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C H A P T E R16
Quadratic
Programming

An optimization problem with a quadratic objective function and linear constraints is called
a quadratic program. Problems of this type are important in their own right, and they also
arise as subproblems in methods for general constrained optimization, such as sequential
quadratic programming (Chapter 18), augmented Lagrangian methods (Chapter 17), and
interior-point methods (Chapter 19).
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The general quadratic program (QP) can be stated as

min
x

q(x) � 1
2 xT Gx + xT c (16.1a)

subject to aT
i x � bi , i ∈ E, (16.1b)

aT
i x ≥ bi , i ∈ I, (16.1c)

where G is a symmetric n × n matrix, E and I are finite sets of indices, and c, x , and
{ai }, i ∈ E ∪ I , are vectors in IRn . Quadratic programs can always be solved (or shown
to be infeasible) in a finite amount of computation, but the effort required to find a
solution depends strongly on the characteristics of the objective function and the number
of inequality constraints. If the Hessian matrix G is positive semidefinite, we say that (16.1)
is a convex QP, and in this case the problem is often similar in difficulty to a linear program.
(Strictly convex QPs are those in which G is positive definite.) Nonconvex QPs, in which G
is an indefinite matrix, can be more challenging because they can have several stationary
points and local minima.

In this chapter we focus primarily on convex quadratic programs. We start by
considering an interesting application of quadratic programming.

❏ EXAMPLE 16.1 (PORTFOLIO OPTIMIZATION)

Every investor knows that there is a tradeoff between risk and return: To increase the
expected return on investment, an investor must be willing to tolerate greater risks. Portfolio
theory studies how to model this tradeoff given a collection of n possible investments with
returns ri , i � 1, 2, . . . , n. The returns ri are usually not known in advance and are often
assumed to be random variables that follow a normal distribution. We can characterize these
variables by their expected value µi � E[ri ] and their variance σ 2

i � E[(ri − µi )2]. The
variance measures the fluctuations of the variable ri about its mean, so that larger values
of σi indicate riskier investments. The returns are not in general independent, and we can
define correlations between pairs of returns as follows:

ρi j � E[(ri − µi )(r j − µ j )]

σiσ j
, for i, j � 1, 2, . . . , n.

The correlation measures the tendency of the return on investments i and j to move in the
same direction. Two investments whose returns tend to rise and fall together have a positive
correlation; the nearer ρi j is to 1, the more closely the two investments track each other.
Investments whose returns tend to move in opposite directions have a negative correlation.

An investor constructs a portfolio by putting a fraction xi of the available funds into
investment i , for i � 1, 2, . . . , n. Assuming that all available funds are invested and that
short-selling is not allowed, the constraints are

∑n
i�1 xi � 1 and x ≥ 0. The return on the
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portfolio is given by

R �
n∑

i�1

xiri . (16.2)

To measure the desirability of the portfolio, we need to obtain measures of its expected
return and variance. The expected return is simply

E[R] � E

[
n∑

i�1

xiri

]
�

n∑
i�1

xi E[ri ] � xT µ,

while the variance is given by

Var[R] � E[(R − E[R])2] �
n∑

i�1

n∑
j�1

xi x jσiσ jρi j � xT Gx,

where the n × n symmetric positive semidefinite matrix G defined by

Gi j � ρi jσiσ j

is called the covariance matrix.
Ideally, we would like to find a portfolio for which the expected return xT µ is large

while the variance xT Gx is small. In the model proposed by Markowitz [201], we combine
these two aims into a single objective function with the aid of a “risk tolerance parameter”
denoted by κ , and we solve the following problem to find the optimal portfolio:

max xT µ− κxT Gx, subject to
n∑

i�1

xi � 1, x ≥ 0.

The value chosen for the nonnegative parameter κ depends on the preferences of the
individual investor. Conservative investors, who place more emphasis on minimizing risk
in their portfolio, would choose a large value of κ to increase the weight of the variance
measure in the objective function. More daring investors, who are prepared to take on more
risk in the hope of a higher expected return, would choose a smaller value of κ .

The difficulty in applying this portfolio optimization technique to real-life investing
lies in defining the expected returns, variances, and correlations for the investments in
question. Financial professionals often combine historical data with their own insights and
expectations to produce values of these quantities.

❐



1 6 . 1 . E Q U A L I T Y - C O N S T R A I N E D Q U A D R A T I C P R O G R A M S 451

16.1 EQUALITY-CONSTRAINED QUADRATIC PROGRAMS

We begin our discussion of algorithms for quadratic programming by considering the
case in which only equality constraints are present. Techniques for this special case are
applicable also to problems with inequality constraints since, as we see later in this chapter,
some algorithms for general QP require the solution of an equality-constrained QP at each
iteration.

PROPERTIES OF EQUALITY-CONSTRAINED QPs

For simplicity, we write the equality constraints in matrix form and state the equality-
constrained QP as follows:

min
x

q(x)
def� 1

2 xT Gx + xT c (16.3a)

subject to Ax � b, (16.3b)

where A is the m × n Jacobian of constraints (with m ≤ n) whose rows are aT
i , i ∈ E and

b is the vector in IRm whose components are bi , i ∈ E . For the present, we assume that A
has full row rank (rank m) so that the constraints (16.3b) are consistent. (In Section 16.8
we discuss the case in which A is rank deficient.)

The first-order necessary conditions for x∗ to be a solution of (16.3) state that there is
a vector λ∗ such that the following system of equations is satisfied:

[
G −AT

A 0

][
x∗

λ∗

]
�
[
−c

b

]
. (16.4)

These conditions are a consequence of the general result for first-order optimality conditions,
Theorem 12.1. As in Chapter 12, we call λ∗ the vector of Lagrange multipliers. The system
(16.4) can be rewritten in a form that is useful for computation by expressing x∗ as x∗ �
x + p, where x is some estimate of the solution and p is the desired step. By introducing
this notation and rearranging the equations, we obtain

[
G AT

A 0

][
−p

λ∗

]
�
[

g

h

]
, (16.5)

where

h � Ax − b, g � c + Gx, p � x∗ − x . (16.6)

The matrix in (16.5) is called the Karush–Kuhn–Tucker (KKT) matrix, and the fol-
lowing result gives conditions under which it is nonsingular. As in Chapter 15, we use Z to
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denote the n × (n − m) matrix whose columns are a basis for the null space of A. That is,
Z has full rank and satisfies AZ � 0.

Lemma 16.1.
Let A have full row rank, and assume that the reduced-Hessian matrix Z T G Z is positive

definite. Then the KKT matrix

K �
[

G AT

A 0

]
(16.7)

is nonsingular, and hence there is a unique vector pair (x∗, λ∗) satisfying (16.4).

PROOF. Suppose there are vectors w and v such that

[
G AT

A 0

][
w

v

]
� 0. (16.8)

Since Aw � 0, we have from (16.8) that

0 �
[

w

v

]T [
G AT

A 0

][
w

v

]
� wT Gw.

Since w lies in the null space of A, it can be written as w � Zu for some vector u ∈ IRn−m .
Therefore, we have

0 � wT Gw � uT Z T G Zu,

which by positive definiteness of Z T G Z implies that u � 0. Therefore, w � 0, and by
(16.8), AT v � 0. Full row rank of A then implies that v � 0. We conclude that equation
(16.8) is satisfied only if w � 0 and v � 0, so the matrix is nonsingular, as claimed. �

❏ EXAMPLE 16.2

Consider the quadratic programming problem

min q(x) � 3x2
1 + 2x1x2 + x1x3 + 2.5x2

2 + 2x2x3 + 2x2
3 − 8x1 − 3x2 − 3x3,

subject to x1 + x3 � 3, x2 + x3 � 0. (16.9)
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We can write this problem in the form (16.3) by defining

G �

⎡
⎢⎣

6 2 1

2 5 2

1 2 4

⎤
⎥⎦ , c �

⎡
⎢⎣
−8

−3

−3

⎤
⎥⎦ , A �

[
1 0 1

0 1 1

]
, b �

[
3

0

]
.

The solution x∗ and optimal Lagrange multiplier vector λ∗ are given by

x∗ � (2,−1, 1)T , λ∗ � (3,−2)T .

In this example, the matrix G is positive definite, and the null-space basis matrix can be
defined as in (15.15), giving

Z � (−1,−1, 1)T . (16.10)

❐

We have seen that when the conditions of Lemma 16.1 are satisfied, there is a unique
vector pair (x∗, λ∗) that satisfies the first-order necessary conditions for (16.3). In fact, the
second-order sufficient conditions (see Theorem 12.6) are also satisfied at (x∗, λ∗), so x∗ is
a strict local minimizer of (16.3). In fact, we can use a direct argument to show that x∗ is a
global solution of (16.3).

Theorem 16.2.
Let A have full row rank and assume that the reduced-Hessian matrix Z T G Z is positive

definite. Then the vector x∗ satisfying (16.4) is the unique global solution of (16.3).

PROOF. Let x be any other feasible point (satisfying Ax � b), and as before, let p denote
the difference x∗ − x . Since Ax∗ � Ax � b, we have that Ap � 0. By substituting into the
objective function (16.3a), we obtain

q(x) � 1
2 (x∗ − p)T G(x∗ − p)+ cT (x∗ − p)

� 1
2 pT Gp − pT Gx∗ − cT p + q(x∗). (16.11)

From (16.4) we have that Gx∗ � −c + AT λ∗, so from Ap � 0 we have that

pT Gx∗ � pT (−c + AT λ∗) � −pT c.

By substituting this relation into (16.11), we obtain

q(x) � 1
2 pT Gp + q(x∗).
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Since p lies in the null space of A, we can write p � Zu for some vector u ∈ IRn−m , so that

q(x) � 1
2 uT Z T G Zu + q(x∗).

By positive definiteness of Z T G Z , we conclude that q(x) > q(x∗) except when u � 0, that
is, when x � x∗. Therefore, x∗ is the unique global solution of (16.3). �

When the reduced Hessian matrix Z T G Z is positive semidefinite with zero eigenval-
ues, the vector x∗ satisfying (16.4) is a local minimizer but not a strict local minimizer. If
the reduced Hessian has negative eigenvalues, then x∗ is only a stationary point, not a local
minimizer.

16.2 DIRECT SOLUTION OF THE KKT SYSTEM

In this section we discuss efficient methods for solving the KKT system (16.5). The first
important observation is that if m ≥ 1, the KKT matrix is always indefinite. We define the
inertia of a symmetric matrix K to be the scalar triple that indicates the numbers n+, n−,
and n0 of positive, negative, and zero eigenvalues, respectively, that is,

inertia(K ) � (n+, n−, n0).

The following result characterizes the inertia of the KKT matrix.

Theorem 16.3.
Let K be defined by (16.7), and suppose that A has rank m. Then

inertia(K ) � inertia(Z T G Z)+ (m, m, 0).

Therefore, if Z T G Z is positive definite, inertia(K ) � (n, m, 0).

The proof of this result is given in [111], for example. Note that the assumptions of
this theorem are satisfied by Example 16.2. Hence, if we construct the 5× 5 matrix K using
the data of this example, we obtain inertia(K ) � (3, 2, 0).

Knowing that the KKT system is indefinite, we now describe the main direct techniques
used to solve (16.5).

FACTORING THE FULL KKT SYSTEM

One option for solving (16.5) is to perform a triangular factorization on the full KKT
matrix and then perform backward and forward substitution with the triangular factors.
Because of indefiniteness, we cannot use the Cholesky factorization. We could use Gaussian
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elimination with partial pivoting (or a sparse variant thereof) to obtain the L and U factors,
but this approach has the disadvantage that it ignores the symmetry.

The most effective strategy in this case is to use a symmetric indefinite factorization,
which we have discussed in Chapter 3 and the Appendix. For a general symmetric matrix
K , this factorization has the form

PT K P � L BLT , (16.12)

where P is a permutation matrix, L is unit lower triangular, and B is block-diagonal with
either 1 × 1 or 2 × 2 blocks. The symmetric permutations defined by the matrix P are
introduced for numerical stability of the computation and, in the case of large sparse K ,
for maintaining sparsity. The computational cost of the symmetric indefinite factorization
(16.12) is typically about half the cost of sparse Gaussian elimination.

