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C H A P T E R15
Fundamentals
of Algorithms
for Nonlinear
Constrained
Optimization
In this chapter, we begin our discussion of algorithms for solving the general constrained
optimization problem

min
x∈IRn

f (x) subject to
ci (x) � 0, i ∈ E,

ci (x) ≥ 0, i ∈ I,
(15.1)

where the objective function f and the constraint functions ci are all smooth, real-valued
functions on a subset of IRn , and I and E are finite index sets of inequality and equality
constraints, respectively. In Chapter 12, we used this general statement of the problem
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to derive optimality conditions that characterize its solutions. This theory is useful for
motivating the various algorithms discussed in the remainder of the book, which differ from
each other in fundamental ways but are all iterative in nature. They generate a sequence of
estimates of the solution x∗ that, we hope, tend toward a solution. In some cases, they also
generate a sequence of guesses for the Lagrange multipliers associated with the constraints.
As in the chapters on unconstrained optimization, we study only algorithms for finding local
solutions of (15.1); the problem of finding a global solution is outside the scope of this book.

We note that this chapter is not concerned with individual algorithms themselves,
but rather with fundamental concepts and building blocks that are common to more than
one algorithm. After reading Sections 15.1 and 15.2, the reader may wish to glance at the
material in Sections 15.3, 15.4, 15.5, and 15.6, and return to these sections as needed during
study of subsequent chapters.

15.1 CATEGORIZING OPTIMIZATION ALGORITHMS

We now catalog the algorithmic approaches presented in the rest of the book. No standard
taxonomy exists for nonlinear optimization algorithms; in the remaining chapters we have
grouped the various approaches as follows.

I. In Chapter 16 we study algorithms for solving quadratic programming problems. We
consider this category separately because of its intrinsic importance, because its particular
characteristics can be exploited by efficient algorithms, and because quadratic programming
subproblems need to be solved by sequential quadratic programming methods and certain
interior-point methods for nonlinear programming. We discuss active set, interior-point,
and gradient projection methods.

II. In Chapter 17 we discuss penalty and augmented Lagrangian methods. By combining the
objective function and constraints into a penalty function, we can attack problem (15.1) by
solving a sequence of unconstrained problems. For example, if only equality constraints are
present in (15.1), we can define the quadratic penalty function as

f (x)+ µ

2

∑
i∈E

c2
i (x), (15.2)

where µ > 0 is referred to as a penalty parameter. We minimize this unconstrained function,
for a series of increasing values of µ, until the solution of the constrained optimization
problem is identified to sufficient accuracy.

If we use an exact penalty function, it may be possible to find a local solution of (15.1) by
solving a single unconstrained optimization problem. For the equality-constrained problem,
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the function defined by

f (x)+ µ
∑
i∈E

|ci (x)|,

is usually an exact penalty function, for a sufficiently large value of µ > 0. Although they
often are nondifferentiable, exact penalty functions can be minimized by solving a sequence
of smooth subproblems.

In augmented Lagrangian methods, we define a function that combines the properties
of the Lagrangian function (12.33) and the quadratic penalty function (15.2). This so-called
augmented Lagrangian function has the following form for equality-constrained problems:

LA(x, λ;µ) � f (x)−
∑
i∈E

λi ci (x)+ µ

2

∑
i∈E

c2
i (x).

Methods based on this function fix λ to some estimate of the optimal Lagrange multiplier
vector and fix µ to some positive value, then find a value of x that approximately minimizes
LA(·, λ;µ). At this new x-iterate, λ and µ may be updated; then the process is repeated.
This approach avoids certain drawbacks associated with the minimization of the quadratic
penalty function (15.2).

III. In Chapter 18 we describe sequential quadratic programming (SQP) methods, which
model (15.1) by a quadratic programming subproblem at each iterate and define the search
direction to be the solution of this subproblem. In the basic SQP method, we define the
search direction pk at the iterate (xk, λk) to be the solution of

min
p

1
2 pT∇2

xxL(xk, λk)p +∇ f (xk)T p (15.3a)

subject to ∇ci (xk)T p + ci (xk) � 0, i ∈ E, (15.3b)

∇ci (xk)T p + ci (xk) ≥ 0, i ∈ I, (15.3c)

where L is the Lagrangian function defined in (12.33). The objective in this subproblem is
an approximation to the change in the Lagrangian function in moving from xk to xk + p,
while the constraints are linearizations of the constraints in (15.1). A trust-region constraint
may be added to (15.3) to control the length and quality of the step, and quasi-Newton
approximate Hessians can be used in place of ∇2

xxL(xk, λk). In a variant called sequential
linear-quadratic programming, the step pk is computed in two stages. First, we solve a linear
program that is defined by omitting the first (quadratic) term from the objective (15.3a)
and adding a trust-region constraint to (15.3). Next, we obtain the step pk by solving an
equality-constrained subproblem in which the constraints active at the solution of the linear
program are imposed as equalities, while all other constraints are ignored.

IV. In Chapter 19 we study interior-point methods for nonlinear programming. These meth-
ods can be viewed as extensions of the primal-dual interior-point methods for linear
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programming discussed in Chapter 14. We can also view them as barrier methods that
generate steps by solving the problem

min
x,s

f (x)− µ

m∑
i�1

log si (15.4a)

subject to ci (x) � 0, i ∈ E, (15.4b)

ci (x)− si � 0, i ∈ I, (15.4c)

for some positive value of the barrier parameter µ, where the variables si > 0 are slacks.
Interior-point methods constitute the newest class of methods for nonlinear programming
and have already proved to be formidable competitors of sequential quadratic programming
methods.

The algorithms in categories I, III, and IV make use of elimination techniques, in which
the constraints are used to eliminate some of the degrees of freedom in the problem. As a
background to those algorithms, we discuss elimination in Section 15.3. In later sections
we discuss merit functions and filters, which are important mechanisms for promoting
convergence of nonlinear programming algorithms from remote starting points.

