
This is page 101
Printer: Opaque this

C H A P T E R5
Conjugate
Gradient Methods

Our interest in conjugate gradient methods is twofold. First, they are among the most useful
techniques for solving large linear systems of equations. Second, they can be adapted to solve
nonlinear optimization problems. The remarkable properties of both linear and nonlinear
conjugate gradient methods will be described in this chapter.

The linear conjugate gradient method was proposed by Hestenes and Stiefel in the
1950s as an iterative method for solving linear systems with positive definite coefficient
matrices. It is an alternative to Gaussian elimination that is well suited for solving large
problems. The performance of the linear conjugate gradient method is determined by the

102 C H A P T E R 5 . C O N J U G A T E G R A D I E N T M E T H O D S

distribution of the eigenvalues of the coefficient matrix. By transforming, or preconditioning,
the linear system, we can make this distribution more favorable and improve the convergence
of the method significantly. Preconditioning plays a crucial role in the design of practical
conjugate gradient strategies. Our treatment of the linear conjugate gradient method will
highlight those properties of the method that are important in optimization.

The first nonlinear conjugate gradient method was introduced by Fletcher and Reeves
in the 1960s. It is one of the earliest known techniques for solving large-scale nonlinear
optimization problems. Over the years, many variants of this original scheme have been
proposed, and some are widely used in practice. The key features of these algorithms are
that they require no matrix storage and are faster than the steepest descent method.

5.1 THE LINEAR CONJUGATE GRADIENT METHOD

In this section we derive the linear conjugate gradient method and discuss its essential
convergence properties. For simplicity, we drop the qualifier “linear” throughout.

The conjugate gradient method is an iterative method for solving a linear system of
equations

Ax � b, (5.1)

where A is an n × n symmetric positive definite matrix. The problem (5.1) can be stated
equivalently as the following minimization problem:

min φ(x)
def� 1

2 xT Ax − bT x, (5.2)

that is, both (5.1) and (5.2) have the same unique solution. This equivalence will allow us
to interpret the conjugate gradient method either as an algorithm for solving linear systems
or as a technique for minimizing convex quadratic functions. For future reference, we note
that the gradient of φ equals the residual of the linear system, that is,

∇φ(x) � Ax − b
def� r(x), (5.3)

so in particular at x � xk we have

rk � Axk − b. (5.4)

CONJUGATE DIRECTION METHODS

One of the remarkable properties of the conjugate gradient method is its ability to
generate, in a very economical fashion, a set of vectors with a property known as conjugacy. A

5 . 1 . T H E L I N E A R C O N J U G A T E G R A D I E N T M E T H O D 103

set of nonzero vectors {p0, p1, . . . , pl} is said to be conjugate with respect to the symmetric
positive definite matrix A if

pT
i Ap j � 0, for all i 	� j . (5.5)

It is easy to show that any set of vectors satisfying this property is also linearly independent.
(For a geometrical illustration of conjugate directions see Section 9.4.)

The importance of conjugacy lies in the fact that we can minimize φ(·) in n steps
by successively minimizing it along the individual directions in a conjugate set. To verify
this claim, we consider the following conjugate direction method. (The distinction between
the conjugate gradient method and the conjugate direction method will become clear as we
proceed.) Given a starting point x0 ∈ IRn and a set of conjugate directions {p0, p1, . . . , pn−1},
let us generate the sequence {xk} by setting

xk+1 � xk + αk pk, (5.6)

where αk is the one-dimensional minimizer of the quadratic function φ(·) along xk + αpk ,
given explicitly by

αk � − r T
k pk

pT
k Apk

; (5.7)

see (3.55). We have the following result.

Theorem 5.1.
For any x0 ∈ IRn the sequence {xk} generated by the conjugate direction algorithm (5.6),

(5.7) converges to the solution x∗ of the linear system (5.1) in at most n steps.

PROOF. Since the directions {pi } are linearly independent, they must span the whole space
IRn . Hence, we can write the difference between x0 and the solution x∗ in the following way:

x∗ − x0 � σ0 p0 + σ1 p1 + · · · + σn−1 pn−1,

for some choice of scalars σk . By premultiplying this expression by pT
k A and using the

conjugacy property (5.5), we obtain

σk � pT
k A(x∗ − x0)

pT
k Apk

. (5.8)

We now establish the result by showing that these coefficients σk coincide with the step
lengths αk generated by the formula (5.7).

104 C H A P T E R 5 . C O N J U G A T E G R A D I E N T M E T H O D S

If xk is generated by algorithm (5.6), (5.7), then we have

xk � x0 + α0 p0 + α1 p1 + · · · + αk−1 pk−1.

By premultiplying this expression by pT
k A and using the conjugacy property, we have that

pT
k A(xk − x0) � 0,

and therefore

pT
k A(x∗ − x0) � pT

k A(x∗ − xk) � pT
k (b − Axk) � −pT

k rk .

By comparing this relation with (5.7) and (5.8), we find that σk � αk , giving the result. �

There is a simple interpretation of the properties of conjugate directions. If the matrix
A in (5.2) is diagonal, the contours of the function φ(·) are ellipses whose axes are aligned
with the coordinate directions, as illustrated in Figure 5.1. We can find the minimizer of this
function by performing one-dimensional minimizations along the coordinate directions

.

*

e2

x0

e1

x1.

.x

Figure 5.1 Successive minimizations along the coordinate directions find the
minimizer of a quadratic with a diagonal Hessian in n iterations.

5 . 1 . T H E L I N E A R C O N J U G A T E G R A D I E N T M E T H O D 105

e
x1

0x

x2
3x

x*

e2

1

Figure 5.2 Successive minimization along coordinate axes does not find the solution
in n iterations, for a general convex quadratic.

e1, e2, . . . , en in turn. When A is not diagonal, its contours are still elliptical, but they
are usually no longer aligned with the coordinate directions. The strategy of successive
minimization along these directions in turn no longer leads to the solution in n iterations (or
even in a finite number of iterations). This phenomenon is illustrated in the two-dimensional
example of Figure 5.2 We can, however, recover the nice behavior of Figure 5.1 if we transform
the problem to make A diagonal and then minimize along the coordinate directions. Suppose
we transform the problem by defining new variables x̂ as

x̂ � S−1x, (5.9)

where S is the n × n matrix defined by

S � [p0 p1 · · · pn−1],

where {p0, p2, . . . , pn−1} is the set of conjugate directions with respect to A. The quadratic
φ defined by (5.2) now becomes

φ̂(x̂)
def� φ(Sx̂) � 1

2 x̂ T (ST AS)x̂ − (ST b)T x̂ .

By the conjugacy property (5.5), the matrix ST AS is diagonal, so we can find the minimizing
value of φ̂ by performing n one-dimensional minimizations along the coordinate directions

106 C H A P T E R 5 . C O N J U G A T E G R A D I E N T M E T H O D S

of x̂ . Because of the relation (5.9), however, the i th coordinate direction in x̂-space corre-
sponds to the direction pi in x-space. Hence, the coordinate search strategy applied to φ̂ is
equivalent to the conjugate direction algorithm (5.6), (5.7). We conclude, as in Theorem 5.1,
that the conjugate direction algorithm terminates in at most n steps.

Returning to Figure 5.1, we note another interesting property: When the Hessian ma-
trix is diagonal, each coordinate minimization correctly determines one of the components
of the solution x∗. In other words, after k one-dimensional minimizations, the quadratic
has been minimized on the subspace spanned by e1, e2, . . . , ek . The following theorem
proves this important result for the general case in which the Hessian of the quadratic is not
necessarily diagonal. (Here and later, we use the notation span{p0, p1, . . . , pk} to denote
the set of all linear combinations of the vectors p0, p1, . . . , pk .) In proving the result we will
make use of the following expression, which is easily verified from the relations (5.4) and
(5.6):

rk+1 � rk + αk Apk . (5.10)

Theorem 5.2 (Expanding Subspace Minimization).
Let x0 ∈ IRn be any starting point and suppose that the sequence {xk} is generated by the

conjugate direction algorithm (5.6), (5.7). Then

r T
k pi � 0, for i � 0, 1, . . . , k − 1, (5.11)

and xk is the minimizer of φ(x) � 1
2 xT Ax − bT x over the set

{x | x � x0 + span{p0, p1, . . . , pk−1}}. (5.12)

PROOF. We begin by showing that a point x̃ minimizes φ over the set (5.12) if and only
if r(x̃)T pi � 0, for each i � 0, 1, . . . , k − 1. Let us define h(σ) � φ(x0 + σ0 p0 + · · · +
σk−1 pk−1), where σ � (σ0, σ1, . . . , σk−1)T . Since h(σ) is a strictly convex quadratic, it has
a unique minimizer σ ∗ that satisfies

∂h(σ ∗)

∂σi
� 0, i � 0, 1, . . . , k − 1.