To solve (16.5), we first compute the factorization (16.12) of the coefficient matrix.
We then perform the following sequence of operations to arrive at the solution:

solve Lz � PT

[
g

h

]
to obtain z;

solve Bẑ � z to obtain ŷ;
solve LT z̄ � ẑ to obtain z̄;

set

[
−p

λ∗

]
� Pz̄.

Since multiplications with the permutation matrices P and PT can be performed by simply
rearranging vector components, they are inexpensive. Solution of the system Bẑ � z entails
solving a number of small 1 × 1 and 2 × 2 systems, so the number of operations is a small
multiple of the system dimension (m + n), again inexpensive. Triangular substitutions with
L and LT are more costly. Their precise cost depends on the amount of sparsity, but is
usually significantly less than the cost of performing the factorization (16.12).

This approach of factoring the full (n + m) × (n + m) KKT matrix (16.7) is quite
effective on many problems. It may be expensive, however, when the heuristics for choosing
the permutation matrix P are not able to maintain sparsity in the L factor, so that L becomes
much more dense than the original coefficient matrix.

SCHUR-COMPLEMENT METHOD

Assuming that G is positive definite, we can multiply the first equation in (16.5) by
AG−1 and then subtract the second equation to obtain a linear system in the vector λ∗ alone:

(AG−1 AT )λ∗ � (AG−1g − h). (16.13)
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We solve this symmetric positive definite system for λ∗ and then recover p from the first
equation in (16.5) by solving

Gp � AT λ∗ − g. (16.14)

This approach requires us to perform operations with G−1, as well as to compute the
factorization of the m × m matrix AG−1 AT . Therefore, it is most useful when:

• G is well conditioned and easy to invert (for instance, when G is diagonal or block-
diagonal); or

• G−1 is known explicitly through a quasi-Newton updating formula; or

• the number of equality constraints m is small, so that the number of backsolves needed
to form the matrix AG−1 AT is not too large.

The name “Schur-Complement method” derives from the fact that, by applying block
Gaussian elimination to (16.7) using G as the pivot, we obtain the block upper triangular
system

[
G AT

0 −AG−1 AT

]
. (16.15)

In linear algebra terminology, the matrix AG−1 AT is the Schur complement of G in the
matrix K of (16.7). By applying this block elimination technique to the system (16.5), and
performing a block backsolve, we obtain (16.13), (16.14).

We can use an approach like the Schur-complement method to derive an explicit
inverse formula for the KKT matrix in (16.5). This formula is

[
G AT

A 0

]−1

�
[

C E

E T F

]
, (16.16)

with

C � G−1 − G−1 AT (AG−1 AT )−1 AG−1,

E � G−1 AT (AG−1 AT )−1,

F � −(AG−1 AT )−1.

The solution of (16.5) can be obtained by multiplying its right-hand side by this inverse
matrix. If we take advantage of common expressions, and group the terms appropriately,
we recover the approach (16.13), (16.14).
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NULL-SPACE METHOD

The null-space method does not require nonsingularity of G and therefore has wider
applicability than the Schur-complement method. It assumes only that the conditions of
Lemma 16.1 hold, namely, that A has full row rank and that Z T G Z is positive definite.
However, it requires knowledge of the null-space basis matrix Z . Like the Schur-complement
method, it exploits the block structure in the KKT system to decouple (16.5) into two smaller
systems.

Suppose that we partition the vector p in (16.5) into two components, as follows:

p � Y pY + Z pZ, (16.17)

where Z is the n × (n − m) null-space matrix, Y is any n × m matrix such that [Y | Z]
is nonsingular, pY is an m-vector, and pZ is an (n − m)-vector. The matrices Y and Z
were discussed in Section 15.3, where Figure 15.4 shows that Y xY is a particular solution of
Ax � b, while Z xZ is a displacement along these constraints.

By substituting p into the second equation of (16.5) and recalling that AZ � 0, we
obtain

(AY )pY � −h. (16.18)

Since A has rank m and [Y | Z] is n × n nonsingular, the product A[Y | Z] � [AY | 0] has
rank m. Therefore, AY is a nonsingular m × m matrix, and pY is well determined by the
equations (16.18). Meanwhile, we can substitute (16.17) into the first equation of (16.5) to
obtain

−GY pY − G Z pZ + AT λ∗ � g

and multiply by Z T to obtain

(Z T G Z)pZ � −Z T GY pY − Z T g. (16.19)

This system can be solved by performing a Cholesky factorization of the reduced-Hessian
matrix Z T G Z to determine pZ. We therefore can compute the total step p � Y pY + Z pZ.
To obtain the Lagrange multiplier, we multiply the first block row in (16.5) by Y T to obtain
the linear system

(AY )T λ∗ � Y T (g + Gp), (16.20)

which can be solved for λ∗.
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❏ EXAMPLE 16.3

Consider the problem (16.9) given in Example 16.2. We can choose

Y �

⎡
⎢⎣

2/3 −1/3

−1/3 2/3

1/3 1/3

⎤
⎥⎦

and set Z as in (16.10). Note that AY � I .
Suppose we have x � (0, 0, 0)T in (16.6). Then

h � Ax − b � −b, g � c + Gx � c �

⎡
⎢⎣
−8

−3

−3

⎤
⎥⎦ .

Simple calculation shows that

pY �
[

3

0

]
, pZ �

[
0
]
,

so that

p � x∗ − x � Y pY + Z pZ �

⎡
⎢⎣

2

−1

1

⎤
⎥⎦ .

After recovering λ∗ from (16.20), we conclude that

x∗ �

⎡
⎢⎣

2

−1

1

⎤
⎥⎦ , λ∗ �

[
3

−2

]
.

❐

The null-space approach can be very effective when the number of degrees of freedom
n −m is small. Its main limitation lies in the need for the null-space matrix Z which, as we
have seen in Chapter 15, can be expensive to compute in some large problems. The matrix Z
is not uniquely defined and, if it is poorly chosen, the reduced system (16.19) may become ill
conditioned. If we choose Z to have orthonormal columns, as is normally done in software
for small and medium-sized problems, then the conditioning of Z T G Z is at least as good
as that of G itself. When A is large and sparse, however, an orthonormal Z is expensive to
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compute, so for practical reasons we are often forced to use one of the less reliable choices
of Z described in Chapter 15.

It is difficult to give hard and fast rules about the relative effectiveness of null-space and
Schur-complement methods, because factors such as fill-in during computation of Z vary
significantly even among problems of the same dimension. In general, we can recommend
the Schur-complement method if G is positive definite and AG−1 AT can be computed
relatively cheaply (because G is easy to invert or because m is small relative to n). Otherwise,
the null-space method is often preferable, in particular when it is much more expensive to
compute factors of G than to compute the null-space matrix Z and the factors of Z T G Z .

16.3 ITERATIVE SOLUTION OF THE KKT SYSTEM

An alternative to the direct factorization techniques discussed in the previous section is to
use an iterative method to solve the KKT system (16.5). Iterative methods are suitable for
solving very large systems and often lend themselves well to parallelization. The conjugate
gradient (CG) method is not recommended for solving the full system (16.5) as written,
because it can be unstable on systems that are not positive definite. Better options are
Krylov methods for general linear or symmetric indefinite systems. Candidates include
the GMRES, QMR, and LSQR methods; see the Notes and References at the end of the
chapter. Other iterative methods can be derived from the null-space approach by applying
the conjugate gradient method to the reduced system (16.19). Methods of this type are key
to the algorithms of Chapters 18 and 19, and are discussed in the remainder of this section.
We assume throughout that Z T G Z is positive definite.

CG APPLIED TO THE REDUCED SYSTEM

We begin our discussion of iterative null-space methods by deriving the underlying
equations in the notation of the equality-constrained QP (16.3). Expressing the solution of
the quadratic program (16.3) as

x∗ � Y xY + Z xZ, (16.21)

for some vectors xZ ∈ IRn−m , xY ∈ IRm , the constraints Ax � b yield

AY xY � b, (16.22)

which determines the vector xY. In Chapter 15, various practical choices of Y are described,
some of which allow (16.22) to be solved economically. Substituting (16.21) into (16.3), we
see that xZ solves the unconstrained reduced problem

min
xZ

1
2 xZ

T Z T G Z xZ + xZ
T cZ,
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where

cZ � Z T GY xY + Z T c. (16.23)

The solution xZ satisfies the linear system

Z T G Z xZ � −cZ. (16.24)

Since Z T G Z is positive definite, we can apply the CG method to this linear system and
substitute xZ into (16.21) to obtain a solution of (16.3).

As discussed in Chapter 5, preconditioning can improve the rate of convergence of
the CG iteration, so we assume that a preconditioner WZZ is given. The preconditioned CG
method (Algorithm 5.3) applied to the (n − m)-dimensional reduced system (16.24) is as
follows. (We denote the steps produced by the CG iteration by dZ.)

Algorithm 16.1 (Preconditioned CG for Reduced Systems).
Choose an initial point xZ;
Compute rZ � Z T G Z xZ + cZ, gZ � WZZ

−1rZ, and dZ � −gZ;
repeat

α ← rZ
T gZ/dZ

T Z T G ZdZ; (16.25a)

xZ ← xZ + αdZ; (16.25b)

rZ
+ ← rZ + αZ T G ZdZ; (16.25c)

gZ
+ ← WZZ

−1rZ
+; (16.25d)

β ← (rZ
+)T gZ

+/rZ
T gZ; (16.25e)

dZ ←−gZ
+ + βdZ; (16.25f)

gZ ← gZ
+; rZ ← rZ

+; (16.25g)

until a termination test is satisfied.

This iteration may be terminated when, for example, rZ
T WZZ

−1rZ is sufficiently small.
In this approach, it is not necessary to form the reduced Hessian Z T G Z explicitly

because the CG method requires only that we compute matrix-vector products involving
this matrix. In fact, it is not even necessary to form Z explicitly as long as we are able to
compute products of Z and Z T with arbitrary vectors. For some choices of Z , these products
are much cheaper to compute than Z itself, as we have seen in Chapter 15.

The preconditioner WZZ is a symmetric, positive definite matrix of dimension n −m,
which might be chosen to cluster the eigenvalues of WZZ

−1/2(Z T G Z)WZZ
−1/2 and to reduce

the span between the smallest and largest eigenvalues. An ideal choice of preconditioner is
one for which WZZ

−1/2(Z T G Z)WZZ
−1/2 � I , that is, WZZ � Z T G Z . Motivated by this ideal,

we consider preconditioners of the form

WZZ � Z T H Z , (16.26)
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where H is a symmetric matrix such that Z T H Z is positive definite. Some choices of H are
discussed below. Preconditioners of the form (16.26) allow us to apply the CG method in
n-dimensional space, as we discuss next.

THE PROJECTED CG METHOD

It is possible to design a modification of the Algorithm 16.1 that avoids operating with
the null-space basis Z , provided we use a preconditioner of the form (16.26) and a particular
solution of the equation Ax � b. This approach works implicitly with an orthogonal matrix
Z and is not affected by ill conditioning in A or by a poor choice of Z .

After the solution xZ of (16.24) has been computed by using Algorithm 16.1, it
must be multiplied by Z and substituted in (16.21) to give the solution of the quadratic
program (16.3). Alternatively, we may rewrite Algorithm 16.1 to work directly with the
vector x � Z xZ + Y xY, where the Y xY term is fixed at the start and the xZ term is updated
(implicitly) within each iteration. To specify this form of the CG algorithm, we introduce
the n-vectors x , r , g, and d , which satisfy x � Z xZ+Y xY, Z T r � rZ, g � Z gZ, and d � ZdZ,
respectively. We also define the scaled n × n projection matrix P as follows:

P � Z(Z T H Z)−1 Z T , (16.27)

where H is the preconditioning matrix from (16.26). The CG iteration in n-dimensional
space can be specified as follows.

Algorithm 16.2 (Projected CG Method).
Choose an initial point x satisfying Ax � b;
Compute r � Gx + c, g � Pr , and d � −g;
repeat

α ← r T g/dT Gd; (16.28a)

x ← x + αd; (16.28b)

r+ ← r + αGd; (16.28c)

g+ ← Pr+; (16.28d)

β ← (r+)T g+/r T g; (16.28e)

d ←−g+ + βd; (16.28f)

g ← g+; r ← r+; (16.28g)

until a convergence test is satisfied.
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A practical stop test is to terminate when r T g � r T Pr is smaller than a prescribed
tolerance.

