
This is pag
Printer: O

C H A P T E R7
Large-Scale
Unconstrained
Optimization

Many applications give rise to unconstrained optimization problems with thousands or
millions of variables. Problems of this size can be solved efficiently only if the storage
and computational costs of the optimization algorithm can be kept at a tolerable level. A
diverse collection of large-scale optimization methods has been developed to achieve this
goal, each being particularly effective for certain problem types. Some of these methods
are straightforward adaptations of the methods described in Chapters 3, 4, and 6. Other
approaches are modifications of these basic methods that allow approximate steps to be
calculated at lower cost in computation and storage. One set of approaches that we have
already discussed—the nonlinear conjugate gradient methods of Section 5.2—can be applied

7 . 1 . I N E X A C T N E W T O N M E T H O D S 165

to large problems without modification, because of its minimal storage demands and its
reliance on only first-order derivative information.

The line search and trust-region Newton algorithms of Chapters 3 and 4 require matrix
factorizations of the Hessian matrices ∇2 fk . In the large-scale case, these factorizations can
be carried out using sparse elimination techniques. Such algorithms have received much
attention, and high quality software implementations are available. If the computational
cost and memory requirements of these sparse factorization methods are affordable for a
given application, and if the Hessian matrix can be formed explicitly, Newton methods
based on sparse factorizations constitute an effective approach for solving such problems.

Often, however, the cost of factoring the Hessian is prohibitive, and it is preferable
to compute approximations to the Newton step using iterative linear algebra techniques.
Section 7.1 discusses inexact Newton methods that use these techniques, in both line search
and trust-region frameworks. The resulting algorithms have attractive global convergence
properties and may be superlinearly convergent for suitable choices of parameters. They find
effective search directions when the Hessian∇2 fk is indefinite, and may even be implemented
in a “Hessian-free” manner, without explicit calculation or storage of the Hessian.

The Hessian approximations generated by the quasi-Newton approaches of Chapter 6
are usually dense, even when the true Hessian is sparse, and the cost of storing and working
with these approximations can be excessive for large n. Section 7.2 discusses limited-memory
variants of the quasi-Newton approach, which use Hessian approximations that can be
stored compactly by using just a few vectors of length n. These methods are fairly robust,
inexpensive, and easy to implement, but they do not converge rapidly. Another approach,
discussed briefly in Section 7.3, is to define quasi-Newton approximate Hessians Bk that
preserve sparsity, for example by mimicking the sparsity pattern of the Hessian.

In Section 7.4, we note that objective functions in large problems often possess a
structural property known as partial separability, which means they can be decomposed
into a sum of simpler functions, each of which depends on only a small subspace of IRn .
Effective Newton and quasi-Newton methods that exploit this property have been developed.
Such methods usually converge rapidly and are robust, but they require detailed information
about the objective function, which can be difficult to obtain in some applications.

We conclude the chapter with a discussion of software for large-scale unconstrained
optimization problems.

7.1 INEXACT NEWTON METHODS

Recall from (2.15) that the basic Newton step pN
k is obtained by solving the symmetric n× n

linear system

∇2 fk pN
k � −∇ fk . (7.1)

In this section, we describe techniques for obtaining approximations to pN
k that are

166 C H A P T E R 7 . L A R G E - S C A L E U N C O N S T R A I N E D O P T I M I Z A T I O N

inexpensive to calculate but are good search directions or steps. These approaches are
based on solving (7.1) by using the conjugate gradient (CG) method (see Chapter 5) or
the Lanczos method, with modifications to handle negative curvature in the Hessian ∇2 fk .
Both line search and trust-region approaches are described here. We refer to this family of
methods by the general name inexact Newton methods.

The use of iterative methods for (7.1) spares us from concerns about the expense
of a direct factorization of the Hessian ∇2 fk and the fill-in that may occur during this
process. Further, we can customize the solution strategy to ensure that the rapid convergence
properties associated with Newton’s methods are not lost in the inexact version. In addition,
as noted below, we can implement these methods in a Hessian-free manner, so that the
Hessian ∇2 fk need not be calculated or stored explicitly at all.

We examine first how the inexactness in the step calculation determines the local
convergence properties of inexact Newton methods. We then consider line search and
trust-region approaches based on using CG (possibly with preconditioning) to obtain an
approximate solution of (7.1). Finally, we discuss the use of the Lanczos method for solving
(7.1) approximately.

LOCAL CONVERGENCE OF INEXACT NEWTON METHODS

Most rules for terminating the iterative solver for (7.1) are based on the residual

rk � ∇2 fk pk +∇ fk, (7.2)

where pk is the inexact Newton step. Usually, we terminate the CG iterations when

‖rk‖ ≤ ηk‖∇ fk‖, (7.3)

where the sequence {ηk} (with 0 < ηk < 1 for all k) is called the forcing sequence.
We now study how the rate of convergence of inexact Newton methods based on

(7.1)–(7.3) is affected by the choice of the forcing sequence. The next two theorems apply
not just to Newton–CG procedures but to all inexact Newton methods whose steps satisfy
(7.2) and (7.3).

Our first result says that local convergence is obtained simply by ensuring that ηk is
bounded away from 1.

Theorem 7.1.
Suppose that∇2 f (x) exists and is continuous in a neighborhood of a minimizer x∗, with

∇2 f (x∗) is positive definite. Consider the iteration xk+1 � xk+ pk where pk satisfies (7.3), and
assume that ηk ≤ η for some constant η ∈ [0, 1). Then, if the starting point x0 is sufficiently
near x∗, the sequence {xk} converges to x∗ and satisfies

‖∇2 f (x∗)(xk+1 − x∗)‖ ≤ η̂‖∇2 f (x∗)(xk − x∗)‖, (7.4)

for some constant η̂ with η < η̂ < 1.

7 . 1 . I N E X A C T N E W T O N M E T H O D S 167

Rather than giving a rigorous proof of this theorem, we present an informal derivation
that contains the essence of the argument and motivates the next result.

Since the Hessian matrix ∇2 f is positive definite at x∗ and continuous near x∗, there
exists a positive constant L such that ‖(∇2 fk)−1‖ ≤ L for all xk sufficiently close to x∗. We
therefore have from (7.2) that the inexact Newton step satisfies

‖pk‖ ≤ L(‖∇ fk‖ + ‖rk‖) ≤ 2L‖∇ fk‖,

where the second inequality follows from (7.3) and ηk < 1. Using this expression together
with Taylor’s theorem and the continuity of ∇2 f (x), we obtain

∇ fk+1 � ∇ fk + ∇2 fk pk +
∫ 1

0
[∇ f (xk + tpk)−∇ f (xk)]pk dt

� ∇ fk + ∇2 fk pk + o (‖pk‖)

� ∇ fk − (∇ fk − rk)+ o (‖∇ fk‖)

� rk + o (‖∇ fk‖) . (7.5)

Taking norms and recalling (7.3), we have that

‖∇ fk+1‖ ≤ ηk‖∇ fk‖ + o (‖∇ fk‖) ≤ (ηk + o(1)))‖∇ fk‖. (7.6)

When xk is close enough to x∗ that the o(1) term in the last estimate is bounded by (1−η)/2,
we have

‖∇ fk+1‖ ≤ (ηk + (1− η)/2)‖∇ fk‖ ≤ 1+ η

2
‖∇ fk‖, (7.7)

so the gradient norm decreases by a factor of (1 + η)/2 at this iteration. By choosing the
initial point x0 sufficiently close to x∗, we can ensure that this rate of decrease occurs at
every iteration.

To prove (7.4), we note that under our smoothness assumptions, we have

∇ fk � ∇2 f (x∗)(xk − x∗)+ o(‖xk − x∗‖).

Hence it can be shown that for xk close to x∗, the gradient ∇ fk differs from the scaled error
∇2 f (x∗)(xk − x∗) by only a relatively small perturbation. A similar estimate holds at xk+1,
so (7.4) follows from (7.7).

From (7.6), we have that

‖∇ fk+1‖
‖∇ fk‖ ≤ ηk + o(1). (7.8)

168 C H A P T E R 7 . L A R G E - S C A L E U N C O N S T R A I N E D O P T I M I Z A T I O N

If limk→∞ ηk � 0, we have from this expression that

lim
k→∞

‖∇ fk+1‖
‖∇ fk‖ � 0,

indicating Q-superlinear convergence of the gradient norms ‖∇ fk‖ to zero. Superlinear
convergence of the iterates {xk} to x∗ can be proved as a consequence.

