
Conjugate Gradient Methods
Richard Fears and Jason Gregersen

�

Purpose

To test efficiency of different conjugate gradient methods on a variety of test problems.
�

Introduction

The Conjugate gradient method is a optimization technique that is very similar to a line search. We are trying to
minimize some function Φ(x) giving some starting position. The general line search process says to choose a downhill
direction and take some step. We then choose another direction and another step. The specifics of the Conjugate
Gradient method are, how do I form a new direction and how big is my step. Written as the skeleton of an algorithm
we could say that if I have some point xk that I found using the direction pk, then I need to choose a new direction pk+1

and a step size Α such that xk+1 = x1 + Α pk+1with the sequence of xk' s converging to the minimum value. For the
method of Conjugate Gradients, to choose our next step direction, we are going to take a linear combination of the
gradient at our current point and our previous direction i.e.: pk+1 = -! f Hx1L + Β pk where Β is chosen such that pk+1

and pk are conjugate Hpk+1 A pk = 0L. With this approach there are multiple choices for choosing Β. Deciding which of
these options is best on a specific problem, or in general, is the main purpose of this paper. The options we are going
to choose between are ([4] pg 2):

�

the Fletcher-Reeves update Bk+1
Fr

=
! fk+1¬ ! fk+1

! fk¬ ! fk
,

the Polak-Ribiere update Bk+1
Pr

=
! fk+1¬ H! fk+1-! fkL

ÈÈ! fk ÈÈ2
the Hestenes-Stiefel update Bk+1

Hs
=

! fk+1¬ H! fk+1-! fkL
H! fk+1-! fkL¬ pk

the Dai and Yuan update Bk+1
Dy

=
ÈÈ! fk+1ÈÈ2

H! fk+1-! fkL¬ pk

the Hager and Zhang update Bk+1
num

= Hyk
`

- 2 pk
ÈÈyk

` ÈÈ2
yk
` ¬ pk

O¬
! fk+1

yk
` ¬ pk

 with yk
`

= ! fk+1 - ! fk

the "Conjugate Descent" update Bk+1
Cd

=
! fk+1¬ ! fk+1

H! fk+1-! fkL¬ pk
,

the Lui and Storey update Bk+1
Ls

=
! fk+1¬ H! fk+1-! fkL

-H! fkL¬ pk

the "Conjugate Descent" update Bk+1
Cd

=
! fk+1¬ ! fk+1

H! fk+1-! fkL¬ pk
,

�

Testing Procedures

To compare the above update methods we will be comparing the number of iterations and the wallclock times to
achieve a solution . Since we will also be using a variety of problems, we will get a chance to see the robustness of the
algorithms as well.

�

Project Outline

1. We will code the Nonlinear Conjugate Gradient method as well as the various Βk updates mentioned above.
2. We will then compare the performance of the various algorithms on the following test problems.

a. A high dimensional linear problem
b. 2-D Non-linear problems (easy, H, Siam, Rosenbrock)
c. Higher dimensional non-linear problems.

�

Code

We coded a version of the Conjugate Gradient code in which we were able to input the specific Βk being used. Once
the new direction in the algorithm was computed we then chose to use Mathemtica’s “Nminimize” command with an
accuracy and precision goal of 4 to find the necessary step length Α. In our Code we have also chosen to reset our
value for Βk back to steepest descent after 20 iterations. This should account for the loss of conjugacy in directions that
develops when using the algorithm for nonlinear functions.

� Bk Updates
� Conjugate Gradient Code
� Miscellaneous Code
� Testing Code
� Functions
� Initializations
�

2-D Testing
� Linear

We first chose to run our code on a 30 dimensional linear problem. We are using a tolerance of 10-6 to end our
iteration and a randomly generated inital condition. The command “linfun[]” seen below creates a SPD matrix “A” via
code from [4]. It also generates a random “b” vector and then defines a function “f” as the quadratic form

f HxL =
1

2
x¬ A x - x¬ b. In the process of testing the various Βk updates we encountered overflow trouble with several of

the updates. Thus the results we are going to use to compare schemes will be based on the Pr, Fr, Dy, and Cd schemes
only. As shown in the table below Pr and Fr were slightly less efficient, but they all were effective.

8A, b< = linfun@30D;

Testing2@f, GoodSchemesD

scheme time loops error

Pr 13.884 42 9.33964 ´ 10-7

Fr 14.836 43 6.3385 ´ 10-7

Dy 10.14 29 4.40477 ´ 10-7

Cd 10.249 29 5.85574 ´ 10-7

Since we are using a positive-definite matrix A, the minimum we find will be a global minimum. Also at the minimum
the gradient will be equal to zero and since A is symmetric ! f = A x - b = 0, thus the solution to the minimization
problem should be a solution to the system A x - b = 0. The results below verify this.

