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C H A P T E R4
Trust-Region
Methods

Line search methods and trust-region methods both generate steps with the help of a
quadratic model of the objective function, but they use this model in different ways. Line
search methods use it to generate a search direction, and then focus their efforts on finding
a suitable step length α along this direction. Trust-region methods define a region around
the current iterate within which they trust the model to be an adequate representation of
the objective function, and then choose the step to be the approximate minimizer of the
model in this region. In effect, they choose the direction and length of the step simul-
taneously. If a step is not acceptable, they reduce the size of the region and find a new
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minimizer. In general, the direction of the step changes whenever the size of the trust region
is altered.

The size of the trust region is critical to the effectiveness of each step. If the region is
too small, the algorithm misses an opportunity to take a substantial step that will move it
much closer to the minimizer of the objective function. If too large, the minimizer of the
model may be far from the minimizer of the objective function in the region, so we may have
to reduce the size of the region and try again. In practical algorithms, we choose the size of
the region according to the performance of the algorithm during previous iterations. If the
model is consistently reliable, producing good steps and accurately predicting the behavior
of the objective function along these steps, the size of the trust region may be increased to
allow longer, more ambitious, steps to be taken. A failed step is an indication that our model
is an inadequate representation of the objective function over the current trust region. After
such a step, we reduce the size of the region and try again.

Figure 4.1 illustrates the trust-region approach on a function f of two variables in
which the current point xk and the minimizer x∗ lie at opposite ends of a curved valley.
The quadratic model function mk , whose elliptical contours are shown as dashed lines, is
constructed from function and derivative information at xk and possibly also on information
accumulated from previous iterations and steps. A line search method based on this model
searches along the step to the minimizer of mk (shown), but this direction will yield at most
a small reduction in f , even if the optimal steplength is used. The trust-region method
steps to the minimizer of mk within the dotted circle (shown), yielding a more significant
reduction in f and better progress toward the solution.

In this chapter, we will assume that the model function mk that is used at each
iterate xk is quadratic. Moreover, mk is based on the Taylor-series expansion of f around
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Figure 4.1 Trust-region and line search steps.
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xk , which is

f (xk + p) � fk + gT
k p + 1

2 pT∇2 f (xk + tp)p, (4.1)

where fk � f (xk) and gk � ∇ f (xk), and t is some scalar in the interval (0, 1). By using an
approximation Bk to the Hessian in the second-order term, mk is defined as follows:

mk(p) � fk + gT
k p + 1

2 pT Bk p, (4.2)

where Bk is some symmetric matrix. The difference between mk(p) and f (xk + p) is
O
(‖p‖2

)
, which is small when p is small.

When Bk is equal to the true Hessian ∇2 f (xk), the approximation error in the model
function mk is O

(‖p‖3
)
, so this model is especially accurate when ‖p‖ is small. This choice

Bk � ∇2 f (xk) leads to the trust-region Newton method, and will be discussed further in
Section 4.4. In other sections of this chapter, we emphasize the generality of the trust-region
approach by assuming little about Bk except symmetry and uniform boundedness.

To obtain each step, we seek a solution of the subproblem

min
p∈IRn

mk(p) � fk + gT
k p + 1

2 pT Bk p s.t. ‖p‖ ≤ �k, (4.3)

where �k > 0 is the trust-region radius. In most of our discussions, we define ‖ · ‖ to be
the Euclidean norm, so that the solution p∗k of (4.3) is the minimizer of mk in the ball of
radius �k . Thus, the trust-region approach requires us to solve a sequence of subproblems
(4.3) in which the objective function and constraint (which can be written as pT p ≤ �2

k)
are both quadratic. When Bk is positive definite and ‖B−1

k gk‖ ≤ �k , the solution of (4.3) is
easy to identify—it is simply the unconstrained minimum pB

k � −B−1
k gk of the quadratic

mk(p). In this case, we call pB
k the full step. The solution of (4.3) is not so obvious in other

cases, but it can usually be found without too much computational expense. In any case,
as described below, we need only an approximate solution to obtain convergence and good
practical behavior.

OUTLINE OF THE TRUST-REGION APPROACH

One of the key ingredients in a trust-region algorithm is the strategy for choosing the
trust-region radius �k at each iteration. We base this choice on the agreement between the
model function mk and the objective function f at previous iterations. Given a step pk we
define the ratio

ρk � f (xk)− f (xk + pk)

mk(0)− mk(pk)
; (4.4)

the numerator is called the actual reduction, and the denominator is the predicted reduction
(that is, the reduction in f predicted by the model function). Note that since the step pk
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is obtained by minimizing the model mk over a region that includes p � 0, the predicted
reduction will always be nonnegative. Hence, if ρk is negative, the new objective value
f (xk + pk) is greater than the current value f (xk), so the step must be rejected. On the
other hand, if ρk is close to 1, there is good agreement between the model mk and the
function f over this step, so it is safe to expand the trust region for the next iteration. If ρk

is positive but significantly smaller than 1, we do not alter the trust region, but if it is close
to zero or negative, we shrink the trust region by reducing �k at the next iteration.

The following algorithm describes the process.

Algorithm 4.1 (Trust Region).
Given �̂ > 0, �0 ∈ (0, �̂), and η ∈ [0, 1

4

)
:

for k � 0, 1, 2, . . .

Obtain pk by (approximately) solving (4.3);
Evaluate ρk from (4.4);
if ρk < 1

4

�k+1 � 1
4�k

else
if ρk > 3

4 and ‖pk‖ � �k

�k+1 � min(2�k, �̂)
else

�k+1 � �k ;
if ρk > η

xk+1 � xk + pk

else
xk+1 � xk ;

end (for).

Here �̂ is an overall bound on the step lengths. Note that the radius is increased only if ‖pk‖
actually reaches the boundary of the trust region. If the step stays strictly inside the region,
we infer that the current value of �k is not interfering with the progress of the algorithm,
so we leave its value unchanged for the next iteration.

To turn Algorithm 4.1 into a practical algorithm, we need to focus on solving the
trust-region subproblem (4.3). In discussing this matter, we sometimes drop the iteration
subscript k and restate the problem (4.3) as follows:

min
p∈IRn

m(p)
def� f + gT p + 1

2 pT Bp s.t. ‖p‖ ≤ �. (4.5)

A first step to characterizing exact solutions of (4.5) is given by the following theorem
(due to Moré and Sorensen [214]), which shows that the solution p∗ of (4.5) satisfies

(B + λI )p∗ � −g (4.6)

for some λ ≥ 0.
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Theorem 4.1.
The vector p∗ is a global solution of the trust-region problem

min
p∈IRn

m(p) � f + gT p + 1
2 pT Bp, s.t. ‖p‖ ≤ �, (4.7)

if and only if p∗ is feasible and there is a scalar λ ≥ 0 such that the following conditions are
satisfied:

(B + λI )p∗ � −g, (4.8a)

λ(�− ||p∗||) � 0, (4.8b)

(B + λI ) is positive semidefinite. (4.8c)

We delay the proof of this result until Section 4.3, and instead discuss just its key
features here with the help of Figure 4.2. The condition (4.8b) is a complementarity condition
that states that at least one of the nonnegative quantities λ and (� − ‖p∗‖) must be zero.
Hence, when the solution lies strictly inside the trust region (as it does when � � �1 in
Figure 4.2), we must have λ � 0 and so Bp∗ � −g with B positive semidefinite, from (4.8a)
and (4.8c), respectively. In the other cases � � �2 and � � �3, we have ‖p∗‖ � �, and
so λ is allowed to take a positive value. Note from (4.8a) that

λp∗ � −Bp∗ − g � −∇m(p∗).

m
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Figure 4.2 Solution of trust-region subproblem for different radii �1, �2, �3.
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Thus, when λ > 0, the solution p∗ is collinear with the negative gradient of m and normal
to its contours. These properties can be seen in Figure 4.2.

In Section 4.1, we describe two strategies for finding approximate solutions of the
subproblem (4.3), which achieve at least as much reduction in mk as the reduction achieved
by the so-called Cauchy point. This point is simply the minimizer of mk along the steepest
descent direction −gk . subject to the trust-region bound. The first approximate strategy is
the dogleg method, which is appropriate when the model Hessian Bk is positive definite. The
second strategy, known as two-dimensional subspace minimization, can be applied when Bk

is indefinite, though it requires an estimate of the most negative eigenvalue of this matrix.
A third strategy, described in Section 7.1, uses an approach based on the conjugate gradient
method to minimize mk , and can therefore be applied when B is large and sparse.

