
 1

Algorithm and Implementation of particle swarm

optimization

Robin Dai, Chao Liang and Wen Zhang

Department of Mathematical Sciences, Michigan Technological University

Abstract:

We have studied and implemented the particle swarm optimization (PSO)

algorithm and other improved versions. Based on our analysis and understanding

of PSO, we developed a novel algorithm which tried to overcome the problem of

the unstable velocity. The proposed PSO is based on constricted coefficients PSO

by letting the parameters changed by logistic function over the time. In our study,

we found out that the selection of parameters is problem-dependent, which is

crucial to the behavior of the algorithm. We had different results by setting up

different parameter. Secondly, we tried to develop a novel PSO algorithm,

However, Results are hard to be compared due to the stochastic result. Each time

the program gave us the significantly different result for the large dimension

problem, which also indicates that high dimension optimization problem is hard to

solve when the population size can not be large enough in practices. Because when

search space is huge, PSO loses its power given a limit population size. In our

testing, constricted coefficients PSO works better for SIAM function Inertia

weighted PSO works better for Rosenbrock function.

 2

Background:

1. Introduction

First we give some related concepts and philosophies about PSO which stands for

particle swarm optimization. It is a computational optimization method which

improves the candidate solutions iteratively with regard to a given measure. PSO

optimizes a problem by having a bunch of candidate solutions, which are called

particles, and moving these particles around in the search-space according to given

formulae with respect to the particle's position and velocity. Each particle's

movement is influenced by its local best position and it is led to the best known

positions in the search area, which are replaced by some better positions that are

found by other particles. It is expected to move the swarm to the best solutions.

PSO is originally attributed to Kennedy and Eberhart [1] and was first pointed out

to simulate social behavior[3] as a stylized representation of the movement of

organisms in a bird flock or fish school. This algorithm was simplified and was

observed to achieve optimization. PSO is a metaheuristic as it makes few or no

assumptions about the optimization problem and can search a good amount of

candidate solutions，whereas PSO does not guarantee to find an optimal solution.

What is more particular is that PSO does not use the gradient of the problem,

which means that PSO does not require the optimization problem to be

differentiable as is required by standard methods such as gradient descent or quasi-

newton methods. Therefore PSO can also be used on optimization problems that

are partially irregular. The above are some characters and advantages of PSO over

other methods.

 3

In our implementation, we used the original PSO, inertia weighted PSO and

constricted coefficient PSO respectively to solve the test problems which include

2D SIAM function, 2D Rosonbrock function and high Dimensional Rosonbrock

function. During the process of using these three methods, we found that each

method has its own advantages and disadvantages. Further analysis and

comparisons about these three methods will be given in the following of this report.

Finally, we managed to develop another kind of PSO scheme, which is called

logitPSO to solve these functions and got satisfied results. We will also give some

details about this improved PSO method later.

The outline of this report is as follows: we will first describe the original PSO,

inertia weighted PSO and constricted coefficient PSO briefly. After comparing the

limitation of each method, we will then give the derived logitPSO algorithm.

Further illustrative examples will be given, followed which we give the

conclusions and discussions finally.

2. Original PSO

PSO consists of a swarm of particles each of which resides at a position in the

search space. The fitness of each particle represents the quality of its position. The

particles fly over the search space with a certain velocity. Both direction and speed

of each particle are influenced by its own best position found so far. They are also

influenced by the best solution that was found so far by its neighbors. However,

PSO does not guarantee an optimal solution is ever found. In order to describe the

original PSO, we use the following notations:

 4

x := position; := velocity; p := best position that it has found so far

g := the best position that has been found so far in its neighborhood

U(0,c1) is a random vector uniformly distributed in [0,c1]

≈ denotes the element-wise multiplication operator

The description of the original PSO can be stated as:

a) Randomly initialize particle positions and velocities

b) While not terminate

i) For each particle i :

� Evaluate the desired optimization fitness function

� Compare it with its local best (pBest), update if necessary

� Compare it with the global best (gBest), update if necessary

ii) For each particle, update its velocity and position:

Note that higher acceleration coefficients result in less stable systems where the

velocity has a tendency to explode. This is one disadvantage of this algorithm.

Second, limiting the velocity does not necessarily prevent particles from leaving

the search space, nor does it help to guarantee convergence. Another is that the

 5

velocity is usually kept within the range (). One key of this algorithm is that

the position must be usually kept within the range.

2. Inertia weighted PSO

The concept of an inertia weight was developed to better control exploration and

exploitation. The aim of inertia weight was to be able to control the exploration

mechanism and eliminate the need for . The inclusion of an inertia weight in

the PSO algorithm was first published in 1998. The inertia weight was successful

in addressing first aim but could not completely eliminate the need of velocity

clamping. The inertia weight (w) controls the momentum of the particle by

weighting the contribution of the previous velocity. Equations (1) and (2) describe

the velocity and position update equations with an inertia weight included.

 (1)

 (2)

This update rule allows for convergence without the use of velocity range ().