15.2 THE COMBINATORIAL DIFFICULTY OF
INEQUALITY-CONSTRAINED PROBLEMS

One of the main challenges in solving nonlinear programming problems lies in dealing with
inequality constraints—in particular, in deciding which of these constraints are active at
the solution and which are not. One approach, which is the essence of active-set methods,
starts by making a guess of the optimal active set A∗, that is, the set of constraints that
are satisfied as equalities at a solution. We call our guess the working set and denote it by
W . We then solve a problem in which the constraints in the working set are imposed as
equalities and the constraints not in W are ignored. We then check to see if there is a choice
of Lagrange multipliers such that the solution x∗ obtained for this W satisfies the KKT
conditions (12.34). If so, we accept x∗ as a local solution of (15.1). Otherwise, we make a
different choice of W and repeat the process. This approach is based on the observation
that, in general, it is much simpler to solve equality-constrained problems than to solve
nonlinear programs.

The number of choices for working set W may be very large—up to 2|I|, where |I|
is the number of inequality constraints. We arrive at this estimate by observing that we can
make one of two choices for each i ∈ I : to include it inW or leave it out. Since the number of
possible working sets grows exponentially with the number of inequalities—a phenomenon
which we refer to as the combinatorial difficulty of nonlinear programming—we cannot
hope to design a practical algorithm by considering all possible choices for W .
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The following example suggests that even for a small number of inequality constraints,
determination of the optimal active set is not a simple task.

❏ EXAMPLE 15.1

Consider the problem

min
x,y

f (x, y)
def� 1

2 (x − 2)2 + 1
2 (y − 1

2 )2 (15.5)

subject to

(x + 1)−1 − y − 1
4 ≥ 0,

x ≥ 0,

y ≥ 0.

We label the constraints, in order, with the indices 1 through 3. Figure 15.1 illustrates the
contours of the objective function (dashed circles). The feasible region is the region enclosed
by the curve and the two axes. We see that only the first constraint is active at the solution,
which is (x∗, y∗)T � (1.953, 0.089)T .

Let us now apply the working-set approach described above to (15.5), considering all
23 � 8 possible choices of W .

We consider first the possibility that no constraints are active at the solution, that is,
W � ∅. Since ∇ f � (x − 2, y − 1/2)T , we see that the unconstrained minimum of f lies
outside the feasible region. Hence, the optimal active set cannot be empty.

There are seven further possibilities. First, all three constraints could be active (that is,
W � {1, 2, 3}). A glance at Figure 15.1 shows that this does not happen for our problem; the
three constraints do not share a common point of intersection. Three further possibilities are
obtained by making a single constraint active (that is, W � {1}, W � {2}, and W � {3}),

x
(x ,y )*

y

(2,0.5)

*

Figure 15.1 Graphical illustration of problem (15.5).
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while the final three possibilities are obtained by making exactly two constraints active (that
is, W � {1, 2}, W � {1, 3}, and W � {2, 3}). We consider three of these cases in detail.

- W � {2}; that is, only the constraint x � 0 is active. If we minimize f enforcing only
this constraint, we obtain the point (0, 1/2)T . A check of the KKT conditions (12.34)
shows that no matter how we choose the Lagrange multipliers, we cannot satisfy all
these conditions at (0, 1/2)T . (We must have λ1 � λ3 � 0 to satisfy (12.34e), which
implies that we must set λ2 � −2 to satisfy (12.34a); but this value of λ2 violates the
condition (12.34d).)

- W � {1, 3}, which yields the single feasible point (3, 0)T . Since constraint 2 is
inactive at this point, we have λ2 � 0, so by solving (12.34a) for the other Lagrange
multipliers, we obtain λ1 � −16 and λ3 � −16.5. These values are negative, so they
violate (12.34d), and x � (3, 0)T cannot be a solution of (15.1).

- W � {1}. Solving the equality-constrained problem in which the first constraint is
active, we obtain (x, y)T � (1.953, 0.089)T with Lagrange multiplier λ1 � 0.411. It
is easy to see that by setting λ2 � λ3 � 0, the remaining KKT conditions (12.34) are
satisfied, so we conclude that this is a KKT point. Furthermore, it is easy to show that
the second-order sufficient conditions are satisfied, as the Hessian of the Lagrangian
is positive definite.

❐

Even for this small example, we see that it is exhausting to consider all possible choices
for W . Figure 15.1 suggests, however, that some choices of W can be eliminated from
consideration if we make use of knowledge of the functions that define the problem, and
their derivatives. In fact, the active set methods described in Chapter 16 use this kind of
information to make a series of educated guesses for the working set, avoiding choices of W
that obviously will not lead to a solution of (15.1).

A different approach is followed by interior-point (or barrier) methods discussed in
Chapter 19. These methods generate iterates that stay away from the boundary of the feasible
region defined by the inequality constraints. As the solution of the nonlinear program is
approached, the barrier effects are weakened to permit an increasingly accurate estimate of
the solution. In this manner, interior-point methods avoid the combinatorial difficulty of
nonlinear programming.

15.3 ELIMINATION OF VARIABLES

When dealing with constrained optimization problems, it is natural to try to use the con-
straints to eliminate some of the variables from the problem, to obtain a simpler problem
with fewer degrees of freedom. Elimination techniques must be used with care, however, as
they may alter the problem or introduce ill conditioning.



1 5 . 3 . E L I M I N A T I O N O F V A R I A B L E S 427

x  +y  =2 2 4

x  +y  =122

= (x-1)2y 3

(1,0)

y

x

Figure 15.2
The danger of nonlinear
elimination.

We begin with an example in which it is safe and convenient to eliminate variables. In
the problem

min f (x) � f (x1, x2, x3, x4) subject to x1 + x2
3 − x4x3 � 0,

−x2 + x4 + x2
3 � 0,

there is no risk in setting

x1 � x4x3 − x2
3 , x2 � x4 + x2

3 ,

to obtain a function of two variables

h(x3, x4) � f (x4x3 − x2
3 , x4 + x2

3 , x3, x4),

which we can minimize using the unconstrained optimization techniques described in
earlier chapters.

