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C H A P T E R3
Line Search
Methods

Each iteration of a line search method computes a search direction pk and then decides how
far to move along that direction. The iteration is given by

xk+1 � xk + αk pk, (3.1)

where the positive scalar αk is called the step length. The success of a line search method
depends on effective choices of both the direction pk and the step length αk .

Most line search algorithms require pk to be a descent direction—one for which
pT

k ∇ fk < 0—because this property guarantees that the function f can be reduced along
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this direction, as discussed in the previous chapter. Moreover, the search direction often has
the form

pk � −B−1
k ∇ fk, (3.2)

where Bk is a symmetric and nonsingular matrix. In the steepest descent method, Bk is
simply the identity matrix I , while in Newton’s method, Bk is the exact Hessian ∇2 f (xk).
In quasi-Newton methods, Bk is an approximation to the Hessian that is updated at every
iteration by means of a low-rank formula. When pk is defined by (3.2) and Bk is positive
definite, we have

pT
k ∇ fk � −∇ f T

k B−1
k ∇ fk < 0,

and therefore pk is a descent direction.
In this chapter, we discuss how to choose αk and pk to promote convergence from

remote starting points. We also study the rate of convergence of steepest descent, quasi-
Newton, and Newton methods. Since the pure Newton iteration is not guaranteed to produce
descent directions when the current iterate is not close to a solution, we discuss modifications
in Section 3.4 that allow it to start from any initial point.

We now give careful consideration to the choice of the step-length parameter αk .

3.1 STEP LENGTH

In computing the step length αk , we face a tradeoff. We would like to choose αk to give
a substantial reduction of f , but at the same time we do not want to spend too much
time making the choice. The ideal choice would be the global minimizer of the univariate
function φ(·) defined by

φ(α) � f (xk + αpk), α > 0, (3.3)

but in general, it is too expensive to identify this value (see Figure 3.1). To find even a local
minimizer of φ to moderate precision generally requires too many evaluations of the objec-
tive function f and possibly the gradient ∇ f . More practical strategies perform an inexact
line search to identify a step length that achieves adequate reductions in f at minimal cost.

Typical line search algorithms try out a sequence of candidate values for α, stopping to
accept one of these values when certain conditions are satisfied. The line search is done in two
stages: A bracketing phase finds an interval containing desirable step lengths, and a bisection
or interpolation phase computes a good step length within this interval. Sophisticated line
search algorithms can be quite complicated, so we defer a full description until Section 3.5.



32 C H A P T E R 3 . L I N E S E A R C H M E T H O D S

(φ α)

point
stationary
first

minimizer
localfirst

global minimizer

α

Figure 3.1 The ideal step length is the global minimizer.

We now discuss various termination conditions for line search algorithms and show
that effective step lengths need not lie near minimizers of the univariate function φ(α)
defined in (3.3).

A simple condition we could impose on αk is to require a reduction in f , that is,
f (xk + αk pk) < f (xk). That this requirement is not enough to produce convergence to
x∗ is illustrated in Figure 3.2, for which the minimum function value is f ∗ � −1, but a
sequence of iterates {xk} for which f (xk) � 5/k, k � 0, 1, . . . yields a decrease at each
iteration but has a limiting function value of zero. The insufficient reduction in f at each
step causes it to fail to converge to the minimizer of this convex function. To avoid this
behavior we need to enforce a sufficient decrease condition, a concept we discuss next.
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Figure 3.2 Insufficient reduction in f .
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THE WOLFE CONDITIONS

A popular inexact line search condition stipulates that αk should first of all give
sufficient decrease in the objective function f , as measured by the following inequality:

f (xk + αpk) ≤ f (xk)+ c1α∇ f T
k pk, (3.4)

for some constant c1 ∈ (0, 1). In other words, the reduction in f should be proportional to
both the step length αk and the directional derivative∇ f T

k pk . Inequality (3.4) is sometimes
called the Armijo condition.

The sufficient decrease condition is illustrated in Figure 3.3. The right-hand-side of
(3.4), which is a linear function, can be denoted by l(α). The function l(·) has negative slope
c1∇ f T

k pk , but because c1 ∈ (0, 1), it lies above the graph of φ for small positive values of
α. The sufficient decrease condition states that α is acceptable only if φ(α) ≤ l(α). The
intervals on which this condition is satisfied are shown in Figure 3.3. In practice, c1 is chosen
to be quite small, say c1 � 10−4.

The sufficient decrease condition is not enough by itself to ensure that the algorithm
makes reasonable progress because, as we see from Figure 3.3, it is satisfied for all sufficiently
small values of α. To rule out unacceptably short steps we introduce a second requirement,
called the curvature condition, which requires αk to satisfy

∇ f (xk + αk pk)T pk ≥ c2∇ f T
k pk, (3.5)

for some constant c2 ∈ (c1, 1), where c1 is the constant from (3.4). Note that the left-hand-
side is simply the derivative φ′(αk), so the curvature condition ensures that the slope of φ at
αk is greater than c2 times the initial slope φ′(0). This makes sense because if the slope φ′(α)

αl( )

φ (α f(x +) = kαk p )

acceptableacceptable

α

Figure 3.3 Sufficient decrease condition.
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Figure 3.4 The curvature condition.

is strongly negative, we have an indication that we can reduce f significantly by moving
further along the chosen direction.

On the other hand, if φ′(αk) is only slightly negative or even positive, it is a sign that
we cannot expect much more decrease in f in this direction, so it makes sense to terminate
the line search. The curvature condition is illustrated in Figure 3.4. Typical values of c2 are
0.9 when the search direction pk is chosen by a Newton or quasi-Newton method, and 0.1
when pk is obtained from a nonlinear conjugate gradient method.

The sufficient decrease and curvature conditions are known collectively as the Wolfe
conditions. We illustrate them in Figure 3.5 and restate them here for future reference:

f (xk + αk pk) ≤ f (xk)+ c1αk∇ f T
k pk, (3.6a)

∇ f (xk + αk pk)T pk ≥ c2∇ f T
k pk, (3.6b)

with 0 < c1 < c2 < 1.
A step length may satisfy the Wolfe conditions without being particularly close to a

minimizer of φ, as we show in Figure 3.5. We can, however, modify the curvature condition
to force αk to lie in at least a broad neighborhood of a local minimizer or stationary point
of φ. The strong Wolfe conditions require αk to satisfy

f (xk + αk pk) ≤ f (xk)+ c1αk∇ f T
k pk, (3.7a)

|∇ f (xk + αk pk)T pk | ≤ c2|∇ f T
k pk |, (3.7b)

with 0 < c1 < c2 < 1. The only difference with the Wolfe conditions is that we no longer
allow the derivative φ′(αk) to be too positive. Hence, we exclude points that are far from
stationary points of φ.
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Figure 3.5 Step lengths satisfying the Wolfe conditions.

It is not difficult to prove that there exist step lengths that satisfy the Wolfe conditions
for every function f that is smooth and bounded below.

Lemma 3.1.
Suppose that f : IRn → IR is continuously differentiable. Let pk be a descent direction at

xk , and assume that f is bounded below along the ray {xk + αpk |α > 0}. Then if 0 < c1 <

c2 < 1, there exist intervals of step lengths satisfying the Wolfe conditions (3.6) and the strong
Wolfe conditions (3.7).

PROOF. Note that φ(α) � f (xk + αpk) is bounded below for all α > 0. Since 0 < c1 < 1,
the line l(α) � f (xk) + αc1∇ f T

k pk is unbounded below and must therefore intersect the
graph of φ at least once. Let α′ > 0 be the smallest intersecting value of α, that is,

f (xk + α′ pk) � f (xk)+ α′c1∇ f T
k pk . (3.8)

The sufficient decrease condition (3.6a) clearly holds for all step lengths less than α′.
By the mean value theorem (see (A.55)), there exists α′′ ∈ (0, α′) such that

f (xk + α′ pk)− f (xk) � α′∇ f (xk + α′′ pk)T pk . (3.9)

By combining (3.8) and (3.9), we obtain

∇ f (xk + α′′ pk)T pk � c1∇ f T
k pk > c2∇ f T

k pk, (3.10)

since c1 < c2 and ∇ f T
k pk < 0. Therefore, α′′ satisfies the Wolfe conditions (3.6), and the

inequalities hold strictly in both (3.6a) and (3.6b). Hence, by our smoothness assumption
on f , there is an interval around α′′ for which the Wolfe conditions hold. Moreover, since
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the term in the left-hand side of (3.10) is negative, the strong Wolfe conditions (3.7) hold in
the same interval. �

The Wolfe conditions are scale-invariant in a broad sense: Multiplying the objective
function by a constant or making an affine change of variables does not alter them. They can
be used in most line search methods, and are particularly important in the implementation
of quasi-Newton methods, as we see in Chapter 6.

