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1.  Introduction 
 
Open cell porous materials, such as polymer foams, dissipate acoustic waves through viscous 
and thermal losses as the sound moves through the foam.  The dissipation of acoustic energy is 
typically described in terms of its surface impedance.  Several models have been developed 
relating the surface impedance of porous materials to a set of macroscopic morphological 
parameters describing the geometry and connectedness of the cells within the porous material.  
However, many of these morphological properties cannot be easily measured by direct 
experiments.  Instead, these properties can be determined through model fitting methods.  These 
methods initially measure the surface impedance of the material directly, and then the 
morphological properties are estimated so that the model prediction of surface impedance 
matches observation.  This is most accurately achieved by using optimization techniques to 
minimize the square of the difference between the predicted and observed surface impedance. 
 
The purpose of this project is to examine a number of techniques for performing this model-
fitting optimization.  Five model parameters will be estimated by optimization algorithms.  All 
optimization implemented optimization algorithms used in this project are pre-built functions in 
the Matlab Optimization Toolbox.  The goal is to determine which methods most accurately and 
efficiently optimize the model parameters.  Additionally, the effects of initial conditions of the 
optimization problem and the selection measured data used to build the cost function will be 
examined.  Finally, the estimated parameters will be compared to measured data to determine 
how closely the optimized model matched the actual foam properties. 
 
2.  Problem Background 
 
2.1  Model of Surface Impedance for Acoustic Foam 
 
The acoustic properties of foam can be described in terms of its surface impedance.  The surface 
impedance is dependent on a number of material properties of the foam material and is thus 
modeled based on these same material properties [1].  These material properties are flow 
resistivity (σ), porosity (φ), tortuosity (α∞), viscous pore shape parameter (c), and thermal pore 
shape parameter (c’).  The model for surface impedance is given by 
 

,ߪ)ܼ ߶, ,ஶߙ Λ, Λᇱ, ߱) = −݆ ඥఘ(ఙ,థ,ఈಮ ,ஃ,ஃᇲ,ఠ)௄(ఙ,థ,ఈಮ ,ஃ,ஃᇲ,ఠ)
ఝ௓బ

cot ቆ߱ܮටఘ(ఙ,థ,ఈಮ ,ஃ,ஃᇲ,ఠ)
௄(ఙ,థ,ఈಮ ,ஃ,ஃᇲ,ఠ)

ቇ (1) 

 
Equation 1 shows that the model is not only dependent on the 5 material properties previously 
discussed, but is also dependent on frequency, ω.  The j is the model is the imaginary number 
and Z0 and L are constants describing the dimensions of the foam and the properties of air.  
Although, the surface impedance is complex and frequency-dependent, the material properties 
are real-valued and independent of frequency.  The functions ρ and K detail the relationship 
between surface impedance and the material properties of the foam and are given by 
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In Equations 2 and 3, the terms ρ0, γ, P0, and Npr are all constants describing the properties of air.   
 
2.2  Cost Function and Constraints 
 
While it is relatively simple to measure the surface impedance of a material, directly measuring 
the five material properties used to model surface impedance is often difficult and requires 
specialized equipment.  Instead these parameters are often determined through model fitting 
techniques using measured values of surface impedance [1].  In this project, optimization 
algorithms were used to estimate the model parameters in order to minimize the difference 
between the measured and modeled surface impedance.  Ideally, the difference between the 
modeled and observed surface impedance values would be zero, however, since there is noise in 
the measurement this is unlikely to occur.  Since the difference between the measured and 
modeled impedance is complex-valued, which would cause difficulties in using common 
optimization techniques, the square of the magnitude of this complex-value is instead minimized 
here.  Measured impedance data is available at many different frequencies and this was utilized 
when forming the cost function for the optimization problem.  Since the material properties used 
in the model are constant at all frequencies, data at all frequencies can be used to estimate these 
properties.  Thus, the sum of squares of the difference between the measured and modeled 
impedance was used in the cost function.  This approach helps to eliminate the effect of 
measurement noise/error when estimating the model parameters through optimization since the 
parameters will fit over a wide frequency range rather than at only a single frequency.  The cost 
function examined in this paper is given as 
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In this equation, N is the number of frequencies included in the cost function.  The 5 material 
properties in the model are now designated by the vector x, which this has five elements.  It is 
also noted that for simplicity, the squared values of the properties c and c’ are used as function 
parameters here. 
 
