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C H A P T E R17
Penalty and
Augmented
Lagrangian
Methods

Some important methods for constrained optimization replace the original problem by a
sequence of subproblems in which the constraints are represented by terms added to the
objective. In this chapter we describe three approaches of this type. The quadratic penalty
method adds a multiple of the square of the violation of each constraint to the objective.
Because of its simplicity and intuitive appeal, this approach is used often in practice, al-
though it has some important disadvantages. In nonsmooth exact penalty methods, a single
unconstrained problem (rather than a sequence) takes the place of the original constrained
problem. Using these penalty functions, we can often find a solution by performing a single
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unconstrained minimization, but the nonsmoothness may create complications. A popular
function of this type is the �1 penalty function. A different kind of exact penalty approach
is the method of multipliers or augmented Lagrangian method, in which explicit Lagrange
multiplier estimates are used to avoid the ill-conditioning that is inherent in the quadratic
penalty function.

A somewhat related approach is used in the log-barrier method, in which logarithmic
terms prevent feasible iterates from moving too close to the boundary of the feasible re-
gion. This approach forms part of the foundation for interior-point methods for nonlinear
programming and we discuss it further in Chapter 19.

17.1 THE QUADRATIC PENALTY METHOD

MOTIVATION

Let us consider replacing a constrained optimization problem by a single function
consisting of

- the original objective of the constrained optimization problem, plus

- one additional term for each constraint, which is positive when the current point x
violates that constraint and zero otherwise.

Most approaches define a sequence of such penalty functions, in which the penalty terms for
the constraint violations are multiplied by a positive coefficient. By making this coefficient
larger, we penalize constraint violations more severely, thereby forcing the minimizer of the
penalty function closer to the feasible region for the constrained problem.

The simplest penalty function of this type is the quadratic penalty function, in which
the penalty terms are the squares of the constraint violations. We describe this approach
first in the context of the equality-constrained problem

min
x

f (x) subject to ci (x) � 0, i ∈ E, (17.1)

which is a special case of (12.1). The quadratic penalty function Q(x;µ) for this formulation
is

Q(x;µ)
def� f (x)+ µ

2

∑
i∈E

c2
i (x), (17.2)

where µ > 0 is the penalty parameter. By driving µ to ∞, we penalize the constraint
violations with increasing severity. It makes good intuitive sense to consider a sequence of
values {µk}with µk ↑ ∞ as k →∞, and to seek the approximate minimizer xk of Q(x;µk)
for each k. Because the penalty terms in (17.2) are smooth, we can use techniques from
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unconstrained optimization to search for xk . In searching for xk , we can use the minimizers
xk−1, xk−2, etc., of Q(·;µ) for smaller values of µ to construct an initial guess. For suitable
choices of the sequence {µk} and the initial guesses, just a few steps of unconstrained
minimization may be needed for each µk .

❏ EXAMPLE 17.1

Consider the problem (12.9) from Chapter 12, that is,

min x1 + x2 subject to x2
1 + x2

2 − 2 � 0, (17.3)

for which the solution is (−1,−1)T and the quadratic penalty function is

Q(x;µ) � x1 + x2 + µ

2

(
x2

1 + x2
2 − 2

)2
. (17.4)

We plot the contours of this function in Figures 17.1 and 17.2. In Figure 17.1 we have
µ � 1, and we observe a minimizer of Q near the point (−1.1,−1.1)T . (There is also a
local maximizer near x � (0.3, 0.3)T .) In Figure 17.2 we have µ � 10, so points that do not
lie on the feasible circle defined by x2

1 + x2
2 � 2 suffer a much greater penalty than in the

first figure—the “trough” of low values of Q is clearly evident. The minimizer in this figure
is much closer to the solution (−1,−1)T of the problem (17.3). A local maximum lies near
(0, 0)T , and Q goes rapidly to ∞ outside the circle x2

1 + x2
2 � 2.

❐
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Figure 17.1 Contours of Q(x;µ) from (17.4) for µ � 1, contour spacing 0.5.
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Figure 17.2 Contours of Q(x;µ) from (17.4) for µ � 10, contour spacing 2.

The situation is not always so benign as in Example 17.1. For a given value of the
penalty parameter µ, the penalty function may be unbounded below even if the original
constrained problem has a unique solution. Consider for example

min −5x2
1 + x2

2 subject to x1 � 1, (17.5)

whose solution is (1, 0)T . The penalty function is unbounded for any µ < 10. For such
values of µ, the iterates generated by an unconstrained minimization method would usually
diverge. This deficiency is, unfortunately, common to all the penalty functions discussed in
this chapter.

For the general constrained optimization problem

min
x

f (x) subject to ci (x) � 0, i ∈ E , ci (x) ≥ 0, i ∈ I , (17.6)

which contains inequality constraints as well as equality constraints, we can define the
quadratic penalty function as

Q(x;µ)
def� f (x)+ µ

2

∑
i∈E

c2
i (x)+ µ

2

∑
i∈I

(
[ci (x)]−

)2
, (17.7)

where [y]− denotes max(−y, 0). In this case, Q may be less smooth than the objective and
constraint functions. For instance, if one of the inequality constraints is x1 ≥ 0, then the
function min(0, x1)2 has a discontinuous second derivative, so that Q is no longer twice
continuously differentiable.
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ALGORITHMIC FRAMEWORK

A general framework for algorithms based on the quadratic penalty function (17.2)
can be specified as follows.

Framework 17.1 (Quadratic Penalty Method).
Given µ0 > 0, a nonnegative sequence {τk} with τk → 0, and a starting point xs

0 ;
for k � 0, 1, 2, . . .

Find an approximate minimizer xk of Q(·;µk), starting at xs
k ,

and terminating when ‖∇x Q(x;µk)‖ ≤ τk ;
if final convergence test satisfied

stop with approximate solution xk ;
end (if)
Choose new penalty parameter µk+1 > µk ;
Choose new starting point xs

k+1;
end (for)

The parameter sequence {µk} can be chosen adaptively, based on the difficulty of
minimizing the penalty function at each iteration. When minimization of Q(x;µk) proves
to be expensive for some k, we choose µk+1 to be only modestly larger than µk ; for instance
µk+1 � 1.5µk . If we find the approximate minimizer of Q(x;µk) cheaply, we could try a
more ambitious increase, for instance µk+1 � 10µk . The convergence theory for Frame-
work 17.1 allows wide latitude in the choice of nonnegative tolerances τk ; it requires only
that τk → 0, to ensure that the minimization is carried out more accurately as the iterations
progress.

There is no guarantee that the stop test ‖∇x Q(x;µk)‖ ≤ τk will be satisfied be-
cause, as discussed above, the iterates may move away from the feasible region when the
penalty parameter is not large enough. A practical implementation must include safe-
guards that increase the penalty parameter (and possibly restore the initial point) when
the constraint violation is not decreasing rapidly enough, or when the iterates appear to be
diverging.

When only equality constraints are present, Q(x;µk) is smooth, so the algorithms for
unconstrained minimization described in the first chapters of the book can be used to identify
the approximate solution xk . However, the minimization of Q(x;µk) becomes more difficult
to perform as µk becomes large, unless we use special techniques to calculate the search
directions. For one thing, the Hessian∇2

xx Q(x;µk) becomes arbitrarily ill conditioned near
the minimizer. This property alone is enough to make many unconstrained minimization
algorithms such as quasi-Newton and conjugate gradient perform poorly. Newton’s method,
on the other hand, is not sensitive to ill conditioning of the Hessian, but it, too, may encounter
difficulties for large µk for two other reasons. First, ill conditioning of ∇2

xx Q(x;µk) might
be expected to cause numerical problems when we solve the linear equations to calculate
the Newton step. We discuss this issue below, and show that these effects are not severe and



502 C H A P T E R 1 7 . P E N A L T Y A N D A U G M E N T E D L A G R A N G I A N M E T H O D S

that a reformulation of the Newton equations is possible. Second, even when x is close to
the minimizer of Q(·;µk), the quadratic Taylor series approximation to Q(x;µk) about
x is a reasonable approximation of the true function only in a small neighborhood of x .
This property can be seen in Figure 17.2, where the contours of Q near the minimizer have
a “banana” shape, rather than the elliptical shape that characterizes quadratic functions.
Since Newton’s method is based on the quadratic model, the steps that it generates may not
make rapid progress toward the minimizer of Q(x;µk). This difficulty can be lessened by a
judicious choice of the starting point xs

k+1, or by setting xs
k+1 � xk and choosing µk+1 to be

only modestly larger than µk .