Note that the vector g+, which we call the preconditioned residual, has been defined to
be in the null space of A. As a result, in exact arithmetic, all the search directions d generated
by Algorithm 16.2 also lie in the null space of A, and thus the iterates x all satisfy Ax � b.
It is not difficult to verify (see Exercise 16.14) that the iteration is well defined if Z T G Z
and Z T H Z are positive definite. The reader can also verify that the iterates x generated by
Algorithm 16.2 are related to the iterates xZ of Algorithm 16.1 via (16.21).

Two simple choices of the preconditioning matrix H are H � diag(|Gii |) and H � I .
In some applications, it is effective to define H as a block diagonal submatrix of G.

Algorithm 16.2 makes use of the null-space basis Z only through the operator (16.27).
It is possible, however, to compute Pr without knowing a representation of the null-space
basis Z . For simplicity, we first consider the case in which H � I , so that P is the orthogonal
projection operator onto the null space of A. We use PI to denote this special case of P ,
that is,

PI � Z(Z T Z)−1 Z T . (16.29)

The computation of the preconditioned residual g+ � PIr+ in (16.28d) can be performed
in two ways. The first is to express PI by the equivalent formula

PI � I − AT (AAT )−1 A (16.30)

and thus compute g+ � PIr+. We can then write g+ � r+− AT v+, where v+ is the solution
of the system

AAT v+ � Ar+. (16.31)

This approach for computing the projection g+ � PIr+ is called the normal equa-
tions approach; the system (16.31) can be solved by using a Cholesky factorization
of AAT .

The second approach is to express the projection (16.28d) as the solution of the
augmented system

[
I AT

A 0

][
g+

v+

]
�
[

r+

0

]
, (16.32)

which can be solved by means of a symmetric indefinite factorization, as discussed earlier.
We call this approach the augmented system approach.
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We suppose now that the preconditioning has the general form of (16.27) and (16.28d).
When H is nonsingular, we can compute g+ as follows:

g+ � Pr+, where P � H−1
(
I − AT (AH−1 AT )−1 AH−1

)
. (16.33)

Otherwise, when zT H z 	� 0 for all nonzero z with Az � 0, we can find g+ as the solution
of the system

[
H AT

A 0

][
g+

v+

]
�
[

r+

0

]
. (16.34)

While (16.33) is unappealing when H−1 does not have a simple form, (16.34) is a useful
generalization of (16.32). A “perfect” preconditioner is obtained by taking H � G, but
other choices for H are also possible, provided that Z T H Z is positive definite. The matrix
in (16.34) is often called a constraint preconditioner.

None of these procedures for computing the projection makes use of a null-space
basis Z ; only the factorization of matrices involving A is required. Significantly, all these
forms allow us to compute an initial point satisfying Ax � b. The operator g+ � PIr+

relies on a factorization of AAT from which we can compute x � AT (AAT )−1b, while
factorizations of the system matrices in (16.32) and (16.34) allow us to find a suitable x by
solving

[
I AT

A 0

][
x

y

]
�
[

0

b

]
or

[
H AT

A 0

][
x

y

]
�
[

0

b

]
.

Therefore we can compute an initial point for Algorithm 16.2 at the cost of one backsolve,
using the factorization of the system needed to perform the projection operators.

We point out that these approaches for computing g+ can give rise to signifi-
cant round-off errors, so the use of iterative refinement is recommended to improve
accuracy.

16.4 INEQUALITY-CONSTRAINED PROBLEMS

In the remainder of the chapter we discuss several classes of algorithms for solving convex
quadratic programs that contain both inequality and equality constraints. Active-set methods
have been widely used since the 1970s and are effective for small- and medium-sized
problems. They allow for efficient detection of unboundedness and infeasibility and typically
return an accurate estimate of the optimal active set. Interior-point methods are more recent,
having become popular in the 1990s. They are well suited for large problems but may not
be the most effective when a series of related QPs must be solved. We also study a special
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type of active-set methods called a gradient projection method, which is most effective when
the only constraints in the problem are bounds on the variables.

OPTIMALITY CONDITIONS FOR INEQUALITY-CONSTRAINED PROBLEMS

We begin our discussion with a brief review of the optimality conditions for inequality-
constrained quadratic programming, then discuss some of the less obvious properties of the
solutions.

Theorem 12.1 can be applied to (16.1) by noting that the Lagrangian for this problem
is

L(x, λ) � 1
2 xT Gx + xT c −

∑
i∈I∪E

λi (a
T
i x − bi ). (16.35)

As in Definition 12.1, the active set A(x∗) consists of the indices of the constraints for which
equality holds at x∗:

A(x∗) � {
i ∈ E ∪ I | aT

i x∗ � bi
}
. (16.36)

By specializing the KKT conditions (12.34) to this problem, we find that any solution x∗

of (16.1) satisfies the following first-order conditions, for some Lagrange multipliers λ∗i ,
i ∈ A(x∗):

Gx∗ + c −
∑

i∈A(x∗)

λ∗i ai � 0, (16.37a)

aT
i x∗ � bi , for all i ∈ A(x∗), (16.37b)

aT
i x∗ ≥ bi , for all i ∈ I\A(x∗), (16.37c)

λ∗i ≥ 0, for all i ∈ I ∩A(x∗). (16.37d)

A technical point: In Theorem 12.1 we assumed that the linear independence con-
straint qualification (LICQ) was satisfied. As mentioned in Section 12.6, this theorem still
holds if we replace LICQ by other constraint qualifications, such as linearity of the con-
straints, which is certainly satisfied for quadratic programming. Hence, in the optimality
conditions for quadratic programming given above, we need not assume that the active
constraints are linearly independent at the solution.

For convex QP, when G is positive semidefinite, the conditions (16.37) are in fact
sufficient for x∗ to be a global solution, as we now prove.

Theorem 16.4.
If x∗ satisfies the conditions (16.37) for some λ∗i , i ∈ A(x∗), and G is positive semidefinite,

then x∗ is a global solution of (16.1).
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PROOF. If x is any other feasible point for (16.1), we have that aT
i x � bi for all i ∈ E and

aT
i x ≥ bi for all i ∈ A(x∗) ∩ I . Hence, aT

i (x − x∗) � 0 for all i ∈ E and aT
i (x − x∗) ≥ 0

for all i ∈ A(x∗) ∩ I . Using these relationships, together with (16.37a) and (16.37d), we
have that

(x − x∗)T (Gx∗ + c) �
∑
i∈E

λ∗i aT
i (x − x∗)+

∑
i∈A(x∗)∩I

λ∗i aT
i (x − x∗) ≥ 0. (16.38)

By elementary manipulation, we find that

q(x) � q(x∗)+ (x − x∗)T (Gx∗ + c)+ 1
2 (x − x∗)T G(x − x∗)

≥ q(x∗)+ 1
2 (x − x∗)T G(x − x∗)

≥ q(x∗),

where the first inequality follows from (16.38) and the second inequality follows from
positive semidefiniteness of G. We have shown that q(x) ≥ q(x∗) for any feasible x , so x∗

is a global solution. �

By a trivial modification of this proof, we see that x∗ is actually the unique global
solution when G is positive definite.

We can also apply the theory from Section 12.5 to derive second-order optimality
conditions for (16.1). Second-order sufficient conditions for x∗ to be a local minimizer are
satisfied if Z T G Z is positive definite, where Z is defined to be a null-space basis matrix
for the active constraint Jacobian matrix, which is the matrix whose rows are aT

i for all
i ∈ A(x∗). In this case, x∗ is a strict local solution, according to Theorem 12.6.

When G is not positive definite, the general problem (16.1) may have more than one
strict local solution. As mentioned above, such problems are called “nonconvex QPs” or
“indefinite QPs,” and they cause some complications for algorithms. Examples of indefinite
QPs are illustrated in Figure 16.1. On the left we have plotted the feasible region and
the contours of a quadratic objective q(x) in which G has one positive and one negative
eigenvalue. We have indicated by + or − that the function tends toward plus or minus
infinity in that direction. Note that x∗∗ is a local maximizer, x∗ a local minimizer, and the
center of the box is a stationary point. The picture on the right in Figure 16.1, in which both
eigenvalues of G are negative, shows a global maximizer at x̃ and local minimizers at x∗ and
x∗∗.

DEGENERACY

A second property that causes difficulties for some algorithms is degeneracy. Con-
fusingly, this term has been given a variety of meanings. It refers to situations in
which
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Figure 16.1 Nonconvex quadratic programs.
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Figure 16.2 Degenerate solutions of quadratic programs.

(a) the active constraint gradients ai , i ∈ A(x∗), are linearly dependent at the solution x∗,
and/or

(b) the strict complementarity condition of Definition 12.5 fails to hold, that is, there is
some index i ∈ A(x∗) such that all Lagrange multipliers satisfying (16.37) have λ∗i � 0.
(Such constraints are weakly active according to Definition 12.8.)

Two examples of degeneracy are shown in Figure 16.2. In the left-hand picture, there
is a single active constraint at the solution x∗, which is also an unconstrained minimizer
of the objective function. In the notation of (16.37a), we have that Gx∗ + c � 0, so that
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the lone Lagrange multiplier must be zero. In the right-hand picture, three constraints are
active at the solution x∗. Since each of the three constraint gradients is a vector in IR2, they
must be linearly dependent.

Lack of strict complementarity is also illustrated by the problem

min x2
1 + (x2 + 1)2 subject to x ≥ 0,

which has a solution at x∗ � 0 at which both constraints are active. Strict complementarity
does not hold at x∗ because the Lagrange multiplier associated with the active constraint
x1 ≥ 0 is zero.

Degeneracy can cause problems for algorithms for two main reasons. First, linear
dependence of the active constraint gradients can cause numerical difficulties in the step
computation because certain matrices that we need to factor become rank deficient. Second,
when the problem contains weakly active constraints, it is difficult for the algorithm to
determine whether these constraints are active at the solution. In the case of active-set
methods and gradient projection methods (described below), this indecisiveness can cause
the algorithm to zigzag as the iterates move on and off the weakly active constraints on
successive iterations. Safeguards must be used to prevent such behavior.

16.5 ACTIVE-SET METHODS FOR CONVEX QPs

We now describe active-set methods for solving quadratic programs of the form (16.1)
containing equality and inequality constraints. We consider only the convex case, in which
the matrix G in (16.1a) is positive semidefinite. The case in which G is an indefinite matrix
raises complications in the algorithms and is outside the scope of this book. We refer to
Gould [147] for a discussion of nonconvex QPs.

If the contents of the optimal active set (16.36) were known in advance, we could
find the solution x∗ by applying one of the techniques for equality-constrained QP of
Sections 16.2 and 16.3 to the problem

min
x

q(x) � 1
2 xT Gx + xT c subject to aT

i x � bi , i ∈ A(x∗).

Of course, we usually do not have prior knowledge of A(x∗) and, as we now see, de-
termination of this set is the main challenge facing algorithms for inequality-constrained
QP.

We have already encountered an active-set approach for linear programming in Chap-
ter 13, namely, the simplex method. In essence, the simplex method starts by making a guess
of the optimal active set, then repeatedly uses gradient and Lagrange multiplier information
to drop one index from the current estimate of A(x∗) and add a new index, until optimality
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is detected. Active-set methods for QP differ from the simplex method in that the iterates
(and the solution x∗) are not necessarily vertices of the feasible region.

Active-set methods for QP come in three varieties: primal, dual, and primal-dual. We
restrict our discussion to primal methods, which generate iterates that remain feasible with
respect to the primal problem (16.1) while steadily decreasing the objective function q(x).

Primal active-set methods find a step from one iterate to the next by solving a quadratic
subproblem in which some of the inequality constraints (16.1c), and all the equality con-
straints (16.1b), are imposed as equalities. This subset is referred to as the working set and
is denoted at the kth iterate xk by Wk . An important requirement we impose on Wk is that
the gradients ai of the constraints in the working set be linearly independent, even when
the full set of active constraints at that point has linearly dependent gradients.