THE GOLDSTEIN CONDITIONS

Like the Wolfe conditions, the Goldstein conditions ensure that the step length α

achieves sufficient decrease but is not too short. The Goldstein conditions can also be stated
as a pair of inequalities, in the following way:

f (xk)+ (1− c)αk∇ f T
k pk ≤ f (xk + αk pk) ≤ f (xk)+ cαk∇ f T

k pk, (3.11)

with 0 < c < 1/2. The second inequality is the sufficient decrease condition (3.4), whereas
the first inequality is introduced to control the step length from below; see Figure 3.6

A disadvantage of the Goldstein conditions vis-à-vis the Wolfe conditions is that the
first inequality in (3.11) may exclude all minimizers of φ. However, the Goldstein and Wolfe
conditions have much in common, and their convergence theories are quite similar. The
Goldstein conditions are often used in Newton-type methods but are not well suited for
quasi-Newton methods that maintain a positive definite Hessian approximation.
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Figure 3.6 The Goldstein conditions.
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SUFFICIENT DECREASE AND BACKTRACKING

We have mentioned that the sufficient decrease condition (3.6a) alone is not sufficient
to ensure that the algorithm makes reasonable progress along the given search direction.
However, if the line search algorithm chooses its candidate step lengths appropriately, by
using a so-called backtracking approach, we can dispense with the extra condition (3.6b)
and use just the sufficient decrease condition to terminate the line search procedure. In its
most basic form, backtracking proceeds as follows.

Algorithm 3.1 (Backtracking Line Search).
Choose ᾱ > 0, ρ ∈ (0, 1), c ∈ (0, 1); Set α ← ᾱ;
repeat until f (xk + αpk) ≤ f (xk)+ cα∇ f T

k pk

α ← ρα;
end (repeat)
Terminate with αk � α.

In this procedure, the initial step length ᾱ is chosen to be 1 in Newton and quasi-
Newton methods, but can have different values in other algorithms such as steepest descent
or conjugate gradient. An acceptable step length will be found after a finite number of
trials, because αk will eventually become small enough that the sufficient decrease condition
holds (see Figure 3.3). In practice, the contraction factor ρ is often allowed to vary at each
iteration of the line search. For example, it can be chosen by safeguarded interpolation, as
we describe later. We need ensure only that at each iteration we have ρ ∈ [ρlo, ρhi], for some
fixed constants 0 < ρlo < ρhi < 1.

The backtracking approach ensures either that the selected step length αk is some fixed
value (the initial choice ᾱ), or else that it is short enough to satisfy the sufficient decrease
condition but not too short. The latter claim holds because the accepted value αk is within
a factor ρ of the previous trial value, αk/ρ, which was rejected for violating the sufficient
decrease condition, that is, for being too long.

This simple and popular strategy for terminating a line search is well suited for Newton
methods but is less appropriate for quasi-Newton and conjugate gradient methods.

3.2 CONVERGENCE OF LINE SEARCH METHODS

To obtain global convergence, we must not only have well chosen step lengths but also well
chosen search directions pk . We discuss requirements on the search direction in this section,
focusing on one key property: the angle θk between pk and the steepest descent direction
−∇ fk , defined by

cos θk � −∇ f T
k pk

‖∇ fk‖ ‖pk‖ . (3.12)
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The following theorem, due to Zoutendijk, has far-reaching consequences. It quantifies
the effect of properly chosen step lengths αk , and shows, for example, that the steepest descent
method is globally convergent. For other algorithms, it describes how far pk can deviate
from the steepest descent direction and still produce a globally convergent iteration. Various
line search termination conditions can be used to establish this result, but for concreteness
we will consider only the Wolfe conditions (3.6). Though Zoutendijk’s result appears at first
to be technical and obscure, its power will soon become evident.

Theorem 3.2.
Consider any iteration of the form (3.1), where pk is a descent direction and αk satisfies

the Wolfe conditions (3.6). Suppose that f is bounded below in IRn and that f is continuously

differentiable in an open set N containing the level set L def� {x : f (x) ≤ f (x0)}, where x0 is
the starting point of the iteration. Assume also that the gradient ∇ f is Lipschitz continuous on
N , that is, there exists a constant L > 0 such that

‖∇ f (x)− ∇ f (x̃)‖ ≤ L‖x − x̃‖, for all x, x̃ ∈ N . (3.13)

Then

∑
k≥0

cos2 θk ‖∇ fk‖2 < ∞. (3.14)

PROOF. From (3.6b) and (3.1) we have that

(∇ fk+1 −∇ fk)T pk ≥ (c2 − 1)∇ f T
k pk,

while the Lipschitz condition (3.13) implies that

(∇ fk+1 −∇ fk)T pk ≤ αk L‖pk‖2.

By combining these two relations, we obtain

αk ≥ c2 − 1

L

∇ f T
k pk

‖pk‖2
.

By substituting this inequality into the first Wolfe condition (3.6a), we obtain

fk+1 ≤ fk − c1
1− c2

L

(∇ f T
k pk)2

‖pk‖2
.

From the definition (3.12), we can write this relation as

fk+1 ≤ fk − c cos2 θk‖∇ fk‖2,
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where c � c1(1 − c2)/L . By summing this expression over all indices less than or equal to
k, we obtain

fk+1 ≤ f0 − c
k∑

j�0

cos2 θ j‖∇ f j‖2. (3.15)

Since f is bounded below, we have that f0 − fk+1 is less than some positive constant, for all
k. Hence, by taking limits in (3.15), we obtain

∞∑
k�0

cos2 θk‖∇ fk‖2 < ∞,

which concludes the proof. �

Similar results to this theorem hold when the Goldstein conditions (3.11) or strong
Wolfe conditions (3.7) are used in place of the Wolfe conditions. For all these strategies, the
step length selection implies inequality (3.14), which we call the Zoutendijk condition.

Note that the assumptions of Theorem 3.2 are not too restrictive. If the function f were
not bounded below, the optimization problem would not be well defined. The smoothness
assumption—Lipschitz continuity of the gradient—is implied by many of the smoothness
conditions that are used in local convergence theorems (see Chapters 6 and 7) and are often
satisfied in practice.

The Zoutendijk condition (3.14) implies that

cos2 θk‖∇ fk‖2 → 0. (3.16)

This limit can be used in turn to derive global convergence results for line search algorithms.
If our method for choosing the search direction pk in the iteration (3.1) ensures that

the angle θk defined by (3.12) is bounded away from 90◦, there is a positive constant δ such
that

cos θk ≥ δ > 0, for all k. (3.17)

It follows immediately from (3.16) that

lim
k→∞

‖∇ fk‖ � 0. (3.18)

In other words, we can be sure that the gradient norms ‖∇ fk‖ converge to zero, provided
that the search directions are never too close to orthogonality with the gradient. In particular,
the method of steepest descent (for which the search direction pk is parallel to the negative
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gradient) produces a gradient sequence that converges to zero, provided that it uses a line
search satisfying the Wolfe or Goldstein conditions.

We use the term globally convergent to refer to algorithms for which the property
(3.18) is satisfied, but note that this term is sometimes used in other contexts to mean
different things. For line search methods of the general form (3.1), the limit (3.18) is the
strongest global convergence result that can be obtained: We cannot guarantee that the
method converges to a minimizer, but only that it is attracted by stationary points. Only
by making additional requirements on the search direction pk—by introducing negative
curvature information from the Hessian ∇2 f (xk), for example—can we strengthen these
results to include convergence to a local minimum. See the Notes and References at the end
of this chapter for further discussion of this point.

Consider now the Newton-like method (3.1), (3.2) and assume that the matrices Bk

are positive definite with a uniformly bounded condition number. That is, there is a constant
M such that

‖Bk‖ ‖B−1
k ‖ ≤ M, for all k.

It is easy to show from the definition (3.12) that

cos θk ≥ 1/M (3.19)

(see Exercise 3.5). By combining this bound with (3.16) we find that

lim
k→∞

‖∇ fk‖ � 0. (3.20)

Therefore, we have shown that Newton and quasi-Newton methods are globally convergent
if the matrices Bk have a bounded condition number and are positive definite (which is
needed to ensure that pk is a descent direction), and if the step lengths satisfy the Wolfe
conditions.

For some algorithms, such as conjugate gradient methods, we will be able to prove
the limit (3.18), but only the weaker result

lim inf
k→∞

‖∇ fk‖ � 0. (3.21)

In other words, just a subsequence of the gradient norms ‖∇ fk j ‖ converges to zero, rather
than the whole sequence (see Appendix A). This result, too, can be proved by using Zou-
tendijk’s condition (3.14), but instead of a constructive proof, we outline a proof by
contradiction. Suppose that (3.21) does not hold, so that the gradients remain bounded
away from zero, that is, there exists γ > 0 such that

‖∇ fk‖ ≥ γ, for all k sufficiently large. (3.22)



3 . 3 . R A T E O F C O N V E R G E N C E 41

Then from (3.16) we conclude that

cos θk → 0, (3.23)

that is, the entire sequence {cos θk} converges to 0. To establish (3.21), therefore, it is enough
to show that a subsequence {cos θk j } is bounded away from zero. We will use this strategy in
Chapter 5 to study the convergence of nonlinear conjugate gradient methods.

