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1. Abstract 

 Space mission trajectory design using the low-thrust capabilities is 

becoming increasingly popular. However, the optimization of the resulting 

trajectories is a very challenging and time-consuming task. In this paper, we 

build upon previous and existing shape-based techniques to present an 

alternative Fourier series approximation for rapid low-thrust rendezvous 

trajectory construction with thrust acceleration constraint handling capability. 

The new flexible representation along with the constraint handling capability 

makes this method a competing candidate for feasibility assessment of a whole 

bunch of trajectories within the given system propulsive budget. In addition, the 

provided solutions make good initial guesses for direct optimization techniques. 

Application of this method on a simple Earth-Mars rendezvous problem is 

addressed. 

 

2. Introduction 

 The general problem we are looking at is to transfer a spacecraft from an 

initial condition, using polar coordinate system, ( 1r and 1 ) to a final orbit ( 2r

and 2 ) within a given time ft  and spacecraft propulsive budget maxaT T . 

Two general techniques are assumed for solving the problem i.e. direct and 
indirect methods, both of which require to be initialized with a first guess 
solution that are time-consuming and inefficient in preliminary rapid 
approximation of many trajectories. One of the recent methods used for initial 
guess generation is the shape-based method. The basic idea in shape-based 
methods is too consider a representative shape for state variables i.e. 
exponential, polynomial etc and try to find a feasible trajectory using these 
simple versions of the problem. For example the shape of the trajectory is 
assumed to have certain shape: 

2 3 4 5 6

1
r

a b c d e f g     


     
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The ultimate goal of this project is to consider application of a new proposed 
method on typical problems using the MATLAB optimization toolbox and it 
algorithm and compare their efficiency in terms of time. We will solve both 
constrained and unconstrained version of the problem with fmincon and fsolve 
functions respectively, with detailed information about them. 

3. Problem description  

In this section we will give a brief description of the equations of motion and 
objective functions used for optimization in both constrained and unconstrained 
cases.  

3.1 Equations of motion 

The governing equations of a spacecraft in a two-body gravitational field can be 
written in the following polar forms using the Newton’s gravitational law: 

 

 2
2

2 cos

sin

a

a

r r T

r r T
r

  
 

 

  

 

  

Looking at the Fig. 1 the following parameters are defined: 

 r


is the radius vector,  is the polar angle, is the flight path, 

v


is the velocity vector, is the steering angle, 

aT


is the thrust acceleration,  the gravitational parameter 
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Figure1. Motion states in two-body gravitational field 

In the next section this equation of motion along with some assumptions will be 
used to make the objective function. 

 3.2 Fourier series approximation 

In this method, we approximate radius and polar angle with finite terms of 
Fourier series. For r approximation one can write: 
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 
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For  approximation we can have the same Fourier-based approximation in 
general. 
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Knowing the values for 1 2 1 2 1 2 1 2, , , , , , ,r r r r        at terminal points some of the 

coefficients can be determined using the boundary conditions resulting eight 
equations. In general after some manipulation we can write: 
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From the second relation of motion i.e. in the tangential direction we can 
combine the two equations and arrive at a final relation for the equation of 
motion that needs to be satisfied at all points:  

 
   

2
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
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Substituting (14) into (13-a) will result: 
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Selecting some values for rn  and n  the total number of unknowns are 

2( ) 2rn n   eight of which can be calculated in terms of the others using 

boundary conditions. So the equation converts to a function f which is only a 

function of time as well as coefficients.  

 0 1 1 0 1 1, , , , , ; 0
r rn n n nf a a a b b c c a d d t

 
     

 3.3 Unconstrained problem and Algorithms 

In order to solve for the unknowns this nonlinear equation should be discretized 
at some points so that we have some number of equations. Depending on the 
number of equations we would get underdetermined/square/over determined 
systems. We can use Matlab fsolve function to solve for the unconstrained 
version of the problem. The fsolve function has four algorithms for solving 
systems of nonlinear multidimensional equations: 

- Trust-region-dogleg 
- Trust-region-reflective 
- Levenberg-marquardt 
- Gauss-Newton 

 

All but the Gauss-Newton method are large-scale;  

 3.3.1 Trust-Region  

Another approach is to solve a linear system of equations to find the search 

direction, namely, Newton's method says to solve for the search direction kd  
such that  

1

( ) ( )k k k

k k k

J x d F x

x x d

 
   

where ( )kJ x  is the n-by-n Jacobian 
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( )
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T
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T
k

k

T
n k

F x

F x
J x

F x

 
  
 
 
  


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Newton's method can run into difficulties. ( )kJ x may be singular, and so the 

Newton step kd is not even defined. Also, the exact Newton step kd may be 
expensive to compute. In addition, Newton's method may not converge if the 
starting point is far from the solution. 