The dangers of nonlinear elimination are illustrated in the following example.

❏ EXAMPLE 15.2 (FLETCHER [101])

Consider the problem

min x2 + y2 subject to (x − 1)3 � y2.

The contours of the objective function and the constraints are illustrated in Figure 15.2,
which shows that the solution is (x, y) � (1, 0).
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We attempt to solve this problem by eliminating y. By doing so, we obtain

h(x) � x2 + (x − 1)3.

Clearly, h(x) → −∞ as x → −∞. By blindly applying this transformation we may
conclude that the problem is unbounded, but this view ignores the fact that the con-
straint (x − 1)3 � y2 implicitly imposes the bound x ≥ 1 that is active at the solution.
Hence, if we wish to eliminate y, we should explicitly introduce the bound x ≥ 1 into the
problem.

❐

This example shows that the use of nonlinear equations to eliminate variables may
result in errors that can be difficult to trace. For this reason, nonlinear elimination is not
used by most optimization algorithms. Instead, many algorithms linearize the constraints
and apply elimination techniques to the simplified problem. We now describe systematic
procedures for performing variable elimination using linear constraints.

SIMPLE ELIMINATION USING LINEAR CONSTRAINTS

We consider the minimization of a nonlinear function subject to a set of linear equality
constraints,

min f (x) subject to Ax � b, (15.6)

where A is an m × n matrix with m ≤ n. Suppose for simplicity that A has full row rank.
(If such is not the case, we find either that the problem is inconsistent or that some of the
constraints are redundant and can be deleted without affecting the solution of the problem.)
Under this assumption, we can find a subset of m columns of A that is linearly independent.
If we gather these columns into an m×m matrix B and define an n×n permutation matrix
P that swaps these columns to the first m column positions in A, we can write

AP � [B | N ], (15.7)

where N denotes the n − m remaining columns of A. (The notation here is consistent
with that of Chapter 13, where we discussed similar concepts in the context of linear
programming.) We define the subvectors xB ∈ IRm and xN ∈ IRn−m as follows:

[
xB

xN

]
� PT x, (15.8)
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and call xB the basic variables and B the basis matrix. Noting that P PT � I , we can rewrite
the constraint Ax � b as

b � Ax � AP(PT x) � BxB + N xN.

By rearranging this formula, we deduce that the basic variables can be expressed as follows:

xB � B−1b − B−1 N xN. (15.9)

We can therefore compute a feasible point for the constraints Ax � b by choosing any value
of xN and then setting xB according to the formula (15.9). The problem (15.6) is therefore
equivalent to the unconstrained problem

min
xN

h(xN)
def� f

(
P

[
B−1b − B−1 N xN

xN

])
. (15.10)

We refer to the substitution in (15.9) as simple elimination of variables.
This discussion shows that a nonlinear optimization problem with linear equality

constraints is, from a mathematical point of view, the same as an unconstrained problem.

❏ EXAMPLE 15.3

Consider the problem

min sin(x1 + x2)+ x2
3 +

1

3
(x4 + x4

5 + x6/2) (15.11a)

subject to
8x1 − 6x2 + x3 + 9x4 + 4x5 � 6

3x1 + 2x2 − x4 + 6x5 + 4x6 � −4.
(15.11b)

By defining the permutation matrix P so as to reorder the components of x as xT �
(x3, x6, x1, x2, x4, x5)T , we find that the coefficient matrix AP is

AP �
[

1 0 8 −6 9 4

0 4 3 2 −1 6

]
.

The basis matrix B is diagonal and therefore easy to invert. We obtain from (15.9) that

[
x3

x6

]
� −

⎡
⎣ 8 −6 9 4

3

4

1

2
−1

4

3

2

⎤
⎦
⎡
⎢⎢⎢⎢⎣

x1

x2

x4

x5

⎤
⎥⎥⎥⎥⎦+

[
6

−1

]
. (15.12)
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By substituting for x3 and x6 in (15.11a), the problem becomes

min
x1,x2,x4,x5

sin(x1 + x2)+ (8x1 − 6x2 + 9x4 + 4x5 − 6)2 (15.13)

+ 1

3
(x4 + x4

5 − [(1/2)+ (3/8)x1 + (1/4)x2 − (1/8)x4 + (3/4)x5]).

We could have chosen two other columns of the coefficient matrix A (that is, two
variables other than x3 and x6) as the basis for elimination in the system (15.11b), but the
matrix B−1 N would not have been so simple.

❐

A set of m independent columns can be selected, in general, by means of Gaussian
elimination. In the parlance of linear algebra, we can compute the row echelon form of the
matrix and choose the pivot columns as the columns of the basis B. Ideally, we would like
B to be easy to factor and well conditioned. A technique that suits these purposes is a sparse
Gaussian elimination approach that attempts to preserve sparsity while keeping rounding
errors under control. A well-known implementation of this algorithm is MA48 from the
HSL library [96]. As we discuss below, however, there is no guarantee that the Gaussian
elimination process will identify the best choice of basis matrix.

There is an interesting interpretation of the simple elimination-of-variables approach
that we have just described. To simplify the notation, we will assume from now on that
the coefficient matrix is already given to us so that the basic columns appear in the first m
positions, that is, P � I .

From (15.8) and (15.9) we see that any feasible point x for the linear constraints in
(15.6) can be written as

[
xB

xN

]
� x � Y b + Z xN, (15.14)

where

Y �
[

B−1

0

]
, Z �

[
−B−1 N

I

]
. (15.15)

Note that Z has n−m linearly independent columns (because of the presence of the identity
matrix in the lower block) and that it satisfies AZ � 0. Therefore, Z is a basis for the null
space of A. In addition, the columns of Y and the columns of Z form a linearly independent
set. We note also from (15.15), (15.7) that Y b is a particular solution of the linear constraints
Ax � b.