By applying this proof technique, we can prove global convergence in the sense of
(3.20) or (3.21) for a general class of algorithms. Consider any algorithm for which (i) every
iteration produces a decrease in the objective function, and (ii) every mth iteration is a
steepest descent step, with step length chosen to satisfy the Wolfe or Goldstein conditions.
Then, since cos θk � 1 for the steepest descent steps, the result (3.21) holds. Of course, we
would design the algorithm so that it does something “better" than steepest descent at the
other m − 1 iterates. The occasional steepest descent steps may not make much progress,
but they at least guarantee overall global convergence.

Note that throughout this section we have used only the fact that Zoutendijk’s condi-
tion implies the limit (3.16). In later chapters we will make use of the bounded sum condition
(3.14), which forces the sequence {cos2 θk‖∇ fk‖2} to converge to zero at a sufficiently rapid
rate.

3.3 RATE OF CONVERGENCE

It would seem that designing optimization algorithms with good convergence properties is
easy, since all we need to ensure is that the search direction pk does not tend to become
orthogonal to the gradient ∇ fk , or that steepest descent steps are taken regularly. We could
simply compute cos θk at every iteration and turn pk toward the steepest descent direction if
cos θk is smaller than some preselected constant δ > 0. Angle tests of this type ensure global
convergence, but they are undesirable for two reasons. First, they may impede a fast rate of
convergence, because for problems with an ill-conditioned Hessian, it may be necessary to
produce search directions that are almost orthogonal to the gradient, and an inappropriate
choice of the parameter δ may cause such steps to be rejected. Second, angle tests destroy
the invariance properties of quasi-Newton methods.

Algorithmic strategies that achieve rapid convergence can sometimes conflict with
the requirements of global convergence, and vice versa. For example, the steepest descent
method is the quintessential globally convergent algorithm, but it is quite slow in practice,
as we shall see below. On the other hand, the pure Newton iteration converges rapidly when
started close enough to a solution, but its steps may not even be descent directions away
from the solution. The challenge is to design algorithms that incorporate both properties:
good global convergence guarantees and a rapid rate of convergence.

We begin our study of convergence rates of line search methods by considering the
most basic approach of all: the steepest descent method.
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Figure 3.7 Steepest descent steps.

CONVERGENCE RATE OF STEEPEST DESCENT

We can learn much about the steepest descent method by considering the ideal case, in
which the objective function is quadratic and the line searches are exact. Let us suppose that

f (x) � 1
2 xT Qx − bT x, (3.24)

where Q is symmetric and positive definite. The gradient is given by ∇ f (x) � Qx − b and
the minimizer x∗ is the unique solution of the linear system Qx � b.

It is easy to compute the step length αk that minimizes f (xk−α∇ fk). By differentiating
the function

f (xk − α∇ fk) � 1

2
(xk − α∇ fk)T Q(xk − α∇ fk)− bT (xk − α∇ fk)

with respect to α, and setting the derivative to zero, we obtain

αk � ∇ f T
k ∇ fk

∇ f T
k Q∇ fk

. (3.25)

If we use this exact minimizer αk , the steepest descent iteration for (3.24) is given by

xk+1 � xk −
( ∇ f T

k ∇ fk

∇ f T
k Q∇ fk

)
∇ fk . (3.26)

Since∇ fk � Qxk − b, this equation yields a closed-form expression for xk+1 in terms of xk .
In Figure 3.7 we plot a typical sequence of iterates generated by the steepest descent method
on a two-dimensional quadratic objective function. The contours of f are ellipsoids whose
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axes lie along the orthogonal eigenvectors of Q. Note that the iterates zigzag toward the
solution.

To quantify the rate of convergence we introduce the weighted norm ‖x‖2
Q � xT Qx .

By using the relation Qx∗ � b, we can show that

1
2‖x − x∗‖2

Q � f (x)− f (x∗), (3.27)

so this norm measures the difference between the current objective value and the optimal
value. By using the equality (3.26) and noting that ∇ fk � Q(xk − x∗), we can derive the
equality

‖xk+1 − x∗‖2
Q �

{
1−

(∇ f T
k ∇ fk

)2(∇ f T
k Q∇ fk

) (∇ f T
k Q−1∇ fk

)
}
‖xk − x∗‖2

Q (3.28)

(see Exercise 3.7). This expression describes the exact decrease in f at each iteration, but
since the term inside the brackets is difficult to interpret, it is more useful to bound it in
terms of the condition number of the problem.

Theorem 3.3.
When the steepest descent method with exact line searches (3.26) is applied to the strongly

convex quadratic function (3.24), the error norm (3.27) satisfies

‖xk+1 − x∗‖2
Q ≤

(
λn − λ1

λn + λ1

)2

‖xk − x∗‖2
Q, (3.29)

where 0 < λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of Q.

The proof of this result is given by Luenberger [195]. The inequalities (3.29) and (3.27)
show that the function values fk converge to the minimum f∗ at a linear rate. As a special
case of this result, we see that convergence is achieved in one iteration if all the eigenvalues
are equal. In this case, Q is a multiple of the identity matrix, so the contours in Figure 3.7
are circles and the steepest descent direction always points at the solution. In general, as the
condition number κ(Q) � λn/λ1 increases, the contours of the quadratic become more
elongated, the zigzagging in Figure 3.7 becomes more pronounced, and (3.29) implies that
the convergence degrades. Even though (3.29) is a worst-case bound, it gives an accurate
indication of the behavior of the algorithm when n > 2.

The rate-of-convergence behavior of the steepest descent method is essentially the
same on general nonlinear objective functions. In the following result we assume that the
step length is the global minimizer along the search direction.

Theorem 3.4.
Suppose that f : IRn → IR is twice continuously differentiable, and that the iterates

generated by the steepest-descent method with exact line searches converge to a point x∗ at
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which the Hessian matrix ∇2 f (x∗) is positive definite. Let r be any scalar satisfying

r ∈
(

λn − λ1

λn + λ1
, 1

)
,

where λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of ∇2 f (x∗). Then for all k sufficiently large, we
have

f (xk+1)− f (x∗) ≤ r 2[ f (xk)− f (x∗)].

In general, we cannot expect the rate of convergence to improve if an inexact line
search is used. Therefore, Theorem 3.4 shows that the steepest descent method can have an
unacceptably slow rate of convergence, even when the Hessian is reasonably well conditioned.
For example, if κ(Q) � 800, f (x1) � 1, and f (x∗) � 0, Theorem 3.4 suggests that the
function value will still be about 0.08 after one thousand iterations of the steepest descent
method with exact line search.

NEWTON’S METHOD

We now consider the Newton iteration, for which the search is given by

pN
k � −∇2 f −1

k ∇ fk . (3.30)

Since the Hessian matrix ∇2 fk may not always be positive definite, pN
k may not always

be a descent direction, and many of the ideas discussed so far in this chapter no longer
apply. In Section 3.4 and Chapter 4 we will describe two approaches for obtaining a globally
convergent iteration based on the Newton step: a line search approach, in which the Hessian
∇2 fk is modified, if necessary, to make it positive definite and thereby yield descent, and a
trust region approach, in which ∇2 fk is used to form a quadratic model that is minimized
in a ball around the current iterate xk .

Here we discuss just the local rate-of-convergence properties of Newton’s method.
We know that for all x in the vicinity of a solution point x∗ such that ∇2 f (x∗) is positive
definite, the Hessian ∇2 f (x) will also be positive definite. Newton’s method will be well
defined in this region and will converge quadratically, provided that the step lengths αk are
eventually always 1.

Theorem 3.5.
Suppose that f is twice differentiable and that the Hessian∇2 f (x) is Lipschitz continuous

(see (A.42)) in a neighborhood of a solution x∗ at which the sufficient conditions (Theorem 2.4)
are satisfied. Consider the iteration xk+1 � xk + pk , where pk is given by (3.30). Then

(i) if the starting point x0 is sufficiently close to x∗, the sequence of iterates converges to x∗;

(ii) the rate of convergence of {xk} is quadratic; and

(iii) the sequence of gradient norms {‖∇ fk‖} converges quadratically to zero.
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PROOF. From the definition of the Newton step and the optimality condition ∇ f∗ � 0 we
have that

xk + pN
k − x∗ � xk − x∗ − ∇2 f −1

k ∇ fk

� ∇2 f −1
k

[∇2 fk(xk − x∗)− (∇ fk −∇ f∗)
]
. (3.31)

Since Taylor’s theorem (Theorem 2.1) tells us that

∇ fk −∇ f∗ �
∫ 1

0
∇2 f (xk + t(x∗ − xk))(xk − x∗) dt,

we have ∥∥∇2 f (xk)(xk − x∗)− (∇ fk −∇ f (x∗))
∥∥

�
∥∥∥∥
∫ 1

0

[∇2 f (xk)− ∇2 f (xk + t(x∗ − xk))
]

(xk − x∗) dt

∥∥∥∥
≤
∫ 1

0

∥∥∇2 f (xk)− ∇2 f (xk + t(x∗ − xk))
∥∥ ‖xk − x∗‖ dt

≤ ‖xk − x∗‖2

∫ 1

0
Lt dt � 1

2 L‖xk − x∗‖2, (3.32)

where L is the Lipschitz constant for ∇2 f (x) for x near x∗. Since ∇2 f (x∗) is nonsingular,
there is a radius r > 0 such that ‖∇2 f −1

k ‖ ≤ 2‖∇2 f (x∗)−1‖ for all xk with ‖xk − x∗‖ ≤ r .
By substituting in (3.31) and (3.32), we obtain

‖xk + pN
k − x∗‖ ≤ L‖∇2 f (x∗)−1‖‖xk − x∗‖2 � L̃‖xk − x∗‖2, (3.33)

where L̃ � L‖∇2 f (x∗)−1‖. Choosing x0 so that ‖x0 − x∗‖ ≤ min(r, 1/(2L̃)), we can use
this inequality inductively to deduce that the sequence converges to x∗, and the rate of
convergence is quadratic.

