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C H A P T E R6
Quasi-Newton
Methods

In the mid 1950s, W.C. Davidon, a physicist working at Argonne National Laboratory,
was using the coordinate descent method (see Section 9.3) to perform a long optimization
calculation. At that time computers were not very stable, and to Davidon’s frustration,
the computer system would always crash before the calculation was finished. So Davidon
decided to find a way of accelerating the iteration. The algorithm he developed—the first
quasi-Newton algorithm—turned out to be one of the most creative ideas in nonlinear
optimization. It was soon demonstrated by Fletcher and Powell that the new algorithm
was much faster and more reliable than the other existing methods, and this dramatic
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advance transformed nonlinear optimization overnight. During the following twenty years,
numerous variants were proposed and hundreds of papers were devoted to their study. An
interesting historical irony is that Davidon’s paper [87] was not accepted for publication; it
remained as a technical report for more than thirty years until it appeared in the first issue
of the SIAM Journal on Optimization in 1991 [88].

Quasi-Newton methods, like steepest descent, require only the gradient of the ob-
jective function to be supplied at each iterate. By measuring the changes in gradients, they
construct a model of the objective function that is good enough to produce superlinear
convergence. The improvement over steepest descent is dramatic, especially on difficult
problems. Moreover, since second derivatives are not required, quasi-Newton methods are
sometimes more efficient than Newton’s method. Today, optimization software libraries
contain a variety of quasi-Newton algorithms for solving unconstrained, constrained, and
large-scale optimization problems. In this chapter we discuss quasi-Newton methods for
small and medium-sized problems, and in Chapter 7 we consider their extension to the
large-scale setting.

The development of automatic differentiation techniques has made it possible to use
Newton’s method without requiring users to supply second derivatives; see Chapter 8.
Still, automatic differentiation tools may not be applicable in many situations, and it
may be much more costly to work with second derivatives in automatic differentia-
tion software than with the gradient. For these reasons, quasi-Newton methods remain
appealing.

6.1 THE BFGS METHOD

The most popular quasi-Newton algorithm is the BFGS method, named for its discoverers
Broyden, Fletcher, Goldfarb, and Shanno. In this section we derive this algorithm (and
its close relative, the DFP algorithm) and describe its theoretical properties and practical
implementation.

We begin the derivation by forming the following quadratic model of the objective
function at the current iterate xk :

mk(p) � fk + ∇ f T
k p + 1

2 pT Bk p. (6.1)

Here Bk is an n × n symmetric positive definite matrix that will be revised or updated at
every iteration. Note that the function value and gradient of this model at p � 0 match
fk and ∇ fk , respectively. The minimizer pk of this convex quadratic model, which we can
write explicitly as

pk � −B−1
k ∇ fk, (6.2)
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is used as the search direction, and the new iterate is

xk+1 � xk + αk pk, (6.3)

where the step length αk is chosen to satisfy the Wolfe conditions (3.6). This iteration is
quite similar to the line search Newton method; the key difference is that the approximate
Hessian Bk is used in place of the true Hessian.

Instead of computing Bk afresh at every iteration, Davidon proposed to update it in a
simple manner to account for the curvature measured during the most recent step. Suppose
that we have generated a new iterate xk+1 and wish to construct a new quadratic model, of
the form

mk+1(p) � fk+1 + ∇ f T
k+1 p + 1

2 pT Bk+1 p.

What requirements should we impose on Bk+1, based on the knowledge gained during
the latest step? One reasonable requirement is that the gradient of mk+1 should match the
gradient of the objective function f at the latest two iterates xk and xk+1. Since∇mk+1(0) is
precisely∇ fk+1, the second of these conditions is satisfied automatically. The first condition
can be written mathematically as

∇mk+1(−αk pk) � ∇ fk+1 − αk Bk+1 pk � ∇ fk .

By rearranging, we obtain

Bk+1αk pk � ∇ fk+1 −∇ fk . (6.4)

To simplify the notation it is useful to define the vectors

sk � xk+1 − xk � αk pk, yk � ∇ fk+1 − ∇ fk, (6.5)

so that (6.4) becomes

Bk+1sk � yk . (6.6)

We refer to this formula as the secant equation.
Given the displacement sk and the change of gradients yk , the secant equation requires

that the symmetric positive definite matrix Bk+1 map sk into yk . This will be possible only
if sk and yk satisfy the curvature condition

sT
k yk > 0, (6.7)

as is easily seen by premultiplying (6.6) by sT
k . When f is strongly convex, the inequality (6.7)

will be satisfied for any two points xk and xk+1 (see Exercise 6.1). However, this condition
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will not always hold for nonconvex functions, and in this case we need to enforce (6.7)
explicitly, by imposing restrictions on the line search procedure that chooses the step length
α. In fact, the condition (6.7) is guaranteed to hold if we impose the Wolfe (3.6) or strong
Wolfe conditions (3.7) on the line search. To verify this claim, we note from (6.5) and (3.6b)
that ∇ f T

k+1sk ≥ c2∇ f T
k sk , and therefore

yT
k sk ≥ (c2 − 1)αk∇ f T

k pk . (6.8)

Since c2 < 1 and since pk is a descent direction, the term on the right is positive, and the
curvature condition (6.7) holds.

When the curvature condition is satisfied, the secant equation (6.6) always has a
solution Bk+1. In fact, it admits an infinite number of solutions, since the n(n + 1)/2
degrees of freedom in a symmetric positive definite matrix exceed the n conditions imposed
by the secant equation. The requirement of positive definiteness imposes n additional
inequalities—all principal minors must be positive—but these conditions do not absorb the
remaining degrees of freedom.

To determine Bk+1 uniquely, we impose the additional condition that among all
symmetric matrices satisfying the secant equation, Bk+1 is, in some sense, closest to the current
matrix Bk . In other words, we solve the problem

min
B

‖B − Bk‖ (6.9a)

subject to B � BT , Bsk � yk, (6.9b)

where sk and yk satisfy (6.7) and Bk is symmetric and positive definite. Different matrix
norms can be used in (6.9a), and each norm gives rise to a different quasi-Newton method.
A norm that allows easy solution of the minimization problem (6.9) and gives rise to a
scale-invariant optimization method is the weighted Frobenius norm

‖A‖W ≡ ∥∥W 1/2 AW 1/2
∥∥

F , (6.10)

where ‖ · ‖F is defined by ‖C‖2
F �

∑n
i�1

∑n
j�1 c2

i j . The weight matrix W can be chosen as
any matrix satisfying the relation W yk � sk . For concreteness, the reader can assume that
W � Ḡ−1

k where Ḡk is the average Hessian defined by

Ḡk �
[∫ 1

0
∇2 f (xk + ταk pk)dτ

]
. (6.11)

The property

yk � Ḡkαk pk � Ḡksk (6.12)

follows from Taylor’s theorem, Theorem 2.1. With this choice of weighting matrix W , the
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norm (6.10) is non-dimensional, which is a desirable property, since we do not wish the
solution of (6.9) to depend on the units of the problem.

With this weighting matrix and this norm, the unique solution of (6.9) is

(DFP) Bk+1 �
(
I − ρk yksT

k

)
Bk
(
I − ρksk yT

k

)+ ρk yk yT
k , (6.13)

with

ρk � 1

yT
k sk

. (6.14)

This formula is called the DFP updating formula, since it is the one originally proposed by
Davidon in 1959, and subsequently studied, implemented, and popularized by Fletcher and
Powell.