A.namesP4TP5T - b H*the 4 indicates that we are using Cd to test the results*L

9-8.8512 ´ 10-8, 9.63253 ´ 10-8, -1.55002 ´ 10-7, -4.36338 ´ 10-8, 3.53444 ´ 10-8, 7.71574 ´ 10-8,

-4.25727 ´ 10-9, 7.51399 ´ 10-8, -1.47887 ´ 10-7, -5.89653 ´ 10-8, -7.99192 ´ 10-8, 1.2991 ´ 10-7,

-4.82795 ´ 10-8, 1.99504 ´ 10-7, -9.83062 ´ 10-8, -1.95302 ´ 10-8, -1.21177 ´ 10-7, 1.5526 ´ 10-7,

-1.08906 ´ 10-7, 1.37317 ´ 10-7, -9.72595 ´ 10-11, -4.50088 ´ 10-8, 1.08857 ´ 10-7, 4.47352 ´ 10-8,

6.99597 ´ 10-8, -2.29337 ´ 10-7, 9.33896 ´ 10-8, 5.54837 ´ 10-8, -1.61615 ´ 10-7, -7.35251 ´ 10-8=
� Non-Linear Testing

Next we want to test the schemes on some 2-D nonlinear functions, but first we need to make sure that that the CG
code works on non-linear functions. Setting up the dimensions of our problem and the initial conditions we will run
our code on the 2-D Himmelbleau function. The results below show that Fr and Cd are the most efficient. Pr is the
least efficient and we expect that this is due to it getting jammed at some point and not working properly again until
the restart at the 20th iteration.

dimension = 2;

y0 = RandomReal@10, dimensionD;

Testing2@H, 8Pr, Fr, Dy, Cd<D �� Quiet

scheme time loops error

Pr 3.947 45 4.51919 ´ 10-10

Fr 1.045 11 2.76126 ´ 10-10

Dy 2.84 31 3.13287 ´ 10-10

Cd 1.045 11 2.84322 ´ 10-10

To test to see if the the schemes are giving us valid results we can plot the points generated during one of the schemes.
The plot below uses the points generated from the Pr scheme. We can see that they are converging to a minimum value.

3.575 3.580 3.585 3.590

-1.855

-1.850

-1.845

-1.840

Now confident that the Code is running properly we can compare the performance of the different Βk schemes on an
easy funtion as well as the Siam and Rosenbrock functions. Here our “easy” function is

easy@8x_, y_<D := x2
+ Hy - 1L2

- x . On this function the solution was so easy that there is no comparison

between the schemes. The fact that there is zero for the number of loops indicates that the solution was found in the
first step without even running the main loop of the code.

Testing2@easy, GoodSchemesD �� Quiet

scheme time loops error

Pr 0.078 0 3.12348 ´ 10-7

Fr 0.032 0 3.12348 ´ 10-7

Dy 0.046 0 3.12348 ´ 10-7

Cd 0.032 0 3.12348 ´ 10-7

The results on the Siam function indicate once again that Pr seems to be less efficient (althought not the worst in this
case).

Testing2@Siam, GoodSchemesD �� Quiet

scheme time loops error

Pr 8.097 31 1.23415 ´ 10-7

Fr 5.6 10 2.38015 ´ 10-7

Dy 6.724 20 6.208 ´ 10-7

Cd 8.392 40 7.40466 ´ 10-7

Te results on the Rosenbrock function indicate that this problem is difficult and all the schemes failed. Here you can
also see that we have limited the number of iterations of the algorithm to 100. We believe that using a line search with
more restrictions on the stepsize i.e. stronger wolfe conditions and other restrictions to ensure that the combination of
Βk and Α always result in a descent direction[4]

Testing2@Ros, GoodSchemesD �� Quiet

scheme time loops error

Pr 156.671 100 Overflow@D
Fr 168.248 100 Overflow@D
Dy 11.481 100 1.26008 ´ 1011

Cd 9.532 100 0.71909

�

Higher Dimensional Problems

Next we will test the different schemes on nonlinear functions of higher dimensions. To generate non-trivial problems
we are going to put a non-linear function in the first two dimensions of a larger linear problem. Then use a rotation
matrix to mix up the dimensions. These steps are all done by “probgen”. The input is the nonlinear function that goes
in the first two dimensions, and the total dimension of the problem. The output is the SPD matrix and vector used to
generate the linear dimensions, and the rotation matrix used to mix everything up.

dim = 4;

8B, c, Q< = probgen@Siam, dimD;

y0 = ConstantArray@0, dimD;

After generating the problem we solve it using the Dy update.