Since the five model parameters are physical quantities, their values are limited to values which 
are physically feasible [1].  Thus, a number of constraints are introduced into the optimization 
problem.  Each of the first four parameters is constrained by simple upper and lower bounds.  
However, the fifth parameter, c’2, has the constraint that it must be less than or equal to the 
parameter c2.  However, this linear inequality constraint can be avoided due to the lower bounds 
of both c2 and c’2 both being the same value, 0.1.  This is achieved by defining a new parameter, 
s, which is given as 

ݏ =
ܿᇱଶ − 0.1
ܿଶ − 0.1  (5) 



Solving this relationship for c’2 and substituting this value into the equation defining the bounds 
of c’2 yields simple bound constraints on the parameter s.  Thus, by using the parameter s instead 
of the parameter c’2, all function parameters now have simple upper and lower bounds.  Making 
this substitution and defining the vector x as [σ, φ, ߙஶ, c2, s], Equations 2 and 3 become 
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 The bounds are defined as follows 
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Thus, the optimization problem is defined as the minimization of F defined by Equation 4 with 
respect to the vector x, such that the bound constraints defined by Equation 8 are satisfied. 
 
2.3  Frequency Range Considerations 
 
The last consideration when forming the optimization problem is choosing the frequency range 
over which the model is to be optimized.  Although the model parameters are constant across all 
frequencies, the influence of each parameter on the value of the model is dependent on 
frequency.  For example, at low frequencies, the modeled surface impedance value is highly 
dependent on the value of the parameter x1 but have almost no dependence on the value of x4.  
The same is not true at higher frequencies.  This can lead to poor estimation of some of the 
parameters due to scaling issues.  Parameters which do not influence the value of the model as 
much as other parameters could not be accurately estimated since the gradient with respect to 
those parameters is so much lower than for the other parameters.  Ideally, a frequency range 
should be chosen over which all the model parameters have the same influence on the value of 
the model.  However, due to the inherent scaling of the model, particularly with respect to x1, this 
is not possible without altering the model parameters.  Instead, a particular frequency range was 
chosen over which all five parameters influenced the model value to some degree, although not 
equally among all five parameters. 
 
The frequency range of interest was split into three different “zones”.  These zones are dependent 
on the location of the peak in the acoustic absorption curve for the material being studied.  
Absorption is computed directly from the surface impedance, which also exhibits this peak.  
Figure 1 illustrates the three frequency zones for a common acoustic foam.  Zone 1 is the 



frequency range below the peak, Zone 2 is the frequency range directly around and including the 
peak, and Zone 3 is the frequency range after the peak. 
 

 
Figure 1:  Three frequency range zones for acoustic foams [1] 

 
The degree of influence each parameter had on the value of the modeled surface impedance was 
described as either a primary influence or a secondary influence.  The primary influence(s) is 
what most controls the value of the model.  The secondary influences also effect the model value 
but to a much lesser degree than the primary influence.  Finally, any parameter that influenced 
the value of the model to a degree less than the secondary influences was deemed to have no 
significant influence.  The influence of each of the five parameters in all three frequency zones 
was determined.  This was based on graphical comparisons of 2-D planes of the cost function 
(three parameters held constant).  The parameters x1 and x3 were found to have primary and 
secondary influences, respectively, for all three frequency zones.  Thus, these two parameters 
were compared to the remaining three parameters to determine their degree of influence.  Figure 
2 shows the relationship between the parameters x1 and x3 in Zone 2, although it is similar for all 
three zones.  It can be seen that the contours of the function are almost exactly perpendicular to 
the x1 axis, with a long shallow valley along to the x3 axis.  Figures 3 through 5 illustrate the 
influence of the x2 parameter over the three frequency zones.  These show that x2 has a primary 
influence in Zones 2 and 3 and a secondary influence in Zone 1.  Figures 6 through 8 show that 
the x4 parameter has a secondary influence in Zones 2 and 3, but no influence in Zone 1.  
Parameter x5 has the opposite behavior of x4, having a secondary influence in Zones 1 and 2, but 
no influence in Zone 3, as shown in Figures 9 through 11. 
 



 
Figure 2:  Primary and secondary influences of the x1 and x3 parameters, respectively in Zone 2. 