We can obtain quadratic convergence by making the additional assumption that the
Hessian ∇2 f (x) is Lipschitz continuous near x∗. In this case, the estimate (7.5) can be
tightened to

∇ fk+1 � rk + O
(‖∇ fk‖2

)
.

By choosing the forcing sequence so that ηk � O(‖∇ fk‖), we have from this expression
that

‖∇ fk+1‖ � O(‖∇ fk‖2),

indicating Q-quadratic convergence of the gradient norms to zero (and thus also Q-quadratic
convergence of the iterates xk to x∗). The last two observations are summarized in the
following theorem.

Theorem 7.2.
Suppose that the conditions of Theorem 7.1 hold, and assume that the iterates {xk}

generated by the inexact Newton method converge to x∗. Then the rate of convergence is
superlinear if ηk → 0. If in addition, ∇2 f (x) is Lipschitz continuous for x near x∗ and if
ηk � O(‖∇ fk‖), then the convergence is quadratic.

To obtain superlinear convergence, we can set, for example, ηk � min
(
0.5,

√‖∇ fk‖
)
;

the choice ηk � min(0.5, ‖∇ fk‖) would yield quadratic convergence.
All the results presented in this section, which are proved by Dembo, Eisenstat, and

Steihaug [89], are local in nature: They assume that the sequence {xk} eventually enters
the near vicinity of the solution x∗. They also assume that the unit step length αk � 1 is
taken and hence that globalization strategies do not interfere with rapid convergence. In
the following pages we show that inexact Newton strategies can, in fact, be incorporated
in practical line search and trust-region implementations of Newton’s method, yielding
algorithms with good local and global convergence properties. We start with a line search
approach.

LINE SEARCH NEWTON–CG METHOD

In the line search Newton–CG method, also known as the truncated Newton method, we
compute the search direction by applying the CG method to the Newton equations (7.1) and

7 . 1 . I N E X A C T N E W T O N M E T H O D S 169

attempt to satisfy a termination test of the form (7.3). However, the CG method is designed
to solve positive definite systems, and the Hessian∇2 fk may have negative eigenvalues when
xk is not close to a solution. Therefore, we terminate the CG iteration as soon as a direction
of negative curvature is generated. This adaptation of the CG method produces a search
direction pk that is a descent direction. Moreover, the adaptation guarantees that the fast
convergence rate of the pure Newton method is preserved, provided that the step length
αk � 1 is used whenever it satisfies the acceptance criteria.

We now describe Algorithm 7.1, a line search algorithm that uses a modification of
Algorithm 5.2 as the inner iteration to compute each search direction pk . For purposes of
this algorithm, we write the linear system (7.1) in the form

Bk p � −∇ fk, (7.9)

where Bk represents ∇2 fk . For the inner CG iteration, we denote the search directions by
d j and the sequence of iterates that it generates by z j . When Bk is positive definite, the
inner iteration sequence {z j } will converge to the Newton step pN

k that solves (7.9). At each
major iteration, we define a tolerance εk that specifies the required accuracy of the computed
solution. For concreteness, we choose the forcing sequence to be ηk � min(0.5,

√‖∇ fk‖)
to obtain a superlinear convergence rate, but other choices are possible.

Algorithm 7.1 (Line Search Newton–CG).
Given initial point x0;
for k � 0, 1, 2, . . .

Define tolerance εk � min(0.5,
√‖∇ fk‖)‖∇ fk‖;

Set z0 � 0, r0 � ∇ fk , d0 � −r0 � −∇ fk ;
for j � 0, 1, 2, . . .

if dT
j Bkd j ≤ 0

if j � 0
return pk � −∇ fk ;

else
return pk � z j ;

Set α j � r T
j r j/dT

j Bkd j ;

Set z j+1 � z j + α j d j ;
Set r j+1 � r j + α j Bkd j ;
if ‖r j+1‖ < εk

return pk � z j+1;
Set β j+1 � r T

j+1r j+1/r T
j r j ;

Set d j+1 � −r j+1 + β j+1d j ;
end (for)
Set xk+1 � xk + αk pk , where αk satisfies the Wolfe, Goldstein, or

Armijo backtracking conditions (using αk � 1 if possible);
end

170 C H A P T E R 7 . L A R G E - S C A L E U N C O N S T R A I N E D O P T I M I Z A T I O N

The main differences between the inner loop of Algorithm 7.1 and Algorithm 5.2 are
that the specific starting point z0 � 0 is used; the use of a positive tolerance εk allows the CG
iterations to terminate at an inexact solution; and the negative curvature test dT

j Bkd j ≤ 0
ensures that pk is a descent direction for f at xk . If negative curvature is detected on the
first inner iteration j � 0, the returned direction pk � −∇ fk is both a descent direction
and a direction of nonpositive curvature for f at xk .

We can modify the CG iterations in Algorithm 7.1 by introducing preconditioning,
in the manner described in Chapter 5.

Algorithm 7.1 is well suited for large problems, but it has a weakness. When the Hessian
∇2 fk is nearly singular, the line search Newton–CG direction can be long and of poor quality,
requiring many function evaluations in the line search and giving only a small reduction in
the function. To alleviate this difficulty, we can try to normalize the Newton step, but good
rules for doing so are difficult to determine. They run the risk of undermining the rapid
convergence of Newton’s method in the case where the pure Newton step is well scaled. It
is preferable to introduce a threshold value into the test dT

j Bd j ≤ 0, but good choices of
the threshold are difficult to determine. The trust-region Newton–CG method described
below deals more effectively with this problematic situation and is therefore preferable, in
our opinion.

The line search Newton–CG method does not require explicit knowledge of the
Hessian Bk � ∇2 fk . Rather, it requires only that we can supply Hessian–vector products
of the form ∇2 fkd for any given vector d . When the user cannot easily supply code to
calculate second derivatives, or where the Hessian requires too much storage, the techniques
of Chapter 8 (automatic differentiation and finite differencing) can be used to calculate these
Hessian–vector products. Methods of this type are known as Hessian-free Newton methods.

To illustrate the finite-differencing technique briefly, we use the approximation

∇2 fkd ≈ ∇ f (xk + hd)−∇ f (xk)

h
, (7.10)

for some small differencing interval h. It is easy to prove that the accuracy of this approxi-
mation is O(h); appropriate choices of h are discussed in Chapter 8. The price we pay for
bypassing the computation of the Hessian is one new gradient evaluation per CG iteration.

TRUST-REGION NEWTON–CG METHOD

In Chapter 4, we discussed approaches for finding an approximate solution of the
trust-region subproblem (4.3) that produce improvements on the Cauchy point. Here we
define a modified CG algorithm for solving the subproblem with these properties. This
algorithm, due to Steihaug [281], is specified below as Algorithm 7.2. A complete algorithm
for minimizing f is obtained by using Algorithm 7.2 to generate the step pk required by
Algorithm 4.1 of Chapter 4, for some choice of tolerance εk at each iteration.

7 . 1 . I N E X A C T N E W T O N M E T H O D S 171

We use notation similar to (7.9) to define the trust-region subproblem for which
Steihaug’s method finds an approximate solution:

min
p∈IRn

mk(p)
def� fk + (∇ fk)T p + 1

2 pT Bk p subject to ‖p‖ ≤ �k, (7.11)

where Bk � ∇2 fk . As in Algorithm 7.1, we use d j to denote the search directions of this
modified CG iteration and z j to denote the sequence of iterates that it generates.

Algorithm 7.2 (CG–Steihaug).
Given tolerance εk > 0;
Set z0 � 0, r0 � ∇ fk , d0 � −r0 � −∇ fk ;
if ‖r0‖ < εk

return pk � z0 � 0;
for j � 0, 1, 2, . . .

if dT
j Bkd j ≤ 0

Find τ such that pk � z j + τd j minimizes mk(pk) in (4.5)
and satisfies ‖pk‖ � �k ;

return pk ;
Set α j � r T

j r j/dT
j Bkd j ;

Set z j+1 � z j + α j d j ;
if ‖z j+1‖ ≥ �k

Find τ ≥ 0 such that pk � z j + τd j satisfies ‖pk‖ � �k ;
return pk ;

Set r j+1 � r j + α j Bkd j ;
if ‖r j+1‖ < εk

return pk � z j+1;
Set β j+1 � r T

j+1r j+1/r T
j r j ;

Set d j+1 � −r j+1 + β j+1d j ;
end (for).

