
Numerical Optimization: Project List

1. Rich and Jason:  Implement and test a variety of nonlinear conjugate gradient algorithms.
2. Particle Swarm Optimization:

2.1. Jack, Alex, and Jason: Implement and test a particle swarm algorithm.  CUDA etc.  
2.2. Robin, Wen, and Chad: Implement and test a particle swarm algorithm.  Quasi-

Newton interactions.  
3. Quasi-Newton  schemes:

3.1. Implement and test Quasi-Newton  schemes (single vector and block vector, and limited memory -  BFGS, DFP, SR1, Broyden Class):  
Convergence of Bk and Hk; recovery from "bad" values, possibilities for safe guarding. 

3.2. Implement and test Quasi-Newton  schemes (single vector  and limited memory -  BFGS, DFP, SR1, Broyden Class):  Convergence of 
Bk and Hk; recovery from "bad" values, possibilities for safe guarding. 

3.3. Implement and test a few Quasi-Newton  schemes for contrained optimization. 

4. Solving Nonlinear Equations
4.1.  Finding transfer orbits
4.2.  ??

5. Parallel Stuff
5.1. Implement a web search algorithm that performs a "p-direction"  line search 

simultaneoulsy:
Compute fi, j = f IΑ j piM   for -m £ j £ m
It should slect the smallest and return suitable update values. 
Attempt to prove a thm that showing that the Z lemma holds provided the lowest value fi, j satisfies Wolfe 1 and j < m.  I think the 
proof should look like Backtracking
Test various implementations of the p-directions.   For instance: you can zero out any entry you like, you can positively scale any 
individual entry. You can interchange any two components and flip one of the signs, .... 
Contemplate what this would mean for constrained optimization. 

6. Implement a p-directional  positivity scheme.  Roughly speaking the Cholesky 
decomposition trick for +def is to find a minimal change to the Hessian which preserves 
+def.  i.e. something like Min ÈÈ Ñ2 f - A

`
ÈÈ and with A

`
 SPD and then solve A

`
.pn = -Ñ f  

to get our modifed Newton like direction.  To do this we need to generate the complete 
Hessian and then throw some of it away.  Maybe instead it might be a good idea to 
generate some bits of the Hessian and use them all.   Maybe something like:  
min ÈÈ Ñ2 f .p + Ñ f ÈÈ  subject to the descent constraint p.Ñ f < 0.  The bad news about 
this is that in most cases in high dimensions minimally constrained problems have tight 
constraints so one might need to modify the constraint.  We could also do the 
minimization over a restricted set of directions.  Maybe something like 
p = -Α0 Ñ f + Α1 r1 + Α2 r2 + … where we construct the rs so that ri.Ñ f = 0.  test the 
behavior of various possibilities.  Contemplate what this would mean for constrained 
optimzation. As an additional feature of this sort of problem we would not need all the 
components of Ñ2 f for such a computation. 

7. AMBER Models:
7.1. Build interesting AMBER models of a range of sizes in matlab and test the behavior 

of the various optimization algorithms.  Ours and built-in
7.2. Build interesting AMBER models in mathematica of a range of sizes and test the 

behavior of the various optimization algorithms. Ours and built-in