In other words, the simple elimination technique expresses feasible points as the sum
of a particular solution of Ax � b (the first term in (15.14)) plus a displacement along the
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x2

x1

x = bA

coordinate relaxation step

Figure 15.3 Simple elimination, showing the coordinate relaxation step obtained by
choosing the basis to be the first column of A.

null space of the constraints (the second term in (15.14)). The relations (15.14), (15.15)
indicate that the particular Y b solution is obtained by holding n−m components of x at zero
while relaxing the other m components (the ones in xB) until they reach the constraints. The
particular solution Y b is sometimes known as the coordinate relaxation step. In Figure 15.3,
we see the coordinate relaxation step Y b obtained by choosing the basis matrix B to be the
first column of A. If we were to choose B to be the second column of A, the coordinate
relaxation step would lie along the x2 axis.

Simple elimination is inexpensive but can give rise to numerical instabilities. If the
feasible set in Figure 15.3 consisted of a line that was almost parallel to the x1 axis, the
coordinate relaxation along this axis would be very large in magnitude. We would then be
computing x as the difference of very large vectors, giving rise to numerical cancellation.
In that situation it would be preferable to choose a particular solution along the x2 axis,
that is, to select a different basis. Selection of the best basis is, therefore, not a straightfor-
ward task in general. To overcome the dangers of an excessively large coordinate relaxation
step, we could define the particular solution Y b as the minimum-norm step to the con-
straints. This approach is a special case of more general elimination strategies, which we now
describe.

GENERAL REDUCTION STRATEGIES FOR LINEAR CONSTRAINTS

To generalize (15.14) and (15.15), we choose matrices Y ∈ IRn×m and Z ∈ IRn×(n−m)

with the following properties:

[Y | Z] ∈ IRn×n is nonsingular, AZ � 0. (15.16)
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These properties indicate that, as in (15.15), the columns of Z are a basis for the null space
of A. Since A has full row rank, so does A[Y | Z] � [AY | 0], so it follows that the m × m
matrix AY is nonsingular. We now express any solution of the linear constraints Ax � b as

x � Y xY + Z xZ, (15.17)

for some vectors xY ∈ IRm and xZ ∈ IRn−m . By substituting (15.17) into the constraints
Ax � b, we obtain

Ax � (AY )xY � b;

hence by nonsingularity of AY , xY can be written explicitly as

xY � (AY )−1b. (15.18)

By substituting this expression into (15.17), we conclude that any vector x of the form

x � Y (AY )−1b + Z xZ (15.19)

satisfies the constraints Ax � b for any choice of xZ ∈ IRn−m . Therefore, the problem (15.6)
can be restated equivalently as the following unconstrained problem

min
xZ

f (Y (AY )−1b + Z xZ). (15.20)

Ideally, we would like to choose Y in such a way that the matrix AY is as well
conditioned as possible, since it needs to be factorized to give the particular solution
Y (AY )−1b. We can do this by computing Y and Z by means of a QR factorization of
AT , which has the form

AT � � [
Q1 Q2

] [ R

0

]
, (15.21)

where
[

Q1 Q2

]
is orthogonal. The submatrices Q1 and Q2 have orthonormal columns

and are of dimension n × m and n × (n − m), while R is m × m upper triangular and
nonsingular and � is an m × m permutation matrix. (See the discussion following (A.24)
in the Appendix for further details.) We now define

Y � Q1, Z � Q2, (15.22)

so that the columns of Y and Z form an orthonormal basis of IRn . If we expand (15.21) and
do a little rearrangement, we obtain

AY � �RT , AZ � 0.
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Therefore, Y and Z have the desired properties, and the condition number of AY is the
same as that of R, which in turn is the same as that of A itself. From (15.19) we see that any
solution of Ax � b can be expressed as

x � Q1 R−T �T b + Q2xZ,

for some vector xZ. The computation R−T �T b can be carried out inexpensively, at the cost
of a single triangular substitution.

A simple computation shows that the particular solution Q1 R−T �T b can also be
written as AT (AAT )−1b. This vector is the solution of the following problem:

min ‖x‖2 subject to Ax � b;

that is, it is the minimum-norm solution of Ax � b. See Figure 15.5 for an illustration of
this step.

Elimination via the orthogonal basis (15.22) is ideal from the point of view of numer-
ical stability. The main cost associated with this reduction strategy is in computing the QR
factorization (15.21). Unfortunately, for problems in which A is large and sparse, a sparse
QR factorization can be much more costly to compute than the sparse Gaussian elimina-
tion strategy used in simple elimination. Therefore, other elimination strategies have been
developed that seek a compromise between these two techniques; see Exercise 15.7.

x2

x3

x1

Zx

Yx

Z

Y

Ax= b

Figure 15.4 General elimination: Case in which A ∈ IR1×3, showing the particular
solution and a step in the null space of A.
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x2

x1

x = bA
A ][TA TA -1b

Figure 15.5 The minimum-norm step.

EFFECT OF INEQUALITY CONSTRAINTS

Elimination of variables is not always beneficial if inequality constraints are present
alongside the equalities. For instance, if problem (15.11) had the additional constraint
x ≥ 0, then after eliminating the variables x3 and x6, we would be left with the problem of
minimizing the function in (15.13) subject to the constraints

(x1, x2, x4, x5) ≥ 0,

8x1 − 6x2 + 9x4 + 4x5 ≤ 6,

(3/4)x1 + (1/2)x2 − (1/4)x4 + (3/2)x5 ≤ −1.

Hence, the cost of eliminating the equality constraints (15.11b) is to make the inequalities
more complicated than the simple bounds x ≥ 0. For many algorithms, this transformation
will not yield any benefit.