The first if statement inside the loop stops the method if its current search direction
d j is a direction of nonpositive curvature along Bk , while the second if statement inside the
loop causes termination if z j+1 violates the trust-region bound. In both cases, the method
returns the step pk obtained by intersecting the current search direction with the trust-region
boundary.

The choice of the tolerance εk at each call to Algorithm 7.2 is important in keeping the
overall cost of the trust-region Newton–CG method low. Near a well-behaved solution x∗,
the trust-region bound becomes inactive, and the method reduces to the inexact Newton
method analyzed in Theorems 7.1 and 7.2. Rapid convergence can be obtained in these
circumstances by choosing εk in a similar fashion to Algorithm 7.1.

172 C H A P T E R 7 . L A R G E - S C A L E U N C O N S T R A I N E D O P T I M I Z A T I O N

The essential differences between Algorithm 5.2 and the inner loop of Algorithm 7.2
are that the latter terminates when it violates the trust-region bound ‖p‖ ≤ �, when it
encounters a direction of negative curvature in ∇2 fk , or when it satisfies a convergence
tolerance defined by a parameter εk . In these respects, Algorithm 7.2 is quite similar to the
inner loop of Algorithm 7.1.

The initialization of z0 to zero in Algorithm 7.2 is a crucial feature of the algorithm.
Provided ‖∇ fk‖2 ≥ εk , Algorithm 7.2 terminates at a point pk for which mk(pk) ≤ mk(pC

k),
that is, when the reduction in model function equals or exceeds that of the Cauchy point.
To demonstrate this fact, we consider several cases. First, if dT

0 Bkd0 � (∇ fk)T Bk∇ fk ≤ 0,
then the condition in the first if statement is satisfied, and the algorithm returns the Cauchy
point p � −�k(∇ fk)/‖∇ fk‖. Otherwise, Algorithm 7.2 defines z1 as follows:

z1 � α0d0 � r T
0 r0

dT
0 Bkd0

d0 � − (∇ fk)T∇ fk

(∇ fk)T Bk∇ fk
∇ fk .

If ‖z1‖ < �k , then z1 is exactly the Cauchy point. Subsequent steps of Algorithm 7.2 ensure
that the final pk satisfies mk(pk) ≤ mk(z1). When ‖z1‖ ≥ �k , on the other hand, the second
if statement is activated, and Algorithm 7.2 terminates at the Cauchy point, proving our
claim. This property is important for global convergence: Since each step is at least as good
as the Cauchy point in reducing the model mk , Algorithm 7.2 is globally convergent.

Another crucial property of the method is that each iterate z j is larger in norm than
its predecessor. This property is another consequence of the initialization z0 � 0. Its main
implication is that it is acceptable to stop iterating as soon as the trust-region boundary is
reached, because no further iterates giving a lower value of the model function mk will lie
inside the trust region. We state and prove this property formally in the following theorem,
which makes use of the expanding subspace property of the conjugate gradient algorithm,
described in Theorem 5.2.

Theorem 7.3.
The sequence of vectors {z j } generated by Algorithm 7.2 satisfies

0 � ‖z0‖2 < · · · < ‖z j‖2 < ‖z j+1‖2 < · · · < ‖pk‖2 ≤ �k .

PROOF. We first show that the sequences of vectors generated by Algorithm 7.2 satisfy
zT

j r j � 0 for j ≥ 0 and zT
j d j > 0 for j ≥ 1.

Algorithm 7.2 computes z j+1 recursively in terms of z j ; but when all the terms of this
recursion are written explicitly, we see that

z j � z0 +
j−1∑
i�0

αi di �
j−1∑
i�0

αi di ,

7 . 1 . I N E X A C T N E W T O N M E T H O D S 173

since z0 � 0. Multiplying by r j and applying the expanding subspace property of conjugate
gradients (see Theorem 5.2), we obtain

zT
j r j �

j−1∑
i�0

αi d
T
i r j � 0. (7.12)

An induction proof establishes the relation zT
j d j > 0. By applying the expanding

subspace property again, we obtain

zT
1 d1 � (α0d0)T (−r1 + β1d0) � α0β1 dT

0 d0 > 0.

We now make the inductive hypothesis that zT
j d j > 0 and deduce that zT

j+1d j+1 > 0. From
(7.12), we have zT

j+1r j+1 � 0, and therefore

zT
j+1d j+1 � zT

j+1(−r j+1 + β j+1d j)

� β j+1zT
j+1d j

� β j+1(z j + α j d j)
T d j

� β j+1zT
j d j + α jβ j+1dT

j d j .

Because of the inductive hypothesis and positivity of β j+1 and α j , the last expression is
positive.

We now prove the theorem. If Algorithm 7.2 terminates because dT
j Bkd j ≤ 0 or

‖z j+1‖2 ≥ �k , then the final point pk is chosen to make ‖pk‖2 � �k , which is the
largest possible length. To cover all other possibilities in the algorithm, we must show that
‖z j‖2 < ‖z j+1‖2 when z j+1 � z j + α j d j and j ≥ 1. Observe that

‖z j+1‖2
2 � (z j + α j d j)

T (z j + α j d j) � ‖z j‖2
2 + 2α j z

T
j d j + α2

j‖d j‖2
2.

It follows from this expression and our intermediate result that ‖z j‖2 < ‖z j+1‖2, so our
proof is complete. �

From this theorem we see that Algorithm 7.2 sweeps out points z j that move on some
interpolating path from z1 to the final solution pk , a path in which every step increases its
total distance from the start point. When Bk � ∇2 fk is positive definite, this path may
be compared to the path of the dogleg method: Both methods start by minimizing mk

along the negative gradient direction−∇ fk and subsequently progress toward pN
k , until the

trust-region boundary intervenes. One can show that, when Bk � ∇2 fk is positive definite,
Algorithm 7.2 provides a decrease in the model (7.11) that is at least half as good as the
optimal decrease [320].

174 C H A P T E R 7 . L A R G E - S C A L E U N C O N S T R A I N E D O P T I M I Z A T I O N

PRECONDITIONING THE TRUST-REGION NEWTON–CG METHOD

As discussed in Chapter 5, preconditioning can be used to accelerate the CG iteration.
Preconditioning techniques are based on finding a nonsingular matrix D such that the eigen-
values of D−T∇2 fk D−1 have a more favorable distribution. By generalizing Theorem 7.3,
we can show that the iterates z j generated by a preconditioned variant of Algorithm 7.2 will
grow monotonically in the weighted norm ‖D · ‖. To be consistent, we should redefine the
trust-region subproblem in terms of the same norm, as follows:

min
p∈IRn

mk(p)
def� fk +∇ fk

T p + 1
2 pT Bk p subject to ‖Dp‖ ≤ �k . (7.13)

Making the change of variables p̂ � Dp and defining

ĝk � D−T∇ fk, B̂k � D−T (∇2 fk)D−1,

we can write (7.13) as

min
p̂∈IRn

fk + ĝT
k p̂ + 1

2 p̂T B̂k p̂ subject to ‖ p̂‖ ≤ �,

which has exactly the form of (7.11). We can apply Algorithm 7.2 without any modification to
this subproblem, which is equivalent to applying a preconditioned version of Algorithm 7.2
to the problem (7.13).

Many preconditioners can be used within this framework; we discuss some of them
in Chapter 5. Of particular interest is incomplete Cholesky factorization, which has proved
useful in a wide range of optimization problems. The incomplete Cholesky factorization of
a positive definite matrix B finds a lower triangular matrix L such that

B � L LT − R,

where the amount of fill-in in L is restricted in some way. (For instance, it is constrained
to have the same sparsity structure as the lower triangular part of B or is allowed to have a
number of nonzero entries similar to that in B.) The matrix R accounts for the inexactness
in the approximate factorization. The situation is complicated somewhat by the possible
indefiniteness of the Hessian ∇2 fk ; we must be able to handle this indefiniteness as well as
maintain the sparsity. The following algorithm combines incomplete Cholesky and a form
of modified Cholesky to define a preconditioner for the trust-region Newton–CG approach.