The inverse of Bk , which we denote by

Hk � B−1
k ,

is useful in the implementation of the method, since it allows the search direction (6.2)
to be calculated by means of a simple matrix–vector multiplication. Using the Sherman–
Morrison–Woodbury formula (A.28), we can derive the following expression for the update
of the inverse Hessian approximation Hk that corresponds to the DFP update of Bk in (6.13):

(DFP) Hk+1 � Hk − Hk yk yT
k Hk

yT
k Hk yk

+ sksT
k

yT
k sk

. (6.15)

Note that the last two terms in the right-hand-side of (6.15) are rank-one matrices, so that Hk

undergoes a rank-two modification. It is easy to see that (6.13) is also a rank-two modification
of Bk . This is the fundamental idea of quasi-Newton updating: Instead of recomputing the
approximate Hessians (or inverse Hessians) from scratch at every iteration, we apply a simple
modification that combines the most recently observed information about the objective
function with the existing knowledge embedded in our current Hessian approximation.

The DFP updating formula is quite effective, but it was soon superseded by the BFGS
formula, which is presently considered to be the most effective of all quasi-Newton updating
formulae. BFGS updating can be derived by making a simple change in the argument
that led to (6.13). Instead of imposing conditions on the Hessian approximations Bk , we
impose similar conditions on their inverses Hk . The updated approximation Hk+1 must be
symmetric and positive definite, and must satisfy the secant equation (6.6), now written as

Hk+1 yk � sk .

The condition of closeness to Hk is now specified by the following analogue of (6.9):

min
H
‖H − Hk‖ (6.16a)

subject to H � H T , H yk � sk . (6.16b)
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The norm is again the weighted Frobenius norm described above, where the weight matrix
W is now any matrix satisfying W sk � yk . (For concreteness, we assume again that W is
given by the average Hessian Ḡk defined in (6.11).) The unique solution Hk+1 to (6.16) is
given by

(BFGS) Hk+1 � (I − ρksk yT
k )Hk(I − ρk yksT

k )+ ρksksT
k , (6.17)

with ρk defined by (6.14).
Just one issue has to be resolved before we can define a complete BFGS algorithm: How

should we choose the initial approximation H0? Unfortunately, there is no magic formula
that works well in all cases. We can use specific information about the problem, for instance
by setting it to the inverse of an approximate Hessian calculated by finite differences at x0.
Otherwise, we can simply set it to be the identity matrix, or a multiple of the identity matrix,
where the multiple is chosen to reflect the scaling of the variables.

Algorithm 6.1 (BFGS Method).
Given starting point x0, convergence tolerance ε > 0,

inverse Hessian approximation H0;
k ← 0;
while ‖∇ fk‖ > ε;

Compute search direction

pk � −Hk∇ fk; (6.18)

Set xk+1 � xk + αk pk where αk is computed from a line search
procedure to satisfy the Wolfe conditions (3.6);

Define sk � xk+1 − xk and yk � ∇ fk+1 − ∇ fk ;
Compute Hk+1 by means of (6.17);
k ← k + 1;

end (while)

Each iteration can be performed at a cost of O(n2) arithmetic operations (plus the cost
of function and gradient evaluations); there are no O(n3) operations such as linear system
solves or matrix–matrix operations. The algorithm is robust, and its rate of convergence is
superlinear, which is fast enough for most practical purposes. Even though Newton’s method
converges more rapidly (that is, quadratically), its cost per iteration usually is higher, because
of its need for second derivatives and solution of a linear system.

We can derive a version of the BFGS algorithm that works with the Hessian approx-
imation Bk rather than Hk . The update formula for Bk is obtained by simply applying the
Sherman–Morrison–Woodbury formula (A.28) to (6.17) to obtain

(BFGS) Bk+1 � Bk − BksksT
k Bk

sT
k Bksk

+ yk yT
k

yT
k sk

. (6.19)
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A naive implementation of this variant is not efficient for unconstrained minimization,
because it requires the system Bk pk � −∇ fk to be solved for the step pk , thereby increasing
the cost of the step computation to O(n3). We discuss later, however, that less expensive
implementations of this variant are possible by updating Cholesky factors of Bk .

PROPERTIES OF THE BFGS METHOD

It is usually easy to observe the superlinear rate of convergence of the BFGS method
on practical problems. Below, we report the last few iterations of the steepest descent, BFGS,
and an inexact Newton method on Rosenbrock’s function (2.22). The table gives the value of
‖xk−x∗‖. The Wolfe conditions were imposed on the step length in all three methods. From
the starting point (−1.2, 1), the steepest descent method required 5264 iterations, whereas
BFGS and Newton took only 34 and 21 iterations, respectively to reduce the gradient norm
to 10−5.

steepest BFGS Newton
descent

1.827e-04 1.70e-03 3.48e-02
1.826e-04 1.17e-03 1.44e-02
1.824e-04 1.34e-04 1.82e-04
1.823e-04 1.01e-06 1.17e-08

A few points in the derivation of the BFGS and DFP methods merit further discussion.
Note that the minimization problem (6.16) that gives rise to the BFGS update formula does
not explicitly require the updated Hessian approximation to be positive definite. It is easy to
show, however, that Hk+1 will be positive definite whenever Hk is positive definite, by using
the following argument. First, note from (6.8) that yT

k sk is positive, so that the updating
formula (6.17), (6.14) is well-defined. For any nonzero vector z, we have

zT Hk+1z � wT Hkw + ρk(zT sk)2 ≥ 0,

where we have defined w � z− ρk yk(sT
k z). The right hand side can be zero only if sT

k z � 0,
but in this case w � z 	� 0, which implies that the first term is greater than zero. Therefore,
Hk+1 is positive definite.

To make quasi-Newton updating formulae invariant to transformations in the vari-
ables (such as scaling transformations), it is necessary for the objectives (6.9a) and (6.16a)
to be invariant under the same transformations. The choice of the weighting matrices W
used to define the norms in (6.9a) and (6.16a) ensures that this condition holds. Many other
choices of the weighting matrix W are possible, each one of them giving a different update
formula. However, despite intensive searches, no formula has been found that is significantly
more effective than BFGS.
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The BFGS method has many interesting properties when applied to quadratic func-
tions. We discuss these properties later in the more general context of the Broyden family of
updating formulae, of which BFGS is a special case.

It is reasonable to ask whether there are situations in which the updating formula such
as (6.17) can produce bad results. If at some iteration the matrix Hk becomes a poor approx-
imation to the true inverse Hessian, is there any hope of correcting it? For example, when
the inner product yT

k sk is tiny (but positive), then it follows from (6.14), (6.17) that Hk+1

contains very large elements. Is this behavior reasonable? A related question concerns the
rounding errors that occur in finite-precision implementation of these methods. Can these
errors grow to the point of erasing all useful information in the quasi-Newton approximate
Hessian?

These questions have been studied analytically and experimentally, and it is now
known that the BFGS formula has very effective self-correcting properties. If the matrix Hk

incorrectly estimates the curvature in the objective function, and if this bad estimate slows
down the iteration, then the Hessian approximation will tend to correct itself within a few
steps. It is also known that the DFP method is less effective in correcting bad Hessian approx-
imations; this property is believed to be the reason for its poorer practical performance. The
self-correcting properties of BFGS hold only when an adequate line search is performed. In
particular, the Wolfe line search conditions ensure that the gradients are sampled at points
that allow the model (6.1) to capture appropriate curvature information.