Given an iterate xk and the working set Wk , we first check whether xk minimizes
the quadratic q in the subspace defined by the working set. If not, we compute a step p
by solving an equality-constrained QP subproblem in which the constraints corresponding
to the working set Wk are regarded as equalities and all other constraints are temporarily
disregarded. To express this subproblem in terms of the step p, we define

p � x − xk, gk � Gxk + c.

By substituting for x into the objective function (16.1a), we find that

q(x) � q(xk + p) � 1
2 pT Gp + gT

k p + ρk,

where ρk � 1
2 xT

k Gxk + cT xk is independent of p. Since we can drop ρk from the objective
without changing the solution of the problem, we can write the QP subproblem to be solved
at the kth iteration as follows:

min
p

1
2 pT Gp + gT

k p (16.39a)

subject to aT
i p � 0, i ∈Wk . (16.39b)

We denote the solution of this subproblem by pk . Note that for each i ∈ Wk , the value of
aT

i x does not change as we move along pk , since we have aT
i (xk + αpk) � aT

i xk � bi for
all α. Since the constraints in Wk were satisfied at xk , they are also satisfied at xk + αpk , for
any value of α. Since G is positive definite, the solution of (16.39) can be computed by any
of the techniques described in Section 16.2.

Supposing for the moment that the optimal pk from (16.39) is nonzero, we need to
decide how far to move along this direction. If xk + pk is feasible with respect to all the
constraints, we set xk+1 � xk + pk . Otherwise, we set

xk+1 � xk + αk pk, (16.40)
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where the step-length parameter αk is chosen to be the largest value in the range [0, 1] for
which all constraints are satisfied. We can derive an explicit definition of αk by considering
what happens to the constraints i /∈ Wk , since the constraints i ∈ Wk will certainly be
satisfied regardless of the choice of αk . If aT

i pk ≥ 0 for some i /∈Wk , then for all αk ≥ 0 we
have aT

i (xk + αk pk) ≥ aT
i xk ≥ bi . Hence, constraint i will be satisfied for all nonnegative

choices of the step-length parameter. Whenever aT
i pk < 0 for some i /∈ Wk , however, we

have that aT
i (xk + αk pk) ≥ bi only if

αk ≤ bi − aT
i xk

aT
i pk

.

To maximize the decrease in q , we want αk to be as large as possible in [0, 1] subject to
retaining feasibility, so we obtain the following definition:

αk
def� min

(
1, min

i /∈Wk , aT
i pk<0

bi − aT
i xk

aT
i pk

)
. (16.41)

We call the constraints i for which the minimum in (16.41) is achieved the blocking con-
straints. (If αk � 1 and no new constraints are active at xk+αk pk , then there are no blocking
constraints on this iteration.) Note that it is quite possible for αk to be zero, because we
could have aT

i pk < 0 for some constraint i that is active at xk but not a member of the
current working set Wk .

If αk < 1, that is, the step along pk was blocked by some constraint not in Wk , a new
working set Wk+1 is constructed by adding one of the blocking constraints to Wk .

We continue to iterate in this manner, adding constraints to the working set until we
reach a point x̂ that minimizes the quadratic objective function over its current working set
Ŵ . It is easy to recognize such a point because the subproblem (16.39) has solution p � 0.
Since p � 0 satisfies the optimality conditions (16.5) for (16.39), we have that

∑
i∈Ŵ

ai λ̂i � g � Gx̂ + c, (16.42)

for some Lagrange multipliers λ̂i , i ∈ Ŵ . It follows that x̂ and λ̂ satisfy the first KKT
condition (16.37a), if we define the multipliers corresponding to the inequality constraints
that are not in the working set to be zero. Because of the control imposed on the step length,
x̂ is also feasible with respect to all the constraints, so the second and third KKT conditions
(16.37b) and (16.37c) are satisfied at this point.

We now examine the signs of the multipliers corresponding to the inequality con-
straints in the working set, that is, the indices i ∈ Ŵ ∩ I . If these multipliers are all
nonnegative, the fourth KKT condition (16.37d) is also satisfied, so we conclude that x̂ is a
KKT point for the original problem (16.1). In fact, since G is positive semidefinite, we have
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from Theorem 16.4 that x̂ is a global solution of (16.1). (As noted after Theorem 16.4, x̂ is
a strict local minimizer and the unique global solution if G is positive definite.)

If, on the other hand, one or more of the multipliers λ̂ j , j ∈ Ŵ ∩ I , is negative,
the condition (16.37d) is not satisfied and the objective function q(·) may be decreased
by dropping one of these constraints, as shown in Section 12.3. Thus, we remove an index
j corresponding to one of the negative multipliers from the working set and solve a new
subproblem (16.39) for the new step. We show in the following theorem that this strategy
produces a direction p at the next iteration that is feasible with respect to the dropped
constraint. We continue to assume that the constraint gradients ai for i in the working
set are linearly independent. After the algorithm has been fully stated, we discuss how this
property can be maintained.

Theorem 16.5.
Suppose that the point x̂ satisfies first-order conditions for the equality-constrained

subproblem with working set Ŵ ; that is, equation (16.42) is satisfied along with aT
i x̂ � bi for

all i ∈ Ŵ . Suppose, too, that the constraint gradients ai , i ∈ Ŵ , are linearly independent and
that there is an index j ∈ Ŵ such that λ̂ j < 0. Let p be the solution obtained by dropping the
constraint j and solving the following subproblem:

min
p

1
2 pT Gp + (Gx̂ + c)T p, (16.43a)

subject to aT
i p � 0, for all i ∈ Ŵ with i 	� j . (16.43b)

Then p is a feasible direction for constraint j , that is, aT
j p ≥ 0. Moreover, if p satisfies second-

order sufficient conditions for (16.43), then we have that aT
j p > 0, and that p is a descent

direction for q(·).

PROOF. Since p solves (16.43), we have from the results of Section 16.1 that there are
multipliers λ̃i , for all i ∈ Ŵ with i 	� j , such that

∑
i∈Ŵ, i 	� j

λ̃i ai � Gp + (Gx̂ + c). (16.44)

In addition, we have by second-order necessary conditions that if Z is a null-space basis
vector for the matrix

[
aT

i

]
i∈Ŵ, i 	� j ,

then Z T G Z is positive semidefinite. Clearly, p has the form p � Z pZ for some vector pZ,
so it follows that pT Gp ≥ 0.
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We have made the assumption that x̂ and Ŵ satisfy the relation (16.42). By subtracting
(16.42) from (16.44), we obtain

∑
i∈Ŵ, i 	� j

(λ̃i − λ̂i )ai − λ̂ j a j � Gp. (16.45)

By taking inner products of both sides with p and using the fact that aT
i p � 0 for all i ∈ Ŵ

with i 	� j , we have that

− λ̂ j a
T
j p � pT Gp. (16.46)

Since pT Gp ≥ 0 and λ̂ j < 0 by assumption, it follows that aT
j p ≥ 0.

If the second-order sufficient conditions of Section 12.5 are satisfied, we have that
Z T G Z defined above is positive definite. From (16.46), we can have aT

j p � 0 only if
pT Gp � pT

Z
Z T G Z pZ � 0, which happens only if pZ � 0 and p � 0. But if p � 0, then

by substituting into (16.45) and using linear independence of ai for i ∈ Ŵ , we must have
that λ̂ j � 0, which contradicts our choice of j . We conclude that pT Gp > 0 in (16.46), and
therefore aT

j p > 0 whenever p satisfies the second-order sufficient conditions for (16.43).
The claim that p is a descent direction for q(·) is proved in Theorem 16.6 below. �

While any index j for which λ̂ j < 0 usually will yield a direction p along which the
algorithm can make progress, the most negative multiplier is often chosen in practice (and
in the algorithm specified below). This choice is motivated by the sensitivity analysis given
in Chapter 12, which shows that the rate of decrease in the objective function when one
constraint is removed is proportional to the magnitude of the Lagrange multiplier for that
constraint. As in linear programming, however, the step along the resulting direction may
be short (as when it is blocked by a new constraint), so the amount of decrease in q is not
guaranteed to be greater than for other possible choices of j .

We conclude with a result that shows that whenever pk obtained from (16.39) is
nonzero and satisfies second-order sufficient optimality conditions for the current working
set, it is a direction of strict descent for q(·).

Theorem 16.6.
Suppose that the solution pk of (16.39) is nonzero and satisfies the second-order sufficient

conditions for optimality for that problem. Then the function q(·) is strictly decreasing along
the direction pk .

PROOF. Since pk satisfies the second-order conditions, that is, Z T G Z is positive definite
for the matrix Z whose columns are a basis of the null space of the constraints (16.39b), we
have by applying Theorem 16.2 to (16.39) that pk is the unique global solution of (16.39).
Since p � 0 is also a feasible point for (16.39), its objective value in (16.39a) must be larger
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than that of pk , so we have

1
2 pT

k Gpk + gT
k pk < 0.

Since pT
k Gpk ≥ 0 by convexity, this inequality implies that gT

k pk < 0. Therefore, we have

q(xk + αk pk) � q(xk)+ αgT
k pk + 1

2α
2 pT

k Gpk < q(xk),

for all α > 0 sufficiently small. �

When G is positive definite—the strictly convex case—the second-order sufficient
conditions are satisfied for all feasible subproblems of the form (16.39). Hence, it follows
from the result above that we obtain a strict decrease in q(·) whenever pk 	� 0. This fact is
significant when we discuss finite termination of the algorithm.

SPECIFICATION OF THE ACTIVE-SET METHOD FOR CONVEX QP

Having described the active-set algorithm for convex QP, we now present the following
formal specification. We assume that the objective function q is bounded in the feasible set
(16.1b), (16.1c).

Algorithm 16.3 (Active-Set Method for Convex QP).
Compute a feasible starting point x0;
Set W0 to be a subset of the active constraints at x0;
for k � 0, 1, 2, . . .

Solve (16.39) to find pk ;
if pk � 0

Compute Lagrange multipliers λ̂i that satisfy (16.42),

with Ŵ �Wk ;

if λ̂i ≥ 0 for all i ∈Wk ∩ I
stop with solution x∗ � xk ;

else
j ← arg min j∈Wk∩I λ̂ j ;
xk+1 ← xk ; Wk+1 ←Wk\{ j};

else (* pk 	� 0 *)
Compute αk from (16.41);
xk+1 ← xk + αk pk ;
if there are blocking constraints

Obtain Wk+1 by adding one of the blocking
constraints to Wk ;

else
Wk+1 ←Wk ;

end (for)
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Various techniques can be used to determine an initial feasible point. One such is
to use the “Phase I” approach for linear programming described in Chapter 13. Though
no significant modifications are needed to generalize this method from linear program-
ming to quadratic programming, we describe a variant here that allows the user to
supply an initial estimate x̃ of the vector x . This estimate need not be feasible, but a
good choice based on knowledge of the QP may reduce the work needed in the Phase I
step.

Given x̃ , we define the following feasibility linear program:

min
(x,z)

eT z

subject to aT
i x + γi zi � bi , i ∈ E,

aT
i x + γi zi ≥ bi , i ∈ I,

z ≥ 0,

where e � (1, 1, . . . , 1)T , γi � −sign(aT
i x̃ − bi ) for i ∈ E , and γi � 1 for i ∈ I . A feasible

initial point for this problem is then

x � x̃, zi � |aT
i x̃ − bi | (i ∈ E), zi � max(bi − aT

i x̃, 0) (i ∈ I).

It is easy to verify that if x̃ is feasible for the original problem (16.1), then (x̃, 0) is optimal for
the feasibility subproblem. In general, if the original problem has feasible points, then the
optimal objective value in the subproblem is zero, and any solution of the subproblem yields
a feasible point for the original problem. The initial working set W0 for Algorithm 16.3 can
be found by taking a linearly independent subset of the active constraints at the solution of
the feasibility problem.