Algorithm 7.3 (Inexact Modified Cholesky).
Compute T � diag(‖Be1‖, ‖Be2‖, . . . , ‖Ben‖), where ei is the

i th coordinate vector;
Set B̄ ← T−1/2 BT−1/2; Set β ← ‖B̄‖;

7 . 1 . I N E X A C T N E W T O N M E T H O D S 175

(compute a shift to ensure positive definiteness)
if mini bii > 0

α0 ← 0
else

α0 ← β/2;
for k � 0, 1, 2, . . .

Attempt to apply incomplete Cholesky algorithm to obtain

L LT � B̄ + αk I ;

if the factorization is completed successfully
stop and return L ;

else
αk+1 ← max(2αk, β/2);

end (for)

We can then set the preconditioner to be D � LT , where L is the lower triangular matrix
output from Algorithm 7.3. A trust-region Newton–CG method using this preconditioner
is implemented in the LANCELOT [72] and TRON [192] codes.

TRUST-REGION NEWTON–LANCZOS METHOD

A limitation of Algorithm 7.2 is that it accepts any direction of negative curvature, even
when this direction gives an insignificant reduction in the model. Consider, for example,
the case where the subproblem (7.11) is

min
p

m(p) � 10−3 p1 − 10−4 p2
1 − p2

2 subject to ‖p‖ ≤ 1,

where subscripts indicate elements of the vector p. The steepest descent direction at p � 0 is
(−10−3, 0)T , which is a direction of negative curvature for the model. Algorithm 7.2 would
follow this direction to the boundary of the trust region, yielding a reduction in model
function m of about 10−3. A step along e2—also a direction of negative curvature—would
yield a much greater reduction of 1.

Several remedies have been proposed. We have seen in Chapter 4 that when the
Hessian ∇2 fk contains negative eigenvalues, the search direction should have a significant
component along the eigenvector corresponding to the most negative eigenvalue of ∇2 fk .
This feature would allow the algorithm to move away rapidly from stationary points that
are not minimizers. One way to achieve this is to compute a nearly exact solution of
the trust-region subproblem (7.11) using the techniques described in Section 4.3. This
approach requires the solution of a few linear systems with coefficient matrices of the form

176 C H A P T E R 7 . L A R G E - S C A L E U N C O N S T R A I N E D O P T I M I Z A T I O N

Bk+λI . Although this approach is perhaps too expensive in the large-scale case, it generates
productive search directions in all cases.

A more practical alternative is to use the Lanczos method (see, for example, [136])
rather than the CG method to solve the linear system Bk p � −∇ fk . The Lanczos method
can be seen as a generalization of the CG method that is applicable to indefinite systems, and
we can use it to continue the CG process while gathering negative curvature information.

After j steps, the Lanczos method generates an n × j matrix Q j with orthogonal
columns that span the Krylov subspace (5.15) generated by this method. This matrix has
the property that QT

j B Q j � Tj , where Tj is an tridiagonal. We can take advantage of
this tridiagonal structure and seek to find an approximate solution of the trust-region
subproblem in the range of the basis Q j . To do so, we solve the problem

min
w∈IR j

fk + eT
1 Q j (∇ fk)eT

1 w + 1
2w

T Tjw subject to ‖w‖ ≤ �k, (7.14)

where e1 � (1, 0, 0, . . . , 0)T , and we define the approximate solution of the trust-region
subproblem as pk � Q jw. Since Tj is tridiagonal, problem (7.14) can be solved by factoring
the system Tj + λI and following the (nearly) exact approach of Section 4.3.

The Lanczos iteration may be terminated, as in the Newton–CG methods, by a test of
the form (7.3). Preconditioning can also be incorporated to accelerate the convergence of
the Lanczos iteration. The additional robustness in this trust-region algorithm comes at the
cost of a more expensive solution of the subproblem than in the Newton–CG approach. A
sophisticated implementation of the Newton–Lanczos approach has been implemented in
the GLTR package [145].

7.2 LIMITED-MEMORY QUASI-NEWTON METHODS

Limited-memory quasi-Newton methods are useful for solving large problems whose Hes-
sian matrices cannot be computed at a reasonable cost or are not sparse. These methods
maintain simple and compact approximations of Hessian matrices: Instead of storing fully
dense n × n approximations, they save only a few vectors of length n that represent the
approximations implicitly. Despite these modest storage requirements, they often yield an
acceptable (albeit linear) rate of convergence. Various limited-memory methods have been
proposed; we focus mainly on an algorithm known as L-BFGS, which, as its name suggests,
is based on the BFGS updating formula. The main idea of this method is to use curvature
information from only the most recent iterations to construct the Hessian approximation.
Curvature information from earlier iterations, which is less likely to be relevant to the ac-
tual behavior of the Hessian at the current iteration, is discarded in the interest of saving
storage.

Following our discussion of L-BFGS and its convergence behavior, we discuss its
relationship to the nonlinear conjugate gradient methods of Chapter 5. We then discuss

7 . 2 . L I M I T E D - M E M O R Y Q U A S I - N E W T O N M E T H O D S 177

implementations of limited-memory schemes that make use of a compact representation of
approximate Hessian information. These techniques can be applied not only to L-BFGS but
also to limited-memory versions of other quasi-Newton procedures such as SR1. Finally,
we discuss quasi-Newton updating schemes that impose a particular sparsity pattern on the
approximate Hessian.

LIMITED-MEMORY BFGS

We begin our description of the L-BFGS method by recalling its parent, the BFGS
method, which was described in Algorithm 8.1. Each step of the BFGS method has the form

xk+1 � xk − αk Hk∇ fk, (7.15)

where αk is the step length and Hk is updated at every iteration by means of the formula

Hk+1 � V T
k Hk Vk + ρksksT

k (7.16)

(see (6.17)), where

ρk � 1

yT
k sk

, Vk � I − ρk yksT
k , (7.17)

and

sk � xk+1 − xk, yk � ∇ fk+1 − ∇ fk . (7.18)

Since the inverse Hessian approximation Hk will generally be dense, the cost of storing
and manipulating it is prohibitive when the number of variables is large. To circumvent this
problem, we store a modified version of Hk implicitly, by storing a certain number (say, m)
of the vector pairs {si , yi } used in the formulas (7.16)–(7.18). The product Hk∇ fk can be
obtained by performing a sequence of inner products and vector summations involving
∇ fk and the pairs {si , yi }. After the new iterate is computed, the oldest vector pair in the set
of pairs {si , yi } is replaced by the new pair {sk, yk} obtained from the current step (7.18).
In this way, the set of vector pairs includes curvature information from the m most recent
iterations. Practical experience has shown that modest values of m (between 3 and 20, say)
often produce satisfactory results.

We now describe the updating process in a little more detail. At iteration k, the current
iterate is xk and the set of vector pairs is given by {si , yi } for i � k −m, . . . , k − 1. We first
choose some initial Hessian approximation H 0

k (in contrast to the standard BFGS iteration,
this initial approximation is allowed to vary from iteration to iteration) and find by repeated
application of the formula (7.16) that the L-BFGS approximation Hk satisfies the following

178 C H A P T E R 7 . L A R G E - S C A L E U N C O N S T R A I N E D O P T I M I Z A T I O N

formula:

Hk �
(
V T

k−1 · · · V T
k−m

)
H 0

k (Vk−m · · · Vk−1)

+ ρk−m
(
V T

k−1 · · · V T
k−m+1

)
sk−msT

k−m (Vk−m+1 · · · Vk−1)

+ ρk−m+1

(
V T

k−1 · · · V T
k−m+2

)
sk−m+1sT

k−m+1 (Vk−m+2 · · · Vk−1)

+ · · ·
+ ρk−1sk−1sT

k−1. (7.19)

From this expression we can derive a recursive procedure to compute the product Hk∇ fk

efficiently.