Using trust-region techniques improves robustness when starting far from the 

solution and handles the case when ( )kJ x is singular. To use a trust-region 

strategy, a merit function is needed to decide if 1kx  is better or worse than kx . A 
possible choice is 

1
( ) ( ) ( )

2min T
k k

d

f d F x d F x d  
 

But a minimum of ( )f d  is not necessarily a root of ( )F x . The Newton step kd is 
a root of  

( ) ( ) ( )k k kM x d F x J x d    

and so it is also a minimum of m(d), where 


2 2

2 2

1 1
min ( ) ( ) ( ) ( )

2 2

1 1
( ) ( ) ( ) ( ) ( ) ( )

2 2

k k k
d

T T T T T
k k k k k k

m d M x d F x J x d

F x F x d J x F x d J x J x d

   

  
 

Then m(d) is a better choice of merit function than f(d), and so the trust-region 
subproblem is 


1 1

min ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

T T T T T
k k k k k k

d

m d F x F x d J x F x d J x J x d       

such that .D d    . This subproblem can be efficiently solved using a dogleg 
strategy (see Nocedal [4]). For extra information on algorithms refer to Matlab 
documentation. The Algorithm option specifies a preference for which algorithm 
to use. It is only a preference because for the trust-region-reflective algorithm, 
the nonlinear system of equations cannot be underdetermined; that is, the 
number of equations must be at least as many as the number of unknowns. 
Similarly, for the trust-region-dogleg algorithm, the number of equations must 
be the same as the number of unknowns. The algorithm ‘trust-region-dogleg’ is 
the only algorithm that is specially designed to solve nonlinear equations and it 
is mentioned that for the 'trust-region-dogleg' algorithm, the number of 
equations must be the same as the number of unknowns. The other algorithms 
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attempt to minimize the sum of squares of the function.  In order to have exact 
solution we should have a square system, i.e. number of equations be equal to 
the number of unknowns. Assuming that there are m  discretization points we 
can construct m equations. For the unknowns, we have 2( ) 6rn n   unknowns 

from r and   equations that are to be determined. If we want to have a square 
system we should have 2( ) 6rm n n   . The number of points is simply equal to 
the number of unknowns in Fourier series and is not a good point as we want to 
consider many points in covering the whole domain of time to fully capture the 
motion dynamics. So if we want to include more points the system is over 
determined and the ‘Levenberg-marquardt’ algorithm seems to be the best 
amongst the most efficient algorithms. So in the unconstrained version we 
would solve the following optimization problem: 

2

1

min
m

j
j

J f


   

 3.4 Constrained problem and Algorithms 

The constrained problem is the same objective function subject to a constraint 
on thrust acceleration value at some points: 

 
2

( , , , , ) 0
cos a a

r r
T T r r t

   



  
     

2

,max

1a

a

T

T

 
  

 
 

which again is a function of the unknown coefficients: 

 0 1 1 0 1 1, , , , , ; 0
r rn n n nC a a a b b c c a d d t

 
     

2

1

min ; . 0
m

j
j

J f sub C


   
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For the constrained problem we would use fmincon function with the following 
algorithms: 

- SQP 
- Interior‐point 
- Active‐set 
- Trust‐Region‐Reflective 

 

fmincon uses a sequential quadratic programming (SQP) method. In this 
method, the function solves a quadratic programming (QP) subproblem at each 
iteration. fmincon updates an estimate of the Hessian of the Lagrangian at each 
iteration using the BFGS formula and performs a line search. The QP 
subproblem is solved using an active set strategy. Trust-region-reflective is a 
subspace trust-region method and is based on  the interior-reflective Newton 
method. Each iteration involves the approximate solution of a large linear 
system using the method of preconditioned   conjugate gradients (PCG).  
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4. Earth-to-Mars transfer  

As it was stated previously, this method is developed to provide a rapid tool for 
the preliminary assessment of the trajectory feasibility. So, for this project we 
would consider a feasible trajectory and try to answer some questions 
considering the capability of finite Fourier series. As an example, Earth-Mars 
transfer is considered according to Ref.1. The information used for numerical 
evaluations are given in Table.1 using the canonical units (see Ref.3). Subscripts 
1 and 2 refer to Earth and Mars respectively. For the sake of comparison we 
provided the results of the inverse polynomial method also. We assumed 22 
points that include terminal points for discretization. For the constrained 

problem we set  max 20.02a
DUT

TU
 . 

 

Table.1 

Parameter Value 
1r  1 

2r  1.5234 (DU) 

1r  0 (DU/TU) 

2r  0 (DU/TU) 

1  0 (rad) 

2  9.8310 (rad) 

1  1(rad/sec) 

2  0.5318(rad/sec) 
  1 
T 13.447 (TU) = 781.73 Days 
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The final mass ( fm ) of the Fourier-Expansion method is 3305.5 kg and using the 
inverse polynomial it is 3311.18 kg. It should be noted that this trajectory is 
completely a new one and we do not expect to get similar trend of variation for 
parameters such as thrust acceleration. In the next figure we set different number 
for discretization points and different cases for thrust acceleration limit.  
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For comparison, the first three cases are plotted together and represented in the 
following figure. 
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Computational time of each method in denoted in the following table using tic-
toc command: 
 

Method CPU-time (sec) 
Inverse Polynomial 0.11 

Finite Fourier Series (SQP) 0.12 
Finite Fourier Series (Interior-point) 0.36 

Finite Fourier Series (Active-set) 0.15 
Finite Fourier Series (Trust-Region-Reflective) 0.15 

 

5. Conclusion 

1- The presented method shows comparable performance with respect to 
the other existing methods. 

2- The SQP method provides the best solution in terms of the 
performance time while all the algorithms satisfied the same tolerance 
put on optimality conditions. 

3- Contrary to what we expected, the interior method did not show a fast 
performance in this problem. 
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