An alternative approach is a penalty (or “big M”) method, which does away with the
“Phase I” and instead includes a measure of infeasibility in the objective that is guaranteed
to be zero at the solution. That is, we introduce a scalar artificial variable η into (16.1) to
measure the constraint violation, and we solve the problem

min
(x,η)

1
2 xT Gx + xT c + Mη,

subject to (aT
i x − bi ) ≤ η, i ∈ E,

−(aT
i x − bi ) ≤ η, i ∈ E, (16.47)

bi − aT
i x ≤ η, i ∈ I,

0 ≤ η,

for some large positive value of M . It can be shown by applying the theory of exact penalty
functions (see Chapter 17) that whenever there exist feasible points for the original problem
(16.1), then for all M sufficiently large, the solution of (16.47) will have η � 0, with an x
component that is a solution for (16.1).
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Our strategy is to use some heuristic to choose a value of M and solve (16.47) by
the usual means. If the solution we obtain has a positive value of η, we increase M and try
again. Note that a feasible point is easy to obtain for the subproblem (16.47): We set x � x̃
(where, as before, x̃ is the user-supplied initial guess) and choose η large enough that all the
constraints in (16.47) are satisfied. This approach is, in fact, an exact penalty method using
the �∞ norm; see Chapter 17.

A variant of (16.47) that penalizes the �1 norm of the constraint violation rather than
the �∞ norm is as follows:

min
(x,s,t,v)

1
2 xT Gx + xT c + MeT

E (s + t)+ MeT
I v

subject to aT
i x − bi + si − ti � 0, i ∈ E,

aT
i x − bi + vi ≥ 0, i ∈ I, (16.48)

s ≥ 0, t ≥ 0, v ≥ 0.

Here, eE is the vector (1, 1, . . . , 1)T of length |E |; similarly for eI . The slack variables si , ti ,
and vi soak up any infeasibility in the constraints.

In the following example we use subscripts on the vectors x and p to denote their
components, and we use superscripts to indicate the iteration index. For example, x1 denotes
the first component, while x4 denotes the fourth iterate of the vector x .

x1x , x2 3

x , x0 1

x2

x4

(2,0)

(2,2)
x 5

(4,1)(0,1)

Figure 16.3 Iterates of the active-set method.
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❏ EXAMPLE 16.4

We apply Algorithm 16.3 to the following simple 2-dimensional problem illustrated
in Figure 16.3.

min
x

q(x) � (x1 − 1)2 + (x2 − 2.5)2 (16.49a)

subject to x1 − 2x2 + 2 ≥ 0, (16.49b)

−x1 − 2x2 + 6 ≥ 0, (16.49c)

−x1 + 2x2 + 2 ≥ 0, (16.49d)

x1 ≥ 0, (16.49e)

x2 ≥ 0. (16.49f)

We refer the constraints, in order, by indices 1 through 5. For this problem it is easy to
determine a feasible initial point; say x0 � (2, 0)T . Constraints 3 and 5 are active at this
point, and we set W0 � {3, 5}. (Note that we could just as validly have chosen W0 � {5}
or W0 � {3} or even W � ∅; each choice would lead the algorithm to perform somewhat
differently.)

Since x0 lies on a vertex of the feasible region, it is obviously a minimizer of the
objective function q with respect to the working set W0; that is, the solution of (16.39) with
k � 0 is p � 0. We can then use (16.42) to find the multipliers λ̂3 and λ̂5 associated with
the active constraints. Substitution of the data from our problem into (16.42) yields

[
−1

2

]
λ̂3 +

[
0

1

]
λ̂5 �

[
2

−5

]
,

which has the solution (λ̂3, λ̂5) � (−2,−1).
We now remove constraint 3 from the working set, because it has the most negative

multiplier, and set W1 � {5}. We begin iteration 1 by finding the solution of (16.39) for
k � 1, which is p1 � (−1, 0)T . The step-length formula (16.41) yields α1 � 1, and the new
iterate is x2 � (1, 0)T .

There are no blocking constraints, so that W2 �W1 � {5}, and we find at the start of
iteration 2 that the solution of (16.39) is p2 � 0. From (16.42) we deduce that the Lagrange
multiplier for the lone working constraint is λ̂5 � −5, so we drop 5 from the working set to
obtain W3 � ∅.

Iteration 3 starts by solving the unconstrained problem, to obtain the solution p3 �
(0, 2.5)T . The formula (16.41) yields a step length of α3 � 0.6 and a new iterate x4 �
(1, 1.5)T . There is a single blocking constraint (constraint 1), so we obtain W4 � {1}. The
solution of (16.39) for k � 4 is then p4 � (0.4, 0.2)T , and the new step length is 1. There
are no blocking constraints on this step, so the next working set is unchanged: W5 � {1}.
The new iterate is x5 � (1.4, 1.7)T .
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Finally, we solve (16.39) for k � 5 to obtain a solution p5 � 0. The formula (16.42)
yields a multiplier λ̂1 � 0.8, so we have found the solution. We set x∗ � (1.4, 1.7)T and
terminate.

❐

FURTHER REMARKS ON THE ACTIVE-SET METHOD

We noted above that there is flexibility in the choice of the initial working set and that
each initial choice leads to a different iteration sequence. When the initial active constraints
have independent gradients, as above, we can include them all in W0. Alternatively, we can
select a subset. For instance, if in the example above we have chosen W0 � {3}, the first
iterate would have yielded p0 � (0.2, 0.1)T and a new iterate of x1 � (2.2, 0.1)T . If we
had chosen W0 � {5}, we would have moved immediately to the new iterate x1 � (1, 0)T ,
without first performing the operation of dropping the index 3, as is done in the example. If
we had selected W0 � ∅, we would have obtained p1 � (−1, 2.5)T , α1 � 2

3 , a new iterate of
x1 � ( 4

3 ,
5
3 )T , and a new working set of W1 � {1}. The solution x∗ would have been found

on the next iteration.
Even if the initial working set W0 coincides with the initial active set, the sets Wk

and A(xk) may differ at later iterations. For instance, when a particular step encounters
more than one blocking constraint, just one of them is added to the working set, so the
identification between Wk and A(xk) is broken. Moreover, subsequent iterates differ in
general according to what choice is made.

We require the constraint gradients inW0 to be linearly independent, and our strategy
for modifying the working set ensures that this same property holds for all subsequent
working setsWk . When we encounter a blocking constraint on a particular step, its constraint
normal cannot be a linear combination of the normals ai in the current working set (see
Exercise 16.18). Hence, linear independence is maintained after the blocking constraint is
added to the working set. On the other hand, deletion of an index from the working set
cannot introduce linear dependence.

The strategy of removing the constraint corresponding to the most negative Lagrange
multiplier often works well in practice but has the disadvantage that it is susceptible to the
scaling of the constraints. (By multiplying constraint i by some factor β > 0 we do not
change the geometry of the optimization problem, but we introduce a scaling of 1/β to
the corresponding multiplier λi .) Choice of the most negative multiplier is analogous to
Dantzig’s original pivot rule for the simplex method in linear programming (see Chapter 13)
and, as we noted there, strategies that are less sensitive to scaling often give better results.
We do not discuss this advanced topic further.

We note that the strategy of adding or deleting at most one constraint at each iteration
of the Algorithm 16.3 places a natural lower bound on the number of iterations needed
to reach optimality. Suppose, for instance, that we have a problem in which m inequality
constraints are active at the solution x∗ but that we start from a point x0 that is strictly
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feasible with respect to all the inequality constraints. In this case, the algorithm will need
at least m iterations to move from x0 to x∗. Even more iterations will be required if the
algorithm adds some constraint j to the working set at some iteration, only to remove it at
a later step.

FINITE TERMINATION OF ACTIVE-SET ALGORITHM ON STRICTLY CONVEX
QPs

It is not difficult to show that, under certain assumptions, Algorithm 16.3 converges
for strictly convex QPs, that is, it identifies the solution x∗ in a finite number of iterations.
This claim is certainly true if we assume that the method always takes a nonzero step length
αk whenever the direction pk computed from (16.39) is nonzero. Our argument proceeds
as follows:

• If the solution of (16.39) is pk � 0, the current point xk is the unique global minimizer
of q(·) for the working set Wk ; see Theorem 16.6. If it is not the solution of the
original problem (16.1) (that is, at least one of the Lagrange multipliers is negative),
Theorems 16.5 and 16.6 together show that the step pk+1 computed after a constraint
is dropped will be a strict decrease direction for q(·). Therefore, because of our
assumption αk > 0, we have that the value of q is lower than q(xk) at all subsequent
iterations. It follows that the algorithm can never return to the working set Wk ,
because subsequent iterates have values of q that are lower than the global minimizer
for this working set.

• The algorithm encounters an iterate k for which pk � 0 solves (16.39) at least on
every nth iteration. To demonstrate this claim, we note that for any k at which pk 	� 0,
either we have αk � 1 (in which case we reach the minimizer of q on the current
working set Wk , so that the next iteration will yield pk+1 � 0), or else a constraint
is added to the working set Wk . If the latter situation occurs repeatedly, then after
at most n iterations the working set will contain n indices, which correspond to n
linearly independent vectors. The solution of (16.39) will then be pk � 0, since only
the zero vector will satisfy the constraints (16.39b).

• Taken together, the two statements above indicate that the algorithm finds the global
minimum of q on its current working set periodically (at least once every n iterations)
and that, having done so, it never visits this particular working set again. It follows
that, since there are only a finite number of possible working sets, the algorithm
cannot iterate forever. Eventually, it encounters a minimizer for a current working set
that satisfies optimality conditions for (16.1), and it terminates with a solution.

The assumption that we can always take a nonzero step along a nonzero descent
direction pk calculated from (16.39) guarantees that the algorithm does not undergo cycling.
This term refers to the situation in which a sequence of consecutive iterations results in no
movement in iterate x , while the working setWk undergoes deletions and additions of indices
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and eventually repeats itself. That is, for some integers k and l ≥ 1, we have that xk � xk+l

and Wk �Wk+l . At each iterate in the cycle, a constraint is dropped (as in Theorem 16.5),
but a new constraint i /∈ Wk is encountered immediately without any movement along
the computed direction p. Procedures for handling degeneracy and cycling in quadratic
programming are similar to those for linear programming discussed in Chapter 13; we do
not discuss them here. Most QP implementations simply ignore the possibility of cycling.

UPDATING FACTORIZATIONS

We have seen that the step computation in the active-set method given in Al-
gorithm 16.3 requires the solution of the equality-constrained subproblem (16.39). As
mentioned at the beginning of this chapter, this computation amounts to solving the KKT
system (16.5). Since the working set can change by just one index at every iteration, the KKT
matrix differs in at most one row and one column from the previous iteration’s KKT matrix.
Indeed, G remains fixed, whereas the matrix A of constraint gradients corresponding to the
current working set may change through addition and/or deletion of a single row.

It follows from this observation that we can compute the matrix factors needed to solve
(16.39) at the current iteration by updating the factors computed at the previous iteration,
rather than recomputing them from scratch. These updating techniques are crucial to the
efficiency of active-set methods.

We limit our discussion to the case in which the step is computed with the null-space
method (16.17)–(16.20). Suppose that A has m linearly independent rows and assume that
the bases Y and Z are defined by means of a QR factorization of A (see Section 15.3 for
details). Thus

AT � � Q

[
R

0

]
� [

Q1 Q2

] [ R

0

]
(16.50)

(see (15.21)), where � is a permutation matrix; R is square, upper triangular and nonsingu-
lar; Q � [

Q1 Q2

]
is n × n orthogonal; and Q1 and R both have m columns while Q2

has n−m columns. As noted in Chapter 15, we can choose Z to be simply the orthonormal
matrix Q2.

Suppose that one constraint is added to the working set at the next iteration, so that
the new constraint matrix is ĀT � [

AT a
]
, where a is a column vector of length n

such that ĀT retains full column rank. As we now show, there is an economical way to
update the Q and R factors in (16.50) to obtain new factors (and hence a new null-space
basis matrix Z̄ , with n − m − 1 columns) for the expanded matrix Ā. Note first that, since
Q1 QT

1 + Q2 QT
2 � I , we have

ĀT

[
� 0

0 1

]
� [

AT � a
] � Q

[
R QT

1 a

0 QT
2 a

]
. (16.51)
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We can now define an orthogonal matrix Q̂ that transforms the vector QT
2 a to a vector in

which all elements except the first are zero. That is, we have

Q̂(QT
2 a) �

[
γ

0

]
,

where γ is a scalar. (Since Q̂ is orthogonal, we have ‖QT
2 a‖ � |γ |.) From (16.51) we now

have

ĀT

[
� 0

0 1

]
� Q

⎡
⎢⎣

R QT
1 a

0 Q̂T

[
γ

0

] ⎤
⎥⎦ � Q

[
I 0

0 Q̂T

]⎡⎢⎣
R QT

1 a

0 γ

0 0

⎤
⎥⎦ .