Algorithm 7.4 (L-BFGS two-loop recursion).
q ← ∇ fk ;
for i � k − 1, k − 2, . . . , k − m

αi ← ρi sT
i q ;

q ← q − αi yi ;
end (for)
r ← H 0

k q ;
for i � k − m, k − m + 1, . . . , k − 1

β ← ρi yT
i r ;

r ← r + si (αi − β)
end (for)
stop with result Hk∇ fk � r .

Without considering the multiplication H 0
k q , the two-loop recursion scheme requires

4mn multiplications; if H 0
k is diagonal, then n additional multiplications are needed. Apart

from being inexpensive, this recursion has the advantage that the multiplication by the
initial matrix H 0

k is isolated from the rest of the computations, allowing this matrix to be
chosen freely and to vary between iterations. We may even use an implicit choice of H 0

k by
defining some initial approximation B0

k to the Hessian (not its inverse) and obtaining r by
solving the system B0

k r � q .
A method for choosing H 0

k that has proved effective in practice is to set H 0
k � γk I ,

where

γk �
sT

k−1 yk−1

yT
k−1 yk−1

. (7.20)

As discussed in Chapter 6, γk is the scaling factor that attempts to estimate the size of the
true Hessian matrix along the most recent search direction (see (6.21)). This choice helps
to ensure that the search direction pk is well scaled, and as a result the step length αk � 1 is
accepted in most iterations. As discussed in Chapter 6, it is important that the line search be

7 . 2 . L I M I T E D - M E M O R Y Q U A S I - N E W T O N M E T H O D S 179

based on the Wolfe conditions (3.6) or strong Wolfe conditions (3.7), so that BFGS updating
is stable.

The limited-memory BFGS algorithm can be stated formally as follows.

Algorithm 7.5 (L-BFGS).
Choose starting point x0, integer m > 0;
k ← 0;
repeat

Choose H 0
k (for example, by using (7.20));

Compute pk ←−Hk∇ fk from Algorithm 7.4;
Compute xk+1 ← xk + αk pk , where αk is chosen to

satisfy the Wolfe conditions;
if k > m

Discard the vector pair {sk−m, yk−m} from storage;
Compute and save sk ← xk+1 − xk , yk � ∇ fk+1 −∇ fk ;
k ← k + 1;

until convergence.

The strategy of keeping the m most recent correction pairs {si , yi } works well in
practice; indeed no other strategy has yet proved to be consistently better. During its first
m − 1 iterations, Algorithm 7.5 is equivalent to the BFGS algorithm of Chapter 6 if the
initial matrix H0 is the same in both methods, and if L-BFGS chooses H 0

k � H0 at each
iteration.

Table 7.1 presents results illustrating the behavior of Algorithm 7.5 for various levels
of memory m. It gives the number of function and gradient evaluations (nfg) and the total
CPU time. The test problems are taken from the CUTE collection [35], the number of
variables is indicated by n, and the termination criterion ‖∇ fk‖ ≤ 10−5 is used. The table
shows that the algorithm tends to be less robust when m is small. As the amount of storage
increases, the number of function evaluations tends to decrease; but since the cost of each
iteration increases with the amount of storage, the best CPU time is often obtained for small
values of m. Clearly, the optimal choice of m is problem dependent.

Because some rival algorithms are inefficient, Algorithm 7.5 is often the approach of
choice for large problems in which the true Hessian is not sparse. In particular, a Newton

Table 7.1 Performance of Algorithm 7.5.

L-BFGS L-BFGS L-BFGS L-BFGS
Problem n m � 3 m � 5 m � 17 m � 29

nfg time nfg time nfg time nfg time

DIXMAANL 1500 146 16.5 134 17.4 120 28.2 125 44.4
EIGENALS 110 821 21.5 569 15.7 363 16.2 168 12.5
FREUROTH 1000 >999 — >999 — 69 8.1 38 6.3
TRIDIA 1000 876 46.6 611 41.4 531 84.6 462 127.1

180 C H A P T E R 7 . L A R G E - S C A L E U N C O N S T R A I N E D O P T I M I Z A T I O N

method in which the exact Hessian is computed and factorized is not practical in such
circumstances. The L-BFGS approach may also outperform Hessian-free Newton methods
such as Newton–CG approaches, in which Hessian–vector products are calculated by finite
differences or automatic differentiation. The main weakness of the L-BFGS method is that it
converges slowly on ill-conditioned problems—specifically, on problems where the Hessian
matrix contains a wide distribution of eigenvalues. On certain applications, the nonlinear
conjugate gradient methods discussed in Chapter 5 are competitive with limited-memory
quasi-Newton methods.

RELATIONSHIP WITH CONJUGATE GRADIENT METHODS

Limited-memory methods evolved as an attempt to improve nonlinear conjugate
gradient methods, and early implementations resembled conjugate gradient methods more
than quasi-Newton methods. The relationship between the two classes is the basis of a
memoryless BFGS iteration, which we now outline.

We start by considering the Hestenes–Stiefel form of the nonlinear conjugate gradient
method (5.46). Recalling that sk � αk pk , we have that the search direction for this method
is given by

pk+1 � −∇ fk+1 +
∇ f T

k+1 yk

yT
k pk

pk � −
(

I − sk yT
k

yT
k sk

)
∇ fk+1 ≡ −Ĥk+1∇ fk+1. (7.21)

This formula resembles a quasi-Newton iteration, but the matrix Ĥk+1 is neither symmetric
nor positive definite. We could symmetrize it as Ĥ T

k+1 Ĥk+1, but this matrix does not satisfy
the secant equation Ĥk+1 yk � sk and is, in any case, singular. An iteration matrix that is
symmetric, positive definite, and satisfies the secant equation is given by

Hk+1 �
(

I − sk yT
k

yT
k sk

)(
I − yksT

k

yT
k sk

)
+ sksT

k

yT
k sk

. (7.22)

This matrix is exactly the one obtained by applying a single BFGS update (7.16) to the identity
matrix. Hence, an algorithm whose search direction is given by pk+1 � −Hk+1∇ fk+1, with
Hk+1 defined by (7.22), can be thought of as a “memoryless” BFGS method, in which the
previous Hessian approximation is always reset to the identity matrix before updating it and
where only the most recent correction pair (sk, yk) is kept at every iteration. Alternatively,
we can view the method as a variant of Algorithm 7.5 in which m � 1 and H 0

k � I at each
iteration.

A more direct connection with conjugate gradient methods can be seen if we consider
the memoryless BFGS formula (7.22) in conjunction with an exact line search, for which

7 . 2 . L I M I T E D - M E M O R Y Q U A S I - N E W T O N M E T H O D S 181

∇ f T
k+1 pk � 0 for all k. We then obtain

pk+1 � −Hk+1∇ fk+1 � −∇ fk+1 +
∇ f T

k+1 yk

yT
k pk

pk, (7.23)

which is none other than the Hestenes–Stiefel conjugate gradient method. Moreover, it is
easy to verify that when ∇ f T

k+1 pk � 0, the Hestenes–Stiefel formula reduces to the Polak–
Ribière formula (5.44). Even though the assumption of exact line searches is unrealistic,
it is intriguing that the BFGS formula is related in this way to the Polak–Ribière and
Hestenes–Stiefel methods.

GENERAL LIMITED-MEMORY UPDATING

Limited-memory quasi-Newton approximations are useful in a variety of optimization
methods. L-BFGS, Algorithm 7.5, is a line search method for unconstrained optimization
that (implicitly) updates an approximation Hk to the inverse of the Hessian matrix. Trust-
region methods, on the other hand, require an approximation Bk to the Hessian matrix,
not to its inverse. We would also like to develop limited-memory methods based on the SR1
formula, which is an attractive alternative to BFGS; see Chapter 6. In this section we consider
limited-memory updating in a general setting and show that by representing quasi-Newton
matrices in a compact (or outer product) form, we can derive efficient implementations of all
popular quasi-Newton update formulas, and their inverses. These compact representations
will also be useful in designing limited-memory methods for constrained optimization,
where approximations to the Hessian or reduced Hessian of the Lagrangian are needed; see
Chapter 18 and Chapter 19.

We will consider only limited-memory methods (such as L-BFGS) that continuously
refresh the correction pairs by removing and adding information at each stage. A different
approach saves correction pairs until the available storage is exhausted and then discards all
correction pairs (except perhaps one) and starts the process anew. Computational experience
suggests that this second approach is less effective in practice.