CONVERGENCE OF THE QUADRATIC PENALTY METHOD

We describe some convergence properties of the quadratic penalty method in the
following two theorems. We restrict our attention to the equality-constrained problem
(17.1), for which the quadratic penalty function is defined by (17.2).

For the first result we assume that the penalty function Q(x;µk) has a (finite)
minimizer for each value of µk .

Theorem 17.1.
Suppose that each xk is the exact global minimizer of Q(x;µk) defined by (17.2) in

Framework 17.1 above, and that µk ↑ ∞. Then every limit point x∗ of the sequence {xk} is a
global solution of the problem (17.1).

PROOF. Let x̄ be a global solution of (17.1), that is,

f (x̄) ≤ f (x) for all x with ci (x) � 0, i ∈ E .

Since xk minimizes Q(·;µk) for each k, we have that Q(xk;µk) ≤ Q(x̄;µk), which leads
to the inequality

f (xk)+ µk

2

∑
i∈E

c2
i (xk) ≤ f (x̄)+ µk

2

∑
i∈E

c2
i (x̄) � f (x̄). (17.8)

By rearranging this expression, we obtain

∑
i∈E

c2
i (xk) ≤ 2

µk
[ f (x̄)− f (xk)]. (17.9)

Suppose that x∗ is a limit point of {xk}, so that there is an infinite subsequence K such that

lim
k∈K

xk � x∗.
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By taking the limit as k →∞, k ∈ K, on both sides of (17.9), we obtain

∑
i∈E

c2
i (x∗) � lim

k∈K

∑
i∈E

c2
i (xk) ≤ lim

k∈K
2

µk
[ f (x̄)− f (xk)] � 0,

where the last equality follows from µk ↑ ∞. Therefore, we have that ci (x∗) � 0 for all
i ∈ E , so that x∗ is feasible. Moreover, by taking the limit as k →∞ for k ∈ K in (17.8), we
have by nonnegativity of µk and of each ci (xk)2 that

f (x∗) ≤ f (x∗)+ lim
k∈K

µk

2

∑
i∈E

c2
i (xk) ≤ f (x̄).

Since x∗ is a feasible point whose objective value is no larger than that of the global solution
x̄ , we conclude that x∗, too, is a global solution, as claimed. �

Since this result requires us to find the global minimizer for each subproblem, this
desirable property of convergence to the global solution of (17.1) cannot be attained in
general. The next result concerns convergence properties of the sequence {xk}when we allow
inexact (but increasingly accurate) minimizations of Q(·;µk). In contrast to Theorem 17.1,
it shows that the sequence may be attracted to infeasible points, or to any KKT point (that is,
a point satisfying first-order necessary conditions; see (12.34)), rather than to a minimizer. It
also shows that the quantities µkci (xk) may be used as estimates of the Lagrange multipliers
λ∗i in certain circumstances. This observation is important for the analysis of augmented
Lagrangian methods in Section 17.3.

To establish the result we will make the (optimistic) assumption that the stop test
‖∇x Q(x;µk)‖ ≤ τk is satisfied for all k.

Theorem 17.2.
Suppose that the tolerances and penalty parameters in Framework 17.1 satisfy τk → 0

and µk ↑ ∞. Then if a limit point x∗ of the sequence {xk} is infeasible, it is a stationary point
of the function ‖c(x)‖2. On the other hand, if a limit point x∗ is feasible and the constraint
gradients ∇ci (x∗) are linearly independent, then x∗ is a KKT point for the problem (17.1). For
such points, we have for any infinite subsequence K such that limk∈K xk � x∗ that

lim
k∈K

−µkci (xk) � λ∗i , for all i ∈ E, (17.10)

where λ∗ is the multiplier vector that satisfies the KKT conditions (12.34) for the equality-
constrained problem (17.1).

PROOF. By differentiating Q(x;µk) in (17.2), we obtain

∇x Q(xk;µk) � ∇ f (xk)+
∑
i∈E

µkci (xk)∇ci (xk), (17.11)
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so from the termination criterion for Framework 17.1, we have that

∥∥∥∥∥∇ f (xk)+
∑
i∈E

µkci (xk)∇ci (xk)

∥∥∥∥∥ ≤ τk . (17.12)

By rearranging this expression (and in particular using the inequality ‖a‖−‖b‖ ≤ ‖a+b‖),
we obtain ∥∥∥∥∥

∑
i∈E

ci (xk)∇ci (xk)

∥∥∥∥∥ ≤ 1

µk
[τk + ‖∇ f (xk)‖] . (17.13)

Let x∗ be a limit point of the sequence of iterates. Then there is a subsequence K such
that limk∈K xk � x∗. When we take limits as k →∞ for k ∈ K, the bracketed term on the
right-hand-side approaches ‖∇ f (x∗)‖, so because µk ↑ ∞, the right-hand-side approaches
zero. From the corresponding limit on the left-hand-side, we obtain

∑
i∈E

ci (x∗)∇ci (x∗) � 0. (17.14)

We can have ci (x∗) 	� 0 (if the constraint gradients∇ci (x∗) are dependent), but in this case
(17.14) implies that x∗ is a stationary point of the function ‖c(x)‖2.

If, on the other hand, the constraint gradients ∇ci (x∗) are linearly independent at a
limit point x∗, we have from (17.14) that ci (x∗) � 0 for all i ∈ E , so x∗ is feasible. Hence,
the second KKT condition (12.34b) is satisfied. We need to check the first KKT condition
(12.34a) as well, and to show that the limit (17.10) holds.

By using A(x) to denote the matrix of constraint gradients (also known as the
Jacobian), that is,

A(x)T � [∇ci (x)]i∈E , (17.15)

and λk to denote the vector −µkc(xk), we have as in (17.12) that

A(xk)T λk � ∇ f (xk)−∇x Q(xk;µk), ‖∇x Q(xk;µk)‖ ≤ τk . (17.16)

For all k ∈ K sufficiently large, the matrix A(xk) has full row rank, so that A(xk)A(xk)T is
nonsingular. By multiplying (17.16) by A(xk) and rearranging, we have that

λk �
[
A(xk)A(xk)T

]−1
A(xk) [∇ f (xk)−∇x Q(xk;µk)] .

Hence by taking the limit as k ∈ K goes to ∞, we find that

lim
k∈K

λk � λ∗ � [
A(x∗)A(x∗)T

]−1
A(x∗)∇ f (x∗).
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By taking limits in (17.12), we conclude that

∇ f (x∗)− A(x∗)T λ∗ � 0, (17.17)

so that λ∗ satisfies the first KKT condition (12.34a) for (17.1). Hence, x∗ is a KKT point for
(17.1), with unique Lagrange multiplier vector λ∗. �

It is reassuring that, if a limit point x∗ is not feasible, it is at least a stationary point for
the function ‖c(x)‖2. Newton-type algorithms can always be attracted to infeasible points of
this type. (We see the same effect in Chapter 11, in our discussion of methods for nonlinear
equations that use the sum-of-squares merit function ‖r(x)‖2.) Such methods cannot be
guaranteed to find a root, and can be attracted to a stationary point or minimizer of the
merit function. In the case in which the nonlinear program (17.1) is infeasible, we often
observe convergence of the quadratic-penalty method to stationary points or minimizers of
‖c(x)‖2.

ILL CONDITIONING AND REFORMULATIONS

We now examine the nature of the ill conditioning in the Hessian ∇2
xx Q(x;µk).

An understanding of the properties of this matrix, and the similar Hessians that arise in
other penalty and barrier methods, is essential in choosing effective algorithms for the
minimization problem and for the linear algebra calculations at each iteration.

The Hessian is given by the formula

∇2
xx Q(x;µk) � ∇2 f (x)+

∑
i∈E

µkci (x)∇2ci (x)+ µk A(x)T A(x), (17.18)

where we have used the definition (17.15) of A(x). When x is close to the minimizer of
Q(·;µk) and the conditions of Theorem 17.2 are satisfied, we have from (17.10) that the
sum of the first two terms on the right-hand-side of (17.18) is approximately equal to the
Hessian of the Lagrangian function defined in (12.33). To be specific, we have

∇2
xx Q(x;µk) ≈ ∇2

xxL(x, λ∗)+ µk A(x)T A(x), (17.19)

when x is close to the minimizer of Q(·;µk). We see from this expression that∇2
xx Q(x;µk)

is approximately equal to the sum of

- a matrix whose elements are independent of µk (the Lagrangian term), and

- a matrix of rank |E | whose nonzero eigenvalues are of order µk (the second term on
the right-hand side of (17.19)).