It is interesting to note that the DFP and BFGS updating formulae are duals of each
other, in the sense that one can be obtained from the other by the interchanges s ↔ y,
B ↔ H . This symmetry is not surprising, given the manner in which we derived these
methods above.

IMPLEMENTATION

A few details and enhancements need to be added to Algorithm 6.1 to produce an
efficient implementation. The line search, which should satisfy either the Wolfe conditions
(3.6) or the strong Wolfe conditions (3.7), should always try the step length αk � 1 first,
because this step length will eventually always be accepted (under certain conditions), thereby
producing superlinear convergence of the overall algorithm. Computational observations
strongly suggest that it is more economical, in terms of function evaluations, to perform
a fairly inaccurate line search. The values c1 � 10−4 and c2 � 0.9 are commonly used in
(3.6).

As mentioned earlier, the initial matrix H0 often is set to some multiple β I of the
identity, but there is no good general strategy for choosing the multiple β. If β is too large,
so that the first step p0 � −βg0 is too long, many function evaluations may be required to
find a suitable value for the step length α0. Some software asks the user to prescribe a value
δ for the norm of the first step, and then set H0 � δ‖g0‖−1 I to achieve this norm.

A heuristic that is often quite effective is to scale the starting matrix after the first
step has been computed but before the first BFGS update is performed. We change the
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provisional value H0 � I by setting

H0 ← yT
k sk

yT
k yk

I, (6.20)

before applying the update (6.14) , (6.17) to obtain H1. This formula attempts to make the
size of H0 similar to that of ∇2 f (x0)−1, in the following sense. Assuming that the average
Hessian defined in (6.11) is positive definite, there exists a square root Ḡ1/2

k satisfying
Ḡk � Ḡ1/2

k Ḡ1/2
k (see Exercise 6.6). Therefore, by defining zk � Ḡ1/2

k sk and using the relation
(6.12), we have

yT
k sk

yT
k yk

� (Ḡ1/2
k sk)T Ḡ1/2

k sk

(Ḡ1/2
k sk)T Ḡk Ḡ1/2

k sk

� zT
k zk

zT
k Ḡk zk

. (6.21)

The reciprocal of (6.21) is an approximation to one of the eigenvalues of Ḡk , which in turn
is close to an eigenvalue of ∇2 f (xk). Hence, the quotient (6.21) itself approximates an
eigenvalue of ∇2 f (xk)−1. Other scaling factors can be used in (6.20), but the one presented
here appears to be the most successful in practice.

In (6.19) we gave an update formula for a BFGS method that works with the Hes-
sian approximation Bk instead of the the inverse Hessian approximation Hk . An efficient
implementation of this approach does not store Bk explicitly, but rather the Cholesky fac-
torization Lk Dk LT

k of this matrix. A formula that updates the factors Lk and Dk directly in
O(n2) operations can be derived from (6.19). Since the linear system Bk pk � −∇ fk also
can be solved in O(n2) operations (by performing triangular substitutions with Lk and LT

k

and a diagonal substitution with Dk), the total cost is quite similar to the variant described
in Algorithm 6.1. A potential advantage of this alternative strategy is that it gives us the
option of modifying diagonal elements in the Dk factor if they are not sufficiently large, to
prevent instability when we divide by these elements during the calculation of pk . However,
computational experience suggests no real advantages for this variant, and we prefer the
simpler strategy of Algorithm 6.1.

The performance of the BFGS method can degrade if the line search is not based
on the Wolfe conditions. For example, some software implements an Armijo backtracking
line search (see Section 3.1): The unit step length αk � 1 is tried first and is successively
decreased until the sufficient decrease condition (3.6a) is satisfied. For this strategy, there is
no guarantee that the curvature condition yT

k sk > 0 (6.7) will be satisfied by the chosen step,
since a step length greater than 1 may be required to satisfy this condition. To cope with this
shortcoming, some implementations simply skip the BFGS update by setting Hk+1 � Hk

when yT
k sk is negative or too close to zero. This approach is not recommended, because

the updates may be skipped much too often to allow Hk to capture important curvature
information for the objective function f . In Chapter 18 we discuss a damped BFGS update
that is a more effective strategy for coping with the case where the curvature condition (6.7)
is not satisfied.
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6.2 THE SR1 METHOD

In the BFGS and DFP updating formulae, the updated matrix Bk+1 (or Hk+1) differs from its
predecessor Bk (or Hk) by a rank-2 matrix. In fact, as we now show, there is a simpler rank-1
update that maintains symmetry of the matrix and allows it to satisfy the secant equation.
Unlike the rank-two update formulae, this symmetric-rank-1, or SR1, update does not
guarantee that the updated matrix maintains positive definiteness. Good numerical results
have been obtained with algorithms based on SR1, so we derive it here and investigate its
properties.

The symmetric rank-1 update has the general form

Bk+1 � Bk + σvvT ,

where σ is either+1 or−1, and σ and v are chosen so that Bk+1 satisfies the secant equation
(6.6), that is, yk � Bk+1sk . By substituting into this equation, we obtain

yk � Bksk +
[
σvT sk

]
v. (6.22)

Since the term in brackets is a scalar, we deduce that v must be a multiple of yk − Bksk , that
is, v � δ(yk − Bksk) for some scalar δ. By substituting this form of v into (6.22), we obtain

(yk − Bksk) � σδ2
[
sT

k (yk − Bksk)
]

(yk − Bksk), (6.23)

and it is clear that this equation is satisfied if (and only if) we choose the parameters δ and
σ to be

σ � sign
[
sT

k (yk − Bksk)
]
, δ � ± ∣∣sT

k (yk − Bksk)
∣∣−1/2

.

Hence, we have shown that the only symmetric rank-1 updating formula that satisfies the
secant equation is given by

(SR1) Bk+1 � Bk + (yk − Bksk)(yk − Bksk)T

(yk − Bksk)T sk
. (6.24)

By applying the Sherman–Morrison formula (A.27), we obtain the corresponding update
formula for the inverse Hessian approximation Hk :

(SR1) Hk+1 � Hk + (sk − Hk yk)(sk − Hk yk)T

(sk − Hk yk)T yk
. (6.25)

This derivation is so simple that the SR1 formula has been rediscovered a number of times.
It is easy to see that even if Bk is positive definite, Bk+1 may not have the same property.

(The same is, of course, true of Hk .) This observation was considered a major drawback
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in the early days of nonlinear optimization when only line search iterations were used.
However, with the advent of trust-region methods, the SR1 updating formula has proved to
be quite useful, and its ability to generate indefinite Hessian approximations can actually be
regarded as one of its chief advantages.

The main drawback of SR1 updating is that the denominator in (6.24) or (6.25) can
vanish. In fact, even when the objective function is a convex quadratic, there may be steps
on which there is no symmetric rank-1 update that satisfies the secant equation. It pays to
reexamine the derivation above in the light of this observation.

By reasoning in terms of Bk (similar arguments can be applied to Hk), we see that
there are three cases:

1. If (yk − Bksk)T sk 	� 0, then the arguments above show that there is a unique
rank-one updating formula satisfying the secant equation (6.6), and that it is given
by (6.24).