If, however, problem (15.11) included the general inequality constraint 3x1+2x3 ≥ 1,
the elimination (15.12) would transform the problem into one of minimizing the function
in (15.13) subject to the inequality constraint

− 13x1 + 12x2 − 18x4 − 8x5 ≥ −11. (15.23)

In this case, the inequality constraint would not become much more complicated af-
ter elimination of the equality constraints, so it is probably worthwhile to perform the
elimination.
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15.4 MERIT FUNCTIONS AND FILTERS

Suppose that an algorithm for solving the nonlinear programming problem (15.1) generates
a step that reduces the objective function but increases the violation of the constraints. Should
we accept this step?

This question is not easy to answer. We must look for a way to balance the twin (often
competing) goals of reducing the objective function and satisfying the constraints. Merit
functions and filters are two approaches for achieving this balance. In a typical constrained
optimization algorithm, a step p will be accepted only if it leads to a sufficient reduction in
the merit function φ or if it is acceptable to the filter. These concepts are explained in the
rest of the section.

MERIT FUNCTIONS

In unconstrained optimization, the objective function f is the natural choice for the
merit function. All the unconstrained optimization methods described in this book require
that f be decreased at each step (or at least within a certain number of iterations). In feasible
methods for constrained optimization in which the starting point and all subsequent iterates
satisfy all the constraints in the problem, the objective function is still an appropriate merit
function. On the other hand, algorithms that allow iterates to violate the constraints require
some means to assess the quality of the steps and iterates. The merit function in this case
combines the objective with measures of constraint violation.

A popular choice of merit function for the nonlinear programming problem (15.1) is
the �1 penalty function defined by

φ1(x;µ) � f (x)+ µ
∑
i∈E

|ci (x)| + µ
∑
i∈I

[ci (x)]−, (15.24)

where we use the notation [z]− � max{0,−z}. The positive scalar µ is the penalty parameter,
which determines the weight that we assign to constraint satisfaction relative to minimization
of the objective. The �1 merit function φ1 is not differentiable because of the presence of the
absolute value and [·]− functions, but it has the important property of being exact.

Definition 15.1 (Exact Merit Function).
A merit function φ(x;µ) is exact if there is a positive scalar µ∗ such that for any µ > µ∗,

any local solution of the nonlinear programming problem (15.1) is a local minimizer of φ(x;µ).

We show in Theorem 17.3 that, under certain assumptions, the �1 merit function
φ1(x;µ) is exact and that the threshold value µ∗ is given by

µ∗ � max{|λ∗i |, i ∈ E ∪ I},
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where the λ∗i denote the Lagrange multipliers associated with an optimal solution x∗. Since
the optimal Lagrange multipliers are, however, not known in advance, algorithms based on
the �1 merit function contain rules for adjusting the penalty parameter whenever there is
reason to believe that it is not large enough (or is excessively large). These rules depend on
the choice of optimization algorithm and are discussed in the next chapters.

Another useful merit function is the exact �2 function, which for equality-constrained
problems takes the form

φ2(x;µ) � f (x)+ µ‖c(x)‖2. (15.25)

This function is nondifferentiable because the 2-norm term is not squared; its derivative is
not defined at x for which c(x) � 0.

Some merit functions are both smooth and exact. To ensure that both properties hold,
we must include additional terms in the merit function. For equality-constrained problems,
Fletcher’s augmented Lagrangian is given by

φF(x;µ) � f (x)− λ(x)T c(x)+ 1
2µ

∑
i∈E

ci (x)2, (15.26)

where µ > 0 is the penalty parameter and

λ(x) � [A(x)A(x)T ]−1 A(x)∇ f (x). (15.27)

(Here A(x) denotes the Jacobian of c(x).) Although this merit function has some interesting
theoretical properties, it has practical limitations, including the expense of solving for λ(x)
in (15.27).

A quite different merit function is the (standard) augmented Lagrangian in x and λ,
which for equality-constrained problems has the form

LA(x, λ;µ) � f (x)− λT c(x)+ 1
2µ‖c(x)‖2

2. (15.28)

We assess the acceptability of a trial point (x+, λ+) by comparing the value ofLA(x+, λ+;µ)
with the value at the current iterate, (x, λ). Strictly speaking, LA is not a merit function in
the sense that a solution (x∗, λ∗) of the nonlinear programming problem is not in general a
minimizer of LA(x, λ;µ) but only a stationary point. Although some sequential quadratic
programming methods use LA successfully as a merit function by adaptively modifying
µ and λ, we will not consider its use as a merit function further. Instead, we will focus
primarily on the nonsmooth exact penalty functions φ1 and φ2.

A trial step x+ � x + αp generated by a line search algorithm will be accepted if it
produces a sufficient decrease in the merit function φ(x;µ). One way to define this concept
is analogous to the condition (3.4) used in unconstrained optimization, where the amount
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of decrease is not too small relative to the predicted change in the function over the step.
The �1 and �2 merit functions are not differentiable, but they have a directional derivative.
(See (A.51) for background on directional derivatives.) We write the directional derivative
of φ(x;µ) in the direction p as

D(φ(x;µ); p).

In a line search method, the sufficient decrease condition requires the steplength parameter
α > 0 to be small enough that the inequality

φ(x + αp;µ) ≤ φ(x;µ)+ ηαD(φ(x;µ); p), (15.29)

is satisfied for some η ∈ (0, 1).
Trust-region methods typically use a quadratic model q(p) to estimate the value of

the merit function φ after a step p; see Section 18.5. The sufficient decrease condition can
be stated in terms of a decrease in this model, as follows

φ(x + p;µ) ≤ φ(x;µ)− η(q(0)− q(p)), (15.30)

for some η ∈ (0, 1). (The final term in (15.30) is positive, because the step p is computed
to decrease the model q .)

