
Numerical Optimization: Project List

1. Rich and Jason: Implement and test a variety of nonlinear conjugate gradient algorithms.
2. Particle Swarm Optimization:

2.1. Jack, Alex, and Jason: Implement and test a particle swarm algorithm. CUDA etc.
2.2. Robin, Wen, and Chad: Implement and test a particle swarm algorithm. Quasi-

Newton interactions.
3. Quasi-Newton schemes:

3.1. Implement and test Quasi-Newton schemes (single vector and block vector, and limited memory - BFGS, DFP, SR1, Broyden Class):
Convergence of Bk and Hk; recovery from "bad" values, possibilities for safe guarding.

3.2. Implement and test Quasi-Newton schemes (single vector and limited memory - BFGS, DFP, SR1, Broyden Class): Convergence of
Bk and Hk; recovery from "bad" values, possibilities for safe guarding.

3.3. Implement and test a few Quasi-Newton schemes for contrained optimization.

4. Solving Nonlinear Equations
4.1. Finding transfer orbits
4.2. ??

5. Parallel Stuff
5.1. Implement a web search algorithm that performs a "p-direction" line search

simultaneoulsy:
Compute fi, j = f IΑ j piM for -m £ j £ m
It should slect the smallest and return suitable update values.
Attempt to prove a thm that showing that the Z lemma holds provided the lowest value fi, j satisfies Wolfe 1 and j < m. I think the
proof should look like Backtracking
Test various implementations of the p-directions. For instance: you can zero out any entry you like, you can positively scale any
individual entry. You can interchange any two components and flip one of the signs,
Contemplate what this would mean for constrained optimization.

6. Implement a p-directional positivity scheme. Roughly speaking the Cholesky
decomposition trick for +def is to find a minimal change to the Hessian which preserves
+def. i.e. something like Min ÈÈ Ñ2 f - A

`
ÈÈ and with A

`
 SPD and then solve A

`
.pn = -Ñ f

to get our modifed Newton like direction. To do this we need to generate the complete
Hessian and then throw some of it away. Maybe instead it might be a good idea to
generate some bits of the Hessian and use them all. Maybe something like:
min ÈÈ Ñ2 f .p + Ñ f ÈÈ subject to the descent constraint p.Ñ f < 0. The bad news about
this is that in most cases in high dimensions minimally constrained problems have tight
constraints so one might need to modify the constraint. We could also do the
minimization over a restricted set of directions. Maybe something like
p = -Α0 Ñ f + Α1 r1 + Α2 r2 + … where we construct the rs so that ri.Ñ f = 0. test the
behavior of various possibilities. Contemplate what this would mean for constrained
optimzation. As an additional feature of this sort of problem we would not need all the
components of Ñ2 f for such a computation.

7. AMBER Models:
7.1. Build interesting AMBER models of a range of sizes in matlab and test the behavior

of the various optimization algorithms. Ours and built-in
7.2. Build interesting AMBER models in mathematica of a range of sizes and test the

behavior of the various optimization algorithms. Ours and built-in