By the chain rule, this equation implies that

∇φ(x0 + σ ∗0 p0 + · · · + σ ∗k−1 pk−1)T pi � 0, i � 0, 1, . . . , k − 1.

By recalling the definition (5.3), we have for the minimizer x̃ � x0 + σ ∗0 p0 + σ ∗1 p2 + · · · +
σ ∗k−1 pk−1 on the set (5.12) that r(x̃)T pi � 0, as claimed.

We now use induction to show that xk satisfies (5.11). For the case k � 1, we have
from the fact that x1 � x0 + α0 p0 minimizes φ along p0 that r T

1 p0 � 0. Let us now make

5 . 1 . T H E L I N E A R C O N J U G A T E G R A D I E N T M E T H O D 107

the induction hypothesis, namely, that r T
k−1 pi � 0 for i � 0, 1, . . . , k − 2. By (5.10), we

have

rk � rk−1 + αk−1 Apk−1,

so that

pT
k−1rk � pT

k−1rk−1 + αk−1 pT
k−1 Apk−1 � 0,

by the definition (5.7) of αk−1. Meanwhile, for the other vectors pi , i � 0, 1, . . . , k − 2, we
have

pT
i rk � pT

i rk−1 + αk−1 pT
i Apk−1 � 0,

where pT
i rk−1 � 0 because of the induction hypothesis and pT

i Apk−1 � 0 because of
conjugacy of the vectors pi . We have shown that r T

k pi � 0, for i � 0, 1, . . . , k − 1, so the
proof is complete. �

The fact that the current residual rk is orthogonal to all previous search directions, as
expressed in (5.11), is a property that will be used extensively in this chapter.

The discussion so far has been general, in that it applies to a conjugate direction
method (5.6), (5.7) based on any choice of the conjugate direction set {p0, p1, . . . , pn−1}.
There are many ways to choose the set of conjugate directions. For instance, the eigen-
vectors v1, v2, . . . , vn of A are mutually orthogonal as well as conjugate with respect to
A, so these could be used as the vectors {p0, p1, . . . , pn−1}. For large-scale applications,
however, computation of the complete set of eigenvectors requires an excessive amount of
computation. An alternative approach is to modify the Gram–Schmidt orthogonalization
process to produce a set of conjugate directions rather than a set of orthogonal directions.
(This modification is easy to produce, since the properties of conjugacy and orthogonality
are closely related in spirit.) However, the Gram–Schmidt approach is also expensive, since
it requires us to store the entire direction set.

BASIC PROPERTIES OF THE CONJUGATE GRADIENT METHOD

The conjugate gradient method is a conjugate direction method with a very special
property: In generating its set of conjugate vectors, it can compute a new vector pk by
using only the previous vector pk−1. It does not need to know all the previous elements
p0, p1, . . . , pk−2 of the conjugate set; pk is automatically conjugate to these vectors. This
remarkable property implies that the method requires little storage and computation.

In the conjugate gradient method, each direction pk is chosen to be a linear combi-
nation of the negative residual−rk (which, by (5.3), is the steepest descent direction for the

108 C H A P T E R 5 . C O N J U G A T E G R A D I E N T M E T H O D S

function φ) and the previous direction pk−1. We write

pk � −rk + βk pk−1, (5.13)

where the scalar βk is to be determined by the requirement that pk−1 and pk must be
conjugate with respect to A. By premultiplying (5.13) by pT

k−1 A and imposing the condition
pT

k−1 Apk � 0, we find that

βk � r T
k Apk−1

pT
k−1 Apk−1

.

We choose the first search direction p0 to be the steepest descent direction at the initial point
x0. As in the general conjugate direction method, we perform successive one-dimensional
minimizations along each of the search directions. We have thus specified a complete
algorithm, which we express formally as follows:

Algorithm 5.1 (CG–Preliminary Version).
Given x0;
Set r0 ← Ax0 − b, p0 ←−r0, k ← 0;
while rk 	� 0

αk ←− r T
k pk

pT
k Apk

; (5.14a)

xk+1 ← xk + αk pk; (5.14b)

rk+1 ← Axk+1 − b; (5.14c)

βk+1 ←
r T

k+1 Apk

pT
k Apk

; (5.14d)

pk+1 ←−rk+1 + βk+1 pk; (5.14e)

k ← k + 1; (5.14f)

end (while)

This version is useful for studying the essential properties of the conjugate gradient
method, but we present a more efficient version later. We show first that the directions
p0, p1, . . . , pn−1 are indeed conjugate, which by Theorem 5.1 implies termination in n
steps. The theorem below establishes this property and two other important properties.
First, the residuals ri are mutually orthogonal. Second, each search direction pk and residual
rk is contained in the Krylov subspace of degree k for r0, defined as

K(r0; k)
def� span{r0, Ar0, . . . , Akr0}. (5.15)

5 . 1 . T H E L I N E A R C O N J U G A T E G R A D I E N T M E T H O D 109

Theorem 5.3.
Suppose that the kth iterate generated by the conjugate gradient method is not the solution

point x∗. The following four properties hold:

r T
k ri � 0, for i � 0, 1, . . . , k − 1, (5.16)

span{r0, r1, . . . , rk} � span{r0, Ar0, . . . , Akr0}, (5.17)

span{p0, p1, . . . , pk} � span{r0, Ar0, . . . , Akr0}, (5.18)

pT
k Api � 0, for i � 0, 1, . . . , k − 1. (5.19)

Therefore, the sequence {xk} converges to x∗ in at most n steps.

PROOF. The proof is by induction. The expressions (5.17) and (5.18) hold trivially for k � 0,
while (5.19) holds by construction for k � 1. Assuming now that these three expressions are
true for some k (the induction hypothesis), we show that they continue to hold for k + 1.

To prove (5.17), we show first that the set on the left-hand side is contained in the set
on the right-hand side. Because of the induction hypothesis, we have from (5.17) and (5.18)
that

rk ∈ span{r0, Ar0, . . . , Akr0}, pk ∈ span{r0, Ar0, . . . , Akr0},

while by multiplying the second of these expressions by A, we obtain

Apk ∈ span{Ar0, . . . , Ak+1r0}. (5.20)

By applying (5.10), we find that

rk+1 ∈ span{r0, Ar0, . . . , Ak+1r0}.

By combining this expression with the induction hypothesis for (5.17), we conclude that

span{r0, r1, . . . , rk, rk+1} ⊂ span{r0, Ar0, . . . , Ak+1r0}.

To prove that the reverse inclusion holds as well, we use the induction hypothesis on (5.18)
to deduce that

Ak+1r0 � A(Akr0) ∈ span{Ap0, Ap1, . . . , Apk}.

Since by (5.10) we have Api � (ri+1 − ri)/αi for i � 0, 1, . . . , k, it follows that

Ak+1r0 ∈ span{r0, r1, . . . , rk+1}.

110 C H A P T E R 5 . C O N J U G A T E G R A D I E N T M E T H O D S

By combining this expression with the induction hypothesis for (5.17), we find that

span{r0, Ar0, . . . , Ak+1r0} ⊂ span{r0, r1, . . . , rk, rk+1}.

Therefore, the relation (5.17) continues to hold when k is replaced by k + 1, as claimed.
We show that (5.18) continues to hold when k is replaced by k + 1 by the following

argument:

span{p0, p1, . . . , pk, pk+1}
� span{p0, p1, . . . , pk, rk+1} by (5.14e)

� span{r0, Ar0, . . . , Akr0, rk+1} by induction hypothesis for (5.18)

� span{r0, r1, . . . , rk, rk+1} by (5.17)

� span{r0, Ar0, . . . , Ak+1r0} by (5.17) for k + 1.

Next, we prove the conjugacy condition (5.19) with k replaced by k+1. By multiplying
(5.14e) by Api , i � 0, 1, . . . , k, we obtain

pT
k+1 Api � −r T

k+1 Api + βk+1 pT
k Api . (5.21)

By the definition (5.14d) of βk , the right-hand-side of (5.21) vanishes when i � k. For
i ≤ k − 1 we need to collect a number of observations. Note first that our induction
hypothesis for (5.19) implies that the directions p0, p1, . . . , pk are conjugate, so we can
apply Theorem 5.2 to deduce that

r T
k+1 pi � 0, for i � 0, 1, . . . , k. (5.22)

Second, by repeatedly applying (5.18), we find that for i � 0, 1, . . . , k − 1, the following
inclusion holds:

Api ∈ A span{r0, Ar0, . . . , Air0} � span{Ar0, A2r0, . . . , Ai+1r0}
⊂ span{p0, p1, . . . , pi+1}. (5.23)

By combining (5.22) and (5.23), we deduce that

r T
k+1 Api � 0, for i � 0, 1, . . . , k − 1,

so the first term in the right-hand-side of (5.21) vanishes for i � 0, 1, . . . , k − 1. Be-
cause of the induction hypothesis for (5.19), the second term vanishes as well, and we

5 . 1 . T H E L I N E A R C O N J U G A T E G R A D I E N T M E T H O D 111

conclude that pT
k+1 Api � 0, i � 0, 1, . . . , k. Hence, the induction argument holds for (5.19)

also.
It follows that the direction set generated by the conjugate gradient method is indeed

a conjugate direction set, so Theorem 5.1 tells us that the algorithm terminates in at most n
iterations.

