
Survey of Update Rules for Particle Swarm

Optimization

Alex Bechanko, Jason Hiebel, Jack Kelly

1 Introduction

Particle Swarm Optimization (PSO) is a numerical optimization technique which
rose out of the simulation of social behavior is swarm-like settings. PSO involves
the modeling of a set of particles existing within a bounded subset of our func-
tion domain, with each particle making decisions as to how to move in the
domain based on a number of factors. These factors could include local influ-
ences such as the gradient at a particles position, global influences such as the
best position found thus far from any particle in the swarm, and neighborhood
influences which fall in-between.

These factors are encoded in to an Update Rule, which encodes the behavior
of a particle based on its local, neighborhood, and global influences. Let p be a
particle with update rule U(p). A simple update rule might consist of just the
gradient term U(p) = ∇f , in which case each particle would simply follow a
steepest descent path to a local minimum. A slightly more complicated update
rule might take use of the best-thus-far information, with the best position as g,
U(p) = ∇f + (g− x), in which case the particle has an attractive force to draw
it away from a worse local minima.

Here we survey a few update rules for particle swarm optimization, including
the basic update rule and some update rules defined by the authors.

2 Update Rules

Here we present the following update rules for use in testing:

• Classic and Random-Restart Swarms

• Gradient Shotgun

• Gravity Marbles

The two later methods take advantage metaphoric elements for providing useful
and (hopefully) advantageous terms for use in update rules. Note that while
we introduce each rule as a complete update rule, or a set of complete update
rules, there are countless modifications and combinations which could be made.

1



2.1 Classic and Random-Restart Swarm

Let x, v be the particle’s current position and velocity, respectively. Let bl, bg
be the best-thus-far for the particle and for the whole swarm, respectively. Let
0 < rp, rg < 1 weights randomized per each call to the update rule, and let
φp, φg, ω be fixed weights. We can then define the update rule by the following
differential equation:

v = U(p) = ωv + φprp(bp − x) + φgrg(bg − x).

In this way, the particle is influenced towards both its own best position,
and towards the swarm’s best position. These two influences are then averaged
together with weights φp, φg and are randomized slightly by rp, rg.

This is the standard implementation of a particle swarm optimization update
rule. However, this rule can be modified easily to include more or less decision
making mechanisms. The desired complexity of an update rule is a highly
contested point of inquiry.

Random-Restarts are a mechanism to prevent the convergence to a poor
local minima by randomly, with a small probability, re-initializing a particle to
a new point. In this way, there is a chance of initializing a particle in a valley
which is lower than the swarm’s current best, thus influencing the swarm to this
new valley.

2.2 Gradient Shotgun

Gradient shotgun is an update rule which metaphorically takes advantage of the
spray pattern one might observe after shooting a shotgun shell. Essentially, the
particle advances in the direction of its gradient, but randomness allows for an
amount of ‘spread’. We have two different methods of defining such a direction:
Pick d such that

1. −∇f · d > 0, or

2. d = −∇f ∗ r where ∗ is the piecewise multiplication, and r is a random
vector with components 0 < ri < 1.

Note that method 1 produces a significantly larger spread than method 2.
For the purposes of a full update rule, we combine this term with an at-

tractive force similar to the classic algorithm. The gradient shotgun method we
used for our tests is defined as

v = U(p) = ωv + φprp(bp − x) + φgrg(bg − x) + φad.

2.3 Gravity Marbles

Gravity marbles is a method which directly uses the gradient of a particles
position to alter its velocity and acceleration. This has the effect of slowing a
particle which is going uphill in order to get to a point which it is being attracted
to, minimizing the possibility a particle will ‘jump’ from its current valley to a
valley which is only a local minimum. We have two different methods defined:

2



1. v = −∇f + φ(f(bg)− f(bp))(x− bg),

2. v′ = −∇f − ωv − φ(x− bg).

The primary difference between gravity marbles and gradient shotgun is that
update rules based on the gravity marbles ideology utilize ∇f directly, where
as gradient shotgun introduce some method or randomness to their use.

3 Test Functions

We have chosen a set of functions which will allow for the progressive testing of
our PSO update rule perform ace. The based functions chosen are Rosenbrock,
Himmelblau, and Siam. In the case of Rosenbrock and Himmelblau, there
exist multi-dimensional variants which we use in addition to the classic two-
dimensional definitions.