The number of constraints |E | is usually smaller than n. In this case, the last term in (17.19) is
singular. The overall matrix has some of its eigenvalues approaching a constant, while others
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are of order µk . Since µk is approaching ∞, the increasing ill conditioning of ∇2
xx Q(x;µk)

is apparent.
One consequence of the ill conditioning is possible inaccuracy in the calculation of

the Newton step for Q(x;µk), which is obtained by solving the following system:

∇2
xx Q(x;µk)p � −∇x Q(x;µk). (17.20)

In general, the poor conditioning of this system will lead to significant errors in the computed
value of p, regardless of the computational technique used to solve (17.20). For the same
reason, iterative methods can be expected to perform poorly unless accompanied by a
preconditioning strategy that removes the systematic ill conditioning.

There is an alternative formulation of the equations (17.20) that avoids the ill condi-
tioning due to the final term in (17.18). By introducing a new variable vector ζ defined by
ζ � µA(x)p, we see that the vector p that solves (17.20) also satisfies the following system:

⎡
⎣ ∇2 f (x)+

∑
i∈E

µkci (x)∇2ci (x) A(x)T

A(x) −(1/µk)I

⎤
⎦[ p

ζ

]
�
[
−∇x Q(x;µk)

0

]
.

(17.21)

When x is not too far from the solution x∗, the coefficient matrix in this system does not have
large singular values (of order µk), so the system (17.21) can be viewed as a well conditioned
reformulation of (17.20). We note, however, that neither system may yield a good search
direction p because the coefficients µkci (x) in the summation term of the upper left block of
(17.21) may be poor approximations to the Lagrange multipliers−λ∗i , even when x is quite
close to the minimizer xk of Q(x;µk). This fact may cause the quadratic model on which p
is based to be an inadequate model of Q(·;µk), so the Newton step may be intrinsically an
unsuitable search direction. We discussed possible remedies for this difficulty above, in our
comments following Framework 17.1.

To compute the step via (17.21) involves the solution of a linear system of dimension
n + |E | rather than the system of dimension n given by (17.19). A similar system must
be solved to calculate the sequential quadratic programming (SQP) step (18.6), which is
derived in Chapter 18. In fact, when µk is large, (17.21) can be viewed as a regularization of
the SQP step (18.6) in which the term−(1/µk)I helps to ensure that the iteration matrix is
nonsingular even when the Jacobian A(x) is rank deficient. On the other hand, when µk is
small, (17.21) shows that the step computed by the quadratic penalty method does not closely
satisfy the linearization of the constraints. This situation is undesirable because the steps
may not make significant progress toward the feasible region, resulting in inefficient global
behavior. Moreover, if {µk} does not approach ∞ rapidly enough, we lose the possibility of
a superlinear rate that occurs when the linearization is exact; see Chapter 18.
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To conclude, the formulation (17.21) allows us to view the quadratic penalty method
either as the application of unconstrained minimization to the penalty function Q(·;µk)
or as a variation on the SQP methods discussed in Chapter 18.

17.2 NONSMOOTH PENALTY FUNCTIONS

Some penalty functions are exact, which means that, for certain choices of their penalty
parameters, a single minimization with respect to x can yield the exact solution of the non-
linear programming problem. This property is desirable because it makes the performance
of penalty methods less dependent on the strategy for updating the penalty parameter. The
quadratic penalty function of Section 17.1 is not exact because its minimizer is generally
not the same as the solution of the nonlinear program for any positive value of µ. In this
section we discuss nonsmooth exact penalty functions, which have proved to be useful in a
number of practical contexts.

A popular nonsmooth penalty function for the general nonlinear programming
problem (17.6) is the �1 penalty function defined by

φ1(x;µ) � f (x)+ µ
∑
i∈E

|ci (x)| + µ
∑
i∈I

[ci (x)]−, (17.22)

where we use again the notation [y]− � max{0,−y}. Its name derives from the fact that the
penalty term is µ times the �1 norm of the constraint violation. Note that φ1(x;µ) is not
differentiable at some x , because of the presence of the absolute value and [·]− functions.

The following result establishes the exactness of the �1 penalty function. For a proof
see [165, Theorem 4.4].

Theorem 17.3.
Suppose that x∗ is a strict local solution of the nonlinear programming problem (17.6)

at which the first-order necessary conditions of Theorem 12.1 are satisfied, with Lagrange
multipliers λ∗i , i ∈ E ∪ I . Then x∗ is a local minimizer of φ1(x;µ) for all µ > µ∗, where

µ∗ � ‖λ∗‖∞ � max
i∈E∪I

|λ∗i |. (17.23)

If, in addition, the second-order sufficient conditions of Theorem 12.6 hold and µ > µ∗, then
x∗ is a strict local minimizer of φ1(x;µ).

Loosely speaking, at a solution of the nonlinear program x∗, any move into the
infeasible region is penalized sharply enough that it produces an increase in the penalty
function to a value greater than φ1(x∗;µ) � f (x∗), thereby forcing the minimizer of
φ1(·;µ) to lie at x∗.



508 C H A P T E R 1 7 . P E N A L T Y A N D A U G M E N T E D L A G R A N G I A N M E T H O D S

❏ EXAMPLE 17.2

Consider the following problem in one variable:

min x subject to x ≥ 1, (17.24)

whose solution is x∗ � 1. We have that

φ1(x;µ) � x + µ[x − 1]− �
{

(1− µ)x + µ if x ≤ 1,

x if x > 1.
(17.25)

As can be seen in Figure 17.3, the penalty function has a minimizer at x∗ � 1 when µ > 1,
but is a monotone increasing function when µ < 1.

❐

Since penalty methods work by minimizing the penalty function directly, we need to
characterize stationary points of φ1. Even though φ1 is not differentiable, it has a directional
derivative D(φ1(x;µ); p) along any direction; see (A.51) and the example following this
definition.

Definition 17.1.
A point x̂ ∈ Rn is a stationary point for the penalty function φ1(x;µ) if

D(φ1(x̂;µ); p) ≥ 0, (17.26)

x

x
1

x = 1 x = 1x

Φ (  ;µ)x
1

Φ (  ;µ)

Figure 17.3 Penalty function for problem (17.24) with µ > 1 (left) and µ < 1
(right).
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for all p ∈ Rn . Similarly, x̂ is a stationary point of the measure of infeasibility

h(x) �
∑
i∈E

|ci (x)| +
∑
i∈I

[ci (x)]− (17.27)

if D(h(x̂); p) ≥ 0 for all p ∈ Rn . If a point is infeasible for (17.6) but stationary with respect
to the infeasibility measure h, we say that it is an infeasible stationary point.

For the function in Example 17.2, we have for x∗ � 1 that

D(φ1(x∗;µ); p) �
{

p if p ≥ 0

(1− µ)p if p < 0;

it follows that when µ > 1, we have D(φ1(x∗;µ); p) ≥ 0 for all p ∈ IR.
The following result complements Theorem 17.3 by showing that stationary points of

φ1(x;µ) correspond to KKT points of the constrained optimization problem (17.6) under
certain assumptions.

Theorem 17.4.
Suppose that x̂ is a stationary point of the penalty function φ1(x;µ) for all µ greater than

a certain threshold µ̂ > 0. Then, if x̂ is feasible for the nonlinear program (17.6), it satisfies the
KKT conditions (12.34) for (17.6). Is x̂ is not feasible for (17.6), it is an infeasible stationary
point.

PROOF. Suppose first that x̂ is feasible. We have from (A.51) and the definition (17.22) of
φ1 that

D(φ1(x̂;µ); p) � ∇ f (x̂)T p + µ
∑
i∈E

∣∣∇ci (x̂)T p
∣∣+ µ

∑
i∈I∩A(x̂)

[∇ci (x̂)T p
]−

, (17.28)

where the active set A(x̂) is defined in Definition 12.1. (We leave verification of (17.28)
as an exercise.) Consider any direction p in the linearized feasible direction set F(x̂) of
Definition 12.3. By the properties of F(x̂), we have

∣∣∇ci (x̂)T p
∣∣+ ∑

i∈I∩A(x̂)

[∇ci (x̂)T p
]− � 0,

so that by the stationarity assumption on φ1(x̂;µ), we have

0 ≤ D(φ1(x̂;µ); p) � ∇ f (x̂)T p, for all p ∈ F(x̂).
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Figure 17.4 Contours of φ1(x;µ) from (17.3) for µ � 2, contour spacing 0.5.