Throughout this chapter we let Bk denote an approximation to a Hessian matrix and
Hk the approximation to the inverse. In particular, we always have that B−1

k � Hk .

COMPACT REPRESENTATION OF BFGS UPDATING

We now describe an approach to limited-memory updating that is based on repre-
senting quasi-Newton matrices in outer-product form. We illustrate it for the case of a BFGS
approximation Bk to the Hessian.

Theorem 7.4.
Let B0 be symmetric and positive definite, and assume that the k vector pairs {si , yi }k−1

i�0

satisfy sT
i yi > 0. Let Bk be obtained by applying k BFGS updates with these vector pairs to B0,

182 C H A P T E R 7 . L A R G E - S C A L E U N C O N S T R A I N E D O P T I M I Z A T I O N

using the formula (6.19). We then have that

Bk � B0 −
[

B0Sk Yk

] [ST
k B0Sk Lk

LT
k −Dk

]−1 [
ST

k B0

Y T
k

]
, (7.24)

where Sk and Yk are the n × k matrices defined by

Sk � [s0, . . . , sk−1] , Yk � [y0, . . . , yk−1] , (7.25)

while Lk and Dk are the k × k matrices

(Lk)i, j �
{

sT
i−1 y j−1 if i > j ,

0 otherwise,
(7.26)

Dk � diag
[
sT

0 y0, . . . , sT
k−1 yk−1

]
. (7.27)

This result can be proved by induction. We note that the conditions sT
i yi > 0, i �

0, 1, . . . , k − 1, ensure that the middle matrix in (7.24) is nonsingular, so that this expres-
sion is well defined. The utility of this representation becomes apparent when we consider
limited-memory updating.

As in the L-BFGS algorithm, we keep the m most recent correction pairs {si , yi } and
refresh this set at every iteration by removing the oldest pair and adding a newly generated
pair. During the first m iterations, the update procedure described in Theorem 7.4 can be
used without modification, except that usually we make the specific choice B0

k � δk I for
the basic matrix, where δk � 1/γk and γk is defined by (7.20).

At subsequent iterations k > m, the update procedure needs to be modified slightly to
reflect the changing nature of the set of vector pairs {si , yi } for i � k−m, k−m+1, . . . , k−1.
Defining the n × m matrices Sk and Yk by

Sk � [sk−m, . . . , sk−1] , Yk � [yk−m, . . . , yk−1] , (7.28)

we find that the matrix Bk resulting from m updates to the basic matrix B(k)
0 � δk I is given

by

Bk � δk I − [
δk Sk Yk

] [δk ST
k Sk Lk

LT
k −Dk

]−1 [
δk ST

k

Y T
k

]
, (7.29)

where Lk and Dk are now the m × m matrices defined by

(Lk)i, j �
{

(sk−m−1+i)
T (yk−m−1+ j) if i > j ,

0 otherwise,

Dk � diag
[
sT

k−m yk−m, . . . , sT
k−1 yk−1

]
.

7 . 2 . L I M I T E D - M E M O R Y Q U A S I - N E W T O N M E T H O D S 183

Bk = k I+δ Figure 7.1
Compact (or outer
product) representation of
Bk in (7.29).

After the new iterate xk+1 is generated, we obtain Sk+1 by deleting sk−m from Sk and adding
the new displacement sk , and we update Yk+1 in a similar fashion. The new matrices Lk+1

and Dk+1 are obtained in an analogous way.
Since the middle matrix in (7.29) is small—of dimension 2m—its factorization re-

quires a negligible amount of computation. The key idea behind the compact representation
(7.29) is that the corrections to the basic matrix can be expressed as an outer product of two
long and narrow matrices—[δk Sk Yk] and its transpose—with an intervening multiplication
by a small 2m × 2m matrix. See Figure 7.1 for a graphical illustration.

The limited-memory updating procedure of Bk requires approximately 2mn+O(m3)
operations, and matrix–vector products of the form Bkv can be performed at a cost of
(4m + 1)n + O(m2) multiplications. These operation counts indicate that updating and
manipulating the direct limited-memory BFGS matrix Bk is quite economical when m is
small.

This approximation Bk can be used in a trust-region method for unconstrained opti-
mization or, more significantly, in methods for bound-constrained and general-constrained
optimization. The program L-BFGS-B [322] makes extensive use of compact limited-memory
approximations to solve large nonlinear optimization problems with bound constraints. In
this situation, projections of Bk into subspaces defined by the constraint gradients must be
calculated repeatedly. Several codes for general-constrained optimization, including KNITRO

and IPOPT, make use of the compact limited-memory matrix Bk to approximate the Hessian
of the Lagrangians; see Section 19.3

We can derive a formula, similar to (7.24), that provides a compact representation
of the inverse BFGS approximation Hk ; see [52] for details. An implementation of the
unconstrained L-BFGS algorithm based on this expression requires a similar amount of
computation as the algorithm described in the previous section.

Compact representations can also be derived for matrices generated by the symmetric
rank-one (SR1) formula. If k updates are applied to the symmetric matrix B0 using the
vector pairs {si , yi }k−1

i�0 and the SR1 formula (6.24), the resulting matrix Bk can be expressed
as

Bk � B0 + (Yk − B0Sk)(Dk + Lk + LT
k − ST

k B0Sk)−1(Yk − B0Sk)T , (7.30)

184 C H A P T E R 7 . L A R G E - S C A L E U N C O N S T R A I N E D O P T I M I Z A T I O N

where Sk, Yk, Dk , and Lk are as defined in (7.25), (7.26), and (7.27). Since the SR1 method
is self-dual, the inverse formula Hk can be obtained simply by replacing B, s, and y by H ,
y, and s, respectively. Limited-memory SR1 methods can be derived in the same way as the
BFGS method. We replace B0 with the basic matrix B0

k at the kth iteration, and we redefine
Sk and Yk to contain the m most recent corrections, as in (7.28). We note, however, that
limited-memory SR1 updating is sometimes not as effective as L-BFGS updating because it
may not produce positive definite approximations near a solution.

UNROLLING THE UPDATE

The reader may wonder whether limited-memory updating can be implemented
in simpler ways. In fact, as we show here, the most obvious implementation of limited-
memory BFGS updating is considerably more expensive than the approach based on compact
representations discussed in the previous section.

The direct BFGS formula (6.19) can be written as

Bk+1 � Bk − akaT
k + bkbT

k , (7.31)

where the vectors ak and bk are defined by

ak � Bksk

(sT
k Bksk)

1
2

, bk � yk

(yT
k sk)

1
2

. (7.32)

We could continue to save the vector pairs {si , yi } but use the formula (7.31) to compute
matrix–vector products. A limited-memory BFGS method that uses this approach would
proceed by defining the basic matrix B0

k at each iteration and then updating according to
the formula

Bk � B0
k +

k−1∑
i�k−m

[
bi b

T
i − ai a

T
i

]
. (7.33)

The vector pairs {ai , bi }, i � k − m, k − m + 1, . . . , k − 1, would then be recovered from
the stored vector pairs {si , yi }, i � k−m, k−m+1, . . . , k−1, by the following procedure:

Procedure 7.6 (Unrolling the BFGS formula).
for i � k − m, k − m + 1, . . . , k − 1

bi ← yi/(yT
i si)1/2;

ai ← B0
k si +

∑i−1
j�k−m

[
(bT

j si)b j − (aT
j si)a j

]
;

ai ← ai/(sT
i ai)1/2;

end (for)

7 . 3 . S P A R S E Q U A S I - N E W T O N U P D A T E S 185

Note that the vectors ai must be recomputed at each iteration because they all depend
on the vector pair {sk−m, yk−m}, which is removed at the end of iteration k. On the other
hand, the vectors bi and the inner products bT

j si can be saved from the previous iteration,
so only the new values bk−1 and bT

j sk−1 need to be computed at the current iteration.
By taking all these computations into account, and assuming that B0

k � I , we find
that approximately 3

2 m2n operations are needed to determine the limited-memory matrix.
The actual computation of the inner product Bmv (for arbitrary v ∈ IRn) requires 4mn
multiplications. Overall, therefore, this approach is less efficient than the one based on the
compact matrix representation described previously. Indeed, while the product Bkv costs
the same in both cases, updating the representation of the limited-memory matrix by using
the compact form requires only 2mn multiplications, compared to 3

2 m2n multiplications
needed when the BFGS formula is unrolled.