By using the relations xk+1 − xk � pN
k and ∇ fk +∇2 fk pN

k � 0, we obtain that

‖∇ f (xk+1)‖ � ‖∇ f (xk+1)− ∇ fk − ∇2 f (xk)pN
k‖

�
∥∥∥∥
∫ 1

0
∇2 f (xk + t pN

k )(xk+1 − xk) dt −∇2 f (xk)pN
k

∥∥∥∥
≤
∫ 1

0

∥∥∇2 f (xk + t pN
k )−∇2 f (xk)

∥∥ ‖pN
k‖ dt

≤ 1
2 L‖pN

k‖2

≤ 1
2 L‖∇2 f (xk)−1‖2‖∇ fk‖2

≤ 2L‖∇2 f (x∗)−1‖2‖∇ fk‖2,

proving that the gradient norms converge to zero quadratically. �
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As the iterates generated by Newton’s method approach the solution, the Wolfe (or
Goldstein) conditions will accept the step length αk � 1 for all large k. This observation
follows from Theorem 3.6 below. Indeed, when the search direction is given by Newton’s
method, the limit (3.35) is satisfied—the ratio is zero for all k! Implementations of Newton’s
method using these line search conditions, and in which the line search always tries the unit
step length first, will set αk � 1 for all large k and attain a local quadratic rate of convergence.

QUASI-NEWTON METHODS

Suppose now that the search direction has the form

pk � −B−1
k ∇ fk, (3.34)

where the symmetric and positive definite matrix Bk is updated at every iteration by a
quasi-Newton updating formula. We already encountered one quasi-Newton formula, the
BFGS formula, in Chapter 2; others will be discussed in Chapter 6. We assume here that the
step length αk is computed by an inexact line search that satisfies the Wolfe or strong Wolfe
conditions, with the same proviso mentioned above for Newton’s method: The line search
algorithm will always try the step length α � 1 first, and will accept this value if it satisfies
the Wolfe conditions. (We could enforce this condition by setting ᾱ � 1 in Algorithm 3.1,
for example.) This implementation detail turns out to be crucial in obtaining a fast rate of
convergence.

The following result shows that if the search direction of a quasi-Newton method
approximates the Newton direction well enough, then the unit step length will satisfy the
Wolfe conditions as the iterates converge to the solution. It also specifies a condition that
the search direction must satisfy in order to give rise to a superlinearly convergent iteration.
To bring out the full generality of this result, we state it first in terms of a general descent
iteration, and then examine its consequences for quasi-Newton and Newton methods.

Theorem 3.6.
Suppose that f : IRn → IR is twice continuously differentiable. Consider the iteration

xk+1 � xk + αk pk , where pk is a descent direction and αk satisfies the Wolfe conditions (3.6)
with c1 ≤ 1/2. If the sequence {xk} converges to a point x∗ such that∇ f (x∗) � 0 and∇2 f (x∗)
is positive definite, and if the search direction satisfies

lim
k→∞

‖∇ fk +∇2 fk pk‖
‖pk‖ � 0, (3.35)

then

(i) the step length αk � 1 is admissible for all k greater than a certain index k0; and

(ii) if αk � 1 for all k > k0, {xk} converges to x∗ superlinearly.
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It is easy to see that if c1 > 1/2, then the line search would exclude the minimizer of
a quadratic, and unit step lengths may not be admissible.

If pk is a quasi-Newton search direction of the form (3.34), then (3.35) is equivalent to

lim
k→∞

‖(Bk −∇2 f (x∗))pk‖
‖pk‖ � 0. (3.36)

Hence, we have the surprising (and delightful) result that a superlinear convergence rate
can be attained even if the sequence of quasi-Newton matrices Bk does not converge to
∇2 f (x∗); it suffices that the Bk become increasingly accurate approximations to ∇2 f (x∗)
along the search directions pk . Importantly, condition (3.36) is both necessary and sufficient
for the superlinear convergence of quasi-Newton methods.

Theorem 3.7.
Suppose that f : IRn → IR is twice continuously differentiable. Consider the iteration

xk+1 � xk + pk (that is, the step length αk is uniformly 1) and that pk is given by (3.34). Let us
assume also that {xk} converges to a point x∗ such that ∇ f (x∗) � 0 and ∇2 f (x∗) is positive
definite. Then {xk} converges superlinearly if and only if (3.36) holds.

PROOF. We first show that (3.36) is equivalent to

pk − pN
k � o(‖pk‖), (3.37)

where pN
k � −∇2 f −1

k ∇ fk is the Newton step. Assuming that (3.36) holds, we have that

pk − pN
k � ∇2 f −1

k (∇2 fk pk +∇ fk)

� ∇2 f −1
k (∇2 fk − Bk)pk

� O(‖(∇2 fk − Bk)pk‖)

� o(‖pk‖),

where we have used the fact that ‖∇2 f −1
k ‖ is bounded above for xk sufficiently close to x∗,

since the limiting Hessian ∇2 f (x∗) is positive definite. The converse follows readily if we
multiply both sides of (3.37) by ∇2 fk and recall (3.34).

By combining (3.33) and (3.37), we obtain that

‖xk + pk − x∗‖ ≤ ‖xk + pN
k − x∗‖ + ‖pk − pN

k‖ � O(‖xk − x∗‖2)+ o(‖pk‖).

A simple manipulation of this inequality reveals that ‖pk‖ � O(‖xk − x∗‖), so we obtain

‖xk + pk − x∗‖ ≤ o(‖xk − x∗‖),

giving the superlinear convergence result. �
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We will see in Chapter 6 that quasi-Newton methods normally satisfy condition (3.36)
and are therefore superlinearly convergent.

3.4 NEWTON’S METHOD WITH HESSIAN MODIFICATION

Away from the solution, the Hessian matrix ∇2 f (x) may not be positive definite, so the
Newton direction pN

k defined by

∇2 f (xk)pN
k � −∇ f (xk) (3.38)

(see (3.30)) may not be a descent direction. We now describe an approach to overcome this
difficulty when a direct linear algebra technique, such as Gaussian elimination, is used to
solve the Newton equations (3.38). This approach obtains the step pk from a linear system
identical to (3.38), except that the coefficient matrix is replaced with a positive definite
approximation, formed before or during the solution process. The modified Hessian is
obtained by adding either a positive diagonal matrix or a full matrix to the true Hessian
∇2 f (xk). A general description of this method follows.

Algorithm 3.2 (Line Search Newton with Modification).
Given initial point x0;
for k � 0, 1, 2, . . .

Factorize the matrix Bk � ∇2 f (xk)+ Ek , where Ek � 0 if ∇2 f (xk)
is sufficiently positive definite; otherwise, Ek is chosen to
ensure that Bk is sufficiently positive definite;

Solve Bk pk � −∇ f (xk);
Set xk+1 ← xk + αk pk , where αk satisfies the Wolfe, Goldstein, or

Armijo backtracking conditions;
end

Some approaches do not compute Ek explicitly, but rather introduce extra steps and
tests into standard factorization procedures, modifying these procedures “on the fly” so
that the computed factors are the factors of a positive definite matrix. Strategies based on
modifying a Cholesky factorization and on modifying a symmetric indefinite factorization
of the Hessian are described in this section.

Algorithm 3.2 is a practical Newton method that can be applied from any starting
point. We can establish fairly satisfactory global convergence results for it, provided that
the strategy for choosing Ek (and hence Bk) satisfies the bounded modified factorization
property. This property is that the matrices in the sequence {Bk} have bounded condition
number whenever the sequence of Hessians {∇2 f (xk)} is bounded; that is,

κ(Bk) � ‖Bk‖ ‖B−1
k ‖ ≤ C, some C > 0 and all k � 0, 1, 2, . . . . (3.39)
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If this property holds, global convergence of the modified line search Newton method follows
from the results of Section 3.2.

Theorem 3.8.
Let f be twice continuously differentiable on an open set D, and assume that the starting

point x0 of Algorithm 3.2 is such that the level set L � {x ∈ D : f (x) ≤ f (x0)} is compact.
Then if the bounded modified factorization property holds, we have that

lim
k→∞

∇ f (xk) � 0.