 

 
Figure 3:  Secondary influence of x2 in comparison to x3 in Zone 1. 
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Figure 4:  Primary influence of x2 in comparison to x1 in Zone 2. 

 

 
Figure 5:  Primary influence of x2 in comparison to x1 in Zone 3. 
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Figure 6:  Negligible influence of x4 in comparison to x3 in Zone 1. 

 

 
Figure 7:  Secondary influence of x4 in comparison to x3 in Zone 2. 
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Figure 8:  Secondary influence of x4 in comparison to x3 in Zone 3. 

 

 
Figure 9:  Secondary influence of x5 in comparison to x3 in Zone 1. 
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Figure 10:  Secondary influence of x5 in comparison to x3 in Zone 2. 

 

 
Figure 11:  Negligible influence of x5 in comparison to x3 in Zone 3. 
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Based upon this analysis, the combination of both Zones 1 and 2 was selected for the 
optimization analysis.  In this frequency range, all five parameters have at least a secondary 
influence on the value of the model.  Additionally, the peak value of surface impedance is in this 
range.  At the peak value, the measurement is least effected by measurement noise, which will 
help to improve the estimate of the model parameters resulting from the optimization.  It should 
be noted that in this frequency range there is still a major scaling problem with the x1 parameter.  
Its value and gradient are much larger than for the other parameters.  This can cause some 
problems with accurately estimating the remaining four parameters.  Since the literature 
discussing the optimization of this model does not discuss scaling the parameters, it was left un-
scaled for this project as well.  The effects of this are seen later in the discussion of results.  In 
the frequency range covered in Zone 1 and 2, the surface impedance was measured at 246 
different frequencies so that the cost function is the summation of 246 residuals. 
 
3.  Optimization Algorithms 
 
In this project, two different pre-built optimization functions in Matlab’s Optimization Toolbox 
were tested.  These were the fmincon function for general constrained optimization and the 
lsqnonlin function for nonlinear least squares algorithms.  These functions were tested to 
determine which function and which options (i.e. algorithms) within each function worked best 
at optimizing the cost function.  For the fmincon function, the active set, sequential quadratic 
programming (SQP), and interior point algorithms were implemented.  For the lsqnonlin 
function, only the trust-region reflective algorithm was implemented since it was the only one 
which allowed bound constraints.  The default options for convergence tolerance were used for 
both functions.  It was not possible to define the gradient of the cost function in functional form 
within Matlab, so the default option of estimating the gradient by finite differences was 
implemented as well.  Where the Hessian was used, a BFGS update strategy was implemented 
by Matlab.  Descriptions of the four optimization algorithms tested are given in this section. 
 
3.1  Active Set Method 
 
The active set method was the first of the algorithms implemented using Matlab’s fmincon 
function [2,3].  The general formulation of minimizing functions subject to constraints on the 
variables is 
 
min ( )

nx
f x

R
subject to    ( ) 0,ic x i E and    ( ) 0,ic x i I  

 
(9) 

The active set consists of the equality constraints from E and the inequality constraints where 
( ) 0ic x  is satisfied.  The constraint is called active if ( ) 0ic x  and called inactive if ( ) 0ic x   is 

satisfied. Thus, the active set can be defined as 
 
 (10) 
 
The Lagrange function of this algorithm is defined by 
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(11) 

As an algorithm of optimization, the active determines which constraints determine the final 
optimization and which do not.  The algorithm starts from an initial point. For each step, the 
equality problem defined by the active set is solved approximately. Then, for the active set, the 
Lagrange multipliers are computed.  Those constraints whose Lagrange multipliers are negative 
are removed and infeasible constraints are searched. Those above are repeated until the result of 
the optimization is good enough. 
 
3.2  Sequential Quadratic Programming Method 
 
The second fmincon algorithm used use the sequential quadratic programming method [2,3].  
Rather than convert it to a sequence of unconstrained minimization problems, one attempts to 
solve a nonlinear program directly is SQP. It is an iterative method. Requirement for the problem 
is twice continuous differentiability of the function and continuous differentiability of its 
constraints. For significant nonlinearities in the constraints, SQP methods show their strength 
especially. The search direction of each iteration is defined by 
 
 
 
subject to 
 
 
 
where 

(12) 

 
This problem can be solved by the algorithms for quadratic programming. By solving for kp , the 
solution of kth step, and 1k  , the Lagrange multiplier, the new iterate can be found by 

1( , )k k kx p   . The process is repeated until the optimization is good enough. 
 
