95)

❐

Note that the Wolfe dual form requires only positive semidefiniteness of G.

NOTES AND REFERENCES

The theory of constrained optimization is discussed in many books on numerical
optimization. The discussion in Fletcher [101, Chapter 9] is similar to ours, though a little
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terser, and includes additional material on duality. Bertsekas [19, Chapter 3] emphasizes the
role of duality and discusses sensitivity of the solution with respect to the active constraints
in some detail. The classic treatment of Mangasarian [198] is particularly notable for its
thorough description of constraint qualifications. It also has an extensive discussion of
theorems of the alternative [198, Chapter 2], placing Farkas’ Lemma firmly in the context
of other related results.

The KKT conditions were described in a 1951 paper of Kuhn and Tucker [185],
though they were derived earlier (and independently) in an unpublished 1939 master’s
thesis of W. Karush. Lagrange multipliers and optimality conditions for general problems
(including nonsmooth problems) are described in the deep and wide-ranging article of
Rockafellar [270].

Duality theory for nonlinear programming is described in the books of Rockafel-
lar [198] and Bertsekas [19]; the latter treatment is particularly extensive and general. The
material in Section 12.9 is adapted from these sources.

We return to our claim that the set N defined by

N � {By + Ct | y ≥ 0},

(where B and C are matrices of dimension n × m and n × p, respectively, and y and t are
vectors of appropriate dimensions; see (12.45)) is a closed set. This fact is needed in the
proof of Lemma 12.4 to ensure that the solution of the projection subproblem (12.47) is
well-defined. The following technical result is well known; the proof given below is due to
R. Byrd.

Lemma 12.15.
The set N is closed.

PROOF. By splitting t into positive and negative parts, it is easy to see that

N �

⎧⎪⎨
⎪⎩
[

B C −C
]⎡⎢⎣

y

t+

t−

⎤
⎥⎦
∣∣∣∣∣∣∣
⎡
⎢⎣

y

t+

t−

⎤
⎥⎦ ≥ 0

⎫⎪⎬
⎪⎭ .

Hence, we can assume without loss of generality that N has the form

N � {By | y ≥ 0}.

Suppose that B has dimensions n × m.
First, we show that for any s ∈ N , we can write s � BI yI with yI ≥ 0, where

I ⊂ {1, 2, . . . , m}, BI is the column submatrix of B indexed by I with full column rank,
and I has minimum cardinality. To prove this claim, we assume for contradiction that
K ⊂ {1, 2, . . . , m} is an index set with minimal cardinality such that s � BK yK , yK ≥ 0, yet
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the columns of BK are linearly dependent. Since K is minimal, yK has no zero components.
We then have a nonzero vector w such that BK w � 0. Since s � BK (yK +τw) for any τ , we
can increase or decrease τ from 0 until one or more components of yK + τw become zero,
while the other components remain positive. We define K̄ by removing the indices from K
that correspond to zero components of yK + τw, and define ȳK̄ to be the vector of strictly
positive components of yK + τw. We then have that s � BK̄ ȳK̄ and ȳK̄ ≥ 0, contradicting
our assumption that K was the set of minimal cardinality with this property.

Now let {sk} be a sequence with sk ∈ N for all k and sk → s. We prove the lemma
by showing that s ∈ N . By the claim of the previous paragraph, for all k we can write
sk � BIk yk

Ik
with yk

Ik
≥ 0, Ik is minimal, and the columns of BIk are linearly independent.

Since there only finitely many possible choices of index set Ik , at least one index set occurs
infinitely often in the sequence. By choosing such an index set I , we can take a subsequence
if necessary and assume without loss of generality that Ik ≡ I for all k. We then have that
sk � AI yk

I with yk
I ≥ 0 and AI has full column rank. Because of the latter property, we

have that AT
I AI is invertible, so that yk

I is defined uniquely as follows:

yk
I � (AT

I AI )−1 AT
I sk, k � 0, 1, 2, . . . .

By taking limits and using sk → s, we have that

yk
I → yI

def� (AT
I AI )−1 AT

I s,

and moreover yI ≥ 0, since yk
I ≥ 0 for all k. Hence we can write s � BI yI with yI ≥ 0, and

therefore s ∈ N . �

✐ E X E R C I S E S

✐ 12.1 The following example from [268] with a single variable x ∈ IR and a single
equality constraint shows that strict local solutions are not necessarily isolated. Consider

min
x

x2 subject to c(x) � 0, where c(x) �
{

x6 sin(1/x) � 0 if x 	� 0

0 if x � 0.
(12.96)

(a) Show that the constraint function is twice continuously differentiable at all x (including
at x � 0) and that the feasible points are x � 0 and x � 1/(kπ) for all nonzero integers
k.

(b) Verify that each feasible point except x � 0 is an isolated local solution by showing that
there is a neighborhood N around each such point within which it is the only feasible
point.
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(c) Verify that x � 0 is a global solution and a strict local solution, but not an isolated local
solution

✐ 12.2 Is an isolated local solution necessarily a strict local solution? Explain.

✐ 12.3 Does problem (12.4) have a finite or infinite number of local solutions? Use the
first-order optimality conditions (12.34) to justify your answer.

✐ 12.4 If f is convex and the feasible region � is convex, show that local solutions of
the problem (12.3) are also global solutions. Show that the set of global solutions is convex.
(Hint: See Theorem 2.5.)