Finally, we prove (5.16) by a noninductive argument. Because the direction set is
conjugate, we have from (5.11) that r T

k pi � 0 for all i � 0, 1, . . . , k − 1 and any k �
1, 2, . . . , n − 1. By rearranging (5.14e), we find that

pi � −ri + βi pi−1,

so that ri ∈ span{pi , pi−1} for all i � 1, . . . , k − 1. We conclude that r T
k ri � 0 for all

i � 1, . . . , k − 1. To complete the proof, we note that r T
k r0 � −r T

k p0 � 0, by definition of
p0 in Algorithm 5.1 and by (5.11). �

The proof of this theorem relies on the fact that the first direction p0 is the steep-
est descent direction −r0; in fact, the result does not hold for other choices of p0. Since
the gradients rk are mutually orthogonal, the term “conjugate gradient method” is ac-
tually a misnomer. It is the search directions, not the gradients, that are conjugate with
respect to A.

A PRACTICAL FORM OF THE CONJUGATE GRADIENT METHOD

We can derive a slightly more economical form of the conjugate gradient method by
using the results of Theorems 5.2 and 5.3. First, we can use (5.14e) and (5.11) to replace the
formula (5.14a) for αk by

αk � r T
k rk

pT
k Apk

.

Second, we have from (5.10) that αk Apk � rk+1 − rk , so by applying (5.14e) and (5.11)
once again we can simplify the formula for βk+1 to

βk+1 �
r T

k+1rk+1

r T
k rk

.

By using these formulae together with (5.10), we obtain the following standard form of the
conjugate gradient method.

112 C H A P T E R 5 . C O N J U G A T E G R A D I E N T M E T H O D S

Algorithm 5.2 (CG).
Given x0;
Set r0 ← Ax0 − b, p0 ←−r0, k ← 0;
while rk 	� 0

αk ← r T
k rk

pT
k Apk

; (5.24a)

xk+1 ← xk + αk pk; (5.24b)

rk+1 ← rk + αk Apk; (5.24c)

βk+1 ←
r T

k+1rk+1

r T
k rk

; (5.24d)

pk+1 ←−rk+1 + βk+1 pk; (5.24e)

k ← k + 1; (5.24f)

end (while)

At any given point in Algorithm 5.2 we never need to know the vectors x , r , and
p for more than the last two iterations. Accordingly, implementations of this algorithm
overwrite old values of these vectors to save on storage. The major computational tasks to be
performed at each step are computation of the matrix–vector product Apk , calculation of
the inner products pT

k (Apk) and r T
k+1rk+1, and calculation of three vector sums. The inner

product and vector sum operations can be performed in a small multiple of n floating-point
operations, while the cost of the matrix–vector product is, of course, dependent on the
problem. The CG method is recommended only for large problems; otherwise, Gaussian
elimination or other factorization algorithms such as the singular value decomposition are
to be preferred, since they are less sensitive to rounding errors. For large problems, the CG
method has the advantage that it does not alter the coefficient matrix and (in contrast to
factorization techniques) does not produce fill in the arrays holding the matrix. Another key
property is that the CG method sometimes approaches the solution quickly, as we discuss
next.

RATE OF CONVERGENCE

We have seen that in exact arithmetic the conjugate gradient method will terminate at
the solution in at most n iterations. What is more remarkable is that when the distribution
of the eigenvalues of A has certain favorable features, the algorithm will identify the solution
in many fewer than n iterations. To explain this property, we begin by viewing the expanding
subspace minimization property proved in Theorem 5.2 in a slightly different way, using it
to show that Algorithm 5.2 is optimal in a certain important sense.

5 . 1 . T H E L I N E A R C O N J U G A T E G R A D I E N T M E T H O D 113

From (5.24b) and (5.18), we have that

xk+1 � x0 + α0 p0 + · · · + αk pk

� x0 + γ0r0 + γ1 Ar0 + · · · + γk Akr0, (5.25)

for some constants γi . We now define P∗
k (·) to be a polynomial of degree k with coefficients

γ0, γ1, . . . , γk . Like any polynomial, P∗
k can take either a scalar or a square matrix as its

argument. For the matrix argument A, we have

P∗
k (A) � γ0 I + γ1 A + · · · + γk Ak,

which allows us to express (5.25) as follows:

xk+1 � x0 + P∗
k (A)r0. (5.26)

We now show that among all possible methods whose first k steps are restricted to the
Krylov subspace K(r0; k) given by (5.15), Algorithm 5.2 does the best job of minimizing the
distance to the solution after k steps, when this distance is measured by the weighted norm
measure ‖ · ‖A defined by

‖z‖2
A � zT Az. (5.27)

(Recall that this norm was used in the analysis of the steepest descent method of Chapter 3.)
Using this norm and the definition of φ (5.2), and the fact that x∗ minimizes φ, it is easy to
show that

1
2‖x − x∗‖2

A � 1
2 (x − x∗)T A(x − x∗) � φ(x)− φ(x∗). (5.28)

Theorem 5.2 states that xk+1 minimizes φ, and hence ‖x − x∗‖2
A, over the set x0 +

span{p0, p1, . . . , pk}, which by (5.18) is the same as x0+span{r0, Ar0, . . . , Akr0}. It follows
from (5.26) that the polynomial P∗

k solves the following problem in which the minimum is
taken over the space of all possible polynomials of degree k:

min
Pk

‖x0 + Pk(A)r0 − x∗‖A. (5.29)

We exploit this optimality property repeatedly in the remainder of the section.
Since

r0 � Ax0 − b � Ax0 − Ax∗ � A(x0 − x∗),

we have that

xk+1 − x∗ � x0 + P∗
k (A)r0 − x∗ � [I + P∗

k (A)A](x0 − x∗). (5.30)

114 C H A P T E R 5 . C O N J U G A T E G R A D I E N T M E T H O D S

Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of A, and let v1, v2, . . . , vn be the
corresponding orthonormal eigenvectors, so that

A �
n∑

i�1

λiviv
T
i .

Since the eigenvectors span the whole space IRn , we can write

x0 − x∗ �
n∑

i�1

ξivi , (5.31)

for some coefficients ξi . It is easy to show that any eigenvector of A is also an eigenvector
of Pk(A) for any polynomial Pk . For our particular matrix A and its eigenvalues λi and
eigenvectors vi , we have

Pk(A)vi � Pk(λi)vi , i � 1, 2, . . . , n.

By substituting (5.31) into (5.30) we have

xk+1 − x∗ �
n∑

i�1

[1+ λi P∗
k (λi)]ξivi .

By using the fact that ‖z‖2
A � zT Az �∑n

i�1 λi (vT
i z)2, we have

‖xk+1 − x∗‖2
A �

n∑
i�1

λi [1+ λi P∗
k (λi)]2ξ 2

i . (5.32)

Since the polynomial P∗
k generated by the CG method is optimal with respect to this norm,

we have

‖xk+1 − x∗‖2
A � min

Pk

n∑
i�1

λi [1+ λi Pk(λi)]2ξ 2
i .

By extracting the largest of the terms [1+ λi Pk(λi)]2 from this expression, we obtain that

‖xk+1 − x∗‖2
A ≤ min

Pk

max
1≤i≤n

[1+ λi Pk(λi)]2

⎛
⎝ n∑

j�1

λ jξ
2
j

⎞
⎠

� min
Pk

max
1≤i≤n

[1+ λi Pk(λi)]2‖x0 − x∗‖2
A, (5.33)

where we have used the fact that ‖x0 − x∗‖2
A �

∑n
j�1 λ jξ

2
j .

5 . 1 . T H E L I N E A R C O N J U G A T E G R A D I E N T M E T H O D 115

The expression (5.33) allows us to quantify the convergence rate of the CG method
by estimating the nonnegative scalar quantity

min
Pk

max
1≤i≤n

[1+ λi Pk(λi)]2. (5.34)

In other words, we search for a polynomial Pk that makes this expression as small as possible.
In some practical cases, we can find this polynomial explicitly and draw some interesting
conclusions about the properties of the CG method. The following result is an example.

Theorem 5.4.
If A has only r distinct eigenvalues, then the CG iteration will terminate at the solution

in at most r iterations.