Section 4.3 is devoted to a strategy in which an iterative method is used to identify the
value of λ for which (4.6) is satisfied by the solution of the subproblem. We prove global
convergence results in Section 4.2. Section 4.4 discusses the trust-region Newton method, in
which the Hessian Bk of the model function is equal to the Hessian∇2 f (xk) of the objective
function. The key result of this section is that, when the trust-region Newton algorithm con-
verges to a point x∗ satisfying second-order sufficient conditions, it converges superlinearly.

4.1 ALGORITHMS BASED ON THE CAUCHY POINT

THE CAUCHY POINT

As we saw in Chapter 3, line search methods can be globally convergent even when the
optimal step length is not used at each iteration. In fact, the step length αk need only satisfy
fairly loose criteria. A similar situation applies in trust-region methods. Although in principle
we seek the optimal solution of the subproblem (4.3), it is enough for purposes of global
convergence to find an approximate solution pk that lies within the trust region and gives a
sufficient reduction in the model. The sufficient reduction can be quantified in terms of the
Cauchy point, which we denote by pC

k and define in terms of the following simple procedure.

Algorithm 4.2 (Cauchy Point Calculation).
Find the vector pS

k that solves a linear version of (4.3), that is,

pS
k � arg min

p∈IRn
fk + gT

k p s.t. ‖p‖ ≤ �k; (4.9)

Calculate the scalar τk > 0 that minimizes mk(τ pS
k) subject to

satisfying the trust-region bound, that is,

τk � arg min
τ≥0

mk(τ pS
k) s.t. ‖τ pS

k‖ ≤ �k; (4.10)

Set pC
k � τk pS

k .
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It is easy to write down a closed-form definition of the Cauchy point. For a start, the
solution of (4.9) is simply

pS
k � − �k

‖gk‖gk .

To obtain τk explicitly, we consider the cases of gT
k Bk gk ≤ 0 and gT

k Bk gk > 0 separately. For
the former case, the function mk(τ pS

k) decreases monotonically with τ whenever gk 	� 0,
so τk is simply the largest value that satisfies the trust-region bound, namely, τk � 1. For
the case gT

k Bk gk > 0, mk(τ pS
k) is a convex quadratic in τ , so τk is either the unconstrained

minimizer of this quadratic, ‖gk‖3/(�k gT
k Bk gk), or the boundary value 1, whichever comes

first. In summary, we have

pC
k � −τk

�k

‖gk‖gk, (4.11)

where

τk �
{

1 if gT
k Bk gk ≤ 0;

min
(‖gk‖3/(�k gT

k Bk gk), 1
)

otherwise.
(4.12)

Figure 4.3 illustrates the Cauchy point for a subproblem in which Bk is positive
definite. In this example, pC

k lies strictly inside the trust region.
The Cauchy step pC

k is inexpensive to calculate—no matrix factorizations are
required—and is of crucial importance in deciding if an approximate solution of the
trust-region subproblem is acceptable. Specifically, a trust-region method will be globally

—

k
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Figure 4.3 The Cauchy point.
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convergent if its steps pk give a reduction in the model mk that is at least some fixed positive
multiple of the decrease attained by the Cauchy step.

IMPROVING ON THE CAUCHY POINT

Since the Cauchy point pC
k provides sufficient reduction in the model function mk

to yield global convergence, and since the cost of calculating it is so small, why should
we look any further for a better approximate solution of (4.3)? The reason is that by
always taking the Cauchy point as our step, we are simply implementing the steepest
descent method with a particular choice of step length. As we have seen in Chap-
ter 3, steepest descent performs poorly even if an optimal step length is used at each
iteration.

The Cauchy point does not depend very strongly on the matrix Bk , which is used only
in the calculation of the step length. Rapid convergence can be expected only if Bk plays a
role in determining the direction of the step as well as its length, and if Bk contains valid
curvature information about the function.

A number of trust-region algorithms compute the Cauchy point and then try to
improve on it. The improvement strategy is often designed so that the full step pB

k � −B−1
k gk

is chosen whenever Bk is positive definite and ‖pB
k‖ ≤ �k . When Bk is the exact Hessian

∇2 f (xk) or a quasi-Newton approximation, this strategy can be expected to yield superlinear
convergence.

We now consider three methods for finding approximate solutions to (4.3) that have
the features just described. Throughout this section we will be focusing on the internal
workings of a single iteration, so we simplify the notation by dropping the subscript “k”
from the quantities �k , pk , mk , and gk and refer to the formulation (4.5) of the subproblem.
In this section, we denote the solution of (4.5) by p∗(�), to emphasize the dependence
on �.

THE DOGLEG METHOD

The first approach we discuss goes by the descriptive title of the dogleg method. It can
be used when B is positive definite.

To motivate this method, we start by examining the effect of the trust-region radius �

on the solution p∗(�) of the subproblem (4.5). When B is positive definite, we have already
noted that the unconstrained minimizer of m is pB � −B−1g. When this point is feasible
for (4.5), it is obviously a solution, so we have

p∗(�) � pB, when � ≥ ‖pB‖. (4.13)

When � is small relative to pB, the restriction ‖p‖ ≤ � ensures that the quadratic term in
m has little effect on the solution of (4.5). For such �, we can get an approximation to p(�)
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)∆

pB full step( )

—g)pU

—g

Trust region

pOptimal trajectory

dogleg path

unconstrained min along(

(

Figure 4.4 Exact trajectory and dogleg approximation.

by simply omitting the quadratic term from (4.5) and writing

p∗(�) ≈ −�
g

‖g‖ , when � is small. (4.14)

For intermediate values of �, the solution p∗(�) typically follows a curved trajectory like
the one in Figure 4.4.

The dogleg method finds an approximate solution by replacing the curved trajectory
for p∗(�) with a path consisting of two line segments. The first line segment runs from the
origin to the minimizer of m along the steepest descent direction, which is

pU � − gT g

gT Bg
g, (4.15)

while the second line segment runs from pU to pB (see Figure 4.4). Formally, we denote this
trajectory by p̃(τ ) for τ ∈ [0, 2], where

p̃(τ ) �
{

τ pU, 0 ≤ τ ≤ 1,

pU + (τ − 1)(pB − pU), 1 ≤ τ ≤ 2.
(4.16)

The dogleg method chooses p to minimize the model m along this path, subject to
the trust-region bound. The following lemma shows that the minimum along the dogleg
path can be found easily.
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Lemma 4.2.
Let B be positive definite. Then

(i) ‖ p̃(τ )‖ is an increasing function of τ , and

(ii) m( p̃(τ )) is a decreasing function of τ .

PROOF. It is easy to show that (i) and (ii) both hold for τ ∈ [0, 1], so we restrict our
attention to the case of τ ∈ [1, 2]. For (i), define h(α) by

h(α) � 1
2‖ p̃(1+ α)‖2

� 1
2‖pU + α(pB − pU)‖2

� 1
2‖pU‖2 + α(pU)T (pB − pU)+ 1

2α
2‖pB − pU‖2.

Our result is proved if we can show that h′(α) ≥ 0 for α ∈ (0, 1). Now,

h′(α) � −(pU)T (pU − pB)+ α‖pU − pB‖2

≥ −(pU)T (pU − pB)

� gT g

gT Bg
gT

(
− gT g

gT Bg
g + B−1g

)

� gT g
gB−1g

gT Bg

[
1− (gT g)2

(gT Bg)(gT B−1g)

]
≥ 0,

where the final inequality is a consequence of the Cauchy-Schwarz inequality. (We leave the
details as an exercise.)

For (ii), we define ĥ(α) � m( p̃(1 + α)) and show that ĥ′(α) ≤ 0 for α ∈ (0, 1).
Substitution of (4.16) into (4.5) and differentiation with respect to the argument leads to

ĥ′(α) � (pB − pU)T (g + B pU)+ α(pB − pU)T B(pB − pU)

≤ (pB − pU)T (g + B pU + B(pB − pU))

� (pB − pU)T (g + B pB) � 0,

giving the result. �

It follows from this lemma that the path p̃(τ ) intersects the trust-region boundary
‖p‖ � � at exactly one point if ‖pB‖ ≥ �, and nowhere otherwise. Since m is decreasing
along the path, the chosen value of p will be at pB if ‖pB‖ ≤ �, otherwise at the point of
intersection of the dogleg and the trust-region boundary. In the latter case, we compute the
appropriate value of τ by solving the following scalar quadratic equation:

‖pU + (τ − 1)(pB − pU)‖2 � �2.