We can now apply Farkas’ Lemma (Lemma 12.4) to deduce that

∇ f (x̂) �
∑

i∈A(x̂)

λ̂i∇ci (x̂),

for some coefficients λ̂i with λ̂i ≥ 0 for all i ∈ I ∩ A(x̂). As we noted earlier (see
Theorem 12.1 and (12.35)), this expression implies that the KKT conditions (12.34) hold,
as claimed.

We leave the second part of the proof (concerning infeasible x̂) as an exercise. �

❏ EXAMPLE 17.3

Consider again problem (17.3), for which the �1 penalty function is

φ1(x;µ) � x1 + x2 + µ
∣∣x2

1 + x2
2 − 2

∣∣ . (17.29)

Figure 17.4 plots the function φ1(x; 2), whose minimizer is the solution x∗ � (−1,−1)T of
(17.3). In fact, following Theorem 17.3, we find that for all µ > |λ∗| � 0.5, the minimizer
of φ1(x;µ) coincides with x∗. The sharp corners on the contours indicate nonsmoothness
along the boundary of the circle defined by x2

1 + x2
2 � 2.

❐
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These results provide the motivation for an algorithmic framework based on the �1

penalty function, which we now present.

Framework 17.2 (Classical �1 Penalty Method).
Given µ0 > 0, tolerance τ > 0, starting point xs

0 ;
for k � 0, 1, 2, . . .

Find an approximate minimizer xk of φ1(x;µk), starting at xs
k ;

if h(xk) ≤ τ

stop with approximate solution xk ;
end (if)
Choose new penalty parameter µk+1 > µk ;
Choose new starting point xs

k+1;
end (for)

The minimization of φ1(x;µk) is made difficult by the nonsmoothness of the function.
Nevertheless, as we discuss below, it is well understood how to compute minimization steps
using a smooth model of φ1(x;µk), in a way that resembles SQP methods.

The simplest scheme for updating the penalty parameter µk is to increase it by a
constant multiple (say 5 or 10), if the current value produces a minimizer that is not feasible
to within the tolerance τ . This scheme sometimes works well in practice, but can also be
inefficient. If the initial penalty parameter µ0 is too small, many cycles of Framework 17.2
may be needed to determine an appropriate value. In addition, the iterates may move away
from the solution x∗ in these initial cycles, in which case the minimization of φ1(x;µk)
should be terminated early and xs

k should possibly be reset to a previous iterate. If, on
the other hand, µk is excessively large, the penalty function will be difficult to minimize,
possibly requiring a large number of iterations. We return to the issue of selecting the penalty
parameter below.

A PRACTICAL �1 PENALTY METHOD

As noted already, φ1(x;µ) is nonsmooth—its gradient is not defined at any x for
which ci (x) � 0 for some i ∈ E ∪ I . Rather than using techniques for nondifferen-
tiable optimization, such as bundle methods [170], we prefer techniques that take account
of the special nature of the nondifferentiabilities in this function. As in the algorithms
for unconstrained optimization discussed in the first part of this book, we obtain a step
toward the minimizer of φ1(x;µ) by forming a simplified model of this function and
seeking the minimizer of this model. Here, the model can be defined by linearizing
the constraints ci and replacing the nonlinear programming objective f by a quadratic
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function, as follows:

q(p;µ) � f (x)+ ∇ f (x)T p + 1
2 pT W p + µ

∑
i∈E

|ci (x)+ ∇ci (x)T p| +

µ
∑
i∈I

[ci (x)+ ∇ci (x)T p]−, (17.30)

where W is a symmetric matrix which usually contains second derivative information about
f and ci , i ∈ E ∪ I . The model q(p;µ) is not smooth, but we can formulate the problem
of minimizing q as a smooth quadratic programming problem by introducing artificial
variables ri , si , and ti , as follows:

min
p,r,s,t

f (x)+ 1
2 pT W p +∇ f (x)T p + µ

∑
i∈E

(ri + si )+ µ
∑
i∈I

ti

subject to ∇ci (x)T p + ci (x) � ri − si , i ∈ E
∇ci (x)T p + ci (x) ≥ −ti , i ∈ I (17.31)

r, s, t ≥ 0.

This subproblem can be solved with a standard quadratic programming solver. Even after
addition of a “box-shaped” trust region constraint of the form ‖p‖∞ ≤ �, it remains a
quadratic program. This approach to minimizing φ1 is closely related to sequential quadratic
programming (SQP) and will be discussed further in Chapter 18.

The strategy for choosing and updating the penalty parameter µk is crucial to the
practical success of the iteration. We mentioned that a simple (but not always effective)
approach is to choose an initial value and increase it repeatedly until feasibility is attained.
In some variants of the approach, the penalty parameter is chosen at every iteration so that
µk > ‖λk‖∞, where λk is an estimate of the Lagrange multipliers computed at xk . We base
this strategy on Theorem 17.2, which suggests that in a neighborhood of a solution x∗, a
good choice would be to set µk modestly larger than ‖λ∗‖∞. This strategy is not always
successful, as the multiplier estimates may be inaccurate and may in any case not provide a
good appropriate value of µk far from the solution.

The difficulties of choosing appropriate values of µk caused nonsmooth penalty
methods to fall out of favor during the 1990s and stimulated the development of filter
methods, which do not require the choice of a penalty parameter (see Section 15.4). In
recent years, however, there has been a resurgence of interest in penalty methods, in part
because of their ability to handle degenerate problems. New approaches for updating the
penalty parameter appear to have largely overcome the difficulties associated with choosing
µk , at least for some particular implementations (see Algorithm 18.5).

Careful consideration should also be given to the choice of starting point xs
k+1 for the

minimization of φ1(x;µk+1). If the penalty parameter µk for the present cycle is appropriate,
in the sense that the algorithm made progress toward feasibility, then we can set xs

k+1 to be
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the minimizer xk of φ1(x;µk) obtained on this cycle. Otherwise, we may want to restore the
initial point from an earlier cycle.

A GENERAL CLASS OF NONSMOOTH PENALTY METHODS

Exact nonsmooth penalty functions can be defined in terms of norms other than the
�1 norm. We can write

φ(x;µ) � f (x)+ µ‖cE (x)‖ + µ‖[cI(x)]−‖, (17.32)

where ‖ · ‖ is any vector norm, and all the equality and inequality constraints have been
grouped in the vector functions cE and cI , respectively. Framework 17.2 applies to any of
these penalty functions; we simply redefine the measure of infeasibility as h(x) � ‖cE (x)‖+
‖[cI(x)]−‖. The most common norms used in practice are the �1, �∞ and �2 (not squared).
It is easy to find a reformulation similar to (17.31) for the �∞ norm.

The theoretical properties described for the �1 function extend to the general class
(17.32). In Theorem 17.3, we replace the inequality (17.23) by

µ∗ � ‖λ∗‖D, (17.33)

where ‖ · ‖D is the dual norm of ‖ · ‖, defined in (A.6). Theorem 17.4 applies without
modification.

We show now that penalty functions of the type considered so far in this chapter must
be nonsmooth to be exact. For simplicity, we restrict our attention to the case when there is
a single equality constraint c1(x) � 0, and consider a penalty function of the form

φ(x;µ) � f (x)+ µh(c1(x)), (17.34)

where h : IR → IR is a function satisfying the properties h(y) ≥ 0 for all y ∈ IR and h(0) � 0.
Suppose for contradiction that h is continuously differentiable. Since h has a minimizer at
zero, we have from Theorem 2.2 that ∇h(0) � 0. If x∗ is a local solution of the problem
(17.6), we have c1(x∗) � 0 and therefore ∇h(c1(x∗)) � 0. If x∗ is a local minimizer of
φ(x;µ), we therefore have

0 � ∇φ(x∗;µ) � ∇ f (x∗)+ µ∇c1(x∗)∇h(c1(x∗)) � ∇ f (x∗).