For a proof this result see [215].
We now consider the convergence rate of Algorithm 3.2. Suppose that the sequence

of iterates xk converges to a point x∗ where ∇2 f (x∗) is sufficiently positive definite in the
sense that the modification strategies described in the next section return the modification
Ek � 0 for all sufficiently large k. By Theorem 3.6, we have that αk � 1 for all sufficiently
large k, so that Algorithm 3.2 reduces to a pure Newton method, and the rate of convergence
is quadratic.

For problems in which ∇ f ∗ is close to singular, there is no guarantee that the mod-
ification Ek will eventually vanish, and the convergence rate may be only linear. Besides
requiring the modified matrix Bk to be well conditioned (so that Theorem 3.8 holds), we
would like the modification to be as small as possible, so that the second-order information
in the Hessian is preserved as far as possible. Naturally, we would also like the modified
factorization to be computable at moderate cost.

To set the stage for the matrix factorization techniques that will be used in Al-
gorithm 3.2, we will begin by assuming that the eigenvalue decomposition of ∇2 f (xk) is
available. This is not realistic for large-scale problems because this decomposition is generally
too expensive to compute, but it will motivate several practical modification strategies.

EIGENVALUE MODIFICATION

Consider a problem in which, at the current iterate xk , ∇ f (xk) � (1,−3, 2)T and
∇2 f (xk) � diag(10, 3,−1), which is clearly indefinite. By the spectral decomposition
theorem (see Appendix A) we can define Q � I and � � diag(λ1, λ2, λ3), and write

∇2 f (xk) � Q�QT �
n∑

i�1

λi qi q
T
i . (3.40)

The pure Newton step—the solution of (3.38)—is pN
k � (−0.1, 1, 2)T , which is not a de-

scent direction, since ∇ f (xk)T pN
k > 0. One might suggest a modified strategy in which we

replace ∇2 f (xk) by a positive definite approximation Bk , in which all negative eigenvalues
in ∇2 f (xk) are replaced by a small positive number δ that is somewhat larger than ma-
chine precision u; say δ � √

u. For a machine precision of 10−16, the resulting matrix in
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our example is

Bk �
2∑

i�1

λi qi q
T
i + δq3qT

3 � diag
(
10, 3, 10−8

)
, (3.41)

which is numerically positive definite and whose curvature along the eigenvectors q1 and
q2 has been preserved. Note, however, that the search direction based on this modified
Hessian is

pk � −B−1
k ∇ fk � −

2∑
i�1

1

λi
qi
(
qT

i ∇ fk
)− 1

δ
q3

(
qT

3 ∇ f (xk)
)

≈ −(2× 108
)
q3. (3.42)

For small δ, this step is nearly parallel to q3 (with relatively small contributions from q1 and
q2) and quite long. Although f decreases along the direction pk , its extreme length violates
the spirit of Newton’s method, which relies on a quadratic approximation of the objective
function that is valid in a neighborhood of the current iterate xk . It is therefore not clear
that this search direction is effective.

Various other modification strategies are possible. We could flip the signs of the
negative eigenvalues in (3.40), which amounts to setting δ � 1 in our example. We could
set the last term in (3.42) to zero, so that the search direction has no components along
the negative curvature directions. We could adapt the choice of δ to ensure that the length
of the step is not excessive, a strategy that has the flavor of trust-region methods. As this
discussion shows, there is a great deal of freedom in devising modification strategies, and
there is currently no agreement on which strategy is best.

Setting the issue of the choice of δ aside for the moment, let us look more closely at the
process of modifying a matrix so that it becomes positive definite. The modification (3.41)
to the example matrix (3.40) can be shown to be optimal in the following sense. If A is a
symmetric matrix with spectral decomposition A � Q�QT , then the correction matrix
�A of minimum Frobenius norm that ensures that λmin(A +�A) ≥ δ is given by

�A � Q diag (τi )QT , with τi �
{

0, λi ≥ δ,

δ − λi , λi < δ.
(3.43)

Here, λmin(A) denotes the smallest eigenvalue of A, and the Frobenius norm of a matrix is
defined as ‖A‖2

F �
∑n

i, j�1 a2
i j (see (A.9)). Note that �A is not diagonal in general, and that

the modified matrix is given by

A +�A � Q(�+ diag(τi ))QT .

By using a different norm we can obtain a diagonal modification. Suppose again that
A is a symmetric matrix with spectral decomposition A � Q�QT . A correction matrix
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�A with minimum Euclidean norm that satisfies λmin(A +�A) ≥ δ is given by

�A � τ I, with τ � max(0, δ − λmin(A)). (3.44)

The modified matrix now has the form

A + τ I, (3.45)

which happens to have the same form as the matrix occurring in (unscaled) trust–region
methods (see Chapter 4). All the eigenvalues of (3.45) have thus been shifted, and all are
greater than δ.

These results suggest that both diagonal and nondiagonal modifications can be con-
sidered. Even though we have not answered the question of what constitutes a good
modification, various practical diagonal and nondiagonal modifications have been pro-
posed and implemented in software. They do not make use of the spectral decomposition of
the Hessian, since it is generally too expensive to compute. Instead, they use Gaussian elim-
ination, choosing the modifications indirectly and hoping that somehow they will produce
good steps. Numerical experience indicates that the strategies described next often (but not
always) produce good search directions.

ADDING A MULTIPLE OF THE IDENTITY

Perhaps the simplest idea is to find a scalar τ > 0 such that∇2 f (xk)+ τ I is sufficiently
positive definite. From the previous discussion we know that τ must satisfy (3.44), but a good
estimate of the smallest eigenvalue of the Hessian is normally not available. The following
algorithm describes a method that tries successively larger values of τ . (Here, aii denotes a
diagonal element of A.)

Algorithm 3.3 (Cholesky with Added Multiple of the Identity).
Choose β > 0;
if mini aii > 0

set τ0 ← 0;
else

τ0 � −min(aii )+ β;
end (if)
for k � 0, 1, 2, . . .

Attempt to apply the Cholesky algorithm to obtain L LT � A + τk I ;
if the factorization is completed successfully

stop and return L ;
else

τk+1 ← max(2τk, β);
end (if)

end (for)
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The choice of β is heuristic; a typical value is β � 10−3. We could choose the first
nonzero shift τ0 to be proportional to be the final value of τ used in the latest Hessian
modification; see also Algorithm B.1. The strategy implemented in Algorithm 3.3 is quite
simple and may be preferable to the modified factorization techniques described next, but
it suffers from one drawback. Every value of τk requires a new factorization of A+ τk I , and
the algorithm can be quite expensive if several trial values are generated. Therefore it may
be advantageous to increase τ more rapidly, say by a factor of 10 instead of 2 in the last else
clause.

MODIFIED CHOLESKY FACTORIZATION

Another approach for modifying a Hessian matrix that is not positive definite is
to perform a Cholesky factorization of ∇2 f (xk), but to increase the diagonal elements
encountered during the factorization (where necessary) to ensure that they are sufficiently
positive. This modified Cholesky approach is designed to accomplish two goals: It guarantees
that the modified Cholesky factors exist and are bounded relative to the norm of the actual
Hessian, and it does not modify the Hessian if it is sufficiently positive definite.

We begin our description of this approach by briefly reviewing the Cholesky
factorization. Every symmetric positive definite matrix A can be written as

A � L DLT , (3.46)

where L is a lower triangular matrix with unit diagonal elements and D is a diagonal matrix
with positive elements on the diagonal. By equating the elements in (3.46), column by
column, it is easy to derive formulas for computing L and D.

❏ EXAMPLE 3.1

Consider the case n � 3. The equation A � L DLT is given by

⎡
⎢⎣

a11 a21 a31

a21 a22 a32

a31 a32 a33

⎤
⎥⎦ �

⎡
⎢⎢⎣

1 0 0

l21 1 0

l31 l32 1

⎤
⎥⎥⎦
⎡
⎢⎣

d1 0 0

0 d2 0

0 0 d3

⎤
⎥⎦
⎡
⎢⎣

1 l21 l31

0 1 l32

0 0 1

⎤
⎥⎦ .

(The notation indicates that A is symmetric.) By equating the elements of the first column,
we have

a11 � d1,

a21 � d1l21 ⇒ l21 � a21/d1,

a31 � d1l31 ⇒ l31 � a31/d1.



3 . 4 . N E W T O N ’ S M E T H O D W I T H H E S S I A N M O D I F I C A T I O N 53

Proceeding with the next two columns, we obtain

a22 � d1l2
21 + d2 ⇒ d2 � a22 − d1l2

21,

a32 � d1l31l21 + d2l32 ⇒ l32 � (a32 − d1l31l21) /d2,

a33 � d1l2
31 + d2l2

32 + d3 ⇒ d3 � a33 − d1l2
31 − d2l2

32.

❐

This procedure is generalized in the following algorithm.