76 C H A P T E R 4 . T R U S T - R E G I O N M E T H O D S

Consider now the case in which the exact Hessian ∇2 f (xk) is available for use in the
model problem (4.5). When ∇2 f (xk) is positive definite, we can simply set B � ∇2 f (xk)
(that is, pB � (∇2 f (xk))−1gk) and apply the procedure above to find the Newton-dogleg
step. Otherwise, we can define pB by choosing B to be one of the positive definite modified
Hessians described in Section 3.4, then proceed as above to find the dogleg step. Near
a solution satisfying second-order sufficient conditions (see Theorem 2.4), pB will be set
to the usual Newton step, allowing the possibility of rapid local convergence of Newton’s
method (see Section 4.4).

The use of a modified Hessian in the Newton-dogleg method is not completely
satisfying from an intuitive viewpoint, however. A modified factorization perturbs the
diagonals of ∇2 f (xk) in a somewhat arbitrary manner, and the benefits of the trust-region
approach may not be realized. In fact, the modification introduced during the factorization
of the Hessian is redundant in some sense because the trust-region strategy introduces its
own modification. As we show in Section 4.3, the exact solution of the trust-region problem
(4.3) with Bk � ∇2 f (xk) is (∇2 f (xk) + λI )−1gk , where λ is chosen large enough to make
(∇2 f (xk) + λI ) positive definite, and its value depends on the trust-region radius �k . We
conclude that the Newton-dogleg method is most appropriate when the objective function
is convex (that is, ∇2 f (xk) is always positive semidefinite). The techniques described below
may be more suitable for the general case.

The dogleg strategy can be adapted to handle indefinite matrices B, but there is not
much point in doing so because the full step pB is not the unconstrained minimizer of m
in this case. Instead, we now describe another strategy, which aims to include directions of
negative curvature (that is, directions d for which dT Bd < 0) in the space of candidate
trust-region steps.

TWO-DIMENSIONAL SUBSPACE MINIMIZATION

When B is positive definite, the dogleg method strategy can be made slightly more
sophisticated by widening the search for p to the entire two-dimensional subspace spanned
by pU and pB (equivalently, g and −B−1g). The subproblem (4.5) is replaced by

min
p

m(p) � f + gT p + 1
2 pT Bp s.t. ‖p‖ ≤ �, p ∈ span[g, B−1g]. (4.17)

This is a problem in two variables that is computationally inexpensive to solve. (After some
algebraic manipulation it can be reduced to finding the roots of a fourth degree polynomial.)
Clearly, the Cauchy point pC is feasible for (4.17), so the optimal solution of this subproblem
yields at least as much reduction in m as the Cauchy point, resulting in global convergence
of the algorithm. The two-dimensional subspace minimization strategy is obviously an
extension of the dogleg method as well, since the entire dogleg path lies in span[g, B−1g].

This strategy can be modified to handle the case of indefinite B in a way that is intuitive,
practical, and theoretically sound. We mention just the salient points of the handling of the
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indefiniteness here, and refer the reader to papers by Byrd, Schnabel, and Schultz (see [54]
and [279]) for details. When B has negative eigenvalues, the two-dimensional subspace in
(4.17) is changed to

span[g, (B + α I )−1g], for some α ∈ (−λ1,−2λ1], (4.18)

where λ1 denotes the most negative eigenvalue of B. (This choice of α ensures that B+α I is
positive definite, and the flexibility in the choice of α allows us to use a numerical procedure
such as the Lanczos method to compute it.) When ‖(B + α I )−1g‖ ≤ �, we discard the
subspace search of (4.17), (4.18) and instead define the step to be

p � −(B + α I )−1g + v, (4.19)

where v is a vector that satisfies vT (B + α I )−1g ≤ 0. (This condition ensures that ‖p‖ ≥
‖(B + α I )−1g‖.) When B has zero eigenvalues but no negative eigenvalues, we define the
step to be the Cauchy point p � pC.

When the exact Hessian is available, we can set B � ∇2 f (xk), and note that B−1g is
the Newton step. Hence, when the Hessian is positive definite at the solution x∗ and when
xk is close to x∗ and � is sufficiently large, the subspace minimization problem (4.17) will
be solved by the Newton step.

The reduction in model function m achieved by the two-dimensional subspace min-
imization strategy often is close to the reduction achieved by the exact solution of (4.5).
Most of the computational effort lies in a single factorization of B or B +α I (estimation of
α and solution of (4.17) are less significant), while strategies that find nearly exact solutions
of (4.5) typically require two or three such factorizations (see Section 4.3).

4.2 GLOBAL CONVERGENCE

REDUCTION OBTAINED BY THE CAUCHY POINT

In the preceding discussion of algorithms for approximately solving the trust-region
subproblem, we have repeatedly emphasized that global convergence depends on the ap-
proximate solution obtaining at least as much decrease in the model function m as the
Cauchy point. (In fact, a fixed positive fraction of the Cauchy decrease suffices.) We start
the global convergence analysis by obtaining an estimate of the decrease in m achieved by
the Cauchy point. We then use this estimate to prove that the sequence of gradients {gk}
generated by Algorithm 4.1 has an accumulation point at zero, and in fact converges to zero
when η is strictly positive.

Our first main result is that the dogleg and two-dimensional subspace minimization
algorithms and Steihaug’s algorithm (Algorithm 7.2) produce approximate solutions pk of
the subproblem (4.3) that satisfy the following estimate of decrease in the model function:

mk(0)− mk(pk) ≥ c1‖gk‖min

(
�k,

‖gk‖
‖Bk‖

)
, (4.20)
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for some constant c1 ∈ (0, 1]. The usefulness of this estimate will become clear in the
following two sections. For now, we note that when �k is the minimum value in (4.20), the
condition is slightly reminiscent of the first Wolfe condition: The desired reduction in the
model is proportional to the gradient and the size of the step.

We show now that the Cauchy point pC
k satisfies (4.20), with c1 � 1

2 .

Lemma 4.3.
The Cauchy point pC

k satisfies (4.20) with c1 � 1
2 , that is,

mk(0)− mk(pC
k) ≥ 1

2‖gk‖min

(
�k,

‖gk‖
‖Bk‖

)
. (4.21)

PROOF. For simplicity, we drop the iteration index k in the proof.
We consider first the case gT Bg ≤ 0. Here, we have

m(pC)− m(0) � m(−�g/‖g‖)− f

� − �

‖g‖‖g‖2 + 1
2

�2

‖g‖2
gT Bg

≤ −�‖g‖
≤ −‖g‖min

(
�,

‖g‖
‖B‖

)
,

and so (4.21) certainly holds.
For the next case, consider gT Bg > 0 and

‖g‖3

�gT Bg
≤ 1. (4.22)

From (4.12), we have τ � ‖g‖3/
(
�gT Bg

)
, and so from (4.11) it follows that

m(pC)− m(0) � − ‖g‖4

gT Bg
+ 1

2 gT Bg
‖g‖4

(gT Bg)2

� − 1
2

‖g‖4

gT Bg

≤ − 1
2

‖g‖4

‖B‖‖g‖2

� − 1
2

‖g‖2

‖B‖
≤ − 1

2‖g‖min

(
�,

‖g‖
‖B‖

)
,

so (4.21) holds here too.
In the remaining case, (4.22) does not hold, and therefore

gT Bg <
‖g‖3

�
. (4.23)
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From (4.12), we have τ � 1, and using this fact together with (4.23), we obtain

m(pC)− m(0) � − �

‖g‖‖g‖2 + 1

2

�2

‖g‖2
gT Bg

≤ −�‖g‖ + 1

2

�2

‖g‖2

‖g‖3

�

� − 1
2�‖g‖

≤ − 1
2‖g‖min

(
�,

‖g‖
‖B‖

)
,

yielding the desired result (4.21) once again. �

To satisfy (4.20), our approximate solution pk has only to achieve a reduction that is
at least some fixed fraction c2 of the reduction achieved by the Cauchy point. We state the
observation formally as a theorem.

Theorem 4.4.
Let pk be any vector such that ‖pk‖ ≤ �k and mk(0)−mk(pk) ≥ c2

(
mk(0)− mk(pC

k)
)
.

Then pk satisfies (4.20) with c1 � c2/2. In particular, if pk is the exact solution p∗k of (4.3),
then it satisfies (4.20) with c1 � 1

2 .

PROOF. Since ‖pk‖ ≤ �k , we have from Lemma 4.3 that

mk(0)− mk(pk) ≥ c2

(
mk(0)− mk(pC

k)
) ≥ 1

2 c2‖gk‖min

(
�k,

‖gk‖
‖Bk‖

)
,

giving the result. �

Note that the dogleg and two-dimensional subspace minimization algorithms both
satisfy (4.20) with c1 � 1

2 , because they all produce approximate solutions pk for which
mk(pk) ≤ mk(pC

k).