3.3  Interior Point Method 
 
The third algorithm implemented by Matlab’s fmincon function is the interior point algorithm 
[2,3].  This algorithm can be used for any general optimization problem with equality or 
inequality constraints.  However, for the interior point method, the inequality constraints are 
made into equality constraints through the use of slack variables.  These slack variables are 
updated at each iteration, and are scalar values greater than zero.  Additionally, instead of 
minimizing the function f, this method minimizes a function fµ which is the original function with 
a “barrier function” dependent on a barrier parameter µ which is greater than zero and the slack 
variables s.  The minimization problem is then rewritten as 
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such that 
ܿா(ݔ) = 0 
ܿூ − ݏ = 0 
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In this problem, cE and cI are the equality and inequality constraints, respectively, and m is the 
number of inequality constraints.  As the algorithm converges to the global minimum, the 
parameter µ converges to zero, so that the minimum of the function fµ converges to the minimum 
of the function f.  In Matlab, the steps for the vectors x and s and the Lagrange multipliers for the 
constraints at each iteration are computed by one of two different approaches.  The first, default 
approach is to solve a system of KKT equations for this problem using linear algebra.  The KKT 
system used in this subproblem is given by 
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where H is the hessian of the Lagrangian, AE and AI are the Jacobian matrices of the equality and 
inequality constraints, respectively, y and z are the Lagrange multipliers for the equality and 
inequality constraints, respectively, S is a diagonal matrix of the slack variables, and Z is a 
diagonal matrix of the Lagrange multipliers of the inequality constraints.  This symmetric system 
is solved by LDL factorization.  The Hessian can be computed directly from the function by 
 

ܪ = ∇ଶ݂ + ෍ݕ௜∇ଶܿா,௜
௜
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However, since the Hessian of the cost function was not originally formed for this project, the 
Hessian is instead estimated by a BFGS update.   
 
The solution to the KKT equations can move to other stationary points in the function, so it will 
only move towards the minimum if the Hessian is positive definite.  If the Hessian is indefinite 
for a particular iteration, Matlab uses an alternative method to compute the step.  A conjugate 
gradient approach is used to minimize a quadratic approximation of the function fµ, adjusting 
both x and s.  The Lagrange multipliers are first obtained by approximately solving the KKT 
equations in a least squares sense.  The KKT equation solve is 
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The step for x and s are then determined from the quadratic approximation of fµ within a trust 
region given by 
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and subject to 
 

ܿூ + ௫݌ூܣ + ௦݌ = 0, ܿா + ௫݌ாܣ = 0 (18) 
 
After the step is determined by either the KKT subproblem solver or the conjugate gradient trust-
region approach, the algorithm checks for if the step is appropriate using a merit function.  The 
barrier parameter µ is then updated and the iterations continue until the first order optimality 
conditions are sufficiently near zero. 
 
3.4  Nonlinear Least Squares – Trust-Region Reflection Method 
 
The final optimization algorithm tested in this project was the nonlinear least squares algorithm 
using a trust-region reflective method for bound constrained problems.  Least squares 
optimization is specifically used for model-fitting in which the cost function is a sum of squared 
residuals.  The problem statement is restated as 
 

min
୶
‖f(x)‖ଶଶ (19) 

  
Here, f is a vector-valued function, each element being the residual between a measured value 
and modeled value (dependent on a set of modal parameters).  Algorithms can take advantage of 
the special structure of the nonlinear least squares problem to minimize the function more 
efficiently [4].  For example, when computing the Newton step for a trust region algorithm (s), 
only the Jacobian of the vector-valued function (J) is needed and the method of preconditioned 
conjugate gradients is used to solve the normal equations given by 
 
ݏܬ்ܬ =  (20) ்݂ܬ−
 
In Matlab’s lsqnonlin optimization function, only the trust-region reflective algorithm can be 
used if bound constraints are applied to the problem.  This algorithm is very similar to the trust-
region method for unconstrained optimization with a few key modifications [3,5].  The first 
modification is in how the Newton step is computed from the quadratic model function.  A 
vector v is defined for a particular value of x which is dependent on the gradient at the current 
location and the value of the upper and lower bounds for each element of x.  This vector is 
defined as 
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The values of the vector v are used to define a matrix D as follows 
 

(ݔ)ܦ = diag൫|(ݔ)ݒ|ିଵ/ଶ൯ (22) 
 
The first order necessary conditions at the minimum are then a modification of those for 
unconstrained minimization, based on the matrix D and are given by 
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The Newton step is then computed from the minimum of a modified quadratic approximation of 
the cost function given by 
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where Jv is the Jacobian of the vector v. 
 