However, it is not generally true that the gradient of f vanishes at the solution of a constrained
optimization problem, so our original assumption that h is continuously differentiable must
be incorrect, and φ(·;µ) cannot be smooth.

Nonsmooth penalty functions are also used as merit functions in methods that compute
steps by some other mechanism. For further details see the general discussion of Section 15.4
and the concrete implementations given in Chapters 18 and 19.
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17.3 AUGMENTED LAGRANGIAN METHOD: EQUALITY
CONSTRAINTS

We now discuss an approach known as the method of multipliers or the augmented Lagrangian
method. This algorithm is related to the quadratic penalty algorithm of Section 17.1, but
it reduces the possibility of ill conditioning by introducing explicit Lagrange multiplier
estimates into the function to be minimized, which is known as the augmented Lagrangian
function. In contrast to the penalty functions discussed in Section 17.2, the augmented
Lagrangian function largely preserves smoothness, and implementations can be constructed
from standard software for unconstrained or bound-constrained optimization.

In this section we use superscripts (usually k and k + 1) on the Lagrange multiplier
estimates to denote iteration index, and subscripts (usually i) to denote the component
indices of the vector λ. For all other variables we use subscripts for the iteration index, as
usual.

MOTIVATION AND ALGORITHMIC FRAMEWORK

We consider first the equality-constrained problem (17.1). The quadratic penalty
function Q(x;µ) defined by (17.2) penalizes constraint violations by squaring the infeasi-
bilities and scaling them by µ/2. As we see from Theorem 17.2, however, the approximate
minimizers xk of Q(x;µk) do not quite satisfy the feasibility conditions ci (x) � 0, i ∈ E .
Instead, they are perturbed (see (17.10)) so that

ci (xk) ≈ −λ∗i /µk, for all i ∈ E . (17.35)

To be sure, we have ci (xk) → 0 as µk ↑ ∞, but one may ask whether we can alter the
function Q(x;µk) to avoid this systematic perturbation—that is, to make the approximate
minimizers more nearly satisfy the equality constraints ci (x) � 0, even for moderate values
of µk .

The augmented Lagrangian function LA(x, λ;µ) achieves this goal by including an
explicit estimate of the Lagrange multipliers λ, based on the estimate (17.35), in the objective.
From the definition

LA(x, λ;µ)
def� f (x)−

∑
i∈E

λi ci (x)+ µ

2

∑
i∈E

c2
i (x), (17.36)

we see that the augmented Lagrangian differs from the (standard) Lagrangian (12.33) for
(17.1) by the presence of the squared terms, while it differs from the quadratic penalty
function (17.2) in the presence of the summation term involving λ. In this sense, it is a
combination of the Lagrangian function and the quadratic penalty function.

We now design an algorithm that fixes the penalty parameter µ to some value µk > 0
at its kth iteration (as in Frameworks 17.1 and 17.2), fixes λ at the current estimate λk , and
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performs minimization with respect to x . Using xk to denote the approximate minimizer
of LA(x, λk;µk), we have by the optimality conditions for unconstrained minimization
(Theorem 2.2) that

0 ≈ ∇xLA(xk, λ
k;µk) � ∇ f (xk)−

∑
i∈E

[λk
i − µkci (xk)]∇ci (xk). (17.37)

By comparing with the optimality condition (17.17) for (17.1), we can deduce that

λ∗i ≈ λk
i − µkci (xk), for all i ∈ E . (17.38)

By rearranging this expression, we have that

ci (xk) ≈ − 1

µk
(λ∗i − λk

i ), for all i ∈ E,

so we conclude that if λk is close to the optimal multiplier vector λ∗, the infeasibility in xk will
be much smaller than (1/µk), rather than being proportional to (1/µk) as in (17.35). The
relation (17.38) immediately suggests a formula for improving our current estimate λk of the
Lagrange multiplier vector, using the approximate minimizer xk just calculated: We can set

λk+1
i � λk

i − µkci (xk), for all i ∈ E . (17.39)

This discussion motivates the following algorithmic framework.

Framework 17.3 (Augmented Lagrangian Method-Equality Constraints).
Given µ0 > 0, tolerance τ0 > 0, starting points xs

0 and λ0;
for k � 0, 1, 2, . . .

Find an approximate minimizer xk of LA(·, λk;µk), starting at xs
k ,

and terminating when ‖∇xLA(xk, λ
k;µk)‖ ≤ τk ;

if a convergence test for (17.1) is satisfied
stop with approximate solution xk ;

end (if)
Update Lagrange multipliers using (17.39) to obtain λk+1;
Choose new penalty parameter µk+1 ≥ µk ;
Set starting point for the next iteration to xs

k+1 � xk ;
Select tolerance τk+1;

end (for)

We show below that convergence of this method can be assured without increasing
µ indefinitely. Ill conditioning is therefore less of a problem than in Framework 17.1, so
the choice of starting point xs

k+1 in Framework 17.3 is less critical. (In Framework 17.3 we
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Figure 17.5 Contours ofLA(x, λ;µ) from (17.40) for λ � −0.4 and µ � 1, contour
spacing 0.5.

simply start the search at iteration k+ 1 from the previous approximate minimizer xk .) The
tolerance τk could be chosen to depend on the infeasibility

∑
i∈E |c(xk)|, and the penalty

parameter µ may be increased if the reduction in this infeasibility measure is insufficient at
the present iteration.

❏ EXAMPLE 17.4

Consider again problem (17.3), for which the augmented Lagrangian is

LA(x, λ;µ) � x1 + x2 − λ(x2
1 + x2

2 − 2)+ µ

2
(x2

1 + x2
2 − 2)2. (17.40)

The solution of (17.3) is x∗ � (−1,−1)T and the optimal Lagrange multiplier is λ∗ � −0.5.
Suppose that at iterate k we have µk � 1 (as in Figure 17.1), while the current

multiplier estimate is λk � −0.4. Figure 17.5 plots the function LA(x,−0.4; 1). Note that
the spacing of the contours indicates that the conditioning of this problem is similar to that of
the quadratic penalty function Q(x; 1) illustrated in Figure 17.1. However, the minimizing
value of xk ≈ (−1.02,−1.02)T is much closer to the solution x∗ � (−1,−1)T than is the
minimizing value of Q(x; 1), which is approximately (−1.1,−1.1)T . This example shows
that the inclusion of the Lagrange multiplier term in the function LA(x, λ;µ) can result in
a significant improvement over the quadratic penalty method, as a way to reformulate the
constrained optimization problem (17.1).

❐
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PROPERTIES OF THE AUGMENTED LAGRANGIAN

We now prove two results that justify the use of the augmented Lagrangian function
and the method of multipliers for equality-constrained problems.

The first result validates the approach of Framework 17.3 by showing that when we
have knowledge of the exact Lagrange multiplier vector λ∗, the solution x∗ of (17.1) is a
strict minimizer of LA(x, λ∗;µ) for all µ sufficiently large. Although we do not know λ∗

exactly in practice, the result and its proof suggest that we can obtain a good estimate of
x∗ by minimizing LA(x, λ;µ) even when µ is not particularly large, provided that λ is a
reasonably good estimate of λ∗.

Theorem 17.5.
Let x∗ be a local solution of (17.1) at which the LICQ is satisfied (that is, the gradients

∇ci (x∗), i ∈ E , are linearly independent vectors), and the second-order sufficient conditions
specified in Theorem 12.6 are satisfied for λ � λ∗. Then there is a threshold value µ̄ such that
for all µ ≥ µ̄, x∗ is a strict local minimizer of LA(x, λ∗;µ).

PROOF. We prove the result by showing that x∗ satisfies the second-order sufficient condi-
tions to be a strict local minimizer of LA(x, λ∗;µ) (see Theorem 2.4) for all µ sufficiently
large; that is,

∇xLA(x∗, λ∗;µ) � 0, ∇2
xxLA(x∗, λ∗;µ) positive definite. (17.41)

Because x∗ is a local solution for (17.1) at which LICQ is satisfied, we can apply Theorem 12.1
to deduce that ∇xL(x∗, λ∗) � 0 and ci (x∗) � 0 for all i ∈ E , so that

∇xLA(x∗, λ∗;µ) � ∇ f (x∗)−
∑
i∈E

[λ∗i − µci (x∗)]∇ci (x∗)

� ∇ f (x∗)−
∑
i∈E

λ∗i ∇ci (x∗) � ∇xL(x∗, λ∗) � 0,

verifying the first part of (17.41), independently of µ.
For the second part of (17.41), we define A to be the constraint gradient matrix in

(17.15) evaluated at x∗, and write

∇2
xxLA(x∗, λ∗;µ) � ∇2

xxL(x∗, λ∗)+ µAT A.