CONVERGENCE TO STATIONARY POINTS

Global convergence results for trust-region methods come in two varieties, depending
on whether we set the parameter η in Algorithm 4.1 to zero or to some small positive value.
When η � 0 (that is, the step is taken whenever it produces a lower value of f ), we can
show that the sequence of gradients {gk} has a limit point at zero. For the more stringent
acceptance test with η > 0, which requires the actual decrease in f to be at least some small
fraction of the predicted decrease, we have the stronger result that gk → 0.

In this section we prove the global convergence results for both cases. We assume
throughout that the approximate Hessians Bk are uniformly bounded in norm, and that f
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is bounded below on the level set

S
def� {x | f (x) ≤ f (x0)}. (4.24)

For later reference, we define an open neighborhood of this set by

S(R0)
def� {x | ‖x − y‖ < R0 for some y ∈ S},

where R0 is a positive constant.
To allow our results to be applied more generally, we also allow the length of the

approximate solution pk of (4.3) to exceed the trust-region bound, provided that it stays
within some fixed multiple of the bound; that is,

‖pk‖ ≤ γ�k, for some constant γ ≥ 1. (4.25)

The first result deals with the case η � 0.

Theorem 4.5.
Let η � 0 in Algorithm 4.1. Suppose that ‖Bk‖ ≤ β for some constant β, that f is

bounded below on the level set S defined by (4.24) and Lipschitz continuously differentiable in
the neighborhood S(R0) for some R0 > 0, and that all approximate solutions of (4.3) satisfy
the inequalities (4.20) and (4.25), for some positive constants c1 and γ . We then have

lim inf
k→∞

‖gk‖ � 0. (4.26)

PROOF. By performing some technical manipulation with the ratio ρk from (4.4), we obtain

|ρk − 1| �
∣∣∣∣ ( f (xk)− f (xk + pk))− (mk(0)− mk(pk))

mk(0)− mk(pk)

∣∣∣∣
�
∣∣∣∣mk(pk)− f (xk + pk)

mk(0)− mk(pk)

∣∣∣∣ .
Since from Taylor’s theorem (Theorem 2.1) we have that

f (xk + pk) � f (xk)+ g(xk)T pk +
∫ 1

0
[g(xk + tpk)− g(xk)]T pk dt,

for some t ∈ (0, 1), it follows from the definition (4.2) of mk that

|mk(pk)− f (xk + pk)| �
∣∣∣∣ 1

2 pT
k Bk pk −

∫ 1

0
[g(xk + tpk)− g(xk)]T pk dt

∣∣∣∣
≤ (β/2)‖pk‖2 + β1‖pk‖2, (4.27)
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where we have used β1 to denote the Lipschitz constant for g on the set S(R0), and assumed
that ‖pk‖ ≤ R0 to ensure that xk and xk + tpk both lie in the set S(R0).

Suppose for contradiction that there is ε > 0 and a positive index K such that

‖gk‖ ≥ ε, for all k ≥ K . (4.28)

From (4.20), we have for k ≥ K that

mk(0)− mk(pk) ≥ c1‖gk‖min

(
�k,

‖gk‖
‖Bk‖

)
≥ c1ε min

(
�k,

ε

β

)
. (4.29)

Using (4.29), (4.27), and the bound (4.25), we have

|ρk − 1| ≤ γ 2�2
k(β/2+ β1)

c1ε min(�k, ε/β)
. (4.30)

We now derive a bound on the right-hand-side that holds for all sufficiently small values of
�k , that is, for all �k ≤ �̄, where �̄ is defined as follows:

�̄ � min

(
1

2

c1ε

γ 2(β/2+ β1)
,

R0

γ

)
. (4.31)

The R0/γ term in this definition ensures that the bound (4.27) is valid (because ‖pk‖ ≤
γ�k ≤ γ �̄ ≤ R0). Note that since c1 ≤ 1 and γ ≥ 1, we have �̄ ≤ ε/β. The latter
condition implies that for all �k ∈ [0, �̄], we have min(�k, ε/β) � �k , so from (4.30) and
(4.31), we have

|ρk − 1| ≤ γ 2�2
k(β/2+ β1)

c1ε�k
� γ 2�k(β/2+ β1)

c1ε
≤ γ 2�̄(β/2+ β1)

c1ε
≤ 1

2
.

Therefore, ρk > 1
4 , and so by the workings of Algorithm 4.1, we have �k+1 ≥ �k whenever

�k falls below the threshold �̄. It follows that reduction of �k
(
by a factor of 1

4

)
can occur

in our algorithm only if

�k ≥ �̄,

and therefore we conclude that

�k ≥ min
(
�K , �̄/4

)
for all k ≥ K . (4.32)

Suppose now that there is an infinite subsequence K such that ρk ≥ 1
4 for k ∈ K. For
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k ∈ K and k ≥ K , we have from (4.29) that

f (xk)− f (xk+1) � f (xk)− f (xk + pk)

≥ 1
4 [mk(0)− mk(pk)]

≥ 1
4 c1ε min(�k, ε/β).

Since f is bounded below, it follows from this inequality that

lim
k∈K, k→∞

�k � 0,

contradicting (4.32). Hence no such infinite subsequence K can exist, and we must have
ρk < 1

4 for all k sufficiently large. In this case, �k will eventually be multiplied by 1
4 at every

iteration, and we have limk→∞ �k � 0, which again contradicts (4.32). Hence, our original
assertion (4.28) must be false, giving (4.26). �

Our second global convergence result, for the case η > 0, borrows much of the analysis
from the proof above. Our approach here follows that of Schultz, Schnabel, and Byrd [279].

Theorem 4.6.
Let η ∈ (0, 1

4

)
in Algorithm 4.1. Suppose that ‖Bk‖ ≤ β for some constant β, that f is

bounded below on the level set S (4.24) and Lipschitz continuously differentiable in S(R0) for
some R0 > 0, and that all approximate solutions pk of (4.3) satisfy the inequalities (4.20) and
(4.25) for some positive constants c1 and γ . We then have

lim
k→∞

gk � 0. (4.33)

PROOF. We consider a particular positive index m with gm 	� 0. Using β1 again to denote
the Lipschitz constant for g on the set S(R0), we have

‖g(x)− gm‖ ≤ β1‖x − xm‖,

for all x ∈ S(R0). We now define the scalars ε and R to satisfy

ε � 1
2‖gm‖, R � min

(
ε

β1
, R0

)
.

Note that the ball

B(xm, R) � {x | ‖x − xm‖ ≤ R}

is contained in S(R0), so Lipschitz continuity of g holds inside B(xm, R). We have

x ∈ B(xm, R) ⇒ ‖g(x)‖ ≥ ‖gm‖ − ‖g(x)− gm‖ ≥ 1
2‖gm‖ � ε.

If the entire sequence {xk}k≥m stays inside the ball B(xm, R), we would have ‖gk‖ ≥ ε > 0
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for all k ≥ m. The reasoning in the proof of Theorem 4.5 can be used to show that this
scenario does not occur. Therefore, the sequence {xk}k≥m eventually leaves B(xm, R).

Let the index l ≥ m be such that xl+1 is the first iterate after xm outside B(xm, R).
Since ‖gk‖ ≥ ε for k � m, m + 1, . . . , l, we can use (4.29) to write

f (xm)− f (xl+1) �
l∑

k�m

f (xk)− f (xk+1)

≥
∑l

k�m,xk 	�xk+1

η[mk(0)− mk(pk)]

≥
∑l

k�m,xk 	�xk+1

ηc1ε min

(
�k,

ε

β

)
,

where we have limited the sum to the iterations k for which xk 	� xk+1, that is, those iterations
on which a step was actually taken. If �k ≤ ε/β for all k � m, m + 1, . . . , l, we have

f (xm)− f (xl+1) ≥ ηc1ε

l∑
k�m,xk 	�xk+1

�k ≥ ηc1εR � ηc1ε min

(
ε

β1
, R0

)
. (4.34)

Otherwise, we have �k > ε/β for some k � m, m + 1, . . . , l, and so

f (xm)− f (xl+1) ≥ ηc1ε
ε

β
. (4.35)

Since the sequence { f (xk)}∞k�0 is decreasing and bounded below, we have that

f (xk) ↓ f ∗ (4.36)

for some f ∗ > −∞. Therefore, using (4.34) and (4.35), we can write

f (xm)− f ∗ ≥ f (xm)− f (xl+1)

≥ ηc1ε min

(
ε

β
,

ε

β1
, R0

)

� 1

2
ηc1‖gm‖min

(‖gm‖
2β

,
‖gm‖
2β1

, R0

)
> 0.