Algorithm 3.4 (Cholesky Factorization, L DLT Form).
for j � 1, 2, . . . , n

c j j ← a j j −
∑ j−1

s�1 dsl2
js ;

d j ← c j j ;
for i � j + 1, . . . , n

ci j ← ai j −
∑ j−1

s�1 dslisl js ;
li j ← ci j/d j ;

end
end

One can show (see, for example, Golub and Van Loan [136, Section 4.2.3]) that the
diagonal elements d j j are all positive whenever A is positive definite. The scalars ci j have
been introduced only to facilitate the description of the modified factorization discussed
below. We should note that Algorithm 3.4 differs a little from the standard form of the
Cholesky factorization, which produces a lower triangular matrix M such that

A � M MT . (3.47)

In fact, we can make the identification M � L D1/2 to relate M to the factors L and D
computed in Algorithm 3.4. The technique for computing M appears as Algorithm A.2 in
Appendix A.

If A is indefinite, the factorization A � L DLT may not exist. Even if it does exist,
Algorithm 3.4 is numerically unstable when applied to such matrices, in the sense that the
elements of L and D can become arbitrarily large. It follows that a strategy of computing
the L DLT factorization and then modifying the diagonal after the fact to force its elements
to be positive may break down, or may result in a matrix that is drastically different from A.

Instead, we can modify the matrix A during the course of the factorization in such
a way that all elements in D are sufficiently positive, and so that the elements of D and
L are not too large. To control the quality of the modification, we choose two positive
parameters δ and β, and require that during the computation of the j th columns of L and
D in Algorithm 3.4 (that is, for each j in the outer loop of the algorithm) the following
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bounds be satisfied:

d j ≥ δ, |mi j | ≤ β, i � j + 1, j + 2, . . . , n, (3.48)

where mi j � li j
√

d j . To satisfy these bounds we only need to change one step in Algo-
rithm 3.4: The formula for computing the diagonal element d j in Algorithm 3.4 is replaced
by

d j � max

(
|c j j |,

(
θ j

β

)2

, δ

)
, with θ j � max

j<i≤n
|ci j |. (3.49)

To verify that (3.48) holds, we note from Algorithm 3.4 that ci j � li j d j , and therefore

|mi j | � |li j

√
d j | � |ci j |√

d j
≤ |ci j |β

θ j
≤ β, for all i > j .

We note that θ j can be computed prior to d j because the elements ci j in the second
for loop of Algorithm 3.4 do not involve d j . In fact, this is the reason for introducing the
quantities ci j into the algorithm.

These observations are the basis of the modified Cholesky algorithm described in detail
in Gill, Murray, and Wright [130], which introduces symmetric interchanges of rows and
columns to try to reduce the size of the modification. If P denotes the permutation matrix
associated with the row and column interchanges, the algorithm produces the Cholesky
factorization of the permuted, modified matrix P APT + E , that is,

P APT + E � L DLT � M MT , (3.50)

where E is a nonnegative diagonal matrix that is zero if A is sufficiently positive definite.
One can show (Moré and Sorensen [215]) that the matrices Bk obtained by this modified
Cholesky algorithm to the exact Hessians ∇2 f (xk) have bounded condition numbers, that
is, the bound (3.39) holds for some value of C .

MODIFIED SYMMETRIC INDEFINITE FACTORIZATION

Another strategy for modifying an indefinite Hessian is to use a procedure based on
a symmetric indefinite factorization. Any symmetric matrix A, whether positive definite or
not, can be written as

P APT � L BLT , (3.51)

where L is unit lower triangular, B is a block diagonal matrix with blocks of dimension 1
or 2, and P is a permutation matrix (see our discussion in Appendix A and also Golub and
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Van Loan [136, Section 4.4]). We mentioned earlier that attempting to compute the L DLT

factorization of an indefinite matrix (where D is a diagonal matrix) is inadvisable because
even if the factors L and D are well defined, they may contain entries that are larger than the
original elements of A, thus amplifying rounding errors that arise during the computation.
However, by using the block diagonal matrix B, which allows 2 × 2 blocks as well as 1 × 1
blocks on the diagonal, we can guarantee that the factorization (3.51) always exists and can
be computed by a numerically stable process.

❏ EXAMPLE 3.2

The matrix

A �

⎡
⎢⎢⎢⎢⎣

0 1 2 3

1 2 2 2

2 2 3 3

3 2 3 4

⎤
⎥⎥⎥⎥⎦

can be written in the form (3.51) with P � [e1, e4, e3, e2],

L �

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

1

9

2

3
1 0

2

9

1

3
0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, B �

⎡
⎢⎢⎢⎢⎢⎢⎣

0 3 0 0

3 4 0 0

0 0
7

9

5

9

0 0
5

9

10

9

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3.52)

Note that both diagonal blocks in B are 2× 2. Several algorithms for computing symmetric
indefinite factorizations are discussed in Section A.1 of Appendix A.

❐

The symmetric indefinite factorization allows us to determine the inertia of a matrix,
that is, the number of positive, zero, and negative eigenvalues. One can show that the inertia
of B equals the inertia of A. Moreover, the 2 × 2 blocks in B are always constructed to
have one positive and one negative eigenvalue. Thus the number of positive eigenvalues in
A equals the number of positive 1× 1 blocks plus the number of 2× 2 blocks.

As for the Cholesky factorization, an indefinite symmetric factorization algorithm
can be modified to ensure that the modified factors are the factors of a positive definite
matrix. The strategy is first to compute the factorization (3.51), as well as the spectral
decomposition B � Q�QT , which is inexpensive to compute because B is block diagonal
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(see Exercise 3.12). We then construct a modification matrix F such that

L(B + F)LT

is sufficiently positive definite. Motivated by the modified spectral decomposition (3.43),
we choose a parameter δ > 0 and define F to be

F � Q diag(τi ) QT , τi �
{

0, λi ≥ δ,

δ − λi , λi < δ,
i � 1, 2, . . . , n, (3.53)

where λi are the eigenvalues of B. The matrix F is thus the modification of minimum
Frobenius norm that ensures that all eigenvalues of the modified matrix B + F are no less
than δ. This strategy therefore modifies the factorization (3.51) as follows:

P(A + E)PT � L(B + F)LT , where E � PT L F LT P.

(Note that E will not be diagonal, in general.) Hence, in contrast to the modified Cholesky
approach, this modification strategy changes the entire matrix A, not just its diagonal. The
aim of strategy (3.53) is that the modified matrix satisfies λmin(A + E) ≈ δ whenever the
original matrix A has λmin(A) < δ. It is not clear, however, whether it always comes close
to attaining this goal.

3.5 STEP-LENGTH SELECTION ALGORITHMS

We now consider techniques for finding a minimum of the one-dimensional function

φ(α) � f (xk + αpk), (3.54)

or for simply finding a step length αk satisfying one of the termination conditions described
in Section 3.1. We assume that pk is a descent direction—that is, φ′(0) < 0—so that our
search can be confined to positive values of α.

If f is a convex quadratic, f (x) � 1
2 xT Qx − bT x , its one-dimensional minimizer

along the ray xk + αpk can be computed analytically and is given by

αk � −∇ f T
k pk

pT
k Qpk

. (3.55)

For general nonlinear functions, it is necessary to use an iterative procedure. The line search
procedure deserves particular attention because it has a major impact on the robustness and
efficiency of all nonlinear optimization methods.
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Line search procedures can be classified according to the type of derivative information
they use. Algorithms that use only function values can be inefficient since, to be theoretically
sound, they need to continue iterating until the search for the minimizer is narrowed down
to a small interval. In contrast, knowledge of gradient information allows us to determine
whether a suitable step length has been located, as stipulated, for example, by the Wolfe
conditions (3.6) or Goldstein conditions (3.11). Often, particularly when xk is close to the
solution, the very first choice of α satisfies these conditions, so the line search need not
be invoked at all. In the rest of this section, we discuss only algorithms that make use of
derivative information. More information on derivative-free procedures is given in the notes
at the end of this chapter.

All line search procedures require an initial estimate α0 and generate a sequence {αi }
that either terminates with a step length satisfying the conditions specified by the user (for
example, the Wolfe conditions) or determines that such a step length does not exist. Typical
procedures consist of two phases: a bracketing phase that finds an interval [ā, b̄] containing
acceptable step lengths, and a selection phase that zooms in to locate the final step length.
The selection phase usually reduces the bracketing interval during its search for the desired
step length and interpolates some of the function and derivative information gathered on
earlier steps to guess the location of the minimizer. We first discuss how to perform this
interpolation.

In the following discussion we let αk and αk−1 denote the step lengths used at iterations
k and k − 1 of the optimization algorithm, respectively. On the other hand, we denote the
trial step lengths generated during the line search by αi and αi−1 and also α j . We use α0 to
denote the initial guess.

INTERPOLATION

We begin by describing a line search procedure based on interpolation of known
function and derivative values of the function φ. This procedure can be viewed as an
enhancement of Algorithm 3.1. The aim is to find a value of α that satisfies the sufficient
decrease condition (3.6a), without being “too small.” Accordingly, the procedures here
generate a decreasing sequence of values αi such that each value αi is not too much smaller
than its predecessor αi−1.