Rosenbrock
The classic, two-dimensional Rosenbrock function can be defined as

R2(~x) = (1− x0)2 + 100(x1 − x20)2.

The Rosenbrock function is useful in terms of testing as it has a single
local minima.

Himmelblau
The classic two-dimensional Himmelblau function can be defined as

H2(~x) = (x20 + x1 − 11)2 + (x0 + x21 − 7)2.

The Himmelblau function is useful in terms of testing as it has multiple
local minima of the same value. Alternatively, we can alter the Himmel-
blau function with the addition of the quadratic centered at one of the
local minima so that it becomes a distinct global minima. Additionally,
we can define a higher dimensional variant by embedding a quadratic in
higher dimensional space. We define this as

H27(~x) = H2((x0, x1)) +
1

2
x̄Ax̄+ bx̄,

where A is a randomly generated positive definite matrix, b is a randomly
generated vector, and x̄ = (x2, x3, · · · , x26). Note that we generate A with
uniformly distributed eigenvalues.

SIAM
The Siam function can be defined as

S(~x) = esin (50x0) + sin (10ex1) + sin (70 sin (x0)) + sin (sin (80x1))

− sin (10(x0 + x1)) +
1

4
(x20 + x21).

3



and a higher dimensional variant

S4(~x) = S2((x0, x1)) + S2((x2, x3))

The Siam function is useful as it has several local minimum.

4 Methodology

We use the Mathematica command NMinimize as a benchmark for compari-
son with our methods. Specifically, we compare the results of the optimization
methods Nelder-Mead, Differential Evolution, Simulated Annealing, and Ran-
dom Search (as provided by NMinimize) with each of the update rules we pro-
vide. See figure 1 for benchmark solutions provided by NMinimize. Note that
for each of the methods provided by NMinimize, we use the default parameters
provided by Mathematica.

Method True Min. Nelder-Mead Diff. Evo. Annealing Random

Rosenbrock 0.0000 0.0000 0.0000 0.0000 0.0000
Himmelblau 0.0000 99.0462 99.0462 56.8024 0.0000
Himmelblau 27D -36.0000 20.5465 -36.2559 -36.2559 -36.2559
SIAM -3.3069 -2.2026 -3.2081 -1.8375 -2.3871
SIAM 4D -6.6137 -3.1677 -5.8542 -3.7040 -4.3151

(*) Observing the ~x for these methods shows that they did not find the minimum and
instead were in a very shallow valley.

Figure 1: Benchmarking Data

The PSO update rules will be tested using a series of 12 runs for each update
rule, test function pair. We will then use the average and best values for each
method in our analysis. For our PSO parameters, we will use 500 iterations
with a swarm size of 32d where d is the dimension of the solution space for the
test function. Other parameters for these methods were not the focus of our
inquiry and thus we set them to sane and constant values for the purposes of
our experimental procedure.

We focus on the optimality of a solution as opposed to the run time of the
algorithm, as we are developing these update rules for the purpose of minimizing
very difficult functions where standard methods find poor local minima often.

5 Results

Note, there is an attached appendix which contains the experimental results.
Here we discuss high level comparisons of the methods based on these results.

The SIAM problem is a difficult function for the purposes of optimization.
However, all of our update rules were able to find the correct global minima
and they found this minima reliably. The SIAM function does expose a critical

4



weakness of the gradient based update rules (gradient shotgun, gravity marbles)
however. These methods have an issue converging to the found minimum and
instead oscillate in close proximity. This suggests that future work should inves-
tigate modifying the update rule and/or its parameters to detect such oscillation
and work to reduce it.

Similar results appear in the Rosenbrock and Himmelblau functions. In gen-
eral, smooth functions appeared to be more difficult for our algorithm. Counter-
intuitively the update rules which accounted for the gradient performed worse
on smooth functions.

Every method performed poorly on the SIAM 4D problem, as the quantity
of local minima is significantly large. Our consideration for success in regards
to this test problem is a final function value of −6.0000, where the true global
minimum is −6.6137. While none of our update rules were able to find the global
minimum in any of our runs, most satisfied our criterion for success (with the
exception of gravity shotgun method 2) at least once in the runs provided.

5