2. If yk � Bksk , then the only updating formula satisfying the secant equation is simply
Bk+1 � Bk .

3. If yk 	� Bksk and (yk − Bksk)T sk � 0, then (6.23) shows that there is no symmetric
rank-one updating formula satisfying the secant equation.

The last case clouds an otherwise simple and elegant derivation, and suggests that numerical
instabilities and even breakdown of the method can occur. It suggests that rank-one updating
does not provide enough freedom to develop a matrix with all the desired characteristics,
and that a rank-two correction is required. This reasoning leads us back to the BFGS method,
in which positive definiteness (and thus nonsingularity) of all Hessian approximations is
guaranteed.

Nevertheless, we are interested in the SR1 formula for the following reasons.

(i) A simple safeguard seems to adequately prevent the breakdown of the method and the
occurrence of numerical instabilities.

(ii) The matrices generated by the SR1 formula tend to be good approximations to the
true Hessian matrix—often better than the BFGS approximations.

(iii) In quasi-Newton methods for constrained problems, or in methods for partially
separable functions (see Chapters 18 and 7), it may not be possible to impose the
curvature condition yT

k sk > 0, and thus BFGS updating is not recommended. Indeed,
in these two settings, indefinite Hessian approximations are desirable insofar as they
reflect indefiniteness in the true Hessian.

We now introduce a strategy to prevent the SR1 method from breaking down. It
has been observed in practice that SR1 performs well simply by skipping the update if the
denominator is small. More specifically, the update (6.24) is applied only if

∣∣sT
k (yk − Bksk)

∣∣ ≥ r‖sk‖ ‖yk − Bksk‖, (6.26)
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where r ∈ (0, 1) is a small number, say r � 10−8. If (6.26) does not hold, we set
Bk+1 � Bk . Most implementations of the SR1 method use a skipping rule of this
kind.

Why do we advocate skipping of updates for the SR1 method, when in the previous
section we discouraged this strategy in the case of BFGS? The two cases are quite different.
The condition sT

k (yk − Bksk) ≈ 0 occurs infrequently, since it requires certain vectors to
be aligned in a specific way. When it does occur, skipping the update appears to have no
negative effects on the iteration. This is not surprising, since the skipping condition im-
plies that sT

k Ḡsk ≈ sT
k Bksk , where Ḡ is the average Hessian over the last step—meaning

that the curvature of Bk along sk is already correct. In contrast, the curvature condition
sT

k yk ≥ 0 required for BFGS updating may easily fail if the line search does not im-
pose the Wolfe conditions (for example, if the step is not long enough), and therefore
skipping the BFGS update can occur often and can degrade the quality of the Hessian
approximation.

We now give a formal description of an SR1 method using a trust-region framework,
which we prefer over a line search framework because it can accommodate indefinite Hessian
approximations more easily.

Algorithm 6.2 (SR1 Trust-Region Method).
Given starting point x0, initial Hessian approximation B0,

trust-region radius �0, convergence tolerance ε > 0,
parameters η ∈ (0, 10−3) and r ∈ (0, 1);

k ← 0;
while ‖∇ fk‖ > ε;

Compute sk by solving the subproblem

min
s
∇ f T

k s + 1

2
sT Bks subject to ‖s‖ ≤ �k; (6.27)

Compute

yk � ∇ f (xk + sk)−∇ fk,

ared � fk − f (xk + sk) (actual reduction)

pred � −
(
∇ f T

k sk + 1

2
sT

k Bksk

)
(predicted reduction);

if ared/pred > η

xk+1 � xk + sk ;
else

xk+1 � xk ;
end (if)
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if ared/pred > 0.75
if ‖sk‖ ≤ 0.8�k

�k+1 � �k ;
else

�k+1 � 2�k ;
end (if)

else if 0.1 ≤ ared/pred ≤ 0.75
�k+1 � �k ;

else
�k+1 � 0.5�k ;

end (if)
if (6.26) holds

Use (6.24) to compute Bk+1 (even if xk+1 � xk);
else

Bk+1 ← Bk ;
end (if)
k ← k + 1;

end (while)

This algorithm has the typical form of a trust region method (cf. Algorithm 4.1). For
concreteness, we have specified a particular strategy for updating the trust region radius,
but other heuristics can be used instead.

To obtain a fast rate of convergence, it is important for the matrix Bk to be updated
even along a failed direction sk . The fact that the step was poor indicates that Bk is an
inadequate approximation of the true Hessian in this direction. Unless the quality of the
approximation is improved, steps along similar directions could be generated on later
iterations, and repeated rejection of such steps could prevent superlinear convergence.

PROPERTIES OF SR1 UPDATING

One of the main advantages of SR1 updating is its ability to generate good Hessian
approximations. We demonstrate this property by first examining a quadratic function. For
functions of this type, the choice of step length does not affect the update, so to examine the
effect of the updates, we can assume for simplicity a uniform step length of 1, that is,

pk � −Hk∇ fk, xk+1 � xk + pk . (6.28)

It follows that pk � sk .

Theorem 6.1.
Suppose that f : IRn → IR is the strongly convex quadratic function f (x) � bT x +

1
2 xT Ax , where A is symmetric positive definite. Then for any starting point x0 and any
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symmetric starting matrix H0, the iterates {xk} generated by the SR1 method (6.25), (6.28)
converge to the minimizer in at most n steps, provided that (sk − Hk yk)T yk 	� 0 for all k.
Moreover, if n steps are performed, and if the search directions pi are linearly independent, then
Hn � A−1.

PROOF. Because of our assumption (sk − Hk yk)T yk 	� 0, the SR1 update is always well-
defined. We start by showing inductively that

Hk y j � s j , j � 0, 1, . . . , k − 1. (6.29)

In other words, we claim that the secant equation is satisfied not only along the most recent
search direction, but along all previous directions.

By definition, the SR1 update satisfies the secant equation, so we have H1 y0 � s0. Let
us now assume that (6.29) holds for some value k > 1 and show that it holds also for k + 1.
From this assumption, we have from (6.29) that

(sk − Hk yk)T y j � sT
k y j − yT

k (Hk y j ) � sT
k y j − yT

k s j � 0, all j < k, (6.30)

where the last equality follows because yi � Asi for the quadratic function we are considering
here. By using (6.30) and the induction hypothesis (6.29) in (6.25), we have

Hk+1 y j � Hk y j � s j , for all j < k.

Since Hk+1 yk � sk by the secant equation, we have shown that (6.29) holds when k is
replaced by k + 1. By induction, then, this relation holds for all k.

If the algorithm performs n steps and if these steps {s j } are linearly independent, we
have

s j � Hn y j � Hn As j , j � 0, 1, . . . , n − 1.

It follows that Hn A � I , that is, Hn � A−1. Therefore, the step taken at xn is the Newton
step, and so the next iterate xn+1 will be the solution, and the algorithm terminates.

Consider now the case in which the steps become linearly dependent. Suppose that sk

is a linear combination of the previous steps, that is,

sk � ξ0s0 + · · · + ξk−1sk−1, (6.31)

for some scalars ξi . From (6.31) and (6.29) we have that

Hk yk � Hk Ask

� ξ0 Hk As0 + · · · + ξk−1 Hk Ask−1
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� ξ0 Hk y0 + · · · + ξk−1 Hk yk−1

� ξ0s0 + · · · + ξk−1sk−1

� sk .