PROOF. Suppose that the eigenvalues λ1, λ2, . . . , λn take on the r distinct values τ1 < τ2 <

· · · < τr . We define a polynomial Qr (λ) by

Qr (λ) � (−1)r

τ1τ2 · · · τr
(λ− τ1)(λ− τ2) · · · (λ− τr),

and note that Qr (λi) � 0 for i � 1, 2, . . . , n and Qr (0) � 1. From the latter observation,
we deduce that Qr (λ)− 1 is a polynomial of degree r with a root at λ � 0, so by polynomial
division, the function P̄r−1 defined by

P̄r−1(λ) � (Qr (λ)− 1)/λ

is a polynomial of degree r − 1. By setting k � r − 1 in (5.34), we have

0 ≤ min
Pr−1

max
1≤i≤n

[1+ λi Pr−1(λi)]2 ≤ max
1≤i≤n

[1+ λi P̄r−1(λi)]2 � max
1≤i≤n

Q2
r (λi) � 0.

Hence, the constant in (5.34) is zero for the value k � r − 1, so we have by substituting into
(5.33) that ‖xr − x∗‖2

A � 0, and therefore xr � x∗, as claimed. �

By using similar reasoning, Luenberger [195] establishes the following estimate, which
gives a useful characterization of the behavior of the CG method.

Theorem 5.5.
If A has eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn , we have that

‖xk+1 − x∗‖2
A ≤

(
λn−k − λ1

λn−k + λ1

)2

‖x0 − x∗‖2
A. (5.35)

116 C H A P T E R 5 . C O N J U G A T E G R A D I E N T M E T H O D S

λn−m+1λn−m1λ
|

0 1

 nλ

Figure 5.3 Two clusters of eigenvalues.

Without giving details of the proof, we describe how this result is obtained from (5.33). One
selects a polynomial P̄k of degree k such that the polynomial Qk+1(λ) � 1 + λP̄k(λ) has
roots at the k largest eigenvalues λn, λn−1, . . . , λn−k+1, as well as at the midpoint between
λ1 and λn−k . It can be shown that the maximum value attained by Qk+1 on the remaining
eigenvalues λ1, λ2, . . . , λn−k is precisely (λn−k − λ1)/(λn−k + λ1).

We now illustrate how Theorem 5.5 can be used to predict the behavior of the CG
method on specific problems. Suppose we have the situation plotted in Figure 5.3, where
the eigenvalues of A consist of m large values, with the remaining n−m smaller eigenvalues
clustered around 1. If we define ε � λn−m − λ1, Theorem 5.5 tells us that after m + 1 steps
of the conjugate gradient algorithm, we have

‖xm+1 − x∗‖A ≈ ε‖x0 − x∗‖A.

For a small value of ε, we conclude that the CG iterates will provide a good estimate of the
solution after only m + 1 steps.

Figure 5.4 shows the behavior of CG on a problem of this type, which has five large
eigenvalues with all the smaller eigenvalues clustered between 0.95 and 1.05, and compares
this behavior with that of CG on a problem in which the eigenvalues satisfy some random
distribution. In both cases, we plot the log of φ after each iteration.

For the problem with clustered eigenvalues, Theorem 5.5 predicts a sharp decrease in
the error measure at iteration 6. Note, however, that this decrease was achieved one iteration
earlier, illustrating the fact that Theorem 5.5 gives only an upper bound, and that the rate of
convergence can be faster. By contrast, we observe in Figure 5.4 that for the problem with
randomly distributed eigenvalues (dashed line), the convergence rate is slower and more
uniform.

Figure 5.4 illustrates another interesting feature: After one more iteration (a total
of seven) on the problem with clustered eigenvalues, the error measure drops sharply. An
extension of the arguments leading to Theorem 5.4 explains this behavior. It is almost
true to say that the matrix A has just six distinct eigenvalues: the five large eigenvalues
and 1. Then we would expect the error measure to be zero after six iterations. Because the
eigenvalues near 1 are slightly spread out, however, the error does not become very small until
iteration 7.

5 . 1 . T H E L I N E A R C O N J U G A T E G R A D I E N T M E T H O D 117

uniformly distributed
eigenvalues

log(||x-x*||)A
2

clustered eigenvalues

4 5 62 31

-5

-10

5

0

7

iteration

Figure 5.4 Performance of the conjugate gradient method on (a) a problem in which
five of the eigenvalues are large and the remainder are clustered near 1, and (b) a matrix
with uniformly distributed eigenvalues.

To state this claim more precisely, it is generally true that if the eigenvalues occur in r
distinct clusters, the CG iterates will approximately solve the problem in about r steps (see
[136]). This result can be proved by constructing a polynomial P̄r−1 such that (1+λP̄r−1(λ))
has zeros inside each of the clusters. This polynomial may not vanish at the eigenvalues λi ,
i � 1, 2, . . . , n, but its value will be small at these points, so the constant defined in (5.34)
will be small for k ≥ r − 1. We illustrate this behavior in Figure 5.5, which shows the
performance of CG on a matrix of dimension n � 14 that has four clusters of eigenvalues:
single eigenvalues at 140 and 120, a cluster of 10 eigenvalues very close to 10, with the
remaining eigenvalues clustered between 0.95 and 1.05. After four iterations, the error has
decreased significantly. After six iterations, the solution is identified to good accuracy.

Another, more approximate, convergence expression for CG is based on the Euclidean
condition number of A, which is defined by

κ(A) � ‖A‖2‖A−1‖2 � λn/λ1.

It can be shown that

‖xk − x∗‖A ≤ 2

(√
κ(A)− 1√
κ(A)+ 1

)k

‖x0 − x∗‖A. (5.36)

This bound often gives a large overestimate of the error, but it can be useful in those cases

118 C H A P T E R 5 . C O N J U G A T E G R A D I E N T M E T H O D S

log(||x-x*||)A
2

1 2 3 4 65

0

5

-5

-10

iteration
7

Figure 5.5 Performance of the conjugate gradient method on a matrix in which the
eigenvalues occur in four distinct clusters.

where the only information we have about A is estimates of the extreme eigenvalues λ1

and λn . This bound should be compared with that of the steepest descent method given by
(3.29), which is identical in form but which depends on the condition number κ(A), and
not on its square root

√
κ(A).

PRECONDITIONING

We can accelerate the conjugate gradient method by transforming the linear system
to improve the eigenvalue distribution of A. The key to this process, which is known as
preconditioning, is a change of variables from x to x̂ via a nonsingular matrix C , that is,

x̂ � Cx . (5.37)

The quadratic φ defined by (5.2) is transformed accordingly to

φ̂(x̂) � 1
2 x̂ T (C−T AC−1)x̂ − (C−T b)T x̂ . (5.38)

If we use Algorithm 5.2 to minimize φ̂ or, equivalently, to solve the linear system

(C−T AC−1)x̂ � C−T b,

then the convergence rate will depend on the eigenvalues of the matrix C−T AC−1 rather
than those of A. Therefore, we aim to choose C such that the eigenvalues of C−T AC−1

5 . 1 . T H E L I N E A R C O N J U G A T E G R A D I E N T M E T H O D 119

are more favorable for the convergence theory discussed above. We can try to choose C
such that the condition number of C−T AC−1 is much smaller than the original condition
number of A, for instance, so that the constant in (5.36) is smaller. We could also try to
choose C such that the eigenvalues of C−T AC−1 are clustered, which by the discussion of
the previous section ensures that the number of iterates needed to find a good approximate
solution is not much larger than the number of clusters.

It is not necessary to carry out the transformation (5.37) explicitly. Rather, we can
apply Algorithm 5.2 to the problem (5.38), in terms of the variables x̂ , and then invert the
transformations to reexpress all the equations in terms of x . This process of derivation results
in Algorithm 5.3 (Preconditioned Conjugate Gradient), which we now define. It happens
that Algorithm 5.3 does not make use of C explicitly, but rather the matrix M � CT C ,
which is symmetric and positive definite by construction.

Algorithm 5.3 (Preconditioned CG).
Given x0, preconditioner M ;
Set r0 ← Ax0 − b;
Solve My0 � r0 for y0;
Set p0 � −y0, k ← 0;
while rk 	� 0

αk ← r T
k yk

pT
k Apk

; (5.39a)

xk+1 ← xk + αk pk; (5.39b)

rk+1 ← rk + αk Apk; (5.39c)

Solve Myk+1 � rk+1; (5.39d)

βk+1 ←
r T

k+1 yk+1

r T
k yk

; (5.39e)

pk+1 ←−yk+1 + βk+1 pk; (5.39f)

k ← k + 1; (5.39g)

end (while)

If we set M � I in Algorithm 5.3, we recover the standard CG method, Algorithm 5.2.
The properties of Algorithm 5.2 generalize to this case in interesting ways. In particular, the
orthogonality property (5.16) of the successive residuals becomes

r T
i M−1r j � 0 for all i 	� j . (5.40)

120 C H A P T E R 5 . C O N J U G A T E G R A D I E N T M E T H O D S

In terms of computational effort, the main difference between the preconditioned
and unpreconditioned CG methods is the need to solve systems of the form My � r (step
(5.39d)).