The second modification the trust-region reflective method makes to the trust-region algorithm 
for unconstrained optimization is how it handles steps which cross one or more of the bounds.  
This is handled by reflecting the step.  If the step crosses one or more bounds, and the index of 
the first bound crossed is i, then the ith element of the step is reflected (pi

reflect = -pi
orignal).  The 

other elements of the step are not changed.  Thus, if a bound is crossed, the step taken at that 
iteration is changed to move away from the bound in the dimension that is in violation of the 
bounds. 
 
4.  Results and Discussion 
 
4.1  Initial Point and Global and Local Minima 
 
The first look at the optimization routines was to determine the effect of the initial point on the 
solution found by the different minimization routines.  This was done by evaluating the 
optimization problem repeatedly for different random initial conditions.  The initial point with 
variables 1 2 3 4 5, , , ,x x x x x  was chosen randomly within their bounds defined by the physical 
problem.  A pentagon plot is applied for used to illustrate the the range of the five variables 
(anticlockwise starting from the top right of the pentagon for x1).  For each of the algorithms, 
once a starting point is initiated, a corresponding green point is plotted in the pentagon.  Figures 
12 and 13 show the initial point for 1000 different runs of each optimization routine and their 
resulting solutions.  Figure 12 illustrates the initial conditions that converged to the global 
minimum of the function.  The green points along each parameter axis indicate the initial 
conditions used, while the crosses indicate the solution the algorithms converged to.  The global 
minimum found indicated in Figure 12 was determined by taking the solution with the lowest 
function value at the minimum for all 1000 runs of the routines.  The four algorithms were 
consistent with each other in finding this global minimum.  Figure 13, on the other hand, 
illustrates the initial conditions and resulting solutions for the four algorithms when a nonglobal 
minimum was found.  The red points indicate the initial point values, while the crosses indicate 
the solutions.  Only solutions which are not the global minimum are plotted in Figure 13. 
 



 
Figure 12:  Initial points and optimization solution when global minimum found. 

 

 
Figure 13:  Initial points and optimization solution when only a local minimum found. 



One can see from the figure that, for all of the algorithms, the optimization works correctly and 
each feasible initial value for each parameter can lead to the global minimum, if the other 
variables are chosen properly.  However, the same can be said of convergence to one of the 
many local minimums.  Any random initial point can lead to either the global minimum or the 
local minimum.  However, as can be seen from the Figure 13, where there is a gap for the 1x  
values, for certain range of  1x  values, the optimization always converges to the global 
minimum. This range is approximately 103 to 105.  Thus, the variable 1x  plays a great role in the 
function value and also in the optimization process.  Again this may be due to scaling issues with 
the parameter x1. 
 
4.2  Comparison of Algorithms 
 
Using the same initial point (which was guaranteed to converge to the global minimum for all 
algorithms) the convergence properties, efficiency, and accuracy of the four optimization 
algorithms described in Section 3 were compared.  A number of measurements of the 
algorithms’ performance were compared including the final value of the function and the model 
parameters, the number of iterations, the number of function evaluations, and the value of the 
first order optimality criteria.  Table 1 shows the results for the four algorithms. 
 
Table 1:  Performance criteria for four optimization algorithms. 