7.3 SPARSE QUASI-NEWTON UPDATES

We now discuss a quasi-Newton approach to large-scale problems that has intuitive appeal:
We demand that the quasi-Newton approximations Bk have the same (or similar) sparsity
pattern as the true Hessian. This approach would reduce the storage requirements of the
algorithm and perhaps give rise to more accurate Hessian approximations.

Suppose that we know which components of the Hessian may be nonzero at some
point in the domain of interest. That is, we know the contents of the set � defined by

�
def� {(i, j) | [∇2 f (x)]i j 	� 0 for some x in the domain of f }.

Suppose also that the current Hessian approximation Bk mirrors the nonzero structure of
the exact Hessian, that is, (Bk)i j � 0 for (i, j) /∈ �. In updating Bk to Bk+1, then, we
could try to find the matrix Bk+1 that satisfies the secant condition, has the same sparsity
pattern, and is as close as possible to Bk . Specifically, we define Bk+1 to be the solution of
the following quadratic program:

min
B

‖B − Bk‖2
F �

∑
(i, j)∈�

[Bi j − (Bk)i j]
2, (7.34a)

subject to Bsk � yk , B � BT , and Bi j � 0 for (i, j) /∈ �. (7.34b)

One can show that the solution Bk+1 of this problem can be obtained by solving an n × n
linear system whose sparsity pattern is �, the same as the sparsity of the true Hessian. Once
Bk+1 has been computed, we can use it, within a trust-region method, to obtain the new
iterate xk+1. We note that Bk+1 is not guaranteed to be positive definite.

We omit further details of this approach because it has several drawbacks. The updating
process does not possess scale invariance under linear transformations of the variables and,

186 C H A P T E R 7 . L A R G E - S C A L E U N C O N S T R A I N E D O P T I M I Z A T I O N

more significantly, its practical performance has been disappointing. The fundamental
weakness of this approach is that (7.34a) is an inadequate model and can produce poor
Hessian approximations.

An alternative approach is to relax the secant equation, making sure that it is approx-
imately satisfied along the last few steps rather than requiring it to hold strictly on the latest
step. To do so, we define Sk and Yk by (7.28) so that they contain the m most recent difference
pairs. We can then define the new Hessian approximation Bk+1 to be the solution of

min
B

‖BSk − Yk‖2
F

subject to B � BT and Bi j � 0 for (i, j) /∈ �.

This convex optimization problem has a solution, but it is not easy to compute. Moreover,
this approach can produce singular or poorly conditioned Hessian approximations. Even
though it frequently outperforms methods based on (7.34a), its performance on large
problems has not been impressive.

7.4 ALGORITHMS FOR PARTIALLY SEPARABLE FUNCTIONS

In a separable unconstrained optimization problem, the objective function can be decom-
posed into a sum of simpler functions that can be optimized independently. For example, if
we have

f (x) � f1(x1, x3)+ f2(x2, x4, x6)+ f3(x5),

we can find the optimal value of x by minimizing each function fi , i � 1, 2, 3, indepen-
dently, since no variable appears in more than one function. The cost of performing m
lower-dimensional optimizations is much less in general than the cost of optimizing an
n-dimensional function.

In many large problems the objective function f : IRn → IR is not separable, but
it can still be written as the sum of simpler functions, known as element functions. Each
element function has the property that it is unaffected when we move along a large number
of linearly independent directions. If this property holds, we say that f is partially separable.
All functions whose Hessians ∇2 f are sparse are partially separable, but so are many
functions whose Hessian is not sparse. Partial separability allows for economical problem
representation, efficient automatic differentiation, and effective quasi-Newton updating.

The simplest form of partial separability arises when the objective function can be
written as

f (x) �
ne∑

i�1

fi (x), (7.35)

7 . 4 . A L G O R I T H M S F O R P A R T I A L L Y S E P A R A B L E F U N C T I O N S 187

where each of the element functions fi depends on only a few components of x . It follows
that the gradients ∇ fi and Hessians ∇2 fi of each element function contain just a few
nonzeros. By differentiating (7.35), we obtain

∇ f (x) �
ne∑

i�1

∇ fi (x), ∇2 f (x) �
ne∑

i�1

∇2 fi (x).

A natural question is whether it is more effective to maintain quasi-Newton approximations
to each of the element Hessians ∇2 fi (x) separately, rather than approximating the entire
Hessian∇2 f (x). We will show that the answer is affirmative, provided that the quasi-Newton
approximation fully exploits the structure of each element Hessian.

We introduce the concept by means of a simple example. Consider the objective
function

f (x) � (x1 − x2
3)2 + (x2 − x2

4)2 + (x3 − x2
2)2 + (x4 − x2

1)2 (7.36)

≡ f1(x)+ f2(x)+ f3(x)+ f4(x).

The Hessians of the element functions fi are 4× 4 sparse, singular matrices with 4 nonzero
entries.

Let us focus on f1; all other element functions have exactly the same form. Even
though f1 is formally a function of all components of x , it depends only on x1 and x3, which
we call the element variables for f1. We assemble the element variables into a vector that we
call x[1], that is,

x[1] �
[

x1

x3

]
,

and note that

x[1] � U1x with U1 �
[

1 0 0 0

0 0 1 0

]
.

If we define the function φ1 by

φ1(z1, z2) � (z1 − z2
2)2,

then we can write f1(x) � φ1(U1x). By applying the chain rule to this representation, we
obtain

∇ f1(x) � U T
1 ∇φ1(U1x), ∇2 f1(x) � U T

1 ∇2φ1(U1x)U1. (7.37)

188 C H A P T E R 7 . L A R G E - S C A L E U N C O N S T R A I N E D O P T I M I Z A T I O N

In our case, we have

∇2φ1(U1x) �
[

2 −4x3

−4x3 12x2
3 − 4x1

]
, ∇2 f1(x) �

⎡
⎢⎢⎢⎢⎣

2 0 −4x3 0

0 0 0 0

−4x3 0 12x2
3 − 4x1 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ .

The matrix U1, known as a compactifying matrix, allows us to map the derivative information
for the low-dimensional function φ1 into the derivative information for the element function
f1.

Now comes the key idea: Instead of maintaining a quasi-Newton approximation to
∇2 f1, we maintain a 2 × 2 quasi-Newton approximation B[1] of ∇2φ1 and use the relation
(7.37) to transform it into a quasi-Newton approximation to ∇2 f1. To update B[1] after a
typical step from x to x+, we record the information

s[1] � x+[1] − x[1], y[1] � ∇φ1(x+[1])−∇φ1(x[1]), (7.38)

and use BFGS or SR1 updating to obtain the new approximation B+
[1]. We therefore update

small, dense quasi-Newton approximations with the property

B[1] ≈ ∇2φ1(U1x) � ∇2φ1(x[1]). (7.39)

To obtain an approximation of the element Hessian ∇2 f1, we use the transformation
suggested by the relationship (7.37); that is,

∇2 f1(x) ≈ U T
1 B[1]U1.

This operation has the effect of mapping the elements of B[1] to the correct positions in the
full n × n Hessian approximation.

The previous discussion concerned only the first element function f1, but we can treat
all other functions fi in the same way. The full objective function can now be written as

f (x) �
ne∑

i�1

φi (Ui x), (7.40)

and we maintain a quasi-Newton approximation B[i] for each of the functions φi . To obtain
a complete approximation to the full Hessian ∇2 f , we simply sum the element Hessian
approximations as follows:

B �
ne∑

i�1

U T
i B[i]Ui . (7.41)

7 . 5 . P E R S P E C T I V E S A N D S O F T W A R E 189

We may use this approximate Hessian in a trust-region algorithm, obtaining an
approximate solution pk of the system

Bk pk � −∇ fk . (7.42)

We need not assemble Bk explicitly but rather use the conjugate gradient approach to solve
(7.42), computing matrix–vector products of the form Bkv by performing operations with
the matrices Ui and B[i].