Since yk � ∇ fk+1 − ∇ fk and since sk � pk � −Hk∇ fk from (6.28), we have that

Hk(∇ fk+1 − ∇ fk) � −Hk∇ fk,

which, by the nonsingularity of Hk , implies that ∇ fk+1 � 0. Therefore, xk+1 is the solution
point. �

The relation (6.29) shows that when f is quadratic, the secant equation is satisfied
along all previous search directions, regardless of how the line search is performed. A result
like this can be established for BFGS updating only under the restrictive assumption that
the line search is exact, as we show in the next section.

For general nonlinear functions, the SR1 update continues to generate good Hessian
approximations under certain conditions.

Theorem 6.2.
Suppose that f is twice continuously differentiable, and that its Hessian is bounded and

Lipschitz continuous in a neighborhood of a point x∗. Let {xk} be any sequence of iterates such
that xk → x∗ for some x∗ ∈ IRn . Suppose in addition that the inequality (6.26) holds for all k,
for some r ∈ (0, 1), and that the steps sk are uniformly linearly independent. Then the matrices
Bk generated by the SR1 updating formula satisfy

lim
k→∞

‖Bk − ∇2 f (x∗)‖ � 0.

The term “uniformly linearly independent steps” means, roughly speaking, that the
steps do not tend to fall in a subspace of dimension less than n. This assumption is usually,
but not always, satisfied in practice (see the Notes and References at the end of this chapter).

6.3 THE BROYDEN CLASS

So far, we have described the BFGS, DFP, and SR1 quasi-Newton updating formulae, but
there are many others. Of particular interest is the Broyden class, a family of updates specified
by the following general formula:

Bk+1 � Bk − BksksT
k Bk

sT
k Bksk

+ yk yT
k

yT
k sk

+ φk(sT
k Bksk)vkv

T
k , (6.32)
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where φk is a scalar parameter and

vk �
[

yk

yT
k sk

− Bksk

sT
k Bksk

]
. (6.33)

The BFGS and DFP methods are members of the Broyden class—we recover BFGS by setting
φk � 0 and DFP by setting φk � 1 in (6.32). We can therefore rewrite (6.32) as a “linear
combination” of these two methods, that is,

Bk+1 � (1− φk)BBFGS

k+1 + φk BDFP

k+1.

This relationship indicates that all members of the Broyden class satisfy the secant equation
(6.6), since the BGFS and DFP matrices themselves satisfy this equation. Also, since BFGS and
DFP updating preserve positive definiteness of the Hessian approximations when sT

k yk > 0,
this relation implies that the same property will hold for the Broyden family if 0 ≤ φk ≤ 1.

Much attention has been given to the so-called restricted Broyden class, which is
obtained by restricting φk to the interval [0, 1]. It enjoys the following property when
applied to quadratic functions. Since the analysis is independent of the step length, we
assume for simplicity that each iteration has the form

pk � −B−1
k ∇ fk, xk+1 � xk + pk . (6.34)

Theorem 6.3.
Suppose that f : IRn → IR is the strongly convex quadratic function f (x) � bT x +

1
2 xT Ax , where A is symmetric and positive definite. Let x0 be any starting point for the iteration
(6.34) and B0 be any symmetric positive definite starting matrix, and suppose that the matrices
Bk are updated by the Broyden formula (6.32) with φk ∈ [0, 1]. Define λk

1 ≤ λk
2 ≤ · · · ≤ λk

n

to be the eigenvalues of the matrix

A
1
2 B−1

k A
1
2 . (6.35)

Then for all k, we have

min{λk
i , 1} ≤ λk+1

i ≤ max{λk
i , 1}, i � 1, 2, . . . , n. (6.36)

Moreover, the property (6.36) does not hold if the Broyden parameter φk is chosen outside the
interval [0, 1].

Let us discuss the significance of this result. If the eigenvalues λk
i of the matrix (6.35)

are all 1, then the quasi-Newton approximation Bk is identical to the Hessian A of the
quadratic objective function. This situation is the ideal one, so we should be hoping for
these eigenvalues to be as close to 1 as possible. In fact, relation (6.36) tells us that the
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eigenvalues {λk
i } converge monotonically (but not strictly monotonically) to 1. Suppose, for

example, that at iteration k the smallest eigenvalue is λk
1 � 0.7. Then (6.36) tells us that

at the next iteration λk+1
1 ∈ [0.7, 1]. We cannot be sure that this eigenvalue has actually

moved closer to 1, but it is reasonable to expect that it has. In contrast, the first eigenvalue
can become smaller than 0.7 if we allow φk to be outside [0, 1]. Significantly, the result of
Theorem 6.3 holds even if the line searches are not exact.

Although Theorem 6.3 seems to suggest that the best update formulas belong to the
restricted Broyden class, the situation is not at all clear. Some analysis and computational
testing suggest that algorithms that allow φk to be negative (in a strictly controlled manner)
may in fact be superior to the BFGS method. The SR1 formula is a case in point: It is a
member of the Broyden class, obtained by setting

φk � sT
k yk

sT
k yk − sT

k Bksk
,

but it does not belong to the restricted Broyden class, because this value of φk may fall
outside the interval [0, 1].

In the remaining discussion of this section, we determine more precisely the range of
values of φk that preserve positive definiteness.

The last term in (6.32) is a rank-one correction, which by the interlacing eigenvalue
theorem (Theorem A.1) increases the eigenvalues of the matrix when φk is positive. Therefore
Bk+1 is positive definite for all φk ≥ 0. On the other hand, by Theorem A.1 the last term in
(6.32) decreases the eigenvalues of the matrix when φk is negative. As we decrease φk , this
matrix eventually becomes singular and then indefinite. A little computation shows that
Bk+1 is singular when φk has the value

φc
k �

1

1− µk
, (6.37)

where

µk � (yT
k B−1

k yk)(sT
k Bksk)

(yT
k sk)2

. (6.38)

By applying the Cauchy–Schwarz inequality (A.5) to (6.38), we see that µk ≥ 1 and therefore
φc

k ≤ 0. Hence, if the initial Hessian approximation B0 is symmetric and positive definite,
and if sT

k yk > 0 and φk > φc
k for each k, then all the matrices Bk generated by Broyden’s

formula (6.32) remain symmetric and positive definite.
When the line search is exact, all methods in the Broyden class with φk ≥ φc

k generate
the same sequence of iterates. This result applies to general nonlinear functions and is
based on the observation that when all the line searches are exact, the directions generated
by Broyden-class methods differ only in their lengths. The line searches identify the same
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minima along the chosen search direction, though the values of the step lengths may differ
because of the different scaling.

The Broyden class has several remarkable properties when applied with exact line
searches to quadratic functions. We state some of these properties in the next theorem,
whose proof is omitted.

Theorem 6.4.
Suppose that a method in the Broyden class is applied to the strongly convex quadratic

function f (x) � bT x+ 1
2 xT Ax , where x0 is the starting point and B0 is any symmetric positive

definite matrix. Assume that αk is the exact step length and that φk ≥ φc
k for all k, where φc

k is
defined by (6.37). Then the following statements are true.

(i) The iterates are independent of φk and converge to the solution in at most n iterations.

(ii) The secant equation is satisfied for all previous search directions, that is,

Bks j � y j , j � k − 1, k − 2, . . . , 1.

(iii) If the starting matrix is B0 � I , then the iterates are identical to those generated by
the conjugate gradient method (see Chapter 5). In particular, the search directions are
conjugate, that is,

sT
i As j � 0, for i 	� j .