PRACTICAL PRECONDITIONERS

No single preconditioning strategy is “best” for all conceivable types of matrices:
The tradeoff between various objectives—effectiveness of M , inexpensive computation and
storage of M , inexpensive solution of My � r—varies from problem to problem.

Good preconditioning strategies have been devised for specific types of matrices, in
particular, those arising from discretizations of partial differential equations (PDEs). Often,
the preconditioner is defined in such a way that the system My � r amounts to a simplified
version of the original system Ax � b. In the case of a PDE, My � r could represent
a coarser discretization of the underlying continuous problem than Ax � b. As in many
other areas of optimization and numerical analysis, knowledge about the structure and
origin of a problem (in this case, knowledge that the system Ax � b is a finite-dimensional
representation of a PDE) is the key to devising effective techniques for solving the problem.

General-purpose preconditioners have also been proposed, but their success varies
greatly from problem to problem. The most important strategies of this type include sym-
metric successive overrelaxation (SSOR), incomplete Cholesky, and banded preconditioners.
(See [272], [136], and [72] for discussions of these techniques.) Incomplete Cholesky is prob-
ably the most effective in general. The basic idea is simple: We follow the Cholesky procedure,
but instead of computing the exact Cholesky factor L that satisfies A � L LT , we compute
an approximate factor L̃ that is sparser than L . (Usually, we require L̃ to be no denser, or
not much denser, than the lower triangle of the original matrix A.) We then have A ≈ L̃ L̃T ,
and by choosing C � L̃T , we obtain M � L̃ L̃T and

C−T AC−1 � L̃−1 AL̃−T ≈ I,

so the eigenvalue distribution of C−T AC−1 is favorable. We do not compute M explicitly,
but rather store the factor L̃ and solve the system My � r by performing two triangular
substitutions with L̃ . Because the sparsity of L̃ is similar to that of A, the cost of solving
My � r is similar to the cost of computing the matrix–vector product Ap.

There are several possible pitfalls in the incomplete Cholesky approach. One is that
the resulting matrix may not be (sufficiently) positive definite, and in this case one may need
to increase the values of the diagonal elements to ensure that a value for L̃ can be found.
Numerical instability or breakdown can occur during the incomplete factorization because
of the sparsity conditions we impose on the factor L̃ . This difficulty can be remedied by
allowing additional fill-in in L̃ , but the denser factor will be more expensive to compute and
to apply at each iteration.

5 . 2 . N O N L I N E A R C O N J U G A T E G R A D I E N T M E T H O D S 121

5.2 NONLINEAR CONJUGATE GRADIENT METHODS

We have noted that the CG method, Algorithm 5.2, can be viewed as a minimization
algorithm for the convex quadratic function φ defined by (5.2). It is natural to ask whether
we can adapt the approach to minimize general convex functions, or even general nonlinear
functions f . In fact, as we show in this section, nonlinear variants of the conjugate gradient
are well studied and have proved to be quite successful in practice.

THE FLETCHER–REEVES METHOD

Fletcher and Reeves [107] showed how to extend the conjugate gradient method to
nonlinear functions by making two simple changes in Algorithm 5.2. First, in place of
the formula (5.24a) for the step length αk (which minimizes φ along the search direction
pk), we need to perform a line search that identifies an approximate minimum of the
nonlinear function f along pk . Second, the residual r , which is simply the gradient of φ in
Algorithm 5.2 (see (5.3)), must be replaced by the gradient of the nonlinear objective f .
These changes give rise to the following algorithm for nonlinear optimization.

Algorithm 5.4 (FR).
Given x0;
Evaluate f0 � f (x0), ∇ f0 � ∇ f (x0);
Set p0 ←−∇ f0, k ← 0;
while ∇ fk 	� 0

Compute αk and set xk+1 � xk + αk pk ;

Evaluate ∇ fk+1;

βFR
k+1 ←

∇ f T
k+1∇ fk+1

∇ f T
k ∇ fk

; (5.41a)

pk+1 ←−∇ fk+1 + βFR
k+1 pk; (5.41b)

k ← k + 1; (5.41c)

end (while)

If we choose f to be a strongly convex quadratic and αk to be the exact minimizer, this
algorithm reduces to the linear conjugate gradient method, Algorithm 5.2. Algorithm 5.4
is appealing for large nonlinear optimization problems because each iteration requires only
evaluation of the objective function and its gradient. No matrix operations are required for
the step computation, and just a few vectors of storage are required.

To make the specification of Algorithm 5.4 complete, we need to be more precise
about the choice of line search parameter αk . Because of the second term in (5.41b), the
search direction pk may fail to be a descent direction unless αk satisfies certain conditions.

122 C H A P T E R 5 . C O N J U G A T E G R A D I E N T M E T H O D S

By taking the inner product of (5.41b) (with k replacing k + 1) with the gradient vector
∇ fk , we obtain

∇ f T
k pk � −‖∇ fk‖2 + βFR

k ∇ f T
k pk−1. (5.42)

If the line search is exact, so that αk−1 is a local minimizer of f along the direction pk−1,
we have that ∇ f T

k pk−1 � 0. In this case we have from (5.42) that ∇ f T
k pk < 0, so that pk is

indeed a descent direction. If the line search is not exact, however, the second term in (5.42)
may dominate the first term, and we may have ∇ f T

k pk > 0, implying that pk is actually a
direction of ascent. Fortunately, we can avoid this situation by requiring the step length αk

to satisfy the strong Wolfe conditions, which we restate here:

f (xk + αk pk) ≤ f (xk)+ c1αk∇ f T
k pk, (5.43a)

|∇ f (xk + αk pk)T pk | ≤ −c2∇ f T
k pk, (5.43b)

where 0 < c1 < c2 < 1
2 . (Note that we impose c2 < 1

2 here, in place of the looser condition
c2 < 1 that was used in the earlier statement (3.7).) By applying Lemma 5.6 below, we can
show that condition (5.43b) implies that (5.42) is negative, and we conclude that any line
search procedure that yields an αk satisfying (5.43) will ensure that all directions pk are
descent directions for the function f .

THE POLAK–RIBIÈRE METHOD AND VARIANTS

There are many variants of the Fletcher–Reeves method that differ from each other
mainly in the choice of the parameter βk . An important variant, proposed by Polak and
Ribière, defines this parameter as follows:

βPR
k+1 �

∇ f T
k+1(∇ fk+1 − ∇ fk)

‖∇ fk‖2
. (5.44)

We refer to the algorithm in which (5.44) replaces (5.41a) as Algorithm PR. It is identical to
Algorithm FR when f is a strongly convex quadratic function and the line search is exact,
since by (5.16) the gradients are mutually orthogonal, and so βPR

k+1 � βFR
k+1. When applied

to general nonlinear functions with inexact line searches, however, the behavior of the two
algorithms differs markedly. Numerical experience indicates that Algorithm PR tends to be
the more robust and efficient of the two.

A surprising fact about Algorithm PR is that the strong Wolfe conditions (5.43) do
not guarantee that pk is always a descent direction. If we define the β parameter as

β+k+1 � max{βPR
k+1, 0}, (5.45)

5 . 2 . N O N L I N E A R C O N J U G A T E G R A D I E N T M E T H O D S 123

giving rise to an algorithm we call Algorithm PR+, then a simple adaptation of the strong
Wolfe conditions ensures that the descent property holds.

There are many other choices for βk+1 that coincide with the Fletcher–Reeves formula
βFR

k+1 in the case where the objective is quadratic and the line search is exact. The Hestenes–
Stiefel formula, which defines

βHS
k+1 �

∇ f T
k+1(∇ fk+1 − ∇ fk)

(∇ fk+1 −∇ fk)T pk
, (5.46)

gives rise to an algorithm (called Algorithm HS) that is similar to Algorithm PR, both in
terms of its theoretical convergence properties and in its practical performance. Formula
(5.46) can be derived by demanding that consecutive search directions be conjugate with
respect to the average Hessian over the line segment [xk, xk+1], which is defined as

Ḡk ≡
∫ 1

0
[∇2 f (xk + ταk pk)]dτ.

Recalling from Taylor’s theorem (Theorem 2.1) that ∇ fk+1 � ∇ fk + αk Ḡk pk , we see that
for any direction of the form pk+1 � −∇ fk+1 + βk+1 pk , the condition pT

k+1Ḡk pk � 0
requires βk+1 to be given by (5.46).