Since f (xm)− f ∗ ↓ 0, we must have gm → 0, giving the result. �

4.3 ITERATIVE SOLUTION OF THE SUBPROBLEM

In this section, we describe a technique that uses the characterization (4.6) of the subprob-
lem solution, applying Newton’s method to find the value of λ which matches the given
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trust-region radius � in (4.5). We also prove the key result Theorem 4.1 concerning the
characterization of solutions of (4.3).

The methods of Section 4.1 make no serious attempt to find the exact solution of
the subproblem (4.5). They do, however, make some use of the information in the model
Hessian Bk , and they have advantages of reasonable implementation cost and nice global
convergence properties.

When the problem is relatively small (that is, n is not too large), it may be worthwhile
to exploit the model more fully by looking for a closer approximation to the solution of the
subproblem. In this section, we describe an approach for finding a good approximation at the
cost of a few factorizations of the matrix B (typically three factorization), as compared with
a single factorization for the dogleg and two-dimensional subspace minimization methods.
This approach is based on the characterization of the exact solution given in Theorem 4.1,
together with an ingenious application of Newton’s method in one variable. Essentially, the
algorithm tries to identify the value of λ for which (4.6) is satisfied by the solution of (4.5).

The characterization of Theorem 4.1 suggests an algorithm for finding the solution p
of (4.7). Either λ � 0 satisfies (4.8a) and (4.8c) with ‖p‖ ≤ �, or else we define

p(λ) � −(B + λI )−1g

for λ sufficiently large that B + λI is positive definite and seek a value λ > 0 such that

‖p(λ)‖ � �. (4.37)

This problem is a one-dimensional root-finding problem in the variable λ.
To see that a value of λ with all the desired properties exists, we appeal to the eigende-

composition of B and use it to study the properties of ‖p(λ)‖. Since B is symmetric, there
is an orthogonal matrix Q and a diagonal matrix � such that B � Q�QT , where

� � diag(λ1, λ2, . . . , λn),

and λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of B; see (A.16). Clearly, B + λI � Q(� +
λI )QT , and for λ 	� λ j , we have

p(λ) � −Q(�+ λI )−1 QT g � −
n∑

j�1

qT
j g

λ j + λ
q j , (4.38)

where q j denotes the j th column of Q. Therefore, by orthonormality of q1, q2, . . . , qn , we
have

‖p(λ)‖2 �
n∑

j�1

(
qT

j g
)2

(λ j + λ)2
. (4.39)
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1

|| p ||

*
3 2

Figure 4.5 ‖p(λ)‖ as a function of λ.

This expression tells us a lot about ‖p(λ)‖. If λ > −λ1, we have λ j + λ > 0 for all
j � 1, 2, . . . , n, and so ‖p(λ)‖ is a continuous, nonincreasing function of λ on the interval
(−λ1,∞). In fact, we have that

lim
λ→∞

‖p(λ)‖ � 0. (4.40)

Moreover, we have when qT
j g 	� 0 that

lim
λ→−λ j

‖p(λ)‖ � ∞. (4.41)

Figure 4.5 plots ‖p(λ)‖ against λ in a case in whcih qT
1 g, qT

2 g, and qT
3 g are all nonzero.

Note that the properties (4.40) and (4.41) hold and that ‖p(λ)‖ is a nonincreasing function
of λ on (−λ1,∞). In particular, as is always the case when qT

1 g 	� 0, that there is a unique
value λ∗ ∈ (−λ1,∞) such that ‖p(λ∗)‖ � �. (There may be other, smaller values of λ for
which ‖p(λ)‖ � �, but these will fail to satisfy (4.8c).)

We now sketch a procedure for identifying theλ∗ ∈ (−λ1,∞) for which‖p(λ∗)‖ � �,
which works when qT

1 g 	� 0. (We discuss the case of qT
1 g � 0 later.) First, note that when B

positive definite and ‖B−1g‖ ≤ �, the value λ � 0 satisfies (4.8), so the procedure can be
terminated immediately with λ∗ � 0. Otherwise, we could use the root-finding Newton’s
method (see the Appendix) to find the value of λ > −λ1 that solves

φ1(λ) � ‖p(λ)‖ −� � 0. (4.42)
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The disadvantage of this approach can be seen by considering the form of ‖p(λ)‖ when λ

is greater than, but close to,−λ1. For such λ, we can approximate φ1 by a rational function,
as follows:

φ1(λ) ≈ C1

λ+ λ1
+ C2,

where C1 > 0 and C2 are constants. Clearly this approximation (and hence φ1) is highly
nonlinear, so the root-finding Newton’s method will be unreliable or slow. Better results will
be obtained if we reformulate the problem (4.42) so that it is nearly linear near the optimal
λ. By defining

φ2(λ) � 1

�
− 1

‖p(λ)‖ ,

it can be shown using (4.39) that for λ slightly greater than −λ1, we have

φ2(λ) ≈ 1

�
− λ+ λ1

C3

for some C3 > 0. Hence, φ2 is nearly linear near −λ1 (see Figure 4.6), and the root-finding

1

||p|| --1

*
3 2 1

Figure 4.6 1/‖p(λ)‖ as a function of λ.
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Newton’s method will perform well, provided that it maintains λ > −λ1. The root-finding
Newton’s method applied to φ2 generates a sequence of iterates λ(�) by setting

λ(�+1) � λ(�) − φ2

(
λ(�)

)
φ′2
(
λ(�)

) . (4.43)

After some elementary manipulation, this updating formula can be implemented in the
following practical way.

Algorithm 4.3 (Trust Region Subproblem).
Given λ(0), � > 0:
for � � 0, 1, 2, . . .

Factor B + λ(�) I � RT R;
Solve RT Rp� � −g, RT q� � p�;

Set

λ(�+1) � λ(�) +
(‖p�‖
‖q�‖

)2 (‖p�‖ −�

�

)
; (4.44)

end (for).

Safeguards must be added to this algorithm to make it practical; for instance, when
λ(�) < −λ1, the Cholesky factorization B+λ(�) I � RT R will not exist. A slightly enhanced
version of this algorithm does, however, converge to a solution of (4.37) in most cases.

The main work in each iteration of this method is, of course, the Cholesky factorization
of B + λ(�) I . Practical versions of this algorithm do not iterate until convergence to the
optimal λ is obtained with high accuracy, but are content with an approximate solution that
can be obtained in two or three iterations.

THE HARD CASE

Recall that in the discussion above, we assumed that qT
1 g 	� 0. In fact, the approach

described above can be applied even when the most negative eigenvalue is a multiple
eigenvalue (that is, 0 > λ1 � λ2 � · · ·), provided that QT

1 g 	� 0, where Q1 is the matrix
whose columns span the subspace corresponding to the eigenvalue λ1. When this condition
does not hold, the situation becomes a little complicated, because the limit (4.41) does not
hold for λ j � λ1 and so there may not be a value λ ∈ (−λ1,∞) such that ‖p(λ)‖ � � (see
Figure 4.7). Moré and Sorensen [214] refer to this case as the hard case. At first glance, it is
not clear how p and λ can be chosen to satisfy (4.8) in the hard case. Clearly, our root-finding
technique will not work, since there is no solution for λ in the open interval (−λ1,∞). But
Theorem 4.1 assures us that the right value of λ lies in the interval [−λ1,∞), so there is only
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||p||

∆

λλ −− −
3 2 1λ

Figure 4.7 The hard case: ‖p(λ)‖ < � for all λ ∈ (−λ1,∞).

one possibility: λ � −λ1. To find p, it is not enough to delete the terms for which λ j � λ1

from the formula (4.38) and set

p �
∑

j :λ j 	�λ1

qT
j g

λ j + λ
q j .

Instead, we note that (B − λ1 I ) is singular, so there is a vector z such that ‖z‖ � 1 and
(B − λ1 I )z � 0. In fact, z is an eigenvector of B corresponding to the eigenvalue λ1, so by
orthogonality of Q we have qT

j z � 0 for λ j 	� λ1. It follows from this property that if we set

p �
∑

j :λ j 	�λ1

qT
j g

λ j + λ
q j + τ z (4.45)

for any scalar τ , we have

‖p‖2 �
∑

j :λ j 	�λ1

(
qT

j g
)2

(λ j + λ)2
+ τ 2,

so it is always possible to choose τ to ensure that ‖p‖ � �. It is easy to check that the
conditions (4.8) holds for this choice of p and λ � −λ1.
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PROOF OF THEOREM 4.1

We now give a formal proof of Theorem 4.1, the result that characterizes the exact
solution of (4.5). The proof relies on the following technical lemma, which deals with the
unconstrained minimizers of quadratics and is particularly interesting in the case where the
Hessian is positive semidefinite.