To illustrate the usefulness of this element-by-element updating technique, let us
consider a problem of the form (7.36) but this time involving 1000 variables, not just 4. The
functions φi still depend on only two internal variables, so that each Hessian approximation
B[i] is a 2 × 2 matrix. After just a few iterations, we will have sampled enough directions
s[i] to make each B[i] an accurate approximation to ∇2φi . Hence the full quasi-Newton
approximation (7.41) will tend to be a very good approximation to ∇2 f (x). By contrast, a
quasi-Newton method that ignores the partially separable structure of the objective function
will attempt to estimate the total average curvature—the sum of the individual curvatures
of the element functions—by approximating the 1000 × 1000 Hessian matrix. When the
number of variables n is large, many iterations will be required before this quasi-Newton
approximation is of good quality. Hence an algorithm of this type (for example, standard
BFGS or L-BFGS) will require many more iterations than a method based on the partially
separable approximate Hessian.

It is not always possible to use the BFGS formula to update the partial Hessian B[i],
because there is no guarantee that the curvature condition sT

[i] y[i] > 0 will be satisfied. That
is, even though the full Hessian ∇2 f (x) is at least positive semidefinite at the solution x∗,
some of the individual Hessians∇2φi (·) may be indefinite. One way to overcome this obstacle
is to apply the SR1 update to each of the element Hessians. This approach has proved effective
in the LANCELOT package [72], which is designed to take full advantage of partial separability.

The main limitations of this quasi-Newton approach are the cost of the step computa-
tion (7.42), which is comparable to the cost of a Newton step, and the difficulty of identifying
the partially separable structure of a function. The performance of quasi-Newton methods
is satisfactory provided that we find the finest partially separable decomposition of the
problem; see [72]. Furthermore, even when the partially separable structure is known, it
may be more efficient to compute a Newton step. For example, the modeling language AMPL

automatically detects the partially separable structure of a function f and uses it to compute
the Hessian ∇2 f (x).

7.5 PERSPECTIVES AND SOFTWARE

Newton–CG methods have been used successfully to solve large problems in a vari-
ety of applications. Many of these implementations are developed by engineers and

190 C H A P T E R 7 . L A R G E - S C A L E U N C O N S T R A I N E D O P T I M I Z A T I O N

scientists and use problem-specific preconditioners. Freely available packages include
TN/TNBC [220] and TNPACK [275]. Software for more general problems, such as LANCELOT

[72], KNITRO/CG [50], and TRON [192], employ Newton–CG methods when applied to
unconstrained problems. Other packages, such as LOQO [294] implement Newton meth-
ods with a sparse factorization modified to ensure positive definiteness. GLTR [145] offers
a Newton–Lanczos method. There is insufficient experience to date to say whether the
Newton–Lanczos method is significantly better in practice than the Steihaug strategy given in
Algorithm 7.2.

Software for computing incomplete Cholesky preconditioners includes the ICFS [193]
and MA57 [166] packages. A preconditioner for Newton–CG based on limited-memory
BFGS approximations is provided in PREQN [209].

Limited-memory BFGS methods are implemented in LBFGS [194] and M1QN3 [122];
see Gill and Leonard [125] for a variant that requires less storage and appears to be quite
efficient. The compact limited-memory representations of Section 7.2 are used in LBFGS-B

[322], IPOPT [301], and KNITRO.
The LANCELOT package exploits partial separability. It provides SR1 and BFGS quasi-

Newton options as well as a Newton methods. The step computation is obtained by a
preconditioned conjugate gradient iteration using trust regions. If f is partially separable, a
general affine transformation will not in general preserve the partially separable structure.
The quasi-Newton method for partially separable functions described in Section 7.4 is not
invariant to affine transformations of the variables, but this is not a drawback because the
method is invariant under transformations that preserve separability.

NOTES AND REFERENCES

A complete study of inexact Newton methods is given in [74]. For a discussion
of the Newton–Lanczos method see [145]. Other iterative methods for the solution of a
trust-region problem have been proposed by Hager [160], and by Rendl and Wolkowicz
[263].

For further discussion on the L-BFGS method see Nocedal [228], Liu and Nocedal
[194], and Gilbert and Lemaréchal [122]. The last paper also discusses various ways in
which the scaling parameter can be chosen. Algorithm 7.4, the two-loop L-BFGS recursion,
constitutes an economical procedure for computing the product Hk∇ fk . It is based, however,
on the specific form of the BFGS update formula (7.16), and recursions of this type have not
yet been developed (and may not exist) for other members of the Broyden class (for instance,
the SR1 and DFP methods). Our discussion of compact representations of limited-memory
matrices is based on Byrd, Nocedal, and Schnabel [52].

Sparse quasi-Newton updates have been studied by Toint [288, 289] and Fletcher et
al. [102, 104], among others. The concept of partial separability was introduced by Griewank
and Toint [156, 155]. For an extensive treatment of the subject see Conn, Gould, and Toint
[72].

7 . 5 . P E R S P E C T I V E S A N D S O F T W A R E 191

✐ E X E R C I S E S

✐ 7.1 Code Algorithm 7.5, and test it on the extended Rosenbrock function

f (x) �
n/2∑
i�1

[
α(x2i − x2

2i−1)2 + (1− x2i−1)2
]
,

where α is a parameter that you can vary (for example, 1 or 100). The solution is x∗ �
(1, 1, . . . , 1)T , f ∗ � 0. Choose the starting point as (−1,−1, . . . ,−1)T . Observe the
behavior of your program for various values of the memory parameter m.

✐ 7.2 Show that the matrix Ĥk+1 in (7.21) is singular.

✐ 7.3 Derive the formula (7.23) under the assumption that line searches are exact.

✐ 7.4 Consider limited-memory SR1 updating based on (7.30). Explain how the storage
can be cut in half if the basic matrix B0

k is kept fixed for all k. (Hint: Consider the matrix
Qk � [q0, . . . , qk−1] � Yk − B0Sk .)

✐ 7.5 Write the function defined by

f (x) � x2x3ex1+x3−x4 + (x2x3)2 + (x3 − x4)

in the form (7.40). In particular, give the definition of each of the compactifying
transformations Ui .

✐ 7.6 Does the approximation B obtained by the partially separable quasi-Newton
updating (7.38), (7.41) satisfy the secant equation Bs � y?

✐ 7.7 The minimum surface problem is a classical application of the calculus of vari-
ations and can be found in many textbooks. We wish to find the surface of minimum
area, defined on the unit square, that interpolates a prescribed continuous function on the
boundary of the square. In the standard discretization of this problem, the unknowns are
the values of the sought-after function z(x, y) on a q × q rectangular mesh of points over
the unit square.

More specifically, we divide each edge of the square into q intervals of equal length,
yielding (q + 1)2 grid points. We label the grid points as

x(i−1)(q+1)+1, . . . , xi(q+1) for i � 1, 2, ..., q + 1,

so that each value of i generates a line. With each point we associate a variable zi that
represents the height of the surface at this point. For the 4q grid points on the boundary
of the unit square, the values of these variables are determined by the given function. The

192 C H A P T E R 7 . L A R G E - S C A L E U N C O N S T R A I N E D O P T I M I Z A T I O N

optimization problem is to determine the other (q + 1)2 − 4q variables zi so that the total
surface area is minimized.

A typical subsquare in this partition looks as follows:

x j+q+1 x j+q+2

x j x j+1

We denote this square by A j and note that its area is q2. The desired function is z(x, y), and
we wish to compute its surface over A j . Calculus books show that the area of the surface is
given by

f j (x) ≡
∫ ∫

(x,y)∈A j

√
1+

(
∂z

∂x

)2

+
(

∂z

∂y

)2

dx dy.

Approximate the derivatives by finite differences, and show that f j has the form

f j (x) � 1

q2

[
1+ q2

2
[(x j − x j+q+1)2 + (x j+1 − x j+q)2]

] 1
2

. (7.43)

✐ 7.8 Compute the gradient of the element function (7.43) with respect to the full
vector x . Show that it contains at most four nonzeros, and that two of these four nonzero
components are negatives of the other two. Compute the Hessian of f j , and show that,
among the 16 nonzeros, only three different magnitudes are represented. Also show that
this Hessian is singular.