(iv) If n iterations are performed, we have Bn � A.

Note that parts (i), (ii), and (iv) of this result echo the statement and proof of Theorem 6.1,
where similar results were derived for the SR1 update formula.

We can generalize Theorem 6.4 slightly: It continues to hold if the Hessian approxi-
mations remain nonsingular but not necessarily positive definite. (Hence, we could allow
φk to be smaller than φc

k , provided that the chosen value did not produce a singular updated
matrix.) We can also generalize point (iii) as follows. If the starting matrix B0 is not the
identity matrix, then the Broyden-class method is identical to the preconditioned conjugate
gradient method that uses B0 as preconditioner.

We conclude by commenting that results like Theorem 6.4 would appear to be of
mainly theoretical interest, since the inexact line searches used in practical implementations
of Broyden-class methods (and all other quasi-Newton methods) cause their performance
to differ markedly. Nevertheless, it is worth noting that this type of analysis guided much of
the development of quasi-Newton methods.
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6.4 CONVERGENCE ANALYSIS

In this section we present global and local convergence results for practical implementations
of the BFGS and SR1 methods. We give more details for BFGS because its analysis is more
general and illuminating than that of SR1. The fact that the Hessian approximations evolve
by means of updating formulas makes the analysis of quasi-Newton methods much more
complex than that of steepest descent and Newton’s method.

Although the BFGS and SR1 methods are known to be remarkably robust in practice,
we will not be able to establish truly global convergence results for general nonlinear objective
functions. That is, we cannot prove that the iterates of these quasi-Newton methods approach
a stationary point of the problem from any starting point and any (suitable) initial Hessian
approximation. In fact, it is not yet known if the algorithms enjoy such properties. In our
analysis we will either assume that the objective function is convex or that the iterates satisfy
certain properties. On the other hand, there are well known local, superlinear convergence
results that are true under reasonable assumptions.

Throughout this section we use ‖ · ‖ to denote the Euclidean vector or matrix norm,
and denote the Hessian matrix ∇2 f (x) by G(x).

GLOBAL CONVERGENCE OF THE BFGS METHOD

We study the global convergence of the BFGS method, with a practical line search,
when applied to a smooth convex function from an arbitrary starting point x0 and from
any initial Hessian approximation B0 that is symmetric and positive definite. We state our
precise assumptions about the objective function formally, as follows.

Assumption 6.1.
(i) The objective function f is twice continuously differentiable.

(ii) The level set L � {x ∈ IRn | f (x) ≤ f (x0)} is convex, and there exist positive constants
m and M such that

m‖z‖2 ≤ zT G(x)z ≤ M‖z‖2 (6.39)

for all z ∈ IRn and x ∈ L.

Part (ii) of this assumption implies that G(x) is positive definite on L and that f has a
unique minimizer x∗ in L.

By using (6.12) and (6.39) we obtain

yT
k sk

sT
k sk

� sT
k Ḡksk

sT
k sk

≥ m, (6.40)
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where Ḡk is the average Hessian defined in (6.11). Assumption 6.1 implies that Ḡk is
positive definite, so its square root is well-defined. Therefore, as in (6.21), we have by
defining zk � Ḡ1/2

k sk that

yT
k yk

yT
k sk

� sT
k Ḡ2

ksk

sT
k Ḡksk

� zT
k Ḡk zk

zT
k zk

≤ M. (6.41)

We are now ready to present the global convergence result for the BFGS method. It
does not seem to be possible to establish a bound on the condition number of the Hessian
approximations Bk , as is done in Section 3.2. Instead, we will introduce two new tools
in the analysis, the trace and determinant, to estimate the size of the largest and smallest
eigenvalues of the Hessian approximations. The trace of a matrix (denoted by trace(·)) is
the sum of its eigenvalues, while the determinant (denoted by det(·)) is the product of the
eigenvalues; see the Appendix for a brief discussion of their properties.

Theorem 6.5.
Let B0 be any symmetric positive definite initial matrix, and let x0 be a starting point

for which Assumption 6.1 is satisfied. Then the sequence {xk} generated by Algorithm 6.1 (with
ε � 0) converges to the minimizer x∗ of f .

PROOF. We start by defining

mk � yT
k sk

sT
k sk

, Mk � yT
k yk

yT
k sk

, (6.42)

and note from (6.40) and (6.41) that

mk ≥ m, Mk ≤ M. (6.43)

By computing the trace of the BFGS update (6.19), we obtain that

trace(Bk+1) � trace(Bk)− ‖Bksk‖2

sT
k Bksk

+ ‖yk‖2

yT
k sk

(6.44)

(see Exercise 6.11). We can also show (Exercise 6.10) that

det(Bk+1) � det(Bk)
yT

k sk

sT
k Bksk

. (6.45)

We now define

cos θk � sT
k Bksk

‖sk‖‖Bksk‖ , qk � sT
k Bksk

sT
k sk

, (6.46)
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so that θk is the angle between sk and Bksk . We then obtain that

‖Bksk‖2

sT
k Bksk

� ‖Bksk‖2‖sk‖2

(sT
k Bksk)2

sT
k Bksk

‖sk‖2
� qk

cos2 θk
. (6.47)

In addition, we have from (6.42) that

det(Bk+1) � det(Bk)
yT

k sk

sT
k sk

sT
k sk

sT
k Bksk

� det(Bk)
mk

qk
. (6.48)

We now combine the trace and determinant by introducing the following function of
a positive definite matrix B:

ψ(B) � trace(B)− ln(det(B)), (6.49)

where ln(·) denotes the natural logarithm. It is not difficult to show that ψ(B) > 0; see
Exercise 6.9. By using (6.42) and (6.44)–(6.49), we have that

ψ(Bk+1) � trace(Bk)+ Mk − qk

cos2 θk
− ln(det(Bk))− ln mk + ln qk

� ψ(Bk)+ (Mk − ln mk − 1)

+
[

1− qk

cos2 θk
+ ln

qk

cos2 θk

]
+ ln cos2 θk . (6.50)

Now, since the function h(t) � 1 − t + ln t is nonpositive for all t > 0 (see Exercise 6.8),
the term inside the square brackets is nonpositive, and thus from (6.43) and (6.50) we have

0 < ψ(Bk+1) ≤ ψ(B0)+ c(k + 1)+
k∑

j�0

ln cos2 θ j , (6.51)

where we can assume the constant c � M−ln m−1 to be positive, without loss of generality.
We now relate these expressions to the results given in Section 3.2. Note from the form

sk � −αk B−1
k ∇ fk of the quasi-Newton iteration that cos θk defined by (6.46) is the angle

between the steepest descent direction and the search direction, which plays a crucial role in
the global convergence theory of Chapter 3. From (3.22), (3.23) we know that the sequence
‖∇ fk‖ generated by the line search algorithm is bounded away from zero only if cos θ j → 0.

Let us then proceed by contradiction and assume that cos θ j → 0. Then there exists
k1 > 0 such that for all j > k1, we have

ln cos2 θ j < −2c,
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where c is the constant defined above. Using this inequality in (6.51) we find the following
relations to be true for all k > k1:

0 < ψ(B0)+ c(k + 1)+
k1∑

j�0

ln cos2 θ j +
k∑

j�k1+1

(−2c)

� ψ(B0)+
k1∑

j�0

ln cos2 θ j + 2ck1 + c − ck.