✐ 12.5 Let v : IRn → IRm be a smooth vector function and consider the unconstrained
optimization problems of minimizing f (x) where

f (x) � ‖v(x)‖∞, f (x) � max
i�1,2,...,m

vi (x).

Reformulate these (generally nonsmooth) problems as smooth constrained optimization
problems.

✐ 12.6 Can you perform a smooth reformulation as in the previous question when f
is defined by

f (x) � min
i�1,2,...,m

fi (x)?

(N.B. “min” not “max.”) Why or why not?

✐ 12.7 Show that the vector defined by (12.15) satisfies (12.14) when the first-order
optimality condition (12.10) is not satisfied.

✐ 12.8 Verify that for the sequence {zk} defined by (12.30), the function f (x) � x1 +
x2 satisfies f (zk+1) > f (zk) for k � 2, 3, . . .. (Hint: Consider the trajectory z(s) �
(−√2− 1/s2,−1/s)T and show that the function h(s)

def� f (z(s)) has h′(s) > 0 for all
s ≥ 2.)

✐ 12.9 Consider the problem (12.9). Specify two feasible sequences that approach the
maximizing point (1, 1)T , and show that neither sequence is a decreasing sequence for f .

✐ 12.10 Verify that neither the LICQ nor the MFCQ holds for the constraint set defined
by (12.32) at x∗ � (0, 0)T .

✐ 12.11 Consider the feasible set � in IR2 defined by x2 ≥ 0, x2 ≤ x2
1 .

(a) For x∗ � (0, 0)T , write down T�(x∗) and F(x∗).

(b) Is LICQ satisfied at x∗? Is MFCQ satisfied?
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(c) If the objective function is f (x) � −x2, verify that that KKT conditions (12.34) are
satisfied at x∗.

(d) Find a feasible sequence {zk} approaching x∗ with f (zk) < f (x∗) for all k.

✐ 12.12 It is trivial to construct an example of a feasible set and a feasible point x∗ at
which the LICQ is satisfied but the constraints are nonlinear. Give an example of the reverse
situation, that is, where the active constraints are linear but the LICQ is not satisfied.

✐ 12.13 Show that for the feasible region defined by

(x1 − 1)2 + (x2 − 1)2 ≤ 2,

(x1 − 1)2 + (x2 + 1)2 ≤ 2,

x1 ≥ 0,

the MFCQ is satisfied at x∗ � (0, 0)T but the LICQ is not satisfied.

✐ 12.14 Consider the half space defined by H � {x ∈ IRn | aT x +α ≥ 0}where a ∈ IRn

and α ∈ IR are given. Formulate and solve the optimization problem for finding the point
x in H that has the smallest Euclidean norm.

✐ 12.15 Consider the following modification of (12.36), where t is a parameter to be
fixed prior to solving the problem:

min
x

(
x1 − 3

2

)2

+ (x2 − t)4 s.t.

⎡
⎢⎢⎢⎢⎣

1− x1 − x2

1− x1 + x2

1+ x1 − x2

1+ x1 + x2

⎤
⎥⎥⎥⎥⎦ ≥ 0. (12.97)

(a) For what values of t does the point x∗ � (1, 0)T satisfy the KKT conditions?

(b) Show that when t � 1, only the first constraint is active at the solution, and find the
solution.

✐ 12.16 (Fletcher [101]) Solve the problem

min
x

x1 + x2 subject to x2
1 + x2

2 � 1

by eliminating the variable x2. Show that the choice of sign for a square root operation
during the elimination process is critical; the “wrong” choice leads to an incorrect answer.

✐ 12.17 Prove that when the KKT conditions (12.34) and the LICQ are satisfied at a
point x∗, the Lagrange multiplier λ∗ in (12.34) is unique.
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✐ 12.18 Consider the problem of finding the point on the parabola y � 1
5 (x − 1)2 that

is closest to (x, y) � (1, 2), in the Euclidean norm sense. We can formulate this problem as

min f (x, y) � (x − 1)2 + (y − 2)2 subject to (x − 1)2 � 5y.

(a) Find all the KKT points for this problem. Is the LICQ satisfied?

(b) Which of these points are solutions?

(c) By directly substituting the constraint into the objective function and eliminating the
variable x , we obtain an unconstrained optimization problem. Show that the solutions
of this problem cannot be solutions of the original problem.

✐ 12.19 Consider the problem

min
x∈IR2

f (x) � −2x1 + x2 subject to

{
(1− x1)3 − x2 ≥ 0

x2 + 0.25x2
1 − 1 ≥ 0.

The optimal solution is x∗ � (0, 1)T , where both constraints are active.

(a) Do the LICQ hold at this point?

(b) Are the KKT conditions satisfied?

(c) Write down the sets F(x∗) and C(x∗, λ∗).

(d) Are the second-order necessary conditions satisfied? Are the second-order sufficient
conditions satisfied?

✐ 12.20 Find the minima of the function f (x) � x1x2 on the unit circle x2
1 + x2

2 � 1.
Illustrate this problem geometrically.

✐ 12.21 Find the maxima of f (x) � x1x2 over the unit disk defined by the inequality
constraint 1− x2

1 − x2
2 ≥ 0.

✐ 12.22 Show that for (12.1), the feasible set � is convex if ci , i ∈ E are linear functions
and −ci , i ∈ I are convex functions.