Lemma 4.7.
Let m be the quadratic function defined by

m(p) � gT p + 1
2 pT Bp, (4.46)

where B is any symmetric matrix. Then the following statements are true.

(i) m attains a minimum if and only if B is positive semidefinite and g is in the range of B.
If B is positive semidefinite, then every p satisfying Bp � −g is a global minimizer of m.

(ii) m has a unique minimizer if and only if B is positive definite.

PROOF. We prove each of the three claims in turn.

(i) We start by proving the “if” part. Since g is in the range of B, there is a p with Bp � −g.
For all w ∈ Rn , we have

m(p + w) � gT (p + w)+ 1
2 (p + w)T B(p + w)

� (gT p + 1
2 pT Bp)+ gT w + (Bp)T w + 1

2w
T Bw

� m(p)+ 1
2w

T Bw

≥ m(p), (4.47)

since B is positive semidefinite. Hence, p is a minimizer of m.
For the “only if” part, let p be a minimizer of m. Since ∇m(p) � Bp + g � 0, we

have that g is in the range of B. Also, we have ∇2m(p) � B positive semidefinite, giving
the result.

(ii) For the “if” part, the same argument as in (i) suffices with the additional point that
wT Bw > 0 whenever w 	� 0. For the “only if” part, we proceed as in (i) to deduce that B is
positive semidefinite. If B is not positive definite, there is a vector w 	� 0 such that Bw � 0.
Hence, from (4.47), we have m(p + w) � m(p), so the minimizer is not unique, giving a
contradiction. �

To illustrate case (i), suppose that

B �

⎡
⎢⎣

1 0 0

0 0 0

0 0 2

⎤
⎥⎦ ,
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which has eigenvalues 0, 1, 2 and is therefore singular. If g is any vector whose second
component is zero, then g will be in the range of B, and the quadratic will attain a minimum.
But if the second element in g is nonzero, we can decrease m(·) indefinitely by moving along
the direction (0,−g2, 0)T .

We are now in a position to take account of the trust-region bound ‖p‖ ≤ � and
hence prove Theorem 4.1.

PROOF. (Theorem 4.1)
Assume first that there is λ ≥ 0 such that the conditions (4.8) are satisfied.

Lemma 4.7(i) implies that p∗ is a global minimum of the quadratic function

m̂(p) � gT p + 1
2 pT (B + λI )p � m(p)+ λ

2
pT p. (4.48)

Since m̂(p) ≥ m̂(p∗), we have

m(p) ≥ m(p∗)+ λ

2
((p∗)T p∗ − pT p). (4.49)

Because λ(�− ‖p∗‖) � 0 and therefore λ(�2 − (p∗)T p∗) � 0, we have

m(p) ≥ m(p∗)+ λ

2
(�2 − pT p).

Hence, from λ ≥ 0, we have m(p) ≥ m(p∗) for all p with ‖p‖ ≤ �. Therefore, p∗ is a
global minimizer of (4.7).

For the converse, we assume that p∗ is a global solution of (4.7) and show that there
is a λ ≥ 0 that satisfies (4.8).

In the case ‖p∗‖ < �, p∗ is an unconstrained minimizer of m, and so

∇m(p∗) � Bp∗ + g � 0, ∇2m(p∗) � B positive semidefinite,

and so the properties (4.8) hold for λ � 0.
Assume for the remainder of the proof that ‖p∗‖ � �. Then (4.8b) is immediately

satisfied, and p∗ also solves the constrained problem

min m(p) subject to ‖p‖ � �.

By applying optimality conditions for constrained optimization to this problem (see
(12.34)), we find that there is a λ such that the Lagrangian function defined by

L(p, λ) � m(p)+ λ

2
(pT p −�2)
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has a stationary point at p∗. By setting ∇pL(p∗, λ) to zero, we obtain

Bp∗ + g + λp∗ � 0 ⇒ (B + λI )p∗ � −g, (4.50)

so that (4.8a) holds. Since m(p) ≥ m(p∗) for any p with pT p � (p∗)T p∗ � �2, we have
for such vectors p that

m(p) ≥ m(p∗)+ λ

2

(
(p∗)T p∗ − pT p

)
.

If we substitute the expression for g from (4.50) into this expression, we obtain after some
rearrangement that

1
2 (p − p∗)T (B + λI )(p − p∗) ≥ 0. (4.51)

Since the set of directions{
w : w � ± p − p∗

‖p − p∗‖ , for some p with ‖p‖ � �

}

is dense on the unit sphere, (4.51) suffices to prove (4.8c).
It remains to show that λ ≥ 0. Because (4.8a) and (4.8c) are satisfied by p∗, we have

from Lemma 4.7(i) that p∗ minimizes m̂, so (4.49) holds. Suppose that there are only negative
values of λ that satisfy (4.8a) and (4.8c). Then we have from (4.49) that m(p) ≥ m(p∗)
whenever ‖p‖ ≥ ‖p∗‖ � �. Since we already know that p∗ minimizes m for ‖p‖ ≤ �,
it follows that m is in fact a global, unconstrained minimizer of m. From Lemma 4.7(i) it
follows that Bp � −g and B is positive semidefinite. Therefore conditions (4.8a) and (4.8c)
are satisfied by λ � 0, which contradicts our assumption that only negative values of λ can
satisfy the conditions. We conclude that λ ≥ 0, completing the proof. �

CONVERGENCE OF ALGORITHMS BASED ON NEARLY EXACT SOLUTIONS

As we noted in the discussion of Algorithm 4.3, the loop to determine the optimal
values of λ and p for the subproblem (4.5) does not iterate until high accuracy is achieved.
Instead, it is terminated after two or three iterations with a fairly loose approximation to
the true solution. The inexactness in this approximate solution is measured in a different
way from the dogleg and subspace minimization algorithms. We can add safeguards to the
root-finding Newton method to ensure that the key assumptions of Theorems 4.5 and 4.6
are satisfied by the approximate solution. Specifically, we require that

m(0)− m(p) ≥ c1(m(0)− m(p∗)), (4.52a)

‖p‖ ≤ γ� (4.52b)
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(where p∗ is the exact solution of (4.3)), for some constants c1 ∈ (0, 1] and γ > 0. The
condition (4.52a) ensures that the approximate solution achieves a significant fraction of the
maximum decrease possible in the model function m. (It is not necessary to know p∗; there
are practical termination criteria that imply (4.52a).) One major difference between (4.52)
and the earlier criterion (4.20) is that (4.52) makes better use of the second-order part of
m(·), that is, the pT Bp term. This difference is illustrated by the case in which g � 0 while
B has negative eigenvalues, indicating that the current iterate xk is a saddle point. Here,
the right-hand-side of (4.20) is zero (indeed, the algorithms we described earlier would
terminate at such a point). The right-hand-side of (4.52) is positive, indicating that decrease
in the model function is still possible, so it forces the algorithm to move away from xk .

The close attention that near-exact algorithms pay to the second-order term is war-
ranted only if this term closely reflects the actual behavior of the function f —in fact,
the trust-region Newton method, for which B � ∇2 f (x), is the only case that has been
treated in the literature. For purposes of global convergence analysis, the use of the exact
Hessian allows us to say more about the limit points of the algorithm than merely that they
are stationary points. The following result shows that second-order necessary conditions
(Theorem 2.3) are satisfied at the limit points.

Theorem 4.8.
Suppose that the assumptions of Theorem 4.6 are satisfied and in addition that f is twice

continuously differentiable in the level set S. Suppose that Bk � ∇2 f (xk) for all k, and that the
approximate solution pk of (4.3) at each iteration satisfies (4.52) for some fixed γ > 0. Then
limk→∞ ‖gk‖ � 0.

If, in addition, the level set S of (4.24) is compact, then either the algorithm terminates
at a point xk at which the second-order necessary conditions (Theorem 2.3) for a local solution
hold, or else {xk} has a limit point x∗ in S at which the second-order necessary conditions hold.

We omit the proof, which can be found in Moré and Sorensen [214, Section 4].

4.4 LOCAL CONVERGENCE OF TRUST-REGION NEWTON
METHODS

Since global convergence of trust-region methods that use exact Hessians ∇2 f (x) is estab-
lished above, we turn our attention now to local convergence issues. The key to attaining
the fast rate of convergence usually associated with Newton’s method is to show that the
trust-region bound eventually does not interfere as we approach a solution. Specifically, we
hope that near the solution, the (approximate) solution of the trust-region subproblem is
well inside the trust region and becomes closer and closer to the true Newton step. Steps
that satisfy the latter property are said to be asymptotically similar to Newton steps.