Note that we can write the sufficient decrease condition in the notation of (3.54) as

φ(αk) ≤ φ(0)+ c1αkφ
′(0), (3.56)

and that since the constant c1 is usually chosen to be small in practice (c1 � 10−4, say), this
condition asks for little more than descent in f . We design the procedure to be “efficient”
in the sense that it computes the derivative ∇ f (x) as few times as possible.

Suppose that the initial guess α0 is given. If we have

φ(α0) ≤ φ(0)+ c1α0φ
′(0),



58 C H A P T E R 3 . L I N E S E A R C H M E T H O D S

this step length satisfies the condition, and we terminate the search. Otherwise, we know that
the interval [0, α0] contains acceptable step lengths (see Figure 3.3). We form a quadratic
approximation φq (α) to φ by interpolating the three pieces of information available—φ(0),
φ′(0), and φ(α0)—to obtain

φq (α) �
(

φ(α0)− φ(0)− α0φ
′(0)

α2
0

)
α2 + φ′(0)α + φ(0). (3.57)

(Note that this function is constructed so that it satisfies the interpolation conditions
φq (0) � φ(0), φ′q (0) � φ′(0), and φq (α0) � φ(α0).) The new trial value α1 is defined as the
minimizer of this quadratic, that is, we obtain

α1 � − φ′(0)α2
0

2 [φ(α0)− φ(0)− φ′(0)α0]
. (3.58)

If the sufficient decrease condition (3.56) is satisfied at α1, we terminate the search. Oth-
erwise, we construct a cubic function that interpolates the four pieces of information φ(0),
φ′(0), φ(α0), and φ(α1), obtaining

φc(α) � aα3 + bα2 + αφ′(0)+ φ(0),

where

[
a

b

]
� 1

α2
0α

2
1(α1 − α0)

[
α2

0 −α2
1

−α3
0 α3

1

][
φ(α1)− φ(0)− φ′(0)α1

φ(α0)− φ(0)− φ′(0)α0

]
.

By differentiating φc(x), we see that the minimizer α2 of φc lies in the interval [0, α1] and is
given by

α2 � −b +
√

b2 − 3aφ′(0)

3a
.

If necessary, this process is repeated, using a cubic interpolant of φ(0), φ′(0) and the two
most recent values of φ, until an α that satisfies (3.56) is located. If any αi is either too
close to its predecessor αi−1 or else too much smaller than αi−1, we reset αi � αi−1/2. This
safeguard procedure ensures that we make reasonable progress on each iteration and that
the final α is not too small.

The strategy just described assumes that derivative values are significantly more ex-
pensive to compute than function values. It is often possible, however, to compute the
directional derivative simultaneously with the function, at little additional cost; see Chap-
ter 8. Accordingly, we can design an alternative strategy based on cubic interpolation of the
values of φ and φ′ at the two most recent values of α.



3 . 5 . S T E P - L E N G T H S E L E C T I O N A L G O R I T H M S 59

Cubic interpolation provides a good model for functions with significant changes of
curvature. Suppose we have an interval [ā, b̄] known to contain desirable step lengths, and
two previous step length estimates αi−1 and αi in this interval. We use a cubic function to
interpolate φ(αi−1), φ′(αi−1), φ(αi ), and φ′(αi ). (This cubic function always exists and is
unique; see, for example, Bulirsch and Stoer [41, p. 52].) The minimizer of this cubic in
[ā, b̄] is either at one of the endpoints or else in the interior, in which case it is given by

αi+1 � αi − (αi − αi−1)

[
φ′(αi )+ d2 − d1

φ′(αi )− φ′(αi−1)+ 2d2

]
, (3.59)

with

d1 � φ′(αi−1)+ φ′(αi )− 3
φ(αi−1)− φ(αi )

αi−1 − αi
,

d2 � sign(αi − αi−1)
[
d2

1 − φ′(αi−1)φ′(αi )
]1/2

.

The interpolation process can be repeated by discarding the data at one of the step
lengths αi−1 or αi and replacing it by φ(αi+1) and φ′(αi+1). The decision on which of αi−1

and αi should be kept and which discarded depends on the specific conditions used to
terminate the line search; we discuss this issue further below in the context of the Wolfe
conditions. Cubic interpolation is a powerful strategy, since it usually produces a quadratic
rate of convergence of the iteration (3.59) to the minimizing value of α.

INITIAL STEP LENGTH

For Newton and quasi-Newton methods, the step α0 � 1 should always be used as
the initial trial step length. This choice ensures that unit step lengths are taken whenever
they satisfy the termination conditions and allows the rapid rate-of-convergence properties
of these methods to take effect.

For methods that do not produce well scaled search directions, such as the steepest de-
scent and conjugate gradient methods, it is important to use current information about the
problem and the algorithm to make the initial guess. A popular strategy is to assume that the
first-order change in the function at iterate xk will be the same as that obtained at the previ-
ous step. In other words, we choose the initial guess α0 so that α0∇ f T

k pk � αk−1∇ f T
k−1 pk−1,

that is,

α0 � αk−1
∇ f T

k−1 pk−1

∇ f T
k pk

.

Another useful strategy is to interpolate a quadratic to the data f (xk−1), f (xk), and
∇ f T

k−1 pk−1 and to define α0 to be its minimizer. This strategy yields

α0 � 2( fk − fk−1)

φ′(0)
. (3.60)
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It can be shown that if xk → x∗ superlinearly, then the ratio in this expression converges to
1. If we adjust the choice (3.60) by setting

α0 ← min(1, 1.01α0),

we find that the unit step length α0 � 1 will eventually always be tried and accepted, and the
superlinear convergence properties of Newton and quasi-Newton methods will be observed.

A LINE SEARCH ALGORITHM FOR THE WOLFE CONDITIONS

The Wolfe (or strong Wolfe) conditions are among the most widely applicable and
useful termination conditions. We now describe in some detail a one-dimensional search
procedure that is guaranteed to find a step length satisfying the strong Wolfe conditions (3.7)
for any parameters c1 and c2 satisfying 0 < c1 < c2 < 1. As before, we assume that p is a
descent direction and that f is bounded below along the direction p.

The algorithm has two stages. This first stage begins with a trial estimate α1, and keeps
increasing it until it finds either an acceptable step length or an interval that brackets the
desired step lengths. In the latter case, the second stage is invoked by calling a function called
zoom (Algorithm 3.6, below), which successively decreases the size of the interval until an
acceptable step length is identified.

A formal specification of the line search algorithm follows. We refer to (3.7a) as the
sufficient decrease condition and to (3.7b) as the curvature condition. The parameter αmax

is a user-supplied bound on the maximum step length allowed. The line search algorithm
terminates with α∗ set to a step length that satisfies the strong Wolfe conditions.

Algorithm 3.5 (Line Search Algorithm).
Set α0 ← 0, choose αmax > 0 and α1 ∈ (0, αmax);
i ← 1;
repeat

Evaluate φ(αi );
if φ(αi ) > φ(0)+ c1αiφ

′(0) or [φ(αi ) ≥ φ(αi−1) and i > 1]
α∗ ←zoom(αi−1, αi ) and stop;

Evaluate φ′(αi );
if |φ′(αi )| ≤ −c2φ

′(0)
set α∗ ← αi and stop;

if φ′(αi ) ≥ 0
set α∗ ←zoom(αi , αi−1) and stop;

Choose αi+1 ∈ (αi , αmax);
i ← i + 1;

end (repeat)
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Note that the sequence of trial step lengths {αi } is monotonically increasing, but that
the order of the arguments supplied to the zoom function may vary. The procedure uses
the knowledge that the interval (αi−1, αi ) contains step lengths satisfying the strong Wolfe
conditions if one of the following three conditions is satisfied:

(i) αi violates the sufficient decrease condition;

(ii) φ(αi ) ≥ φ(αi−1);

(iii) φ′(αi ) ≥ 0.

The last step of the algorithm performs extrapolation to find the next trial value αi+1. To
implement this step we can use approaches like the interpolation procedures above, or
we can simply set αi+1 to some constant multiple of αi . Whichever strategy we use, it is
important that the successive steps increase quickly enough to reach the upper limit αmax in
a finite number of iterations.

We now specify the function zoom, which requires a little explanation. The order of
its input arguments is such that each call has the form zoom(αlo, αhi), where

(a) the interval bounded by αlo and αhi contains step lengths that satisfy the strong Wolfe
conditions;

(b) αlo is, among all step lengths generated so far and satisfying the sufficient decrease
condition, the one giving the smallest function value; and

(c) αhi is chosen so that φ′(αlo)(αhi − αlo) < 0.

Each iteration of zoom generates an iterate α j between αlo and αhi, and then replaces one
of these endpoints by α j in such a way that the properties (a), (b), and (c) continue to hold.