FILTERS

Filter techniques are step acceptance mechanisms based on ideas from multiobjective
optimization. Our derivation starts with the observation that nonlinear programming has
two goals: minimization of the objective function and the satisfaction of the constraints. If
we define a measure of infeasibility as

h(x) �
∑
i∈E

|ci (x)| +
∑
i∈I

[ci (x)]−, (15.31)

we can write these two goals as

min
x

f (x) and min
x

h(x). (15.32)

Unlike merit functions, which combine both problems into a single minimization prob-
lem, filter methods keep the two goals in (15.32) separate. Filter methods accept a trial
step x+ as a new iterate if the pair ( f (x+), h(x+)) is not dominated by a previous
pair ( fl, hl) � ( f (xl), h(xl)) generated by the algorithm. These concepts are defined as
follows.
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f(x)

h(x)

i i(f  ,h  )

(fk k,h  )

Figure 15.6 Graphical illustration of a filter with four pairs.

Definition 15.2.
(a) A pair ( fk, hk) is said to dominate another pair ( fl, hl) if both fk ≤ fl and hk ≤ hl .

(b) A filter is a list of pairs ( fl , hl) such that no pair dominates any other.

(c) An iterate xk is said to be acceptable to the filter if ( fk, hk) is not dominated by any pair
in the filter.

When an iterate xk is acceptable to the filter, we (normally) add ( fk, hk) to the filter
and remove any pairs that are dominated by ( fk, hk). Figure 15.6 shows a filter where each
pair ( fl, hl) in the filter is represented as a black dot. Every point in the filter creates an
(infinite) rectangular region, and their union defines the set of pairs not acceptable to the
filter. More specifically, a trial point x+ is acceptable to the filter if ( f +, h+) lies below or to
the left of the solid line in Figure 15.6.

To compare the filter and merit function approaches, we plot in Figure 15.7 the
contour line of the set of pairs ( f, h) such that f +µh � fk +µhk , where xk is the current
iterate. The region to the left of this line corresponds to the set of pairs that reduce the merit
function φ(x;µ) � f (x) + µh(x); clearly this set is quite different from the set of points
acceptable to the filter.

If a trial step x+ � xk +αk pk generated by a line search method gives a pair ( f +, h+)
that is acceptable to the filter, we set xk+1 � x+; otherwise, a backtracking line search is
performed. In a trust-region method, if the step is not acceptable to the filter, the trust
region is reduced, and a new step is computed.

Several enhancements to this filter technique are needed to obtain global convergence
and good practical performance. We need to ensure, first of all, that we do not accept a point
whose ( f, h) pair is very close to the current pair ( fk, hk) or to another pair in the filter. We
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Figure 15.7 Comparing the filter and merit function techniques.

do so by modifying the acceptability criterion and imposing a sufficient decrease condition.
A trial iterate x+ is acceptable to the filter if, for all pairs ( f j , h j ) in the filter, we have that

f (x+) ≤ f j − βh j or h(x+) ≤ h j − βh j , (15.33)

for β ∈ (0, 1). Although this condition is effective in practice using, say β � 10−5, for
purposes of analysis it may be advantageous to replace the first inequality by

f (x+) ≤ f j − βh+.

A second enhancement addresses some problematic aspects of the filter mechanism.
Under certain circumstances, the search directions generated by line search methods may
require arbitrarily small steplengths αk to be acceptable to the filter. This phenomenon can
cause the algorithm to stall and fail. To guard against this situation, if the backtracking
line search generates a steplength that is smaller than a given threshold αmin, the algorithm
switches to a feasibility restoration phase, which we describe below. Similarly, in a trust-region
method, if a sequence of trial steps is rejected by the filter, the trust-region radius may be
decreased so much that the trust-region subproblem becomes infeasible (see Section 18.5).
In this case, too, the feasibility restoration phase is invoked. (Other mechanisms could be
employed to handle this situation, but as we discuss below, the feasibility restoration phase
can help the algorithm achieve other useful goals.)

The feasibility restoration phase aims exclusively to reduce the constraint violation,
that is, to find an approximate solution to the problem

min
x

h(x).
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Although h(x) defined by (15.31) is not smooth, we show in Chapter 17 how to minimize
it using a smooth constrained optimization subproblem. This phase terminates at an iterate
that has a sufficiently small value of h and is compatible with the filter.

We now present a framework for filter methods that assumes that iterates are generated
by a trust-region method; see Section 18.5 for a discussion of trust-region methods for
constrained optimization.

Algorithm 15.1 (General Filter Method).
Choose a starting point x0 and an initial trust-region radius �0;
Set k ← 0;
repeat until a convergence test is satisfied

if the step-generation subproblem is infeasible
Compute xk+1 using the feasibility restoration phase;

else
Compute a trial iterate x+ � xk + pk ;
if ( f +, h+) is acceptable to the filter

Set xk+1 � x+ and add ( fk+1, hk+1) to the filter;
Choose �k+1 such that �k+1 ≥ �k ;
Remove all pairs from the filter that are dominated

by ( fk+1, hk+1);
else

Reject the step, set xk+1 � xk ;
Choose �k+1 < �k ;

end if
end if
k ← k + 1;

end repeat

Other enhancements of this simple filter framework are used in practice; they depend
on the choice of algorithm and will be discussed in subsequent chapters.

15.5 THE MARATOS EFFECT

Some algorithms based on merit functions or filters may fail to converge rapidly because they
reject steps that make good progress toward a solution. This undesirable phenomenon is
often called the Maratos effect, because it was first observed by Maratos [199]. It is illustrated
by the following example, in which steps pk , which would yield quadratic convergence if
accepted, cause an increase both in the objective function value and the constraint violation.
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Figure 15.8
Maratos Effect: Example 15.4.
Note that the constraint is no
longer satisfied after the step
from xk to xk + pk , and the
objective value has increased.

❏ EXAMPLE 15.4 (POWELL [255])

Consider the problem

min f (x1, x2) � 2(x2
1 + x2

2 − 1)− x1, subject to x2
1 + x2

2 − 1 � 0. (15.34)

One can verify (see Figure 15.8) that the optimal solution is x∗ � (1, 0)T , that the
corresponding Lagrange multiplier is λ∗ � 3

2 , and that ∇2
xxL(x∗, λ∗) � I .