If the claim in (17.41) were not true, then for each integer k ≥ 1, we could choose a vector
wk with ‖wk‖ � 1 such that

0 ≥ wT
k ∇2

xxLA(x∗, λ∗; k)wk � wT
k ∇2

xxL(x∗, λ∗)wk + k‖Awk‖2
2, (17.42)
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and therefore

‖Awk‖2
2 ≤ −(1/k)wT

k ∇2
xxL(x∗, λ∗)wk → 0, as k →∞. (17.43)

Since the vectors {wk} lie in a compact set (the surface of the unit sphere), they have an
accumulation point w. The limit (17.43) implies that Aw � 0. Moreover, by rearranging
(17.42), we have that

wT
k ∇2

xxL(x∗, λ∗)wk ≤ −k‖Awk‖2
2 ≤ 0,

so by taking limits we have wT∇2
xxL(x∗, λ∗)w ≤ 0. However, this inequality contradicts the

second-order conditions in Theorem 12.6 which, when applied to (17.1), state that we must
have wT∇2

xxL(x∗, λ∗)w > 0 for all nonzero vectors w with Aw � 0. Hence, the second
part of (17.41) holds for all µ sufficiently large. �

The second result, given by Bertsekas [19, Proposition 4.2.3], describes the more
realistic situation of λ 	� λ∗. It gives conditions under which there is a minimizer of
LA(x, λ;µ) that lies close to x∗ and gives error bounds on both xk and the updated
multiplier estimate λk+1 obtained from solving the subproblem at iteration k.

Theorem 17.6.
Suppose that the assumptions of Theorem 17.5 are satisfied at x∗ and λ∗ and let µ̄ be

chosen as in that theorem. Then there exist positive scalars δ, ε, and M such that the following
claims hold:

(a) For all λk and µk satisfying

‖λk − λ∗‖ ≤ µkδ, µk ≥ µ̄, (17.44)

the problem

min
x

LA(x, λk;µk) subject to ‖x − x∗‖ ≤ ε

has a unique solution xk . Moreover, we have

‖xk − x∗‖ ≤ M‖λk − λ∗‖/µk . (17.45)

(b) For all λk and µk that satisfy (17.44), we have

‖λk+1 − λ∗‖ ≤ M‖λk − λ∗‖/µk, (17.46)

where λk+1 is given by the formula (17.39).
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(c) For all λk and µk that satisfy (17.44), the matrix ∇2
xxLA(xk, λ

k;µk) is positive definite
and the constraint gradients ∇ci (xk), i ∈ E , are linearly independent.

This theorem illustrates some salient properties of the augmented Lagrangian ap-
proach. The bound (17.45) shows that xk will be close to x∗ if λk is accurate or if the penalty
parameter µk is large. Hence, this approach gives us two ways of improving the accuracy
of xk , whereas the quadratic penalty approach gives us only one option: increasing µk . The
bound (17.46) states that, locally, we can ensure an improvement in the accuracy of the
multipliers by choosing a sufficiently large value of µk . The final observation of the theorem
shows that second-order sufficient conditions for unconstrained minimization (see Theo-
rem 2.4) are also satisfied for the kth subproblem under the given conditions, so one can
expect good performance by applying standard unconstrained minimization techniques.

17.4 PRACTICAL AUGMENTED LAGRANGIAN METHODS

In this section we discuss practical augmented Lagrangian procedures, in particular, proce-
dures for handling inequality constraints. We discuss three approaches based, respectively,
on bound-constrained, linearly constrained, and unconstrained formulations. The first two
are the basis of the successful nonlinear programming codes LANCELOT [72] and MINOS [218].

BOUND-CONSTRAINED FORMULATION

Given the general nonlinear program (17.6), we can convert it to a problem with
equality constraints and bound constraints by introducing slack variables si and replacing
the general inequalities ci (x) ≥ 0, i ∈ I , by

ci (x)− si � 0, si ≥ 0, for all i ∈ I. (17.47)

Bound constraints, l ≤ x ≤ u, need not be transformed. By reformulating in this way, we
can write the nonlinear program as follows:

min
x∈IRn

f (x) subject to ci (x) � 0, i � 1, 2, . . . , m, l ≤ x ≤ u. (17.48)

(The slacks si have been incorporated into the vector x and the constraint functions ci

have been redefined accordingly. We have numbered the constraints consecutively with
i � 1, 2, . . . , m and in the discussion below we gather them into the vector function
c : IRn → IRm .) Some of the components of the lower bound vector l may be set to −∞,
signifying that there is no lower bound on the components of x in question; similarly for u.
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The bound-constrained Lagrangian (BCL) approach incorporates only the equality
constraints from (17.48) into the augmented Lagrangian, that is,

LA(x, λ;µ) � f (x)−
m∑

i�1

λi ci (x)+ µ

2

m∑
i�1

c2
i (x). (17.49)

The bound constraints are enforced explicitly in the subproblem, which has the form

min
x

LA(x, λ;µ) subject to l ≤ x ≤ u. (17.50)

After this problem has been solved approximately, the multipliers λ and the penalty
parameter µ are updated and the process is repeated.

An efficient technique for solving the nonlinear program with bound constraints
(17.50) (for fixed µ and λ) is the (nonlinear) gradient projection method discussed in
Section 18.6. By specializing the KKT conditions (12.34) to the problem (17.50), we find
that the first-order necessary condition for x to be a solution of (17.50) is that

x − P (x −∇xLA(x, λ;µ), l, u) � 0, (17.51)

where P(g, l, u) is the projection of the vector g ∈ IRn onto the rectangular box [l, u]
defined as follows

P(g, l, u)i �

⎧⎪⎨
⎪⎩

li if gi ≤ li ,

gi if gi ∈ (li , ui ),

ui if gi ≥ ui ,

for all i � 1, 2, . . . , n. (17.52)

We are now ready to describe the algorithm implemented in the LANCELOT software package.

Algorithm 17.4 (Bound-Constrained Lagrangian Method).
Choose an initial point x0 and initial multipliers λ0;
Choose convergence tolerances η∗ and ω∗;
Set µ0 � 10, ω0 � 1/µ0, and η0 � 1/µ0.1

0 ;
for k � 0, 1, 2, . . .

Find an approximate solution xk of the subproblem (17.50) such that

∥∥xk − P
(
xk − ∇xLA(xk, λ

k;µk), l, u
)∥∥ ≤ ωk;

if ‖c(xk)‖ ≤ ηk

(∗ test for convergence ∗)
if ‖c(xk)‖ ≤ η∗ and

∥∥xk − P
(
xk −∇xLA(xk, λ

k;µk), l, u
)∥∥ ≤ ω∗

stop with approximate solution xk ;
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end (if)
(∗ update multipliers, tighten tolerances ∗)
λk+1 � λk − µkc(xk);
µk+1 � µk ;
ηk+1 � ηk/µ

0.9
k+1;

ωk+1 � ωk/µk+1;
else

(∗ increase penalty parameter, tighten tolerances ∗)
λk+1 � λk ;
µk+1 � 100µk ;
ηk+1 � 1/µ0.1

k+1;
ωk+1 � 1/µk+1;

end (if)
end (for)

The main branch in the algorithm occurs after problem (17.50) has been solved
approximately, when the algorithm tests to see if the constraints have decreased sufficiently,
as measured by the condition

‖c(xk)‖ ≤ ηk . (17.53)

If this condition holds, the penalty parameter is not changed for the next iteration because
the current value of µk is producing an acceptable level of constraint violation. The Lagrange
multiplier estimates are updated according to the formula (17.39) and the tolerances ωk and
ηk are tightened in advance of the next iteration. If, on the other hand, (17.53) does not
hold, then we increase the penalty parameter to ensure that the next subproblem will place
more emphasis on decreasing the constraint violations. The Lagrange multiplier estimates
are not updated in this case; the focus is on improving feasibility.