However, the right-hand-side is negative for large k, giving a contradiction. Therefore, there
exists a subsequence of indices { jk}k�1,2,... such that cos θ jk ≥ δ > 0. By Zoutendijk’s result
(3.14) this limit implies that lim inf ‖∇ fk‖ → 0. Since the problem is strongly convex, the
latter limit is enough to prove that xk → x∗. �

Theorem 6.5 has been generalized to the entire restricted Broyden class, except for
the DFP method. In other words, Theorem 6.5 can be shown to hold for all φk ∈ [0, 1)
in (6.32), but the argument seems to break down as φk approaches 1 because some of the
self-correcting properties of the update are weakened considerably.

An extension of the analysis just given shows that the rate of convergence of the iterates
is linear. In particular, we can show that the sequence ‖xk − x∗‖ converges to zero rapidly
enough that

∞∑
k�1

‖xk − x∗‖ < ∞. (6.52)

We will not prove this claim, but rather establish that if (6.52) holds, then the rate of
convergence is actually superlinear.

SUPERLINEAR CONVERGENCE OF THE BFGS METHOD

The analysis of this section makes use of the Dennis and Moré characterization (3.36)
of superlinear convergence. It applies to general nonlinear—not just convex—objective
functions. For the results that follow we need to make an additional assumption.

Assumption 6.2.
The Hessian matrix G is Lipschitz continuous at x∗, that is,

‖G(x)− G(x∗)‖ ≤ L‖x − x∗‖,

for all x near x∗, where L is a positive constant.
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We start by introducing the quantities

s̃k � G1/2
∗ sk, ỹk � G−1/2

∗ yk, B̃k � G−1/2
∗ Bk G−1/2

∗ ,

where G∗ � G(x∗) and x∗ is a minimizer of f . Similarly to (6.46), we define

cos θ̃k � s̃T
k B̃k s̃k

‖s̃k‖‖B̃k s̃k‖
, q̃k � s̃T

k B̃k s̃k

‖s̃k‖2
,

while we echo (6.42) and (6.43) in defining

M̃k � ‖ỹk‖2

ỹT
k s̃k

, m̃k � ỹT
k s̃k

s̃T
k s̃k

.

By pre- and postmultiplying the BFGS update formula (6.19) by G−1/2
∗ and grouping

terms appropriately, we obtain

B̃k+1 � B̃k − B̃k s̃k s̃T
k B̃k

s̃T
k B̃k s̃k

+ ỹk ỹT
k

ỹT
k s̃k

.

Since this expression has precisely the same form as the BFGS formula (6.19), it follows
from the argument leading to (6.50) that

ψ(B̃k+1) � ψ(B̃k)+ (M̃k − ln m̃k − 1)

+
[

1− q̃k

cos2 θ̃k

+ ln
q̃k

cos2 θ̃k

]
(6.53)

+ ln cos2 θ̃k .

Recalling (6.12), we have that

yk − G∗sk � (Ḡk − G∗)sk,

and thus

ỹk − s̃k � G−1/2
∗ (Ḡk − G∗)G−1/2

∗ s̃k .

By Assumption 6.2, and recalling the definition (6.11), we have

‖ỹk − s̃k‖ ≤ ‖G−1/2
∗ ‖2‖s̃k‖‖Ḡk − G∗‖ ≤ ‖G−1/2

∗ ‖2‖s̃k‖Lεk,

where εk is defined by

εk � max{‖xk+1 − x∗‖, ‖xk − x∗‖}.
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We have thus shown that

‖ỹk − s̃k‖
‖s̃k‖ ≤ c̄εk, (6.54)

for some positive constant c̄. This inequality and (6.52) play an important role in superlinear
convergence, as we now show.

Theorem 6.6.
Suppose that f is twice continuously differentiable and that the iterates generated by the

BFGS algorithm converge to a minimizer x∗ at which Assumption 6.2 holds. Suppose also that
(6.52) holds. Then xk converges to x∗ at a superlinear rate.

PROOF. From (6.54), we have from the triangle inequality (A.4a) that

‖ỹk‖ − ‖s̃k‖ ≤ c̄εk‖s̃k‖, ‖s̃k‖ − ‖ỹk‖ ≤ c̄εk‖s̃k‖,

so that

(1− c̄εk)‖s̃k‖ ≤ ‖ỹk‖ ≤ (1+ c̄εk)‖s̃k‖. (6.55)

By squaring (6.54) and using (6.55), we obtain

(1− c̄εk)2‖s̃k‖2 − 2ỹT
k s̃k + ‖s̃k‖2 ≤ ‖ỹk‖2 − 2ỹT

k s̃k + ‖s̃k‖2 ≤ c̄2ε2
k‖s̃k‖2,

and therefore

2ỹT
k s̃k ≥ (1− 2c̄εk + c̄2ε2

k + 1− c̄2ε2
k )‖s̃k‖2 � 2(1− c̄εk)‖s̃k‖2.

It follows from the definition of m̃k that

m̃k � ỹT
k s̃k

‖s̃k‖2
≥ 1− c̄εk . (6.56)

By combining (6.55) and (6.56), we obtain also that

M̃k � ‖ỹk‖2

ỹT
k s̃k

≤ 1+ c̄εk

1− c̄εk
. (6.57)

Since xk → x∗, we have that εk → 0, and thus by (6.57) there exists a positive constant
c > c̄ such that the following inequalities hold for all sufficiently large k:

M̃k ≤ 1+ 2c̄

1− c̄εk
εk ≤ 1+ cεk . (6.58)
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We again make use of the nonpositiveness of the function h(t) � 1 − t + ln t . Therefore,
we have

−x

1− x
− ln(1− x) � h

(
1

1− x

)
≤ 0.

Now, for k large enough we can assume that c̄εk < 1
2 , and therefore

ln(1− c̄εk) ≥ −c̄εk

1− c̄εk
≥ −2c̄εk .

This relation and (6.56) imply that for sufficiently large k, we have

ln m̃k ≥ ln(1− c̄εk) ≥ −2c̄εk > −2cεk . (6.59)

We can now deduce from (6.53), (6.58), and (6.59) that

0 < ψ(B̃k+1) ≤ ψ(B̃k)+ 3cεk + ln cos2 θ̃k +
[

1− q̃k

cos2 θ̃k

+ ln
q̃k

cos2 θ̃k

]
. (6.60)

By summing this expression and making use of (6.52) we have that

∞∑
j�0

(
ln

1

cos2 θ̃ j

−
[

1− q̃ j

cos2 θ̃ j

+ ln
q̃ j

cos2 θ̃ j

])
≤ ψ(B̃0)+ 3c

∞∑
j�0

ε j < +∞.

Since the term in the square brackets is nonpositive, and since ln
(

1/ cos2 θ̃ j

)
≥ 0 for all j ,

we obtain the two limits

lim
j→∞

ln
1

cos2 θ̃ j

� 0, lim
j→∞

(
1− q̃ j

cos2 θ̃ j

+ ln
q̃ j

cos2 θ̃ j

)
� 0,

which imply that

lim
j→∞

cos θ̃ j � 1, lim
j→∞

q̃ j � 1. (6.61)

The essence of the result has now been proven; we need only to interpret these limits
in terms of the Dennis–Moré characterization of superlinear convergence.
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Recalling (6.47), we have

‖G−1/2
∗ (Bk − G∗)sk‖2

‖G1/2
∗ sk‖2

� ‖(B̃k − I )s̃k‖2

‖s̃k‖2

� ‖B̃k s̃k‖2 − 2s̃T
k B̃k s̃k + s̃T

k s̃k

s̃T
k s̃k

� q̃2
k

cos θ̃2
k

− 2q̃k + 1.