Algorithm Function 
Value Parameter Values Iterations First Order 

Optimality 
Function 

Evaluations 

Active Set 33.4230 [46088, 0.8436, 4, 5.8401, 1] 31 7.8883E-03 191 

SQP 33.4230 [46088, 0.8436, 4, 5.8401, 1] 36 2.8610E-06 231 

Interior Point 33.4234 [46087, 0.8436, 3.9999, 5.8406, 0.9995] 40 2.0000E-06 253 

Trust-Region 
Reflective 33.4254 [46262, 0.8432, 4, 5.8162, 1] 73 5.3090E-01 444 

 
Based on the results shown in Table 1, several conclusions can be drawn on the performance of 
the various algorithms.  The most efficient algorithm appears to be the active set algorithm used 
by fmincon.  It converges to the minimum in the least number of iterations and requires the least 
number of function evaluations.  This is expected since the bound constraints are fairly simple, 
and there are a relatively low number of possible active constraints.  The active set method 
excels with problems such as this.  However, the active set method did not produce the most 
accurate results, as both the SQP and interior point methods resulted in a much smaller value of 
the first order optimality at the global minimum.  However, the final value of the cost function 
and model parameters for all three of the fmincon algorithms were almost identical (to the 
number of decimal places reported in Table 1).  Since these estimates of the model parameters 
are based on a measurement of the surface impedance, which itself only has a certain degree of 
significant precision, all three fmincon algorithms results in solutions with acceptable accuracy to 
the precision necessary.  It is also noted that while the active set and SQP methods result in two 



constraints being active, the interior point solution is only very close to the constraints, but still 
within the feasible region. 
 
The trust-region reflective algorithm of the lsqnonlin performed the worst of the four algorithms.  
It was both the least efficient, requiring significantly more iterations and function evaluations to 
converge than the other methods, and the least accurate algorithm.  This was not expected 
beforehand since the least squares algorithm takes advantage of the specialized definition of the 
problem to increase the efficiency of the optimization.  However, since the global minimum was 
at a corner of two of the bound constraints, the trust-region reflective method had issues 
converging to the global minimum due to the reflection of the search direction away from these 
bound constraints.  If the global minimum had been within the bounds, it is expected that the 
least squares trust-region reflective algorithm would have outperformed the other methods. 
 
The convergence of the four algorithms was examined next.  Figures 14 through 17 show both 
the value of the cost function and the value of the first order optimality term at each iteration for 
the four algorithms.   
 

 
Figure 14:  Convergence of the active set algorithm used by fmincon. 
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Figure 15:  Convergence of the SQP algorithm used by fmincon. 

 

 
Figure 16:  Convergence of the interior point algorithm used by fmincon. 
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Figure 17:  Convergence of the trust-region reflective algorithm used by lsqnonlin. 

 
The convergence behavior of the three fmincon algorithms was fairly similar.  For all three, the 
first order optimality at first decreased at a near linear rate and then dropped in value at around 
ten iterations, although the function value did not decrease significantly.  This initial drop may 
have been due to being near one of the many local minimums of the function.  After this initial 
drop, the first order optimality then increased again back to a steady linear convergence.  Near 
the end of the iterations, the first order optimality then sharply decreased at a much faster 
convergence rate corresponding with a large decrease in the function value.  This was due to 
being near the global minimum, where the convergence is expected to be closer to quadratic.  
However, after this sharp decrease in the first order optimality, several more iterations occurred 
in which the first order optimality and the function value were fairly steady.  At this point, the 
algorithms were making small steps very near to the true minimum until the convergence 
tolerance was met. 
 
The convergence behavior of the least squares trust-region reflective algorithm was slightly 
different than the other algorithms.  The first order optimality does not decrease significantly at 
all for the first 50 iterations.  The norm of the residuals, however, does steady decrease in the 
first 50 iterations.  After 50 iterations, there was a sharp decrease in the first order optimality 
corresponding to a sharp decrease in the norm of the residuals, similar to the sharp drop observed 
for the fmincon algorithms.  Finally, at around 65 iterations, the first order optimality again levels 
off and does not decrease substantially, even if the iterations are allowed to continue.  The norm 
of the residual also does not further decrease after this sharp drop.  This is again due to the 
difficulty the trust-region reflective algorithm has when near the solution at the corner of two 
bound constraints.  It is not possible for the algorithm to improve the solution any further. 
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4.3  Analysis of Estimated Parameters 
 
The model parameters obtained from the optimization were compared to measured values to 
determine how well the optimization method works for obtaining correct material properties.  
Only measured values for the parameters x1 and x2  (flow resistivity and porosity, respectively) 
were available.  The estimated value of flow resistivity was 46,088 Pa s/m.  The measured value 
of flow resistivity for the modeled material is approximately 23,000 Pa s/m, but depending on 
conditions, could be as large as 40,000 Pa s/m.  Considering the large range of possible values 
for flow resistivity (103 Pa s/m to 106 Pa s/m), this estimate is considered relatively accurate in 
comparison to the measurement. 
 