The constants 0.1, 0.9, and 100 appearing in Algorithm 17.4 are to some extent arbi-
trary; other values can be used without compromising theoretical convergence properties.
LANCELOT uses the gradient projection method with trust regions (see (18.61)) to solve the
bound-constrained nonlinear subproblem (17.50). In this context, the gradient projection
method constructs a quadratic model of the augmented Lagrangian LA and computes a
step d by approximately solving the trust region problem

min
d

1
2 dT

[∇2
xxL(xk, λ

k)+ µk AT
k Ak

]
d + ∇xLA(xk, λ

k;µk)T d (17.54)

subject to l ≤ xk + d ≤ u, ‖d‖∞ ≤ �,

where Ak � A(xk) and � is a trust region radius. (We can formulate the trust-region
constraint by means of the bounds −�e ≤ d ≤ �e, where e � (1, 1, . . . , 1)T .) Each
iteration of the algorithm for solving this subproblem proceeds in two stages. First, a
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projected gradient line search is performed to determine which components of d should be
set at one of their bounds. Second, a conjugate gradient iteration minimizes (17.54) with
respect to the free components of d—those not at one of their bounds. Importantly, this
algorithm does not require the factorizations of a KKT matrix or of the constraint Jacobian
Ak . The conjugate gradient iteration only requires matrix-vector products, a feature that
makes LANCELOT suitable for large problems.

The Hessian of the Lagrangian ∇2
xxL(xk, λ

k) in (17.54) can be replaced by a quasi-
Newton approximation based on the BFGS or SR1 updating formulas. LANCELOT is designed
to take advantage of partially separable structure in the objective function and constraints,
either in the evaluation of the Hessian of the Lagrangian or in the quasi-Newton updates
(see Section 7.4).

LINEARLY CONSTRAINED FORMULATION

The principal idea behind linearly constrained Lagrangian (LCL) methods is to generate
a step by minimizing the Lagrangian (or augmented Lagrangian) subject to linearizations of
the constraints. If we use the formulation (17.48) of the nonlinear programming problem,
the subproblem used in the LCL approach takes the form

min
x

Fk(x) (17.55a)

subject to c(xk)+ Ak(x − xk) � 0, l ≤ x ≤ u. (17.55b)

There are several possible choices for Fk(x). Early LCL methods defined

Fk(x) � f (x)−
m∑

i�1

λk
i c̄k

i (x), (17.56)

where λk is the current Lagrange multiplier estimate and c̄k
i (x) is the difference between

ci (x) and its linearization at xk , that is,

c̄k
i (x) � ci (x)− ci (xk)−∇ci (xk)T (x − xk). (17.57)

One can show that as xk converges to a solution x∗, the Lagrange multiplier associated with
the equality constraint in (17.55b) converges to the optimal multiplier. Therefore, one can
set λk in (17.56) to be the Lagrange multiplier for the equality constraint in (17.55b) from
the previous iteration.

Current LCL methods define Fk to be the augmented Lagrangian function

Fk(x) � f (x)−
m∑

i�1

λk
i c̄k

i (x)+ µ

2

m∑
i�1

[c̄k
i (x)]2. (17.58)



1 7 . 4 . P R A C T I C A L A U G M E N T E D L A G R A N G I A N M E T H O D S 523

This definition of Fk appears to yield more reliable convergence from remote starting points
than does (17.56), in practice.

There is a notable similarity between (17.58) and the augmented Lagrangian (17.36),
the difference being that the original constraints ci (x) have been replaced by the functions
c̄k

i (x), which capture only the “second-order and above” terms of ci . The subproblem (17.55)
differs from the augmented Lagrangian subproblem in that the new x is required to satisfy
exactly a linearization of the equality constraints, while the linear part of each constraint is
factored out of the objective via the use of c̄k

i in place of ci . A procedure similar to the one
in Algorithm 17.4 can be used for updating the penalty parameter µ and for adjusting the
tolerances that govern the accuracy of the solution of the subproblem.

Since c̄k
i (x) has zero gradient at x � xk , we have that∇Fk(xk) � ∇ f (xk), where Fk is

defined by either (17.56) or (17.58). We can also show that the Hessian of Fk is closely related
to the Hessians of the Lagrangian or augmented Lagrangian functions for (17.1). Because
of these properties, the subproblem (17.55) is similar to the SQP subproblems described in
Chapter 18, with the quadratic objective in SQP being replaced by a nonlinear objective in
LCL.

The well known code MINOS [218] uses the nonlinear model function (17.58) and solves
the subproblem via a reduced gradient method that employs quasi-Newton approximations
to the reduced Hessian of Fk . A fairly accurate solution of the subproblem is computed in
MINOS to try to ensure that the Lagrange multiplier estimates for the equality constraint
in (17.55b) (subsequently used in (17.58)) are of good quality. As a result, MINOS typically
requires more evaluations of the objective f and constraint functions ci (and their gradients)
in total than SQP methods or interior-point methods. The total number of subproblems
(17.55) that are solved in the course of the algorithm is, however, sometimes smaller than
in other approaches.

UNCONSTRAINED FORMULATION

We can obtain an unconstrained form of the augmented Lagrangian subproblem
for inequality-constrained problems by using a derivation based on the proximal point
approach. Supposing for simplicity that the problem has no equality constraints (E � ∅),
we can write the problem (17.6) equivalently as an unconstrained optimization problem:

min
x∈IRn

F(x), (17.59)

where

F(x) � max
λ≥0

{
f (x)−

∑
i∈I

λi ci (x)

}
�
{

f (x) if x is feasible,

∞ otherwise.
(17.60)

To verify these expressions for F , consider first the case of x infeasible, that is, ci (x) < 0
for some i . We can then choose λi arbitrarily large and positive while setting λ j � 0 for all
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j 	� i , to verify that F(x) is infinite in this case. If x is feasible, we have ci (x) ≥ 0 for all
i ∈ I , so the maximum is attained at λ � 0, and F(x) � f (x) in this case. By combining
(17.59) with (17.60), we have

min
x∈IRn

F(x) � min
x feasible

f (x), (17.61)

which is simply the original inequality-constrained problem. It is not practical to minimize
F directly, however, since this function is not smooth—it jumps from a finite value to an
infinite value as x crosses the boundary of the feasible set.

We can make this approach more practical by replacing F by a smooth approximation
F̂(x; λk, µk) which depends on the penalty parameter µk and Lagrange multiplier estimate
λk . This approximation is defined as follows:

F̂(x; λk, µk) � max
λ≥0

{
f (x)−

∑
i∈I

λi ci (x)− 1

2µk

∑
i∈I

(
λi − λk

i

)2

}
. (17.62)

The final term in this expression applies a penalty for any move of λ away from the previous
estimate λk ; it encourages the new maximizer λ to stay proximal to the previous estimate
λk . Since (17.62) represents a bound-constrained quadratic problem in λ, separable in the
individual components λi , we can perform the maximization explicitly, to obtain

λi �
{

0 if −ci (x)+ λk
i /µk ≤ 0;

λk
i − µkci (x) otherwise.

(17.63)

By substituting these values in (17.62), we find that

F̂(x; λk, µk) � f (x)+
∑
i∈I

ψ(ci (x), λk
i ;µk), (17.64)

where the function ψ of three scalar arguments is defined as follows:

ψ(t, σ ;µ)
def�

⎧⎪⎨
⎪⎩

−σ t + µ

2
t2 if t − σ/µ ≤ 0,

− 1

2µ
σ 2 otherwise,

(17.65)

Hence, we can obtain the new iterate xk by minimizing F̂(x; λk, µk) with respect to x ,
and use the formula (17.63) to obtain the updated Lagrange multiplier estimates λk+1. By
comparing with Framework 17.3, we see that F plays the role of LA and that the scheme
just described extends the augmented Lagrangian methods for equality constraints neatly
to the inequality-constrained case. Unlike the bound-constrained and linearly constrained
formulations, however, this unconstrained formulation is not the basis of any widely used
software packages, so its practical properties have not been tested.
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17.5 PERSPECTIVES AND SOFTWARE

The quadratic penalty approach is often used by practitioners when the number of con-
straints is small. In fact, minimization of Q(x;µ) is sometimes performed for just one large
value of µ. Unless µ is chosen wisely (with the benefit of experience with the underlying
application), the resulting solution may not be very accurate. Since the main software pack-
ages for constrained optimization do not implement a quadratic penalty approach, little
attention has been paid to techniques for updating the penalty parameter, adjusting the
tolerances τk , and choosing the starting points xs

k for each iteration. (See Gould [141] for a
discussion of these issues.)