We first prove a general result that applies to any algorithm of the form of Algo-
rithm 4.1 (see Chapter 4) that generates steps that are asymptotically similar to Newton
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steps whenever the Newton steps easily satisfy the trust-region bound. It shows that the
trust-region constraint eventually becomes inactive in algorithms with this property and
that superlinear convergence can be attained. The result assumes that the exact Hessian
Bk � ∇2 f (xk) is used in (4.3) when xk is close to a solution x∗ that satisfies second-order
sufficient conditions (see Theorem 2.4). Moreover, it assumes that the algorithm uses an
approximate solution pk of (4.3) that achieves a similar decrease in the model function mk

as the Cauchy point.

Theorem 4.9.
Let f be twice Lipschitz continuously differentiable in a neighborhhod of a point x∗ at

which second-order sufficient conditions (Theorem 2.4) are satisfied. Suppose the sequence {xk}
converges to x∗ and that for all k sufficiently large, the trust-region algorithm based on (4.3)
with Bk � ∇2 f (xk) chooses steps pk that satisfy the Cauchy-point-based model reduction
criterion (4.20) and are asymptotically similar to Newton steps pN

k whenever ‖pN
k‖ ≤ 1

2�k ,
that is,

‖pk − pN
k‖ � o(‖pN

k‖). (4.53)

Then the trust-region bound �k becomes inactive for all k sufficiently large and the sequence
{xk} converges superlinearly to x∗.

PROOF. We show that ‖pN
k‖ ≤ 1

2�k and ‖pk‖ ≤ �k , for all sufficiently large k, so the
near-optimal step pk in (4.53) will eventually always be taken.

We first seek a lower bound on the predicted reduction mk(0) − mk(pk) for all
sufficiently large k. We assume that k is large enough that the o(‖pN

k‖) term in (4.53) is less
than ‖pN

k‖. When ‖pN
k‖ ≤ 1

2�k , we then have that ‖pk‖ ≤ ‖pN
k‖+ o(‖pN

k‖) ≤ 2‖pN
k‖, while

if ‖pN
k‖ > 1

2�k , we have ‖pk‖ ≤ �k < 2‖pN
k‖. In both cases, then, we have

‖pk‖ ≤ 2‖pN
k‖ ≤ 2

∥∥∥∇2 f (xk)
−1
∥∥∥ ‖gk‖,

and so ‖gk‖ ≥ 1
2‖pk‖/

∥∥∇2 f (xk)−1
∥∥.

We have from the relation (4.20) that

mk(0)− mk(pk)

≥ c1‖gk‖min

(
�k,

‖gk‖∥∥∇2 f (xk)
∥∥
)

≥ c1
‖pk‖

2
∥∥∇2 f (xk)−1

∥∥ min

(
‖pk‖, ‖pk‖

2
∥∥∇2 f (xk)

∥∥ ∥∥∇2 f (xk)−1
∥∥
)

� c1
‖pk‖2

4
∥∥∇2 f (xk)−1

∥∥2 ∥∥∇2 f (xk)
∥∥ .

Because xk → x∗, we use continuity of ∇2 f (x) and positive definiteness of ∇2 f (x∗), to
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deduce that the following bound holds for all k sufficiently large:

c1

4
∥∥∇2 f (xk)−1

∥∥2 ∥∥∇2 f (xk)
∥∥ ≥ c1

8
∥∥∇2 f (x∗)−1

∥∥2 ∥∥∇2 f (x∗)
∥∥ def� c3,

where c3 > 0. Hence, we hae

mk(0)− mk(pk) ≥ c3‖pk‖2 (4.54)

for all sufficiently large k. By Lipschitz continuity of ∇2 f (x) near x∗, and using Taylor’s
theorem (Theorem 2.1), we have

|( f (xk)− f (xk + pk))− (mk(0)− mk(pk))|
�
∣∣∣∣ 1

2 pT
k ∇2 f (xk)pk − 1

2

∫ 1

0
pT

k ∇2 f (xk + tpk)pk dt

∣∣∣∣
≤ L

4
‖pk‖3,

where L > 0 is the Lipschitz constant for ∇2 f (·). Hence, by definition (4.4) of ρk , we have
for sufficiently large k that

|ρk − 1| ≤ ‖pk‖3(L/4)

c3‖pk‖2
� L

4c3
‖pk‖ ≤ L

4c3
�k . (4.55)

Now, the trust-region radius can be reduced only if ρk < 1
4 (or some other fixed number less

than 1), so it is clear from (4.55) that the sequence {�k} is bounded away from zero. Since
xk → x∗, we have ‖pN

k‖ → 0 and therefore ‖pk‖ → 0 from (4.53). Hence, the trust-region
bound is inactive for all k sufficiently large, and the bound ‖pN

k‖ ≤ 1
2�k is eventually always

satisfied.
To prove superlinear convergence, we use the quadratic convergence of Newton’s

method, proved in Theorem 3.5. In particular, we have from (3.33) that

‖xk + pN
k − x∗‖ � o

(‖xk − x∗‖2
)
,

which implies that ‖pN
k‖ � O(‖xk − x∗‖). Therefore, using (4.53), we have

‖xk + pk − x∗‖
≤ ‖xk + pN

k − x∗‖ + ‖pN
k − pk‖ � o

(‖xk − x∗‖2
)+ o(‖pN

k‖) � o
(‖xk − x∗‖) ,

thus proving superlinear convergence. �

It is immediate from Theorem 3.5 that if pk � pN
k for all k sufficiently large, we have

quadratic convergence of {xk} to x∗.
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Reasonable implementations of the dogleg, subspace minimization, and nearly-exact
algorithm of Section 4.3 with Bk � ∇2 f (xk) eventually use the steps pk � pN

k under the
conditions of Theorem 4.9, and therefore converge quadratically. In the case of the dogleg and
two-dimensional subspace minimization methods, the exact step pN

k is one of the candidates
for pk—it lies inside the trust region, along the dogleg path, and inside the two-dimensional
subspace. Since under the assumptions of Theorem 4.9, pN

k is the unconstrained minimizer
of mk for k sufficiently large, it is certainly the minimizer in the more restricted domains,
so we have pk � pN

k . For the approach of Section 4.3, if we follow the reasonable strategy
of checking whether pN

k is a solution of (4.3) prior to embarking on Algorithm 4.3, then
eventually we will also have pk � pN

k also.

4.5 OTHER ENHANCEMENTS

SCALING

As we noted in Chapter 2, optimization problems are often posed with poor scaling—
the objective function f is highly sensitive to small changes in certain components of
the vector x and relatively insensitive to changes in other components. Topologically, a
symptom of poor scaling is that the minimizer x∗ lies in a narrow valley, so that the contours
of the objective f (·) near x∗ tend towards highly eccentric ellipses. Algorithms that fail to
compensate for poor scaling can perform badly; see Figure 2.7 for an illustration of the poor
performance of the steepest descent approach.

Recalling our definition of a trust region—a region around the current iterate within
which the model mk(·) is an adequate representation of the true objective f (·)—it is easy
to see that a spherical trust region may not be appropriate when f is poorly scaled. Even if
the model Hessian Bk is exact, the rapid changes in f along certain directions probably will
cause mk to be a poor approximation to f along these directions. On the other hand, mk

may be a more reliable approximation to f along directions in which f is changing more
slowly. Since the shape of our trust region should be such that our confidence in the model
is more or less the same at all points on the boundary of the region, we are led naturally
to consider elliptical trust regions in which the axes are short in the sensitive directions and
longer in the less sensitive directions.

Elliptical trust regions can be defined by

‖Dp‖ ≤ �, (4.56)

where D is a diagonal matrix with positive diagonal elements, yielding the following scaled
trust-region subproblem:

min
p∈IRn

mk(p)
def� fk + gT

k p + 1
2 pT Bk p s.t. ‖Dp‖ ≤ �k . (4.57)
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When f (x) is highly sensitive to the value of the i th component xi , we set the corresponding
diagonal element dii of D to be large, while dii is smaller for less-sensitive components.

Information to construct the scaling matrix D may be derived from the second
derivatives ∂2 f/∂x2

i . We can allow D to change from iteration to iteration; most of the
theory of this chapter will still apply with minor modifications provided that each dii stays
within some predetermined range [dlo, dhi], where 0 < dlo ≤ dhi < ∞. Of course, we do
not need D to be a precise reflection of the scaling of the problem, so it is not necessary to
devise elaborate heuristics or to perform extensive computations to get it just right.