The estimated value of x2 (porosity) from the optimization procedure was 0.8436.  The measured 
value of porosity for this material is 0.9486.  The range of possible values for x2 is much less 
than for x1, so considering this, the estimated value is not as accurate.  However, it is also 
possible that the particular specimen that the model is based upon has a lower porosity than the 
specimen the measured value of porosity is based on.  Thus, the estimated value of porosity is 
still physically feasible.  Had the optimization solution resulted in a porosity estimate on the 
bounds (0.7 or 1) this would not have been as good of a result since it is physically not possible 
for the porosity to be outside this range. 
 
Lastly, the model parameters were substituted back into the original model of surface impedance, 
and the modeled surface impedance was compared to the measured surface impedance.  The 
modeled and measured values should closely match if the optimization resulted in a good 
solution.  Figure 18 shows the real and imaginary parts of the modeled and measured surface 
impedance over the entire available frequency range (including Zone 3 which the optimization 
was not based upon).  There is a high degree of agreement between the measurement and 
modeled value of surface impedance.  Both the real and imaginary parts of the modeled surface 
impedance almost exactly overlay on the measured value of surface impedance in the Zone 1 and 
Zone 2 frequency ranges.  This is further supported by the value of the cost function at the 
minimum, which is approximately 33.  Since the cost function is the sum and the squared 
residuals, and there are 246 residuals included in this summation, the residual at each frequency 
is very low.  In Zone 3 (after the peak in the imaginary part of the surface impedance), there is 
still very good agreement between the measurement and model, although not as good as in Zones 
1 and 2.  Since there is good agreement in Zone 3 even though this frequency region was not 
directly used in the optimization procedure, this supports the conclusion that the global minimum 
found by the optimization algorithm reflects the true value of the material properties described 
by the five model parameters. 



 
Figure 18:  Comparison between the measured surface impedance and the modeled surface 

impedance based on the estimated model parameters obtained from optimization. 
 
5.  Conclusions 
 
Based on the results presented above, the following conclusions were made in regards to the 
bounded optimization of the model for acoustic foams: 

 An effective means to estimate the properties of acoustic foam is to minimize the residual 
between the modeled and measured value of surface impedance. 

 Zone 1 and 2 is the best frequency range to optimize over since all parameters have at 
least a secondary influence on the value of the cost function.  This allows for more 
accurate estimates by avoiding major scaling issues in the problem. 

 There are still some scaling problems with the cost function that cannot be eliminated 
unless the cost function is modified.  In particular, the scale of the parameter x1 is much 
larger than any of the other parameters.  This was not altered to remain consistent with 
the literature. 

 Final solution is highly dependent on the initial conditions.  Many local minimums within 
the feasible region of the cost function, and the optimization algorithms may converge to 
these based on the selection of starting parameters.  However, any initial value in the 
range of all five parameters can result in convergence to either the global minimum or the 
local minimum.  The results seem random. 

 The only parameter for which certain initial conditions normally guarantee convergence 
to the global minimum is x1.  If the initial x1 is in the range of approximately 103 to 105, 
then the algorithms normally always converge to the global minimum. 

 For this particular problem: 
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o Active set method was the fastest/most efficient.  This is likely due to the well 
defined, straight bound constraints. 

o Least squares (trust region reflective method) was the least efficient and least 
accurate.  This was likely due to the limitations of the trust-region reflective 
algorithm in dealing with a solution at the corner of multiple active constraints. 

o SQP and Interior Point methods resulted in the most accurate minimums and were 
nearly as efficient as active set. 

o Active set is the recommended method for estimating the parameters of this 
model since it is the most efficient and the precision of the solution is high 
enough to match or exceed the precision of the initial measurements used to form 
the cost function. 

 The value of the parameters estimated by the optimization methods match well to the 
measured values of these same parameters.  Additionally the value of the modeled 
surface impedance based on the estimated parameters closely matches the original 
measured value of the surface impedance.  The residual between the measurement and 
model was acceptably low. 

 
Further work on this problem could be focused on scaling the parameters so that all parameters 
have an equal influence on the value of the cost function and its gradient.  It would also be of 
interest to examine these same algorithms when modeling a different material, whose solution 
may lie entirely within the bounds of the parameters.  In this case, the nonlinear least squares 
trust-region reflective algorithm would be expected to perform the best. 
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