Algorithm 3.6 (zoom).
repeat

Interpolate (using quadratic, cubic, or bisection) to find
a trial step length α j between αlo and αhi;

Evaluate φ(α j );
if φ(α j ) > φ(0)+ c1α jφ

′(0) or φ(α j ) ≥ φ(αlo)
αhi ← α j ;

else
Evaluate φ′(α j );
if |φ′(α j )| ≤ −c2φ

′(0)
Set α∗ ← α j and stop;

if φ′(α j )(αhi − αlo) ≥ 0
αhi ← αlo;

αlo ← α j ;
end (repeat)



62 C H A P T E R 3 . L I N E S E A R C H M E T H O D S

If the new estimate α j happens to satisfy the strong Wolfe conditions, then zoom has served
its purpose of identifying such a point, so it terminates with α∗ � α j . Otherwise, if α j

satisfies the sufficient decrease condition and has a lower function value than xlo, then we
set αlo ← α j to maintain condition (b). If this setting results in a violation of condition (c),
we remedy the situation by setting αhi to the old value of αlo. Readers should sketch some
graphs to see for themselves how zoom works!

As mentioned earlier, the interpolation step that determines α j should be safeguarded
to ensure that the new step length is not too close to the endpoints of the interval. Practical
line search algorithms also make use of the properties of the interpolating polynomials to
make educated guesses of where the next step length should lie; see [39, 216]. A problem
that can arise is that as the optimization algorithm approaches the solution, two consecutive
function values f (xk) and f (xk−1) may be indistinguishable in finite-precision arithmetic.
Therefore, the line search must include a stopping test if it cannot attain a lower function
value after a certain number (typically, ten) of trial step lengths. Some procedures also
stop if the relative change in x is close to machine precision, or to some user-specified
threshold.

A line search algorithm that incorporates all these features is difficult to code. We
advocate the use of one of the several good software implementations available in the
public domain. See Dennis and Schnabel [92], Lemaréchal [189], Fletcher [101], Moré and
Thuente [216] (in particular), and Hager and Zhang [161].

One may ask how much more expensive it is to require the strong Wolfe conditions
instead of the regular Wolfe conditions. Our experience suggests that for a “loose” line
search (with parameters such as c1 � 10−4 and c2 � 0.9), both strategies require a similar
amount of work. The strong Wolfe conditions have the advantage that by decreasing c2 we
can directly control the quality of the search, by forcing the accepted value of α to lie closer
to a local minimum. This feature is important in steepest descent or nonlinear conjugate
gradient methods, and therefore a step selection routine that enforces the strong Wolfe
conditions has wide applicability.

NOTES AND REFERENCES

For an extensive discussion of line search termination conditions see Ortega and
Rheinboldt [230]. Akaike [2] presents a probabilistic analysis of the steepest descent method
with exact line searches on quadratic functions. He shows that when n > 2, the worst-case
bound (3.29) can be expected to hold for most starting points. The case n � 2 can be
studied in closed form; see Bazaraa, Sherali, and Shetty [14]. Theorem 3.6 is due to Dennis
and Moré.

Some line search methods (see Goldfarb [132] and Moré and Sorensen [213]) compute
a direction of negative curvature, whenever it exists, to prevent the iteration from converging
to nonminimizing stationary points. A direction of negative curvature p− is one that satisfies
pT
−∇2 f (xk)p− < 0. These algorithms generate a search direction by combining p− with the

steepest descent direction −∇ fk , often performing a curvilinear backtracking line search.
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It is difficult to determine the relative contributions of the steepest descent and negative
curvature directions. Because of this fact, the approach fell out of favor after the introduction
of trust-region methods.

For a more thorough treatment of the modified Cholesky factorization see Gill,
Murray, and Wright [130] or Dennis and Schnabel [92]. A modified Cholesky factorization
based on Gershgorin disk estimates is described in Schnabel and Eskow [276]. The modified
indefinite factorization is from Cheng and Higham [58].

Another strategy for implementing a line search Newton method when the Hessian
contains negative eigenvalues is to compute a direction of negative curvature and use it to
define the search direction (see Moré and Sorensen [213] and Goldfarb [132]).

Derivative-free line search algorithms include golden section and Fibonacci search.
They share some of the features with the line search method given in this chapter. They
typically store three trial points that determine an interval containing a one-dimensional
minimizer. Golden section and Fibonacci differ in the way in which the trial step lengths are
generated; see, for example, [79, 39].

Our discussion of interpolation follows Dennis and Schnabel [92], and the algorithm
for finding a step length satisfying the strong Wolfe conditions can be found in Fletcher
[101].

✐ E X E R C I S E S

✐ 3.1 Program the steepest descent and Newton algorithms using the backtracking line
search, Algorithm 3.1. Use them to minimize the Rosenbrock function (2.22). Set the initial
step length α0 � 1 and print the step length used by each method at each iteration. First try
the initial point x0 � (1.2, 1.2)T and then the more difficult starting point x0 � (−1.2, 1)T .

✐ 3.2 Show that if 0 < c2 < c1 < 1, there may be no step lengths that satisfy the Wolfe
conditions.

✐ 3.3 Show that the one-dimensional minimizer of a strongly convex quadratic function
is given by (3.55).

✐ 3.4 Show that the one-dimensional minimizer of a strongly convex quadratic function
always satisfies the Goldstein conditions (3.11).

✐ 3.5 Prove that ‖Bx‖ ≥ ‖x‖/‖B−1‖ for any nonsingular matrix B. Use this fact to
establish (3.19).

✐ 3.6 Consider the steepest descent method with exact line searches applied to the
convex quadratic function (3.24). Using the properties given in this chapter, show that if the
initial point is such that x0 − x∗ is parallel to an eigenvector of Q, then the steepest descent
method will find the solution in one step.
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✐ 3.7 Prove the result (3.28) by working through the following steps. First, use (3.26)
to show that

‖xk − x∗‖2
Q − ‖xk+1 − x∗‖2

Q � 2αk∇ f T
k Q(xk − x∗)− α2

k∇ f T
k Q∇ fk,

where ‖ · ‖Q is defined by (3.27). Second, use the fact that ∇ fk � Q(xk − x∗) to obtain

‖xk − x∗‖2
Q − ‖xk+1 − x∗‖2

Q �
2(∇ f T

k ∇ fk)2

(∇ f T
k Q∇ fk)

− (∇ f T
k ∇ fk)2

(∇ f T
k Q∇ fk)

and

‖xk − x∗‖2
Q � ∇ f T

k Q−1∇ fk .

✐ 3.8 Let Q be a positive definite symmetric matrix. Prove that for any vector x , we
have

(xT x)2

(xT Qx)(xT Q−1x)
≥ 4λnλ1

(λn + λ1)2
,

where λn and λ1 are, respectively, the largest and smallest eigenvalues of Q. (This relation,
which is known as the Kantorovich inequality, can be used to deduce (3.29) from (3.28).)

✐ 3.9 Program the BFGS algorithm using the line search algorithm described in this
chapter that implements the strong Wolfe conditions. Have the code verify that yT

k sk is
always positive. Use it to minimize the Rosenbrock function using the starting points given
in Exercise 3.1.

✐ 3.10 Compute the eigenvalues of the 2 diagonal blocks of (3.52) and verify that each
block has a positive and a negative eigenvalue. Then compute the eigenvalues of A and verify
that its inertia is the same as that of B.

✐ 3.11 Describe the effect that the modified Cholesky factorization (3.50) would have
on the Hessian ∇2 f (xk) � diag(−2, 12, 4).

✐ 3.12 Consider a block diagonal matrix B with 1× 1 and 2× 2 blocks. Show that the
eigenvalues and eigenvectors of B can be obtained by computing the spectral decomposition
of each diagonal block separately.

✐ 3.13 Show that the quadratic function that interpolates φ(0), φ′(0), and φ(α0) is
given by (3.57). Then, make use of the fact that the sufficient decrease condition (3.6a) is
not satisfied at α0 to show that this quadratic has positive curvature and that the minimizer
satisfies

α1 <
α0

2(1− c1)
.
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Since c1 is chosen to be quite small in practice, this inequality indicates that α1 cannot be
much greater than 1

2 (and may be smaller), which gives us an idea of the new step length.

✐ 3.14 If φ(α0) is large, (3.58) shows that α1 can be quite small. Give an example of a
function and a step length α0 for which this situation arises. (Drastic changes to the estimate
of the step length are not desirable, since they indicate that the current interpolant does not
provide a good approximation to the function and that it should be modified before being
trusted to produce a good step length estimate. In practice, one imposes a lower bound—
typically, ρ � 0.1—and defines the new step length as αi � max(ραi−1, α̂i ), where α̂i is the
minimizer of the interpolant.)

✐ 3.15 Suppose that the sufficient decrease condition (3.6a) is not satisfied at the step
lengths α0, and α1, and consider the cubic interpolating φ(0), φ′(0), φ(α0) and φ(α1).
By drawing graphs illustrating the two situations that can arise, show that the mini-
mizer of the cubic lies in [0, α1]. Then show that if φ(0) < φ(α1), the minimizer is
less than 2

3α1.