Let us consider an iterate xk of the form xk � (cos θ, sin θ)T , which is feasible for any
value of θ . Suppose that our algorithm computes the following step:

pk �
(

sin2 θ

− sin θ cos θ

)
, (15.35)

which yields a trial point

xk + pk �
(

cos θ + sin2 θ

sin θ(1− cos θ)

)
.

By using elementary trigonometric identities, we have that

‖xk + pk − x∗‖2 � 2 sin2(θ/2), ‖xk − x∗‖2 � 2| sin(θ/2)|,
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and therefore

‖xk + pk − x∗‖2

‖xk − x∗‖2
2

� 1

2
.

Hence, this step approaches the solution at a rate consistent with Q-quadratic convergence.
However, we have that

f (xk + pk) � sin2 θ − cos θ > − cos θ � f (xk),

c(xk + pk) � sin2 θ > c(xk) � 0,

so that, as can be seen in Figure 15.8, both the objective function value and the constraint
violation increase over this step. This behavior occurs for any nonzero value of θ , even if the
initial point is arbitrarily close to the solution.

❐

On the example above, any algorithm that requires reduction of a merit function of
the form

φ(x;µ) � f (x)+ µh(c(x)),

where h(·) is a nonnegative function satisfying h(0) � 0, will reject the good step (15.35).
(Examples of such merit functions include the φ1 and φ2 penalty functions.) The step
(15.35) will also be rejected by the filter mechanism described above because the pair
( f (xk + pk), h(xk + pk)) is dominated by ( fk, hk). Therefore, all these approaches will
suffer from the Maratos effect.

If no remedial measures are taken, the Maratos effect can slow optimization meth-
ods by interfering with good steps away from the solution and by preventing superlinear
convergence. Strategies for avoiding the Maratos effect include the following.

1. We can use a merit function that does not suffer from the Maratos effect. An example is
Fletcher’s augmented Lagrangian function (15.26).

2. We can use a second-order correction in which we add to pk a step p̂k , which is computed
at c(xk + pk) and which decreases the constraint violation.

3. We can allow the merit function φ to increase on certain iterations; that is, we can use a
nonmonotone strategy.

We discuss the last two approaches in the next section.
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15.6 SECOND-ORDER CORRECTION AND NONMONOTONE
TECHNIQUES

By adding a correction term that decreases the constraint violation, various algorithms
are able to overcome the difficulties associated with the Maratos effect. We describe this
technique with respect to the equality-constrained problem, in which the constraint is
c(x) � 0, where c : IRn → IR|E |.

Given a step pk , the second-order correction step p̂k is defined to be

p̂k � −AT
k (Ak AT

k )−1c(xk + pk), (15.36)

where Ak � A(xk) is the Jacobian of c at xk . Note that p̂k has the property that it satisfies a
linearization of the constraint c at the point xk + pk , that is,

Ak p̂k + c(xk + pk) � 0.

In fact, p̂k is the minimum-norm solution of this equation. (A different interpretation of
the second-order correction is given in Section 18.3.)

The effect of the correction step p̂k is to decrease the quantity ‖c(x)‖ to the order
of ‖xk − x∗‖3, provided the primary step pk satisfies Ak pk + c(xk) � 0. This estimate
indicates that the step from from xk to xk + pk + p̂k will decrease the merit function, at
least near the solution. The cost of this enhancement includes the additional evaluation of
the constraint function c at xk + pk and the linear algebra required to calculate the step p̂k

from (15.36).
We now describe an algorithm that uses a merit function together with a line-search

strategy and a second-order correction step. We assume that the search direction pk and the
penalty parameter µk are computed so that pk is a descent direction for the merit function,
that is, D(φ(xk;µ); pk) < 0. In Chapters 18 and 19, we discuss how to accomplish these
goals. The key feature of the algorithm is that, if the full step αk � 1 does not produce
satisfactory descent in the merit function, we try the second-order correction step before
backtracking along the original direction pk .

Algorithm 15.2 (Generic Algorithm with Second-Order Correction).
Choose parameters η ∈ (0, 0.5) and τ1, τ2 with 0 < τ1 < τ2 < 1;
Choose initial point x0; set k ← 0;
repeat until a convergence test is satisfied:

Compute a search direction pk ;
Set αk ← 1, newpoint← false ;
while newpoint = false

if φ(xk + αk pk;µ) ≤ φ(xk;µ)+ ηαk D(φ(xk;µ); pk)
Set xk+1 ← xk + αk pk ;
Set newpoint← true;
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else if αk � 1
Compute p̂k from (15.36);
if φ(xk + pk + p̂k;µ) ≤ φ(xk;µ)+ ηD(φ(xk;µ); pk)

Set xk+1 ← xk + pk + p̂k ;
Set newpoint← true;

else
Choose new αk in [τ1αk, τ2αk];

end
else

Choose new αk in [τ1αk, τ2αk];
end

end while
end repeat

In this algorithm, the full second-order correction step p̂k is discarded if does not
produce a reduction in the merit function. We do not backtrack along the direction
pk + p̂k because it is not guaranteed to be a descent direction for the merit func-
tion. A variation of this algorithm applies the second-order correction step only if the
sufficient decrease condition (15.29) is violated as a result of an increase in the norm of the
constraints.

The second-order correction strategy is effective in practice. The cost of performing
the extra constraint function evaluation and an additional backsolve in (15.36) is outweighed
by added robustness and efficiency.

NONMONOTONE (WATCHDOG) STRATEGY

The inefficiencies caused by the Maratos effect can also be avoided by occasionally
accepting steps that increase the merit function; such steps are called relaxed steps. There
is a limit to our tolerance, however. If a sufficient reduction of the merit function has not
been obtained within a certain number of iterates of the relaxed step (t̂ iterates, say), then
we return to the iterate before the relaxed step and perform a normal iteration, using a line
search or some other technique to force a reduction in the merit function.

In contrast with the second-order correction, which aims only to improve satisfaction
of the constraints, this nonmonotone strategy always takes regular steps pk of the algorithm
that aim both for improved feasibility and optimality. The hope is that any increase in the
merit function over a single step will be temporary, and that subsequent steps will more
than compensate for it.