This factorization has the form

ĀT �̄ � Q̄

[
R̄

0

]
,

where

�̄ �
[

� 0

0 1

]
, Q̄ � Q

[
I 0

0 Q̂T

]
�
[

Q1 Q2 Q̂T
]
, R̄ �

[
R QT

1 a

0 γ

]
.

We can therefore choose Z̄ to be the last n−m−1 columns of Q2 Q̂T . If we know Z explicitly
and need an explicit representation of Z̄ , we need to account for the cost of obtaining Q̂ and
the cost of forming the product Q2 Q̂T � Z Q̂T . Because of the special structure of Q̂, this
cost is of order n(n−m), compared to the cost of computing (16.50) from scratch, which is
of order n2m. The updating strategy is less expensive, especially when the null space is small
(that is, when n − m � n).

An updating technique can also be designed for the case in which a row is removed
from A. This operation has the effect of deleting a column from R in (16.50), thus disturbing
the upper triangular property of this matrix by introducing a number of nonzeros on the
diagonal immediately below the main diagonal of the matrix. Upper triangularity can be
restored by applying a sequence of plane rotations. These rotations introduce a number
of inexpensive transformations into the first m columns of Q, and the updated null-space
matrix is obtained by selecting the last n − m + 1 columns from this matrix after the
transformations are complete. The new null-space basis in this case has the form

Z̄ � [
z̄ Z

]
, (16.52)

that is, the current matrix Z is augmented by a single column. The total cost of this
operation varies with the location of the removed column in A but is in general cheaper
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than recomputing a QR factorization from scratch. For details of these procedures, see Gill
et al. [124, Section 5].

We now consider the reduced Hessian. Because of the special form of (16.39), we have
h � 0 in (16.5), and the step pY given in (16.18) is zero. Thus from (16.19), the null-space
component pZ is the solution of

(Z T G Z)pZ � −Z T g. (16.53)

We can sometimes find ways of updating the factorization of the reduced Hessian Z T G Z
after Z has changed. Suppose that we have the Cholesky factorization of the current reduced
Hessian, written as

Z T G Z � L LT ,

and that at the next step Z changes as in (16.52), gaining a column after deletion of a
constraint. A series of inexpensive, elementary operations can be used to transform the
Cholesky factor L into the new factor L̄ for the new reduced Hessian Z̄ T G Z̄ .

A variety of other simplifications are possible. For example, as discussed in Sec-
tion 16.7, we can update the reduced gradient Z T g at the same time as we update Z to
Z̄ .

16.6 INTERIOR-POINT METHODS

The interior-point approach can be applied to convex quadratic programs through a simple
extension of the linear-programming algorithms described in Chapter 14. The resulting
primal-dual algorithms are easy to describe and are quite efficient on many types of problems.
Extensions of interior-point methods to nonconvex problems are discussed in Chapter 19.

For simplicity, we restrict our attention to convex quadratic programs with inequality
constraints, which we write as follows:

min
x

q(x) � 1
2 xT Gx + xT c (16.54a)

subject to Ax ≥ b, (16.54b)

where G is symmetric and positive semidefinite and where the m×n matrix A and right-hand
side b are defined by

A � [ai ]i∈I , b � [bi ]i∈I , I � {1, 2, . . . , m}.

(If equality constraints are also present, they can be accommodated with simple extensions
to the approaches described below.) Rewriting the KKT conditions (16.37) in this notation,
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we obtain

Gx − AT λ+ c � 0,

Ax − b ≥ 0,

(Ax − b)iλi � 0, i � 1, 2, . . . , m,

λ ≥ 0.

By introducing the slack vector y ≥ 0, we can rewrite these conditions as

Gx − AT λ+ c � 0, (16.55a)

Ax − y − b � 0, (16.55b)

yiλi � 0, i � 1, 2, . . . , m, (16.55c)

(y, λ) ≥ 0. (16.55d)

Since we assume that G is positive semidefinite, these KKT conditions are not only necessary
but also sufficient (see Theorem 16.4), so we can solve the convex quadratic program (16.54)
by finding solutions of the system (16.55).

Given a current iterate (x, y, λ) that satisfies (y, λ) > 0, we can define a
complementarity measure µ by

µ � yT λ

m
. (16.56)

As in Chapter 14, we derive path-following, primal-dual methods by considering the
perturbed KKT conditions given by

F(x, y, λ; σµ) �

⎡
⎢⎣

Gx − AT λ+ c

Ax − y − b

Y�e − σµe

⎤
⎥⎦ � 0, (16.57)

where

Y � diag(y1, y2, . . . , ym), � � diag(λ1, λ2, . . . , λm), e � (1, 1, . . . , 1)T ,

and σ ∈ [0, 1]. The solutions of (16.57) for all positive values of σ and µ define the central
path, which is a trajectory that leads to the solution of the quadratic program as σµ tends
to zero.

By fixing µ and applying Newton’s method to (16.57), we obtain the linear system

⎡
⎢⎣

G 0 −AT

A −I 0

0 � Y

⎤
⎥⎦
⎡
⎢⎣

�x

�y

�λ

⎤
⎥⎦ �

⎡
⎢⎣

−rd

−rp

−�Ye + σµe

⎤
⎥⎦ , (16.58)



482 C H A P T E R 1 6 . Q U A D R A T I C P R O G R A M M I N G

where

rd � Gx − AT λ+ c, rp � Ax − y − b. (16.59)

We obtain the next iterate by setting

(x+, y+, λ+) � (x, y, λ)+ α(�x,�y,�λ), (16.60)

where α is chosen to retain the inequality (y+, λ+) > 0 and possibly to satisfy various other
conditions.

In the rest of the chapter we discuss several enhancements of this primal-dual iteration
that make it effective in practice.

SOLVING THE PRIMAL-DUAL SYSTEM

The major computational operation in the interior-point method is the solution of
the system (16.58). The coefficient matrix in this system can be much more costly to factor
than the matrix (14.9) arising in linear programming because of the presence of the Hessian
matrix G. It is therefore important to exploit the structure of (16.58) by choosing a suitable
direct factorization algorithm, or by choosing an appropriate preconditioner for an iterative
solver.

As in Chapter 14, the system (16.58) may be restated in more compact forms. The
“augmented system” form is

[
G −AT

A �−1Y

][
�x

�λ

]
�
[

−rd

−rp + (−y + σµ�−1e)

]
. (16.61)

After a simple transformation to symmetric form, a symmetric indefinite factorization
scheme can be applied to the coefficient matrix in this system. The “normal equations” form
(14.44a) is

(G + ATY−1�A)�x � −rd + ATY−1�[−rp − y + σµ�−1e], (16.62)

which can be solved by means of a modified Cholesky algorithm. This approach is effective
if the term AT (Y−1�)A is not too dense compared with G, and it has the advantage of
being much smaller than (16.61) if there are many inequality constraints.

The projected CG method of Algorithm 16.2 can also be effective for solving the
primal-dual system. We can rewrite (16.58) in the form

⎡
⎢⎣

G 0 −AT

0 Y−1� I

A −I 0

⎤
⎥⎦
⎡
⎢⎣

�x

�y

�λ

⎤
⎥⎦ �

⎡
⎢⎣

−rd

−�e + σµY−1e

−rp

⎤
⎥⎦ , (16.63)
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and observe that these are the optimality conditions for an equality-constrained convex
quadratic program of the form (16.3), in which the variable is (�x,�y). Hence, we can
make appropriate substitutions and solve this system using Algorithm 16.2. This approach
may be useful for problems in which the direct factorization cannot be performed due to
excessive memory demands. The projected CG method does not require that the matrix G
be formed or factored; it requires only matrix-vector products.

STEP LENGTH SELECTION

We mentioned in Chapter 14 that interior-point methods for linear programming are
more efficient if different step lengths αpri, αdual are used for the primal and dual variables.
Equation (14.37) indicates that the greatest reduction in the residuals rb and rc is obtained
by choosing the largest admissible primal and dual step lengths. The situation is different in
quadratic programming. Suppose that we define the new iterate as

(x+, y+) � (x, y)+ αpri(�x,�y), λ+ � λ+ αdual�λ, (16.64)

where αpri and αdual are step lengths that ensure the positivity of (y+, λ+). By using (16.58)
and (16.59), we see that the new residuals satisfy the following relations:

r+p � (1− αpri)rp, (16.65a)

r+d � (1− αdual)rd + (αpri − αdual)G�x . (16.65b)

If αpri � αdual � α then both residuals decrease linearly for all α ∈ (0, 1). For different step
lengths, however, the dual residual r+d may increase for certain choices of αpri, αdual, possibly
causing divergence of the interior-point iteration.

One option is to use equal step lengths, as in (16.60), and to set α � min(αpri
τ , αdual

τ ),
where

αpri
τ � max{α ∈ (0, 1] : y + α�y ≥ (1− τ )y}, (16.66a)

αdual
τ � max{α ∈ (0, 1] : λ+ α�λ ≥ (1− τ )λ}; (16.66b)

the parameter τ ∈ (0, 1) controls how far we back off from the maximum step for which the
conditions y + α�y ≥ 0 and λ+ α�λ ≥ 0 are satisfied. Numerical experience has shown,
however, that using different step lengths in the primal and dual variables often leads to
faster convergence. One way to choose unequal step lengths is to select (αpri, αdual) so as to
(approximately) minimize the optimality measure

‖Gx+ − AT λ+ + c‖2
2 + ‖Ax+ − y+ − b‖2

2 + (y+)T z+,

subject to 0 ≤ αpri ≤ α
pri
τ and 0 ≤ αdual ≤ αdual

τ , where x+, y+, λ+ are defined as a function
of the step lengths through (16.64).
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A PRACTICAL PRIMAL-DUAL METHOD

The most popular interior-point method for convex QP is based on Mehrotra’s
predictor-corrector, originally developed for linear programming (see Section 14.2). The
extension to quadratic programming is straightforward, as we now show.

First, we compute an affine scaling step (�xaff ,�yaff ,�λaff ) by setting σ � 0 in
(16.58). We improve upon this step by computing a corrector step, which is defined following
the same reasoning that leads to (14.31). Next, we compute the centering parameter σ using
(14.34). The total step is obtained by solving the following system (cf. (14.35)):

⎡
⎢⎣

G 0 −AT

A −I 0

0 � Y

⎤
⎥⎦
⎡
⎢⎣

�x

�y

�λ

⎤
⎥⎦ �

⎡
⎢⎣

−rd

−rp

−�Ye −��aff�Yaff e + σµe

⎤
⎥⎦ . (16.67)

We now specify the algorithm. For simplicity, we will assume in our description that
equal step lengths are used in the primal and dual variables though, as noted above, unequal
step lengths can give slightly faster convergence.

Algorithm 16.4 (Predictor-Corrector Algorithm for QP).
Compute (x0, y0, λ0) with (y0, λ0) > 0;
for k � 0, 1, 2, . . .

Set (x, y, λ) � (xk, yk, λk) and solve (16.58) with σ � 0 for
(�xaff ,�yaff ,�λaff );

Calculate µ � yT λ/m;
Calculate α̂aff � max{α ∈ (0, 1] | (y, λ)+ α(�yaff ,�λaff ) ≥ 0};
Calculate µaff � (y + α̂aff�yaff )T (λ+ α̂aff�λaff )/m;
Set centering parameter to σ � (µaff/µ)3;
Solve (16.67) for (�x,�y,�λ);
Choose τk ∈ (0, 1) and set α̂ � min(αpri

τk , αdual
τk

) (see (16.66));
Set (xk+1, yk+1, λk+1) � (xk, yk, λk)+ α̂(�x,�y,�λ);

end (for)

We can choose τk to approach 1 as the iterates approach the solution, to accelerate the
convergence.