Later, we see that it is possible to guarantee global convergence for any parameter βk

satisfying the bound

|βk | ≤ βFR
k , (5.47)

for all k ≥ 2. This fact suggests the following modification of the PR method, which has
performed well on some applications. For all k ≥ 2 let

βk �

⎧⎪⎨
⎪⎩

−βFR

k if βPR

k < −βFR

k

βPR

k if |βPR

k | ≤ βFR

k

βFR

k if βPR

k > βFR

k .

(5.48)

The algorithm based on this strategy will be denoted by FR-PR.
Other variants of the CG method have recently been proposed. Two choices for βk+1

that possess attractive theoretical and computational properties are

βk+1 � ‖∇ fk+1‖2

(∇ fk+1 −∇ fk)T pk
(5.49)

(see [85]) and

βk+1 �
(

ŷk − 2pk
‖ŷk‖2

ŷT
k pk

)T ∇ fk+1

ŷT
k pk

, with ŷk � ∇ fk+1 −∇ fk (5.50)

124 C H A P T E R 5 . C O N J U G A T E G R A D I E N T M E T H O D S

(see [161]). These two choices guarantee that pk is a descent direction, provided the
steplength αk satisfies the Wolfe conditions. The CG algorithms based on (5.49) or (5.50)
appear to be competitive with the Polak–Ribière method.

QUADRATIC TERMINATION AND RESTARTS

Implementations of nonlinear conjugate gradient methods usually preserve their
close connections with the linear conjugate gradient method. Usually, a quadratic (or cubic)
interpolation along the search direction pk is incorporated into the line search procedure; see
Chapter 3. This feature guarantees that when f is a strictly convex quadratic, the step length
αk is chosen to be the exact one-dimensional minimizer, so that the nonlinear conjugate
gradient method reduces to the linear method, Algorithm 5.2.

Another modification that is often used in nonlinear conjugate gradient procedures
is to restart the iteration at every n steps by setting βk � 0 in (5.41a), that is, by taking
a steepest descent step. Restarting serves to periodically refresh the algorithm, erasing old
information that may not be beneficial. We can even prove a strong theoretical result about
restarting: It leads to n-step quadratic convergence, that is,

‖xk+n − x‖ � O
(‖xk − x∗‖2

)
. (5.51)

After a little thought, this result is not so surprising. Consider a function f that is strongly
convex quadratic in a neighborhood of the solution, but is nonquadratic everywhere else.
Assuming that the algorithm is converging to the solution in question, the iterates will
eventually enter the quadratic region. At some point, the algorithm will be restarted in that
region, and from that point onward, its behavior will simply be that of the linear conjugate
gradient method, Algorithm 5.2. In particular, finite termination will occur within n steps
of the restart. The restart is important, because the finite-termination property and other
appealing properties of Algorithm 5.2 hold only when its initial search direction p0 is equal
to the negative gradient.

Even if the function f is not exactly quadratic in the region of a solution, Taylor’s
theorem (Theorem 2.1) implies that it can still be approximated quite closely by a quadratic,
provided that it is smooth. Therefore, while we would not expect termination in n steps
after the restart, it is not surprising that substantial progress is made toward the solution, as
indicated by the expression (5.51).

Though the result (5.51) is interesting from a theoretical viewpoint, it may not be
relevant in a practical context, because nonlinear conjugate gradient methods can be recom-
mended only for solving problems with large n. Restarts may never occur in such problems
because an approximate solution may be located in fewer than n steps. Hence, nonlinear
CG method are sometimes implemented without restarts, or else they include strategies for
restarting that are based on considerations other than iteration counts. The most popular
restart strategy makes use of the observation (5.16), which is that the gradients are mutually
orthogonal when f is a quadratic function. A restart is performed whenever two consecutive

5 . 2 . N O N L I N E A R C O N J U G A T E G R A D I E N T M E T H O D S 125

gradients are far from orthogonal, as measured by the test

|∇ f T
k ∇ fk−1|
‖∇ fk‖2

≥ ν, (5.52)

where a typical value for the parameter ν is 0.1.
We could also think of formula (5.45) as a restarting strategy, because pk+1 will revert

to the steepest descent direction whenever βPR
k is negative. In contrast to (5.52), these restarts

are rather infrequent because βPR
k is positive most of the time.

BEHAVIOR OF THE FLETCHER–REEVES METHOD

We now investigate the Fletcher–Reeves algorithm, Algorithm 5.4, a little more closely,
proving that it is globally convergent and explaining some of its observed inefficiencies.

The following result gives conditions on the line search under which all search direc-
tions are descent directions. It assumes that the level setL � {x : f (x) ≤ f (x0)} is bounded
and that f is twice continuously differentiable, so that we have from Lemma 3.1 that there
exists a step length αk satisfying the strong Wolfe conditions.

Lemma 5.6.
Suppose that Algorithm 5.4 is implemented with a step length αk that satisfies the strong

Wolfe conditions (5.43) with 0 < c2 < 1
2 . Then the method generates descent directions pk

that satisfy the following inequalities:

− 1

1− c2
≤ ∇ f T

k pk

‖∇ fk‖2
≤ 2c2 − 1

1− c2
, for all k � 0, 1, (5.53)

PROOF. Note first that the function t(ξ)
def� (2ξ − 1)/(1− ξ) is monotonically increasing

on the interval [0, 1
2] and that t(0) � −1 and t(1

2) � 0. Hence, because of c2 ∈ (0, 1
2), we

have

− 1 <
2c2 − 1

1− c2
< 0. (5.54)

The descent condition ∇ f T
k pk < 0 follows immediately once we establish (5.53).

The proof is by induction. For k � 0, the middle term in (5.53) is −1, so by using
(5.54), we see that both inequalities in (5.53) are satisfied. Next, assume that (5.53) holds
for some k ≥ 1. From (5.41b) and (5.41a) we have

∇ f T
k+1 pk+1

‖∇ fk+1‖2
� −1+ βk+1

∇ f T
k+1 pk

‖∇ fk+1‖2
� −1+ ∇ f T

k+1 pk

‖∇ fk‖2
. (5.55)

126 C H A P T E R 5 . C O N J U G A T E G R A D I E N T M E T H O D S

By using the line search condition (5.43b), we have

|∇ f T
k+1 pk | ≤ −c2∇ f T

k pk,

so by combining with (5.55) and recalling (5.41a), we obtain

−1+ c2
∇ f T

k pk

‖∇ fk‖2
≤ ∇ f T

k+1 pk+1

‖∇ fk+1‖2
≤ −1− c2

∇ f T
k pk

‖∇ fk‖2
.

Substituting for the term ∇ f T
k pk/‖∇ fk‖2 from the left-hand-side of the induction

hypothesis (5.53), we obtain

−1− c2

1− c2
≤ ∇ f T

k+1 pk+1

‖∇ fk+1‖2
≤ −1+ c2

1− c2
,

which shows that (5.53) holds for k + 1 as well. �

This result used only the second strong Wolfe condition (5.43b); the first Wolfe
condition (5.43a) will be needed in the next section to establish global convergence. The
bounds on ∇ f T

k pk in (5.53) impose a limit on how fast the norms of the steps ‖pk‖ can
grow, and they will play a crucial role in the convergence analysis given below.

Lemma 5.6 can also be used to explain a weakness of the Fletcher–Reeves method.
We will argue that if the method generates a bad direction and a tiny step, then the next
direction and next step are also likely to be poor. As in Chapter 3, we let θk denote the angle
between pk and the steepest descent direction −∇ fk , defined by

cos θk � −∇ f T
k pk

‖∇ fk‖ ‖pk‖ . (5.56)

Suppose that pk is a poor search direction, in the sense that it makes an angle of nearly 90◦

with −∇ fk , that is, cos θk ≈ 0. By multiplying both sides of (5.53) by ‖∇ fk‖/‖pk‖ and
using (5.56), we obtain

1− 2c2

1− c2

‖∇ fk‖
‖pk‖ ≤ cos θk ≤ 1

1− c2

‖∇ fk‖
‖pk‖ , for all k � 0, 1, (5.57)

From these inequalities, we deduce that cos θk ≈ 0 if and only if

‖∇ fk‖ � ‖pk‖.

Since pk is almost orthogonal to the gradient, it is likely that the step from xk to xk+1 is tiny,
that is, xk+1 ≈ xk . If so, we have ∇ fk+1 ≈ ∇ fk , and therefore

βFR
k+1 ≈ 1, (5.58)

5 . 2 . N O N L I N E A R C O N J U G A T E G R A D I E N T M E T H O D S 127

by the definition (5.41a). By using this approximation together with ‖∇ fk+1‖ ≈ ‖∇ fk‖ �
‖pk‖ in (5.41b), we conclude that

pk+1 ≈ pk,

so the new search direction will improve little (if at all) on the previous one. It follows that
if the condition cos θk ≈ 0 holds at some iteration k and if the subsequent step is small, a
long sequence of unproductive iterates will follow.