The following procedure shows how the Cauchy point calculation (Algorithm 4.2)
changes when we use a scaled trust region,

Algorithm 4.4 (Generalized Cauchy Point Calculation).
Find the vector pS

k that solves

pS
k � arg min

p∈IRn
fk + gT

k p s.t. ‖Dp‖ ≤ �k; (4.58)

Calculate the scalar τk > 0 that minimizes mk(τ pS
k) subject to satisfying the trust-region

bound, that is,

τk � arg min
τ>0

mk(τ pS
k) s.t. ‖τ D pS

k‖ ≤ �k; (4.59)

pC
k � τk pS

k .

For this scaled version, we find that

pS
k � − �k

‖D−1gk‖D−2gk, (4.60)

and that the step length τk is obtained from the following modification of (4.12):

τk �

⎧⎪⎨
⎪⎩

1 if gT
k D−2 Bk D−2gk ≤ 0

min

( ‖D−1gk‖3

�k gT
k D−2 Bk D−2gk

, 1

)
otherwise.

(4.61)

(The details are left as an exercise.)
A simpler alternative for adjusting the definition of the Cauchy point and the various

algorithms of this chapter to allow for the elliptical trust region is simply to rescale the
variables p in the subproblem (4.57) so that the trust region is spherical in the scaled
variables. By defining

p̃
def� Dp,
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and by substituting into (4.57), we obtain

min
p̃∈IRn

m̃k( p̃)
def� fk + gT

k D−1 p̃ + 1
2 p̃T D−1 Bk D−1 p̃ s.t. ‖ p̃‖ ≤ �k .

The theory and algorithms can now be derived in the usual way by substituting p̃ for p,
D−1gk for gk , D−1 Bk D−1 for Bk , and so on.

TRUST REGIONS IN OTHER NORMS

Trust regions may also be defined in terms of norms other than the Euclidean norm.
For instance, we may have

‖p‖1 ≤ �k or ‖p‖∞ ≤ �k,

or their scaled counterparts

‖Dp‖1 ≤ �k or ‖Dp‖∞ ≤ �k,

where D is a positive diagonal matrix as before. Norms such as these offer no obvious ad-
vantages for small-medium unconstrained problems, but they may be useful for constrained
problems. For instance, for the bound-constrained problem

min
x∈IRn

f (x), subject to x ≥ 0,

the trust-region subproblem may take the form

min
p∈IRn

mk(p) � fk + gT
k p + 1

2 pT Bk p s.t. xk + p ≥ 0, ‖p‖ ≤ �k . (4.62)

When the trust region is defined by a Euclidean norm, the feasible region for (4.62) consists of
the intersection of a sphere and the nonnegative orthant—an awkward object, geometrically
speaking. When the ∞-norm is used, however, the feasible region is simply the rectangular
box defined by

xk + p ≥ 0, p ≥ −�ke, p ≤ �ke,

where e � (1, 1, . . . , 1)T , so the solution of the subproblem is easily calculated by using
techniques for bound-constrained quadratic programming.

For large problems, in which factorization or formation the model Hessian Bk is not
computationally desirable, the use of a trust region defined by ‖ · ‖∞ will also give rise to a
bound-constrained subproblem, which may be more convenient to solve than the standard
subproblem (4.3). To our knowledge, there has not been much research on the relative
performance of methods that use trust regions of different shapes on large problems.
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NOTES AND REFERENCES

One of the earliest works on trust-region methods is Winfield [307]. The influential
paper of Powell [244] proves a result like Theorem 4.5 for the case of η � 0, where the algo-
rithm takes a step whenever it decreases the function value. Powell uses a weaker assumption
than ours on the matrices ‖B‖, but his analysis is more complicated. Moré [211] summarizes
developments in algorithms and software before 1982, paying particular attention to the
importance of using a scaled trust-region norm.

Byrd, Schnabel, and Schultz [279], [54] provide a general theory for inexact trust-
region methods; they introduce the idea of two-dimensional subspace minimization and
also focus on proper handling of the case of indefinite B to ensure stronger local convergence
results than Theorems 4.5 and 4.6. Dennis and Schnabel [93] survey trust-region methods as
part of their overview of unconstrained optimization, providing pointers to many important
developments in the literature.

The monograph of Conn, Gould, and Toint [74] is an exhaustive treatment of the state
of the art in trust-region methods for both unconstrained and constrained optimization. It
includes an comprehensive annotated bibliography of the literature in the area.

✐ E X E R C I S E S

✐ 4.1 Let f (x) � 10(x2 − x2
1 )2 + (1 − x1)2. At x � (0,−1) draw the contour lines of

the quadratic model (4.2) assuming that B is the Hessian of f . Draw the family of solutions
of (4.3) as the trust region radius varies from � � 0 to � � 2. Repeat this at x � (0, 0.5).

✐ 4.2 Write a program that implements the dogleg method. Choose Bk to be the exact
Hessian. Apply it to solve Rosenbrock’s function (2.22). Experiment with the update rule
for the trust region by changing the constants in Algorithm 4.1, or by designing your own
rules.

✐ 4.3 Program the trust-region method based on Algorithm 7.2. Choose Bk to be the
exact Hessian, and use it to minimize the function

min f (x) �
n∑

i�1

[
(1− x2i−1)2 + 10(x2i − x2

2i−1)2
]

with n � 10. Experiment with the starting point and the stopping test for the CG iteration.
Repeat the computation with n � 50.

Your program should indicate, at every iteration, whether Algorithm 7.2 encountered
negative curvature, reached the trust-region boundary, or met the stopping test.
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✐ 4.4 Theorem 4.5 shows that the sequence {‖g‖} has an accumulation point at zero.
Show that if the iterates x stay in a bounded set B, then there is a limit point x∞ of the
sequence {xk} such that g(x∞) � 0.

✐ 4.5 Show that τk defined by (4.12) does indeed identify the minimizer of mk along
the direction −gk .

✐ 4.6 The Cauchy–Schwarz inequality states that for any vectors u and v, we have

|uT v|2 ≤ (uT u)(vT v),

with equality only when u and v are parallel. When B is positive definite, use this inequality
to show that

γ
def� ‖g‖4

(gT Bg)(gT B−1g)
≤ 1,

with equality only if g and Bg (and B−1g) are parallel.

✐ 4.7 When B is positive definite, the double-dogleg method constructs a path with three
line segments from the origin to the full step. The four points that define the path are

• the origin;

• the unconstrained Cauchy step pC � −(gT g)/(gT Bg)g;

• a fraction of the full step γ̄ pB � −γ̄ B−1g, for some γ̄ ∈ (γ, 1], where γ is defined in
the previous question; and

• the full step pB � −B−1g.

Show that ‖p‖ increases monotonically along this path.
(Note: The double-dogleg method, as discussed in Dennis and Schnabel [92, Section

6.4.2], was for some time thought to be superior to the standard dogleg method, but later
testing has not shown much difference in performance.)

✐ 4.8 Show that (4.43) and (4.44) are equivalent. Hints: Note that

d

dλ

(
1

‖p(λ)‖
)
� d

dλ

(‖p(λ)‖2
)−1/2 � −1

2

(‖p(λ)‖2
)−3/2 d

dλ
‖p(λ)‖2,

d

dλ
‖p(λ)‖2 � −2

n∑
j�1

(qT
j g)2

(λ j + λ)3
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(from (4.39)), and

‖q‖2 � ‖R−T p‖2 � pT (B + λI )−1 p �
n∑

j�1

(qT
j g)2

(λ j + λ)3
.

✐ 4.9 Derive the solution of the two-dimensional subspace minimization problem in
the case where B is positive definite.

✐ 4.10 Show that if B is any symmetric matrix, then there exists λ ≥ 0 such that B+λI
is positive definite.

✐ 4.11 Verify that the definitions (4.60) for pS
k and (4.61) for τk are valid for the Cauchy

point in the case of an elliptical trust region. (Hint: Using the theory of Chapter 12, we can
show that the solution of (4.58) satisfies gk + αD2 pS

k � 0 for some scalar α ≥ 0.)

✐ 4.12 The following example shows that the reduction in the model function m
achieved by the two-dimensional minimization strategy can be much smaller than that
achieved by the exact solution of (4.5).

In (4.5), set

g �
(
−1

ε
,−1,−ε2

)T

,

where ε is a small positive number. Set

B � diag

(
1

ε3
, 1, ε3

)
, � � 0.5.

Show that the solution of (4.5) has components
(
O(ε), 1

2 + O(ε), O(ε)
)T

and that the
reduction in the model m is 3

8 + O(ε). For the two-dimensional minimization strategy,
show that the solution is a multiple of B−1g and that the reduction in m is O(ε).