Since by (6.61) the right-hand-side converges to 0, we conclude that

lim
k→∞

‖(Bk − G∗)sk‖
‖sk‖ � 0.

The limit (3.36) and Theorem 3.6 imply that the unit step length αk � 1 will satisfy the Wolfe
conditions near the solution, and hence that the rate of convergence is superlinear. �

CONVERGENCE ANALYSIS OF THE SR1 METHOD

The convergence properties of the SR1 method are not as well understood as those of
the BFGS method. No global results like Theorem 6.5 or local superlinear results like The-
orem 6.6 have been established, except the results for quadratic functions discussed earlier.
There is, however, an interesting result for the trust-region SR1 algorithm, Algorithm 6.2.
It states that when the objective function has a unique stationary point and the condition
(6.26) holds at every step (so that the SR1 update is never skipped) and the Hessian ap-
proximations Bk are bounded above, then the iterates converge to x∗ at an (n + 1)-step
superlinear rate. The result does not require exact solution of the trust-region subproblem
(6.27).

We state the result formally as follows.

Theorem 6.7.
Suppose that the iterates xk are generated by Algorithm 6.2. Suppose also that the following

conditions hold:

(c1) The sequence of iterates does not terminate, but remains in a closed, bounded, convex set
D, on which the function f is twice continuously differentiable, and in which f has a
unique stationary point x∗;

(c2) the Hessian ∇2 f (x∗) is positive definite, and ∇2 f (x) is Lipschitz continuous in a
neighborhood of x∗;

(c3) the sequence of matrices {Bk} is bounded in norm;

(c4) condition (6.26) holds at every iteration, where r is some constant in (0, 1).
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Then limk→∞ xk � x∗, and we have that

lim
k→∞

‖xk+n+1 − x∗‖
‖xk − x∗‖ � 0.

Note that the BFGS method does not require the boundedness assumption (c3) to
hold. As we have mentioned already, the SR1 update does not necessarily maintain positive
definiteness of the Hessian approximations Bk . In practice, Bk may be indefinite at any
iteration, which means that the trust region bound may continue to be active for arbitrarily
large k. Interestingly, however, it can be shown that the SR1 Hessian approximations tend
to be positive definite most of the time. The precise result is that

lim
k→∞

number of indices j � 1, 2, . . . , k for which B j is positive semidefinite

k
� 1,

under the assumptions of Theorem 6.7. This result holds regardless of whether the initial
Hessian approximation is positive definite or not.

NOTES AND REFERENCES

For a comprehensive treatment of quasi-Newton methods see Dennis and Schn-
abel [92], Dennis and Moré [91], and Fletcher [101]. A formula for updating the Cholesky
factors of the BFGS matrices is given in Dennis and Schnabel [92].

Several safeguards and modifications of the SR1 method have been proposed, but
the condition (6.26) is favored in the light of the analysis of Conn, Gould, and Toint [71].
Computational experiments by Conn, Gould, and Toint [70, 73] and Khalfan, Byrd, and
Schnabel [181], using both line search and trust-region approaches, indicate that the SR1
method appears to be competitive with the BFGS method. The proof of Theorem 6.7 is
given in Byrd, Khalfan, and Schnabel [51].

A study of the convergence of BFGS matrices for nonlinear problems can be found in
Ge and Powell [119] and Boggs and Tolle [32]; however, the results are not as satisfactory as
for SR1 updating.

The global convergence of the BFGS method was established by Powell [246]. This
result was extended to the restricted Broyden class, except for DFP, by Byrd, Nocedal, and
Yuan [53]. For a discussion of the self-correcting properties of quasi-Newton methods
see Nocedal [229]. Most of the early analysis of quasi-Newton methods was based on the
bounded deterioration principle. This is a tool for the local analysis that quantifies the worst-
case behavior of quasi-Newton updating. Assuming that the starting point is sufficiently
close to the solution x∗ and that the initial Hessian approximation is sufficiently close to
∇2 f (x∗), one can use the bounded deterioration bounds to prove that the iteration cannot
stray away from the solution. This property can then be used to show that the quality of the
quasi-Newton approximations is good enough to yield superlinear convergence. For details,
see Dennis and Moré [91] or Dennis and Schnabel [92].
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✐ E X E R C I S E S

✐ 6.1

(a) Show that if f is strongly convex, then (6.7) holds for any vectors xk and xk+1.

(b) Give an example of a function of one variable satisfying g(0) � −1 and g(1) � − 1
4

and show that (6.7) does not hold in this case.

✐ 6.2 Show that the second strong Wolfe condition (3.7b) implies the curvature
condition (6.7).

✐ 6.3 Verify that (6.19) and (6.17) are inverses of each other.

✐ 6.4 Use the Sherman–Morrison formula (A.27) to show that (6.24) is the inverse of
(6.25).

✐ 6.5 Prove the statements (ii) and (iii) given in the paragraph following (6.25).

✐ 6.6 The square root of a matrix A is a matrix A1/2 such that A1/2 A1/2 � A. Show
that any symmetric positive definite matrix A has a square root, and that this square root
is itself symmetric and positive definite. (Hint: Use the factorization A � U DU T (A.16),
where U is orthogonal and D is diagonal with positive diagonal elements.)

✐ 6.7 Use the Cauchy-Schwarz inequality (A.5) to verify that µk ≥ 1, where µk is
defined by (6.38).

✐ 6.8 Define h(t) � 1− t + ln t , and note that h′(t) � −1+ 1/t , h′′(t) � −1/t2 < 0,
h(1) � 0, and h′(1) � 0. Show that h(t) ≤ 0 for all t > 0.

✐ 6.9 Denote the eigenvalues of the positive definite matrix B by λ1, λ2, . . . , λn , where
0 < λ1 ≤ λ2 ≤ · · · ≤ λn . Show that the ψ function defined in (6.49) can be written as

ψ(B) �
n∑

i�1

(λi − ln λi ).

Use this form to show that ψ(B) > 0.

✐ 6.10 The object of this exercise is to prove (6.45).

(a) Show that det(I + xyT ) � 1+ yT x , where x and y are n-vectors. Hint: Assuming that
x 	� 0, we can find vectors w1, w2, . . . , wn−1 such that the matrix Q defined by

Q � [x, w1, w2, . . . , wn−1]
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is nonsingular and x � Qe1, where e1 � (1, 0, 0, . . . , 0)T . If we define

yT Q � (z1, z2, . . . , zn),

then

z1 � yT Qe1 � yT Q(Q−1x) � yT x,

and

det(I + xyT ) � det(Q−1(I + xyT )Q) � det(I + e1 yT Q).

(b) Use a similar technique to prove that

det(I + xyT + uvT ) � (1+ yT x)(1+ vT u)− (xT v)(yT u).

(c) Use this relation to establish (6.45).

✐ 6.11 Use the properties of the trace of a symmetric matrix and the formula (6.19) to
prove (6.44).

✐ 6.12 Show that if f satisfies Assumption 6.1 and if the sequence of gradients satisfies
lim inf ‖∇ fk‖ � 0, then the whole sequence of iterates x converges to the solution x∗.