The Polak–Ribière method behaves quite differently in these circumstances. If, as in
the previous paragraph, the search direction pk satisfies cos θk ≈ 0 for some k, and if the
subsequent step is small, it follows by substituting ∇ fk ≈ ∇ fk+1 into (5.44) that βPR

k+1 ≈ 0.
From the formula (5.41b), we find that the new search direction pk+1 will be close to the
steepest descent direction−∇ fk+1, and cos θk+1 will be close to 1. Therefore, Algorithm PR
essentially performs a restart after it encounters a bad direction. The same argument can
be applied to Algorithms PR+ and HS. For the FR-PR variant, defined by (5.48), we have
noted already that βFR

k+1 ≈ 1, and βPR
k+1 ≈ 0. The formula (5.48) thus sets βk+1 � βPR

k+1, as
desired. Thus, the modification (5.48) seems to avoid the inefficiencies of the FR method,
while falling back on this method for global convergence.

The undesirable behavior of the Fletcher–Reeves method predicted by the arguments
given above can be observed in practice. For example, the paper [123] describes a problem
with n � 100 in which cos θk is of order 10−2 for hundreds of iterations and the steps
‖xk − xk−1‖ are of order 10−2. Algorithm FR requires thousands of iterations to solve this
problem, while Algorithm PR requires just 37 iterations. In this example, the Fletcher–
Reeves method performs much better if it is periodically restarted along the steepest descent
direction, since each restart terminates the cycle of bad steps. In general, Algorithm FR
should not be implemented without some kind of restart strategy.

GLOBAL CONVERGENCE

Unlike the linear conjugate gradient method, whose convergence properties are well
understood and which is known to be optimal as described above, nonlinear conjugate
gradient methods possess surprising, sometimes bizarre, convergence properties. We now
present a few of the main results known for the Fletcher–Reeves and Polak–Ribière methods
using practical line searches.

For the purposes of this section, we make the following (nonrestrictive) assumptions
on the objective function.

Assumptions 5.1.
(i) The level set L :� {x | f (x) ≤ f (x0)} is bounded;

(ii) In some open neighborhood N of L, the objective function f is Lipschitz continuously
differentiable.

128 C H A P T E R 5 . C O N J U G A T E G R A D I E N T M E T H O D S

These assumptions imply that there is a constant γ̄ such that

‖∇ f (x)‖ ≤ γ̄ , for all x ∈ L. (5.59)

Our main analytical tool in this section is Zoutendijk’s theorem—Theorem 3.2 in
Chapter 3. It states, that under Assumptions 5.1, any line search iteration of the form
xk+1 � xk + αk pk , where pk is a descent direction and αk satisfies the Wolfe conditions
(5.43) gives the limit

∞∑
k�0

cos2 θk ‖∇ fk‖2 < ∞. (5.60)

We can use this result to prove global convergence for algorithms that are periodically
restarted by setting βk � 0. If k1, k2, and so on denote the iterations on which restarts occur,
we have from (5.60) that

∑
k�k1,k2,...

‖∇ fk‖2 < ∞. (5.61)

If we allow no more than n̄ iterations between restarts, the sequence {k j }∞j�1 is infinite,
and from (5.61) we have that lim j→∞ ‖∇ fk j ‖ � 0. That is, a subsequence of gradients
approaches zero, or equivalently,

lim inf
k→∞

‖∇ fk‖ � 0. (5.62)

This result applies equally to restarted versions of all the algorithms discussed in this chapter.
It is more interesting, however, to study the global convergence of unrestarted conjugate

gradient methods, because for large problems (say n ≥ 1000) we expect to find a solution in
many fewer than n iterations—the first point at which a regular restart would take place. Our
study of large sequences of unrestarted conjugate gradient iterations reveals some surprising
patterns in their behavior.

We can build on Lemma 5.6 and Zoutendijk’s result (5.60) to prove a global conver-
gence result for the Fletcher–Reeves method. While we cannot show that the limit of the
sequence of gradients {∇ fk} is zero, the following result shows that this sequence is not
bounded away from zero.

Theorem 5.7 (Al-Baali [3]).
Suppose that Assumptions 5.1 hold, and that Algorithm 5.4 is implemented with a line

search that satisfies the strong Wolfe conditions (5.43), with 0 < c1 < c2 < 1
2 . Then

lim inf
k→∞

‖∇ fk‖ � 0. (5.63)

5 . 2 . N O N L I N E A R C O N J U G A T E G R A D I E N T M E T H O D S 129

PROOF. The proof is by contradiction. It assumes that the opposite of (5.63) holds, that is,
there is a constant γ > 0 such that

‖∇ fk‖ ≥ γ, (5.64)

for all k sufficiently large. By substituting the left inequality of (5.57) into Zoutendijk’s
condition (5.60), we obtain

∞∑
k�0

‖∇ fk‖4

‖pk‖2
< ∞. (5.65)

By using (5.43b) and (5.53), we obtain that

|∇ f T
k pk−1| ≤ −c2∇ f T

k−1 pk−1 ≤ c2

1− c2
‖∇ fk−1‖2. (5.66)

Thus, from (5.41b) and recalling the definition (5.41a) of βFR
k we obtain

‖pk‖2 ≤ ‖∇ fk‖2 + 2βFR
k |∇ f T

k pk−1| + (βFR
k)2‖pk−1‖2

≤ ‖∇ fk‖2 + 2c2

1− c2
βFR

k ‖∇ fk−1‖2 + (βFR
k)2‖pk−1‖2

�
(

1+ c2

1− c2

)
‖∇ fk‖2 + (βFR

k)2‖pk−1‖2.

Applying this relation repeatedly, and defining c3
def� (1+ c2)/(1− c2) ≥ 1, we have

‖pk‖2 ≤ c3‖∇ fk‖2 + (βFR
k)2(c3‖∇ fk−1‖2 + (βFR

k−1)2(c3‖∇ fk−2‖2 +
· · · + (βFR

1)2‖p0‖2)) · · ·)

� c3‖∇ fk‖4
k∑

j�0

‖∇ f j‖−2, (5.67)

where we used the facts that

(βFR
k)2(βFR

k−1)2 · · · (βFR

k−i)
2 � ‖∇ fk‖4

‖∇ fk−i−1‖4

and p0 � −∇ f0. By using the bounds (5.59) and (5.64) in (5.67), we obtain

‖pk‖2 ≤ c3γ̄
4

γ 2
k, (5.68)

130 C H A P T E R 5 . C O N J U G A T E G R A D I E N T M E T H O D S

which implies that

∞∑
k�1

1

‖pk‖2
≥ γ4

∞∑
k�1

1

k
, (5.69)

for some positive constant γ4.
On the other hand, from (5.64) and (5.65), we have that

∞∑
k�1

1

‖pk‖2
< ∞. (5.70)

However, if we combine this inequality with (5.69), we obtain that
∑∞

k�1 1/k < ∞, which
is not true. Hence, (5.64) does not hold, and the claim (5.63) is proved. �

This global convergence result can be extended to any choice of βk satisfying (5.47),
and in particular to the FR-PR method given by (5.48).

In general, if we can show that there exist constants c4, c5 > 0 such that

cos θk ≥ c4
‖∇ fk‖
‖pk‖ ,

‖∇ fk‖
‖pk‖ ≥ c5 > 0, k � 1, 2, . . . ,

it follows from (5.60) that

lim
k→∞

‖∇ fk‖ � 0.

In fact, this result can be established for the Polak–Ribière method under the assumption
that f is strongly convex and that an exact line search is used.

For general (nonconvex) functions, however, is it not possible to prove a result like
Theorem 5.7 for Algorithm PR. This fact is unexpected, since the Polak–Ribière method
performs better in practice than the Fletcher–Reeves method. The following surprising result
shows that the Polak–Ribière method can cycle infinitely without approaching a solution
point, even if an ideal line search is used. (By “ideal” we mean that line search returns a
value αk that is the first positive stationary point for the function t(α) � f (xk + αpk).)

Theorem 5.8.
Consider the Polak–Ribière method method (5.44) with an ideal line search. There exists

a twice continuously differentiable objective function f : IR3 → IR and a starting point x0 ∈ IR3

such that the sequence of gradients {‖∇ fk‖} is bounded away from zero.