Despite the intuitive appeal and simplicity of the quadratic penalty method of Frame-
work 17.1, the augmented Lagrangian method of Sections 17.3 and 17.4 is generally
preferred. The subproblems are in general no more difficult to solve, and the introduc-
tion of multiplier estimates reduces the likelihood that large values of µ will be needed to
obtain good feasibility and accuracy, thereby avoiding ill conditioning of the subproblem.
The quadratic penalty approach remains, however, an important mechanism for regularizing
other algorithms such as sequential quadratic programming (SQP) methods, as we mention
at the end of Section 17.1.

A general-purpose �1 penalty method was developed by Fletcher in the 1980’s. It
is known as the S�1QP method because it has features in common with SQP methods.
More recently, an �1 penalty method that uses linear programming subproblems has been
implemented as part of the KNITRO [46] software package. These two methods are discussed
in Section 18.5.

The �1 penalty function has received significant attention in recent years. It has
been successfully used to treat difficult problems, such as mathematical programs with
complementarity constraints (MPCCs), in which the constraints do not satisfy standard
constraint qualifications [274]. By including these problematic constraints as a penalty
term, rather than linearizing them exactly, and treating the remaining constraints using other
techniques such as SQP or interior-point, it is possible to extend the range of applicability
of these other approaches. See [8] for an active-set method and [16, 191] for interior-point
methods for MPCCs. The SNOPT software package uses an �1 penalty approach within an
SQP method as a safeguard strategy in case the quadratic model appears to be infeasible or
unbounded or to have unbounded multipliers.

Augmented Lagrangian methods have been popular for many years because, in part,
of their simplicity. The MINOS and LANCELOT packages rank among the best implemen-
tations of augmented Lagrangian methods. Both are suitable for large-scale nonlinear
programming problems. At a general level, the linearly constrained Lagrangian (LCL)
of MINOS and the bound-constrained Lagrangian (BCL) method of LANCELOT have im-
portant features in common. They differ significantly, however, in the formulation of the
step-computation subproblems and in the techniques used to solve these subproblems.
MINOS follows a reduced-space approach to handle linearized constraints and employs a
(dense) quasi-Newton approximation to the Hessian of the Lagrangian. As a result, MINOS
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is most successful for problems with relatively few degrees of freedom. LANCELOT, on the
other hand, is more effective when there are relatively few constraints. As indicated in Sec-
tion 17.4, LANCELOT does not require a factorization of the constraint Jacobian matrix A,
again enhancing its suitability for very large problems, and provides a variety of Hessian ap-
proximation options and preconditioners. The PENNON software package [184] is based on an
augmented Lagrangian approach and has the advantage of permitting semi-definite matrix
constraints.

A weakness of both the bound-constrained and unconstrained Lagrangian methods
is that they complicate constraints by squaring them in (17.49); progress in feasibility is
only achieved through the minimization of the augmented Lagrangian. In contrast, the LCL
formulation (17.55) promotes steady progress toward feasibility by performing a Newton-
like step on the constraints. Not surprisingly, numerical experience has shown an advantage
of MINOS over LANCELOT for problems with linear constraints.

Smooth exact penalty functions have been constructed from the augmented La-
grangian functions of Section 17.3, but these are considerably more complicated. As an
example, we mention the function of Fletcher for equality-constrained problems, defined as
follows:

φF(x;µ) � f (x)− λ(x)T c(x)+ µ

2

∑
i∈E

ci (x)2. (17.66)

The Lagrange multiplier estimates λ(x) are defined explicitly in terms of x via the least-
squares estimate, defined as

λ(x) � [A(x)A(x)T ]−1 A(x)∇ f (x). (17.67)

The function φF is differentiable and exact, though the threshold value µ∗ defining the
exactness property is not as easy to specify as for the nonsmooth �1 penalty function.
Drawbacks of the penalty function φF include the cost of evaluating λ(x) via (17.67), the fact
that λ(x) is not uniquely defined when A(x) does not have full rank, and the observation
that estimates of λ may be poor when A(x) is nearly singular.

NOTES AND REFERENCES

The quadratic penalty function was first proposed by Courant [81]. Gould [140]
addresses the issue of stable determination of the Newton step for Q(x;µk). His formula
(2.2) differs from our formula (17.20) in the right-hand-side, but both systems give rise to
the same p component.

The augmented Lagrangian method was proposed by Hestenes [167] and Powell [240].
In the early days it was known as the “method of multipliers.” A key reference in this
area is Bertsekas [18]. Chapters 1–3 of that book contain a thorough motivation of the
method that outlines its connections to other approaches. Other introductory discussions
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are given by Fletcher [101, Section 12.2], and Polak [236, Section 2.8]. The extension to
inequality constraints in the unconstrained formulation was described by Rockafellar [269]
and Powell [243].

Linearly constrained Lagrangian methods were proposed by Robinson [266] and
Rosen and Kreuser [271]. The MINOS implementation is due to Murtagh and Saunders [218]
and the LANCELOT implementation due to Conn, Gould and Toint [72]. We have followed
Friedlander and Saunders [114] in our use of the terms “linearly constrained Lagrangian”
and “bound-constrained Lagrangian.”

✐ E X E R C I S E S

✐ 17.1

(a) Write an equality-constrained problem which has a local solution and for which the
quadratic penalty function Q is unbounded for any value of the penalty parameter.

(b) Write a problem with a single inequality constraint that has the same unboundedness
property.

✐ 17.2 Draw the contour lines of the quadratic penalty function Q for problem (17.5)
corresponding to µ � 1. Find the stationary points of Q.

✐ 17.3 Minimize the quadratic penalty function for problem (17.3) for µk �
1, 10, 100, 1000 using an unconstrained minimization algorithm. Set τk � 1/µk in Frame-
work 17.1, and choose the starting point xs

k+1 for each minimization to be the solution
for the previous value of the penalty parameter. Report the approximate solution of each
penalty function.

✐ 17.4 For z ∈ IR, show that the function min(0, z)2 has a discontinuous second deriva-
tive at z � 0. (It follows that quadratic penalty function (17.7) may not have continuous
second derivatives even when f and ci , i ∈ E ∪ I , in (17.6) are all twice continuously
differentiable.)

✐ 17.5 Write a quadratic program similar to (17.31) for the case when the norm in
(17.32) is the infinity norm.

✐ 17.6 Suppose that a nonlinear program has a minimizer x∗ with Lagrange multiplier
vector λ∗. One can show ( Fletcher [101, Theorem 14.3.2]) that the function φ1(x;µ) does
not have a local minimizer at x∗ unless µ > ‖λ∗‖∞. Verify that this observation holds for
Example 17.1.

✐ 17.7 Verify (17.28).

✐ 17.8 Prove the second part of Theorem 17.4. That is, if x̂ is a stationary point of
φ1(x;µ) for all µ sufficiently large, but x̂ is infeasible for problem (17.6), then x̂ is
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an infeasible stationary point. (Hint: Use the fact that D(φ1(x̂;µ); p) � ∇ f (x̂)T p +
µD(h(x̂); p), where h is defined in (17.27).)

✐ 17.9 Verify that the KKT conditions for the bound-constrained problem

min
x∈IRn

φ(x) subject to l ≤ x ≤ u

are equivalent to the compactly stated condition

x − P(x − ∇φ(x), l, u) � 0,

where the projection operator P onto the rectangular box [l, u] is defined in (17.52).

✐ 17.10 Calculate the gradient and Hessian of the LCL objective functions Fk(x) defined
by (17.56) and (17.58). Evaluate these quantities at x � xk .

✐ 17.11 Show that the function ψ(t, σ ;µ) defined in (17.65) has a discontinuity in
its second derivative with respect to t when t � σ/µ. Assuming that ci : IRn → IR
is twice continuously differentiable, write down the second partial derivative matrix of
ψ(ci (x), λi ;µ) with respect to x for the two cases ci (x) < λi/µ and ci (x) ≥ aλi/µ.

✐ 17.12 Verify that the multipliers λi , i ∈ I defined in (17.63) are indeed those that
attain the maximum in (17.62), and that the equality (17.64) holds. Hint: Use the fact that
KKT conditions for the problem

max φ(x) subject to x ≥ 0

indicate that at a stationary point, we either have xi � 0 and [∇φ(x)]i ≤ 0, or xi > 0 and
[∇φ(x)]i � 0.