8sol, err, i< = ConjGrad@y0, bigrot, Tol, DyD;

To test the result we need to un-rotate our solution and then check to see if the solution behaves as expected. Thus
after the unrotating, we calculate the residual of the linear system and then plot the solution for the non-linear system,
with the results shown below. Notice that although the residual is still relatively high, the plot of the solution appears
to be right on. This is a result of the large gradient values in the siam function. The conjugate gradient tends to work
on the hard stuff first, thus the focus was on dealing with the nonlinear portion.

sol = Transpose@QD.sol;

B.sol@@3 ;; dimDD - c

8-0.00192868, -0.000460561<

ContourPlot@Siam@8x, y<D, 8x, solP1T - .1, solP1T + .1<,

8y, solP2T - .1, solP2T + .1<, Epilog ® 8PointSize ® Medium, Red, Point@solP1 ;; 2TD<D

2.15 2.20 2.25 2.30

-0.15

-0.10

-0.05

0.00

Comfortable that the algorithm is finding solutions we then compared the different updates. The first result is for the
the 4 dimensional Siam function that we just looked at. We see that Dy did the best on this function and as we dis-
cussed the althought the error might look high , the plot results were more comforting.

Testing2@bigrot, GoodSchemesD �� Quiet

scheme time loops error

Pr 11.747 100 0.771865

Fr 11.81 100 2.11306

Dy 12.417 100 0.00242763

Cd 18.003 100 40.7109

Given the underwhelming results of the previous example we decided to try to use an easier function but at higher
dimensions. We took our “easy” function and tested it at 7, 10 and 20 dimensions. the results all suggest that Dy and
Cd were much quicker and took signifigantly fewer function evaluations.

TestingBig@easy, 7, GoodSchemesD

scheme time loops error

Pr 7.956 54 8.70054 ´ 10-7

Fr 7.161 51 9.46829 ´ 10-7

Dy 0.92 6 5.12765 ´ 10-7

Cd 0.936 6 5.28924 ´ 10-7

TestingBig@easy, 10, GoodSchemesD

scheme time loops error

Pr 9.11 33 8.08468 ´ 10-7

Fr 9.095 33 8.23361 ´ 10-7

Dy 3.011 11 7.01618 ´ 10-7

Cd 3.011 11 7.19439 ´ 10-7

TestingBig@easy, 20, GoodSchemesD

scheme time loops error

Pr 99.685 40 9.71007 ´ 10-7

Fr 101.245 41 7.18119 ´ 10-7

Dy 40.903 16 9.73111 ´ 10-7

Cd 40.389 16 8.38868 ´ 10-7

Next we tried to test the different updates on the Himmelbleau function at four dimensions. The results below showed
that none of the updates yielded good results even after increasing the maximum number of iterations to 200. It does
however look like while Dy and Cd appear to be divergent, the Pr and Fr schemes to be making some kind of progress.

TestingBig@H, 4, GoodSchemesD

scheme time loops error

Pr 21.341 200 0.00302546

Fr 20.529 200 0.00578591

Dy 24.415 200 629.671

Cd 22.027 67 Indeterminate

� multiple copies of nonlinear

The final level of testing has us increasing the level of difficulty by taking our nonlinear function and copying it into
multiple dimensions, then performing the same kind of rotation technique as was previously used. We then attempted
to find the minimum using the Dy update. To get a visual of the result we created a plot of the solution for each pair of
dimension. We then repeated this analysis using the Siam function. The results shown below indicate that for the
Himmelbleau function when using an initial condition at the origin the solutions followed the same path in each
dimension and seemed to reach a minimum. The close in results also showed thtat upon nearing the valley the points
tended to bounce around for a while before converging to the solution. This was a result of the loss of conjugacy in our
directions and was ultimately resolved when the reset kicked in. For the Saim however, the results were more sporadic.
This was a clear result based on the difficulty of the function.

� 4 Copies of the Himmelbleau function
�

-3 -2 -1 0 1 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

�

� 4 copies of Siam

cgVisGenerateOneFrame@Siam, points, Length@pointsDD

-2 -1 0 1 2

-2

-1

0

1

2

3

�

Conclusion

To summarize, we can say that there exist several different options for choosing the parameter Βk in the conjugate
gradient method. The efficiency and stability of the different updates seems to vary on different problems. In general
Dy seemed to be very efficient, but was outperformed by Fr and Pr on the 4 copy version of the Himmelbleau function.
This variation of efficiency in the schemes is what has lead to the creation of hybrid schemes that switch between
schemes to gain efficiency. As an example a scheme may run combinations of Pr and Fr or Dy and Hs. These choices
tend to pair updates with strong convergence properties with those with may not convergen in general but if they do
tend to be more efficient. For more information on Hybrid method see Hagar and Zhang[4, page6].

�

Reference

[1] Nocedal and Wright (2006). NumericalOptimization 2nd ed. Springer

[2] http://reference.wolfram.com/mathematica/tutorial/UnconstrainedOptimizationConjugateGradientMethods.html

[3] Struthers (2011). LinearConjugateGradient. http://www.mathlab.mtu.edu/~struther/Courses/5630_11/LinearConju-
gateGradient.nb

[4] Hagar and Zhang (2006), A survey of Nonlinear Conjugate Gradient Methods

[5] Jonathan Richard Shewchuk, An Introduction to the Conjugate Gradient Method Without the Agonizing Pain