The proof of this result, given in [253], is quite complex. It demonstrates the existence
of the desired objective function without actually constructing this function explicitly. The
result is interesting, since the step length assumed in the proof—the first stationary point—
may be accepted by any of the practical line search algorithms currently in use. The proof

5 . 2 . N O N L I N E A R C O N J U G A T E G R A D I E N T M E T H O D S 131

of Theorem 5.8 requires that some consecutive search directions become almost negatives
of each other. In the case of ideal line searches, this happens only if βk < 0, so the analysis
suggests Algorithm PR+ (see (5.45)), in which we reset βk to zero whenever it becomes
negative. We mentioned earlier that a line search strategy based on a slight modification of
the Wolfe conditions guarantees that all search directions generated by Algorithm PR+ are
descent directions. Using these facts, it is possible to a prove global convergence result like
Theorem 5.7 for Algorithm PR+. An attractive property of the formulae (5.49), (5.50) is
that global convergence can be established without introducing any modification to a line
search based on the Wolfe conditions.

NUMERICAL PERFORMANCE

Table 5.1 illustrates the performance of Algorithms FR, PR, and PR+without restarts.
For these tests, the parameters in the strong Wolfe conditions (5.43) were chosen to be
c1 � 10−4 and c2 � 0.1. The iterations were terminated when

‖∇ fk‖∞ < 10−5(1+ | fk |).

If this condition was not satisfied after 10,000 iterations, we declare failure (indicated by a
∗ in the table).

The final column, headed “mod,” indicates the number of iterations of Algorithm PR+
for which the adjustment (5.45) was needed to ensure thatβPR

k ≥ 0. Algorithm FR on problem
GENROS takes very short steps far from the solution that lead to tiny improvements in the
objective function, and convergence was not achieved within the maximum number of
iterations.

The Polak–Ribière algorithm, or its variation PR+, are not always more efficient
than Algorithm FR, and it has the slight disadvantage of requiring one more vector of
storage. Nevertheless, we recommend that users choose Algorithm PR, PR+ or FR-PR, or
the methods based on (5.49) and (5.50).

Table 5.1 Iterations and function/gradient evaluations required by three
nonlinear conjugate gradient methods on a set of test problems; see [123]

Alg FR Alg PR Alg PR+
Problem n it/f-g it/f-g it/f-g mod

CALCVAR3 200 2808/5617 2631/5263 2631/5263 0
GENROS 500 ∗ 1068/2151 1067/2149 1
XPOWSING 1000 533/1102 212/473 97/229 3
TRIDIA1 1000 264/531 262/527 262/527 0
MSQRT1 1000 422/849 113/231 113/231 0
XPOWELL 1000 568/1175 212/473 97/229 3
TRIGON 1000 231/467 40/92 40/92 0

132 C H A P T E R 5 . C O N J U G A T E G R A D I E N T M E T H O D S

NOTES AND REFERENCES

The conjugate gradient method was developed in the 1950s by Hestenes and
Stiefel [168] as an alternative to factorization methods for finding solutions of symmet-
ric positive definite systems. It was not until some years later, in one of the most important
developments in sparse linear algebra, that this method came to be viewed as an iterative
method that could give good approximate solutions to systems in many fewer than n steps.
Our presentation of the linear conjugate gradient method follows that of Luenberger [195].
For a history of the development of the conjugate gradient and Lanczos methods see Golub
and O’Leary [135].

Interestingly enough, the nonlinear conjugate gradient method of Fletcher and
Reeves [107] was proposed after the linear conjugate gradient method had fallen out of
favor, but several years before it was rediscovered as an iterative method for linear systems.
The Polak–Ribière method was introduced in [237], and the example showing that it may
fail to converge on nonconvex problems is given by Powell [253]. Restart procedures are
discussed in Powell [248].

Hager and Zhang [161] report some of the best computational results obtained to date
with a nonlinear CG method. Their implementation is based on formula (5.50) and uses
a high-accuracy line search procedure. The results in Table 5.1 are taken from Gilbert and
Nocedal [123]. This paper also describes a line search that guarantees that Algorithm PR+
always generates descent directions and proves global convergence.

Analysis due to Powell [245] provides further evidence of the inefficiency of the
Fletcher–Reeves method using exact line searches. He shows that if the iterates enter a
region in which the function is the two-dimensional quadratic

f (x) � 1
2 xT x,

then the angle between the gradient ∇ fk and the search direction pk stays constant. Since
this angle can be arbitrarily close to 90◦, the Fletcher–Reeves method can be slower than
the steepest descent method. The Polak–Ribière method behaves quite differently in these
circumstances: If a very small step is generated, the next search direction tends to the steepest
descent direction, as argued above. This feature prevents a sequence of tiny steps.

The global convergence of nonlinear conjugate gradient methods has received much
attention; see for example Al-Baali [3], Gilbert and Nocedal [123], Dai and Yuan [85], and
Hager and Zhang [161]. For recent surveys on CG methods see Gould et al. [147] and Hager
and Zhang [162].

Most of the theory on the rate of convergence of conjugate gradient methods assumes
that the line search is exact. Crowder and Wolfe [82] show that the rate of convergence
is linear, and show by constructing an example that Q-superlinear convergence is not
achievable. Powell [245] studies the case in which the conjugate gradient method enters a
region where the objective function is quadratic, and shows that either finite termination
occurs or the rate of convergence is linear. Cohen [63] and Burmeister [45] prove n-step

5 . 2 . N O N L I N E A R C O N J U G A T E G R A D I E N T M E T H O D S 133

quadratic convergence (5.51) for general objective functions. Ritter [265] shows that in fact,
the rate is superquadratic, that is,

‖xk+n − x∗‖ � o(‖xk − x∗‖2).

Powell [251] gives a slightly better result and performs numerical tests on small problems
to measure the rate observed in practice. He also summarizes rate-of-convergence results
for asymptotically exact line searches, such as those obtained by Baptist and Stoer [11]
and Stoer [282]. Even faster rates of convergence can be established (see Schuller [278],
Ritter [265]), under the assumption that the search directions are uniformly linearly
independent, but this assumption is hard to verify and does not often occur in practice.

Nemirovsky and Yudin [225] devote some attention to the global efficiency of the
Fletcher–Reeves and Polak–Ribière methods with exact line searches. For this purpose they
define a measure of “laboriousness” and an “optimal bound” for it among a certain class
of iterations. They show that on strongly convex problems not only do the Fletcher–Reeves
and Polak–Ribière methods fail to attain the optimal bound, but they may also be slower
than the steepest descent method. Subsequently, Nesterov [225] presented an algorithm that
attains this optimal bound. It is related to PARTAN, the method of parallel tangents (see, for
example, Luenberger [195]). We feel that this approach is unlikely to be effective in practice,
but no conclusive investigation has been carried out, to the best of our knowledge.

✐ E X E R C I S E S

✐ 5.1 Implement Algorithm 5.2 and use to it solve linear systems in which A is the
Hilbert matrix, whose elements are Ai, j � 1/(i + j − 1). Set the right-hand-side to
b � (1, 1, . . . , 1)T and the initial point to x0 � 0. Try dimensions n � 5, 8, 12, 20 and
report the number of iterations required to reduce the residual below 10−6.

✐ 5.2 Show that if the nonzero vectors p0, p1, . . . , pl satisfy (5.5), where A is symmetric
and positive definite, then these vectors are linearly independent. (This result implies that
A has at most n conjugate directions.)

✐ 5.3 Verify the formula (5.7).

✐ 5.4 Show that if f (x) is a strictly convex quadratic, then the function h(σ)
def�

f (x0 + σ0 p0 + · · · + σk−1 pk−1) also is a strictly convex quadratic in the variable σ �
(σ0, σ1, . . . , σk−1)T .

✐ 5.5 Verify from the formulae (5.14) that (5.17) and (5.18) hold for k � 1.

✐ 5.6 Show that (5.24d) is equivalent to (5.14d).

134 C H A P T E R 5 . C O N J U G A T E G R A D I E N T M E T H O D S

✐ 5.7 Let {λi , vi } i � 1, 2, . . . , n be the eigenpairs of the symmetric matrix A. Show
that the eigenvalues and eigenvectors of [I+Pk(A)A]T A[I+Pk(A)A] are λi [1+λi Pk(λi)]2

and vi , respectively.

✐ 5.8 Construct matrices with various eigenvalue distributions (clustered and non-
clustered) and apply the CG method to them. Comment on whether the behavior can be
explained from Theorem 5.5.

✐ 5.9 Derive Algorithm 5.3 by applying the standard CG method in the variables x̂ and
then transforming back into the original variables.

✐ 5.10 Verify the modified conjugacy condition (5.40).

✐ 5.11 Show that when applied to a quadratic function, with exact line searches, both
the Polak–Ribière formula given by (5.44) and the Hestenes–Stiefel formula given by (5.46)
reduce to the Fletcher–Reeves formula (5.41a).

✐ 5.12 Prove that Lemma 5.6 holds for any choice of βk satisfying |βk | ≤ βFR
k .