We now describe a particular instance of the nonmonotone approach called the
watchdog strategy. We set t̂ � 1, so that we allow the merit function to increase on just
a single step before insisting on a sufficient decrease in the merit function. As above, we
focus our discussion on a line search algorithm that uses a nonsmooth merit function φ.
We assume that the penalty parameter µ is not changed until a successful cycle has been
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completed. To simplify the notation, we omit the dependence of φ on µ and write the merit
function as φ(x) and the directional derivative as D(φ(x); pk).

Algorithm 15.3 (Watchdog).
Choose a constant η ∈ (0, 0.5) and an initial point x0;
Set k ← 0, S ← {0};
repeat until a termination test is satisfied

Compute a step pk ;
Set xk+1 ← xk + pk ;
if φ(xk+1) ≤ φ(xk)+ ηD(φ(xk); pk)

k ← k + 1, S ← S ∪ {k};
else

Compute a search direction pk+1 from xk+1;
Find αk+1 such that

φ(xk+2) ≤ φ(xk+1)+ ηαk+1 D(φ(xk+1); pk+1);
Set xk+2 ← xk+1 + αk+1 pk+1;
if φ(xk+1) ≤ φ(xk) or φ(xk+2) ≤ φ(xk)+ ηD(φ(xk); pk)

k ← k + 2, S ← S ∪ {k};
else if φ(xk+2) > φ(xk)

(* return to xk and search along pk *)
Find αk such that φ(xk+3) ≤ φ(xk)+ ηαk D(φ(xk); pk);
Compute xk+3 � xk + αk pk ;
k ← k + 3, S ← S ∪ {k};

else
Compute a direction pk+2 from xk+2;
Find αk+2 such that

φ(xk+3) ≤ φ(xk+2)+ ηαk+2 D(φ(xk+2); pk+2);
Set xk+3 ← xk+2 + αk+2 pk+2;
k ← k + 3, S ← S ∪ {k};

end
end

end (repeat)

The setS is not required by the algorithm and is introduced only to identify the iterates
for which a sufficient merit function reduction was obtained. Note that at least a third of
the iterates have their indices in S . By using this fact, one can show that various constrained
optimization methods that use the watchdog technique are globally convergent. One can
also show that for all sufficiently large k, the step length is αk � 1 and the convergence rate
is superlinear.

In practice, it may be advantageous to allow increases in the merit function for more
than one iteration. Values of t̂ such as 5 or 8 are typical. As this discussion indicates, care-
ful implementations of the watchdog technique have a certain degree of complexity, but
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the added complexity is worthwhile because the approach has good practical performance.
A potential advantage of the watchdog technique over the second-order correction strat-
egy is that it may require fewer evaluations of the constraint functions. In the best case,
most of the steps will be full steps, and there will rarely be a need to return to an earlier
point.

NOTES AND REFERENCES

Techniques for eliminating linear constraints are described, for example, in Fletcher
[101] and Gill, Murray, and Wright [131]. For a thorough discussion of merit functions see
Boggs and Tolle [33] and Conn, Gould, and Toint [74]. Some of the earliest references on
nonmonotone methods include Grippo, Lampariello and Lucidi [158], and Chamberlain et
al [57]; see [74] for a review of nonmonotone techniques and an extensive list of references.
The concept of a filter was introduced by Fletcher and Leyffer [105]; our discussion of
filters is based on that paper. Second-order correction steps are motivated and discussed in
Fletcher [101].

✐ E X E R C I S E S

✐ 15.1 In Example 15.1, consider these three choices of the working set: W � {3},
W � {1, 2}, W � {2, 3}. Show that none of these working sets are the optimal active set for
(15.5).

✐ 15.2 For the problem in Example 15.3, perform simple elimination of the variables
x2 and x5 to obtain an unconstrained problem in the remaining variables x1, x3, x4, and
x6. Similarly to (15.12), express the eliminated variables explicitly in terms of the retained
variables.

✐ 15.3 Do the following problems have solutions? Explain.

min x1 + x2 subject to x2
1 + x2

2 � 2, 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1;

min x1 + x2 subject to x2
1 + x2

2 ≤ 1, x1 + x2 � 3;

min x1x2 subject to x1 + x2 � 2.

✐ 15.4 Show that if in Example 15.2 we eliminate x in terms of y, then the correct
solution of the problem is obtained by performing unconstrained minimization.

✐ 15.5 Show that the basis matrices (15.15) are linearly independent.

✐ 15.6 Show that the particular solution Q1 R−T �T b of Ax � b is identical to
AT (AAT )−1b.
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✐ 15.7 In this exercise we compute basis matrices that attempt to compromise between
the orthonormal basis (15.22) and simple elimination (15.15). We assume that the basis
matrix is given by the first m columns of A, so that P � I in (15.7), and define

Y �
[

I

(B−1 N )T

]
, Z �

[
−B−1 N

I

]
. (15.37)

(a) Show that the columns of Y and Z are no longer of norm 1 and that the relations
AZ � 0 and Y T Z � 0 hold. Therefore, the columns of Y and Z form a linearly
independent set, showing that (15.37) is a valid choice of the basis matrices.

(b) Show that the particular solution Y (AY )−1b defined by this choice of Y is, as in the
orthogonal factorization approach, the minimum-norm solution of Ax � b. More
specifically, show that

Y (AY )−1 � AT (AAT )−1.

It follows that the matrix Y (AY )−1 is independent of the choice of basis matrix B in
(15.7), and its conditioning is determined by that of A alone. (Note, however, that the
matrix Z still depends explicitly on B, so a careful choice of B is needed to ensure well
conditioning in this part of the computation.)

✐ 15.8 Verify that by adding the inequality constraint 3x1 + 2x3 ≥ 1 to the problem
(15.11), the elimination (15.12) transforms the problem into one of minimizing the function
(15.13) subject to the inequality constraint (15.23).