As for linear programming, efficiency and robustness of this approach is greatly
enhanced if we choose a good starting point. This selection can be done in several ways. The
following simple heuristic accepts an initial point (x̄, ȳ, λ̄) from the user and moves it far
enough away from the boundary of the region (y, λ) ≥ 0 to permit the algorithm to take
long steps on early iterations. First, we compute the affine scaling step (�xaff ,�yaff ,�λaff )
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from the user-supplied initial point (x̄, ȳ, λ̄), then set

y0 � max(1, |ȳ +�yaff |), λ0 � max(1, |λ̄+�λaff |), x0 � x̄,

where the max and absolute values are applied component-wise.
We conclude this section by contrasting some of the properties of active-set and

interior-point methods for convex quadratic programming. Active-set methods generally
require a large number of steps in which each search direction is relatively inexpensive to
compute, while interior-point methods take a smaller number of more expensive steps.
Active-set methods are more complicated to implement, particularly if the procedures for
updating matrix factorizations try to take advantage of sparsity or structure in G and A. By
contrast, the nonzero structure of the matrix to be factored at each interior-point iteration
remains the same at all iterations (though the numerical values change), so standard sparse
factorization software can be used to obtain the steps. For particular sparsity structures (for
example, bandedness in the matrices A and G), efficient customized solvers for the linear
system arising at each interior-point iteration can be devised.

For very large problems, interior-point methods are often more efficient. However,
when an estimate of the solution is available (a “warm start”), the active-set approach may
converge rapidly in just a few iterations, particularly if the initial value of x is feasible.
Interior-point methods are less able to exploit a warm start, though research efforts to
improve their performance in this regard are ongoing.

16.7 THE GRADIENT PROJECTION METHOD

In the active-set method described in Section 16.5, the active set and working set change
slowly, usually by a single index at each iteration. This method may thus require many
iterations to converge on large-scale problems. For instance, if the starting point x0 has no
active constraints, while 200 constraints are active at the (nondegenerate) solution, then at
least 200 iterations of the active-set method will be required to reach the solution.

The gradient projection method allows the active set to change rapidly from iteration
to iteration. It is most efficient when the constraints are simple in form—in particular,
when there are only bounds on the variables. Accordingly, we restrict our attention to the
following bound-constrained problem:

min
x

q(x) � 1
2 xT Gx + xT c (16.68a)

subject to l ≤ x ≤ u, (16.68b)

where G is symmetric and l and u are vectors of lower and upper bounds on the components
of x . We do not make any positive definiteness assumptions on G in this section, because the
gradient projection approach can be applied to both convex and nonconvex problems. The
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feasible region defined by (16.68b) is sometimes called a “box” because of its rectangular
shape. Some components of x may lack an upper or a lower bound; we handle these cases
formally by setting the appropriate components of l and u to −∞ and +∞, respectively.

Each iteration of the gradient projection algorithm consists of two stages. In the first
stage, we search along the steepest descent direction from the current point x , that is, the
direction −g, where g � Gx + c; see (16.6). Whenever a bound is encountered, the search
direction is “bent” so that it stays feasible. We search along the resulting piecewise-linear
path and locate the first local minimizer of q , which we denote by xc and refer to as the
Cauchy point, by analogy with our terminology of Chapter 4. The working set is now defined
to be the set of bound constraints that are active at the Cauchy point, denoted by A(xc). In
the second stage of each gradient projection iteration, we explore the face of the feasible box
on which the Cauchy point lies by solving a subproblem in which the active components xi

for i ∈ A(xc) are fixed at the values xc
i .

We describe the gradient projection method in detail in the rest of this section. Our
convention in this section is to denote the iteration number by a superscript (that is, xk)
and use subscripts to denote the elements of a vector.

CAUCHY POINT COMPUTATION

We now derive an explicit expression for the piecewise-linear path obtained by pro-
jecting the steepest descent direction onto the feasible box, and outline the search procedure
for identifying the first local minimum of q along this path.

The projection of an arbitrary point x onto the feasible region (16.68b) is defined as
follows. The i th component is given by

P(x, l, u)i �

⎧⎪⎪⎨
⎪⎪⎩

li if xi < li ,

xi if xi ∈ [li , ui ],

ui if xi > ui .

(16.69)

(We assume, without loss of generality, that li < ui for all i .) The piecewise-linear path x(t)
starting at the reference point x and obtained by projecting the steepest descent direction at
x onto the feasible region (16.68b) is thus given by

x(t) � P(x − tg, l, u), (16.70)

where g � Gx + c; see Figure 16.4.
The Cauchy point xc, is defined as the first local minimizer of the univariate, piecewise-

quadratic function q(x(t)), for t ≥ 0. This minimizer is obtained by examining each of the
line segments that make up x(t). To perform this search, we need to determine the values of
t at which the kinks in x(t), or breakpoints, occur. We first identify the values of t for which
each component reaches its bound along the chosen direction−g. These values t̄i are given
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Figure 16.4 The piecewise-linear path x(t), for an example in IR3.

by the following explicit formulae:

t̄i �

⎧⎪⎨
⎪⎩

(xi − ui )/gi if gi < 0 and ui < +∞,

(xi − li )/gi if gi > 0 and li > −∞,

∞ otherwise.

(16.71)

The components of x(t) for any t are therefore

xi (t) �
{

xi − tgi if t ≤ t̄i ,

xi − t̄i gi otherwise.

To search for the first local minimizer along P(x− tg, l, u), we eliminate the duplicate
values and zero values of t̄i from the set {t̄1, t̄2, . . . , t̄n}, to obtain a sorted, reduced set
of breakpoints {t1, t2, . . . , tl} with 0 < t1 < t2 < · · ·. We now examine the intervals
[0, t1], [t1, t2], [t2, t3], . . . in turn. Suppose we have examined up to t j−1 and have not yet
found a local minimizer. For the interval [t j−1, t j ], we have that

x(t) � x(t j−1)+ (�t)p j−1,

where

�t � t − t j−1 ∈ [0, t j − t j−1],
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and

p j−1
i �

{
−gi if t j−1 < t̄i ,

0 otherwise.
(16.72)

We can then write the quadratic (16.68a) on the line segment [x(t j−1), x(t j )] as
follows:

q(x(t)) � cT (x(t j−1)+ (�t)p j−1)+ 1
2 (x(t j−1)+ (�t)p j−1)T G(x(t j−1)+ (�t)p j−1).

Expanding and grouping the coefficients of 1, �t , and (�t)2, we find that

q(x(t)) � f j−1 + f ′j−1�t + 1
2 f ′′j−1(�t)2, �t ∈ [0, t j − t j−1], (16.73)

where the coefficients f j−1, f ′j−1, and f ′′j−1 are defined by

f j−1
def� cT x(t j−1)+ 1

2 x(t j−1)T Gx(t j−1),

f ′j−1
def� cT p j−1 + x(t j−1)T Gp j−1,

f ′′j−1
def� (p j−1)T Gp j−1.

Differentiating (16.73) with respect to �t and equating to zero, we obtain �t∗ �
− f ′j−1/ f ′′j−1. The following cases can occur. (i) If f ′j−1 > 0 there is a local minimizer
of q(x(t)) at t � t j−1; else (ii) �t∗ ∈ [0, t j − t j−1) there is a minimizer at t � t j−1 +�t∗;
(iii) in all other cases we move on to the next interval [t j , t j+1] and continue the
search.

For the next search interval, we need to calculate the new direction p j from (16.72),
and we use this new value to calculate f j , f ′j , and f ′′j . Since p j differs from p j−1 typically
in just one component, computational savings can be made by updating these coefficients
rather than computing them from scratch.

SUBSPACE MINIMIZATION

After the Cauchy point xc has been computed, the components of xc that are at their
lower or upper bounds define the active set

A(xc) � {i | xc
i � li or xc

i � ui }.

In the second stage of the gradient projection iteration, we approximately solve the QP
obtained by fixing the components xi for i ∈ A(xc) at the values xc

i . The remaining
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components are determined from the subproblem

min
x

q(x) � 1
2 xT Gx + xT c (16.74a)

subject to xi � xc
i , i ∈ A(xc), (16.74b)

li ≤ xi ≤ ui , i /∈ A(xc). (16.74c)

It is not necessary to solve this problem exactly. Nor is it desirable in the large-dimensional
case, because the subproblem may be almost as difficult as the original problem (16.68).
In fact, to obtain global convergence of the gradient projection procedure, we require only
that the approximate solution x+ of (16.74) is feasible with respect to (16.68b) and has an
objective function value no worse than that of xc, that is, q(x+) ≤ q(xc). A strategy that is
intermediate between choosing x+ � xc as the approximate solution (on the one hand) and
solving (16.74) exactly (on the other hand) is to compute an approximate solution of (16.74)
by using the conjugate gradient iteration described in Algorithm 16.1 or Algorithm 16.2.
Note that for the equality constraints (16.74b), the Jacobian A and the null-space basis
matrix Z have particularly simple forms. We could therefore apply conjugate gradient to
the problem (16.74a), (16.74b) and terminate as soon as a bound l ≤ x ≤ u is encountered.
Alternatively, we could continue to iterate, temporarily ignoring the bounds and projecting
the solution back onto the box constraints. The negative-curvature case can be handled
as in Algorithm 7.2, the method for approximately solving possibly indefinite trust-region
subproblems in unconstrained optimization.

We summarize the gradient projection algorithm for quadratic programming as
follows.

Algorithm 16.5 (Gradient Projection Method for QP).
Compute a feasible starting point x0;
for k � 0, 1, 2, . . .

if xk satisfies the KKT conditions for (16.68)
stop with solution x∗ � xk ;

Set x � xk and find the Cauchy point xc;
Find an approximate solution x+ of (16.74) such that q(x+) ≤ q(xc)

and x+ is feasible;
xk+1 ← x+;

end (for)

If the algorithm approaches a solution x∗ at which the Lagrange multipliers associated
with all the active bounds are nonzero (that is, strict complementarity holds), the active sets
A(xc) generated by the gradient projection algorithm are equal to the optimal active set for
all k sufficiently large. That is, constraint indices do not repeatedly enter and leave the active
set on successive iterations. When the problem is degenerate, the active set may not settle
down at its optimal value. Various devices have been proposed to prevent this undesirable
behavior from taking place.
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While gradient projection methods can be applied in principle to problems with gen-
eral linear constraints, significant computation may be required to perform the projection
onto the feasible set in such cases. For example, if the constraint set is defined as aT

i x ≥ bi ,
i ∈ I , we must solve the following convex quadratic program to compute the projection of
a given point x̄ onto this set:

max
x

‖x − x̄‖2 subject to aT
i x ≥ bi for all i ∈ I .

The expense of solving this “projection subproblem” may approach the cost of solving the
original quadratic program, so it is usually not economical to apply gradient projection to
this case.

When we use duality to replace a strictly convex quadratic program with its dual
(see Example 12.12), the gradient projection method may be useful in solving the bound-
constrained dual problem, which is formulated in terms of the Lagrange multipliers λ as
follows:

max
λ

q̃(λ) � −1

2
(AT λ− c)T G−1(AT λ− c)T + bT λ, subject to λ ≥ 0.

(Note that the dual is conventionally written as a maximization problem; we can equivalently
minimize−q̃(λ) and note that this transformed problem is convex.) This approach is most
useful when G has a simple form, for example, a diagonal or block-diagonal matrix.

16.8 PERSPECTIVES AND SOFTWARE

Active-set methods for convex quadratic programming are implemented in QPOPT [126],
VE09 [142], BQPD [103], and QPA [148]. Several commercial interior-point solvers for QP
are available, including CPLEX [172], XPRESS-MP [159] and MOSEK [5]. The code QPB [146]
uses a two-phase interior-point method that can handle convex and nonconvex problems.
OOPS [139] and OOQP [121] are object-oriented interior-point codes that allow the user
to customize the linear algebra techniques to the particular structure of the data for an
application. Some nonlinear programming interior-point packages, such as LOQO [294] and
KNITRO [46], are also effective for convex and nonconvex quadratic programming.

The numerical comparison of active-set and interior-point methods for convex
quadratic programming reported in [149] indicates that interior-point methods are gener-
ally much faster on large problems. If a warm start is required, however, active-set methods
may be generally preferable. Although considerable research has been focused on improving
the warm-start capabilities of interior-point methods, the full potential of such techniques
is now yet known.

We have assumed in this chapter that all equality-constrained quadratic programs have
linearly independent constraints, that is, the m×n constraint Jacobian matrix A has rank m.
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If redundant constraints are present, they can be detected by forming a SVD or rank-revealing
QR factorization of AT , and then removed from the formulation. When A is larger, sparse
Gaussian elimination techniques can be applied to AT instead, but they are less reliable.

The KNITRO and OOPS software packages provide the option of solving the primal-dual
equations (16.63) by means of the projected CG iteration of Algorithm 16.2.

We have not considered active-set methods for the case in which the Hessian matrix
G is indefinite because these methods can be quite complicated to describe and it is not well
understood how to adapt them to the large dimensional case. We make some comments
here on the principal techniques.

Algorithm 16.3, the active-set method for convex QP, can be adapted to this indefinite
case by modifying the computation of the search direction and step length in certain
situations. To explain the need for the modification, we consider the computation of a
step by a null-space method, that is, p � Z pZ, where pZ is given by (16.53). If the reduced
Hessian Z T G Z is positive definite, then this step p points to the minimizer of the subproblem
(16.39), and the logic of the iteration need not be changed. If Z T G Z has negative eigenvalues,
however, p points only to a saddle point of (16.39) and is therefore not always a suitable
step. Instead, we seek an alternative direction sZ that is a direction of negative curvature for
Z T G Z . We then have that

q(x + αZsZ) →−∞ as α →∞. (16.75)

Additionally, we change the sign of sZ if necessary to ensure that ZsZ is a non-ascent direction
for q at the current point x , that is,∇q(x)T ZsZ ≤ 0. By moving along the direction ZsZ, we
will encounter a constraint that can be added to the working set for the next iteration. (If we
don’t find such a constraint, the problem is unbounded.) If the reduced Hessian for the new
working set is not positive definite, we repeat this process until enough constraints have been
added to make the reduced Hessian positive definite. A difficulty with this general approach,
however, is that if we allow the reduced Hessian to have several negative eigenvalues, it
is difficult to make these methods efficient when the reduced Hessian changes from one
working set to the next.

Inertia controlling methods are a practical class of algorithms for indefinite QP that
never allow the reduced Hessian to have more than one negative eigenvalue. As in the convex
case, there is a preliminary phase in which a feasible starting point x0 is found. We place
the additional demand on x0 that it be either a vertex (in which case the reduced Hessian is
the null matrix) or a constrained stationary point at which the reduced Hessian is positive
definite. At each iteration, the algorithm will either add or remove a constraint from the
working set. If a constraint is added, the reduced Hessian is of smaller dimension and must
remain positive definite or be the null matrix. Therefore, an indefinite reduced Hessian can
arise only when one of the constraints is removed from the working set, which happens
only when the current point is a minimizer with respect to the current working set. In this
case, we will choose the new search direction to be a direction of negative curvature for the
reduced Hessian.
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Various algorithms for indefinite QP differ in the way that indefiniteness is detected,
in the computation of the negative curvature direction, and in the handling of the working
set; see Fletcher [99] and Gill and Murray [126].

NOTES AND REFERENCES

The problem of determining whether a feasible point for a nonconvex QP (16.1) is a
global minimizer is NP-hard (Murty and Kabadi [219]); so is the problem of determining
whether a given point is a local minimizer (Vavasis [296, Theorem 5.1]). Various algorithms
for convex QP with polynomial convexity are discussed in Nesterov and Nemirovskii [226].

The portfolio optimization problem was formulated by Markowitz [201].
For a discussion on the QMR, LSQR, and GMRES methods see, for example, [136,

272, 290]. The idea of using the projection (16.30) in the CG method dates back to at
least Polyak [238]. The alternative (16.34), and its special case (16.32), are proposed in
Coleman [64]. Although it can give rise to substantial rounding errors, they can be corrected
by iterative refinement; see Gould et al. [143]. More recent studies on preconditioning of
the projected CG method include Keller et al. [176] and Lukšan and Vlček [196].

For further discussion on the gradient projection method see, for example, Conn,
Gould, and Toint [70] and Burke and Moré [44].

In some areas of application, the KKT matrix (16.7) not only is sparse but also contains
special structure. For instance, the quadratic programs that arise in many control problems
have banded matrices G and A (see Wright [315]), which can be exploited by interior-point
methods via a suitable symmetric reordering of K . When active-set methods are applied to
this problem, however, the advantages of bandedness and sparsity are lost after just a few
updates of the factorization.

Further details of interior-point methods for convex quadratic programming can
be found in Wright [316] and Vanderbei [293]. The first inertia-controlling method for
indefinite quadratic programming was proposed by Fletcher [99]. See also Gill et al. [129]
and Gould [142] for a discussion of methods for general quadratic programming.

✐ E X E R C I S E S

✐ 16.1

(a) Solve the following quadratic program and illustrate it geometrically.

min f (x) � 2x1 + 3x2 + 4x2
1 + 2x1x2 + x2

2 ,

subject to x1 − x2 ≥ 0, x1 + x2 ≤ 4, x1 ≤ 3.

(b) If the objective function is redefined as q(x) � − f (x), does the problem have a finite
minimum? Are there local minimizers?
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✐ 16.2 The problem of finding the shortest distance from a point x0 to the hyperplane
{x | Ax � b}, where A has full row rank, can be formulated as the quadratic program

min 1
2 (x − x0)T (x − x0) subject to Ax � b.

Show that the optimal multiplier is

λ∗ � (AAT )−1(b − Ax0)

and that the solution is

x∗ � x0 + AT (AAT )−1(b − Ax0).

Show that in the special case in which A is a row vector, the shortest distance from x0 to the
solution set of Ax � b is |b − Ax0|/‖A‖2.

✐ 16.3 Use Theorem 12.1 to verify that the first-order necessary conditions for (16.3)
are given by (16.4).

✐ 16.4 Suppose that G is positive semidefinite in (16.1) and that x∗ satisfies the KKT
conditions (16.37) for some λ∗i , i ∈ A(x∗). Suppose in addition that second-order sufficient
conditions are satisfied, that is, Z T G Z is positive definite where the columns of Z span the
null space of the active constraint Jacobian matrix. Show that x∗ is in fact the unique global
solution for (16.1), that is, q(x) > q(x∗) for all feasible x with x 	� x∗.

✐ 16.5 Verify that the inverse of the KKT matrix is given by (16.16).

✐ 16.6 Use Theorem 12.6 to show that if the conditions of Lemma 16.1 hold, then the
second-order sufficient conditions for (16.3) are satisfied by the vector pair (x∗, λ∗) that
satisfies (16.4).

✐ 16.7 Consider (16.3) and suppose that the projected Hessian matrix Z T G Z has a
negative eigenvalue; that is, uT Z T G Zu < 0 for some vector u. Show that if there exists any
vector pair (x∗, λ∗) that satisfies (16.4), then the point x∗ is only a stationary point of (16.3)
and not a local minimizer. (Hint: Consider the function q(x∗ + αZu) for α 	� 0, and use
an expansion like that in the proof of Theorem 16.2.)

✐ 16.8 By using the QR factorization and a permutation matrix, show that for a full-
rank m×n matrix A (with m < n) one can find an orthogonal matrix Q and an m×m upper

triangular matrix Û such that AQ �
[

0 Û
]

. (Hint: Start by applying the standard QR

factorization to AT .)

✐ 16.9 Verify that the first-order conditions for optimality of (16.1) are equivalent to
(16.37) when we make use of the active-set definition (16.36).
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✐ 16.10 For each of the alternative choices of initial working set W0 in the example
(16.49) (that is, W0 � {3}, W0 � {5}, and W0 � ∅) work through the first two iterations of
Algorithm 16.3.

✐ 16.11 Program Algorithm 16.3, and use it to solve the problem

min x2
1 + 2x2

2 − 2x1 − 6x2 − 2x1x2

subject to 1
2 x1 + 1

2 x2 ≤ 1, −x1 + 2x2 ≤ 2, x1, x2 ≥ 0.

Choose three initial starting points: one in the interior of the feasible region, one at a vertex,
and one at a non-vertex point on the boundary of the feasible region.

✐ 16.12 Show that the operator P defined by (16.27) is independent of the choice of
null-space basis Z . (Hint: First show that any null-space basis Z can be written as Z � Q B
where Q is an orthogonal basis and B is a nonsingular matrix.)

✐ 16.13

(a) Show that the the computation of the preconditioned residual g+ in (16.28d) can be
performed with (16.29) or (16.30).

(b) Show that we can also perform this computation by solving the system (16.32).

(c) Verify (16.33).

✐ 16.14

(a) Show that if Z T G Z is positive definite, then the denominator in (16.28a) is nonzero.

(b) Show that if Z T r � rZ 	� 0 and Z T H Z is positive definite, then the denominator in
(16.28e) is nonzero.

✐ 16.15 Consider problem (16.3), and assume that A has full row rank and that Z is a
basis for the null space of A. Prove that there are no finite solutions if Z T G Z has negative
eigenvalues.

✐ 16.16

(a) Assume that A 	� 0. Show that the KKT matrix (16.7) is indefinite.

(b) Prove that if the KKT matrix (16.7) is nonsingular, then A must have full rank.

✐ 16.17 Consider the quadratic program

max 6x1 + 4x2 − 13− x2
1 − x2

2 ,

subject to x1 + x2 ≤ 3, x1 ≥ 0, x2 ≥ 0. (16.76)
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First solve it graphically, and then use your program implementing the active-set method
given in Algorithm 16.3.

✐ 16.18 Using (16.39) and (16.41), explain briefly why the gradient of each blocking
constraint cannot be a linear combination of the constraint gradients in the current working
set Wk .

✐ 16.19 Let W be an n×n symmetric matrix, and suppose that Z is of dimension n× t .
Suppose that Z T W Z is positive definite and that Z̄ is obtained by removing a column from
Z . Show that Z̄ T W Z̄ is positive definite.

✐ 16.20 Find a null-space basis matrix Z for the equality-constrained problem defined
by (16.74a), (16.74b).

✐ 16.21 Write down KKT conditions for the following convex quadratic program with
mixed equality and inequality constraints:

min q(x) � 1
2 xT Gx + xT c subject to Ax ≥ b, Āx � b̄,

where G is symmetric and positive semidefinite. Use these conditions to derive an analogue
of the generic primal-dual step (16.58) for this problem.

✐ 16.22 Explain why for a bound-constrained problems the number of possible active
sets is at most 3n .

✐ 16.23

(a) Show that the primal-dual system (16.58) can be solved using the augmented system
(16.61) or the normal equations (16.62). Describe in detail how all the components
(�x,�y,�λ) are computed.

(b) Verify (16.65).

✐ 16.24 Program Algorithm 16.4 and use it to solve problem (16.76). Set all initial
variables to be the vector e � (1, 1, . . . , 1)T .

✐ 16.25 Let x̄ ∈ Rn be given, and let x∗ be the solution of the projection problem

min ‖x − x̄‖2 subject to l ≤ x ≤ u. (16.77)

For simplicity, assume that −∞ < li < ui < ∞ for all i � 1, 2, . . . , n. Show that the
solution of this problem coincides with the projection formula given by (16.69) that is, show
that x∗ � P(x̄, l, u). (Hint : Note that the problem is separable.)
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✐ 16.26 Consider the bound-constrained quadratic problem (16.68) with

G �
[

4 1

1 2

]
, c �

[
−1

1

]
, l �

[
0

0

]
, and u �

[
5

3

]
. (16.78)

Suppose x0 � (0, 2)T . Find t̄1, t̄2, t1, t2, p1, p2 and x(t1), x(t2). Find the minimizer of
q(x(t)).

✐ 16.27 Consider the search for the one dimensional minimizer of the function q(x(t))
defined by (16.73). There are 9 possible cases since f, f ′, f ′′ can each be positive, negative, or
zero. For each case, determine the location of the minimizer. Verify that the rules described
in Section 16.7 hold.