Rule-of-thumb settings: ω = 0.7298and = = 1.49618

3. Constricted coefficients PSO

The constriction coefficient was introduced as an outcome of a theoretical analysis

of swarm dynamics (Clerc and Kennedy 2002). Velocities are constricted, with the

following change in the velocity update:

 6

Convergence is guaranteed under the conditions that

4. Logistic-based constricted coefficients PSO

After testing the Original PSO, Inertia weighted PSO and Constricted coefficients

PSO algorithm, we found out that the algorithms have some drawback in the term

of the converge. For the Original PSO, it considers 100% of Momentum

component; the particles will continue their previous motion. In the early stage, the

acceleration coefficients should be set sufficiently high, so the swarm could have

enough energy to explore the search space. However, the velocity has a tendency

to explode in the later stage because of higher acceleration coefficients result in

less stable systems. In the other hand, if acceleration coefficients were set low in

the beginning, particles move very slow which lead to the converge problem as

well. To fix this problem, the Maximum of velocity has been proposed by the

author. However, limiting the velocity does not necessarily prevent particles from

leaving the search space, nor does it help to guarantee convergence. Because

velocity only makes sense when we mean it in the right background and different

problem have different scale. So only setting up the safe guard for the velocity still

couldn’t overcome this drawback.

About Inertia weighted PSO and Constricted coefficients PSO, the weighted

coefficient or Constricted coefficient have been added in the original updating

process. By setting the coefficient ω greater than one and less than zero, they both

 7

discount the effect of momentum component so that the algorithm could converge

given the large enough maximum iteration number set up. Eberhart and Shi also

suggested decreasing ω over time (typically from 0.9 to 0.4) and thereby gradually

changing from an exploration to exploitation so that the convergence of process

could be fast in the later stage of the particles’ moving. In our testing study, we

found out that the value of parameters in both Inertia weighted PSO and

Constricted coefficients PSO should be wisely selected so as to have a decent

result. (optimal solution). For both cases, the selection of the parameters is the

problem dependent, which could lead to unstable result.

Based on the analysis of different PSO algorithms and testing study, we proposed a

novel PSO algorithm (logitPSO), which is variant algorithm of Constricted

coefficients PSO with the sum of 1φ and 2φ fixed but their value change over time

from a logistic function so that particles are changing dramatically at certain small

interval from an exploration to exploitation.

The logit PSO was proposed as following:

� Randomly initialize particle positions and velocities. (population size

depends on the search space)

� While not terminate (All particles are closed enough to the globel max or

the maximum iteration has been reached)

� For each particle i :

� Evaluate the desired optimization fitness function

� Compare it with its local best (pBest), update if necessary

� Compare it with the global best (gBest), update if necessary

� For each particle, update its velocity and position:

 8

The constricted coefficient is defined as follow:

Where and , and N is the maximum iteration number

and k is the iteration number.

Based on the nature of the logistic function which can be seen in the following

graph 2φ is relatively small in the first half stage of the whole process, in where the

local component is dominating the whole update process and the algorithm is

mainly about the exploration. When k is greater than our pre-set switch point, 2φ is

increasing dramatically and in this stage, in where the global component is

dominating the whole update process and the algorithm is working on the

exploitation. By designing the parameters changed over time based on the logistic

function of guarantee maximum iteration number and its iteration number will

guarantee the convergence of the algorithm.

21 φφφ +=









<
+

>

=
21

2

21

4-

2

,1

φφ
φφφ

φφ

χ
，

kN

e
−

+
=

2
2

1

φ
φ

 9

Testing Study

1. Two dimension SIAM function

Here we test these four algorithms on two-dimensional SIAM function. The range

is . It is a multimodel function with 6 local minimums. The optimal

function value is -1.864183379308362

First, we used the original PSO to solve it and got the following results:

 x f

0.5 4 (0.073989, 0.047033) -1.734773

4 0.5 (0.072733, 0.046374) -1.734772

0 2 (0.075191, -0.093183) -1.864183

2 0 (-0.023386, 0.047773) -1.861672

2 2 (0.074477, 0.046680) -1.734773

 Table I

 10

From Table I, we see that when and the result is the best. In this

case, the algorithm puts more ‘efforts’ to find the global optimum.

Then we use the Inertia weighted PSO to solve the same problem and got the result:

weight c1=c2 x f No. of

Iteration

0.7298 1.49618 (0.073584629022878,

0.046124034082284)

-1.734773021811118 500

0.5 1.49618 (0.022531759829990,

0.005818958450126)

-1.734773021811118 500

0.7 1.49618 (0.027244766510358,

-0.088923333425637)

-1.864183379308362 500

0.9 1.49618 (0.026328347338718,

-0.049650109134200)

-1.864183379307904 500

 Table II

From Table II, we learned that when weight=0.7, the results are better.

The constricted coefficients PSO is employed to solve it again. Results are listed

as:

c1 c2 x f No. of

Iteration

1 4 (0.074587999105150 ，，，，

 -0.092084380747153)

-1.864183379308362 85

2 3 (0.073584628703011 ，，，，

0.046124034340407)

-1.734773021811117 58

3 2 (0.073589218892025 ，，，，

0.046145655099420)

-1.734771690319168 500

4 1 (0.074876073508515 ，，，，

0.019093728765458)

-1.864183379245115 500

 11

TableIII

We got Table III without setting .

Then we set and got Table IV.

c1 c2 x f No. of

Iteration

1 4 (0.046424363190564,

0.043796115527356)

-1.383690685967499 500

2 3 (0.047075669674033,

-0.042561737834101)

-1.767801956648655 500

3 2 (0.065607101979307,

0.016740756647798)

-1.516538889228189 500

4 1 (0.073609844387129,

0.045546011869654)

-1.733878318501754 500

Table IV

As the end of this section, we use the improved logitPSO method and get optimal

function value of -1.864183379308356 with optimal point (0.074617237633969, -

0.092086037908579) after 500 iterations.

 12

2. Two Dimension Rosenbrock function

Here we test these three algorithms on two-dimensional Rosenbrock function. The

range is [-10, 10]^2 . It is a unimodel function with just 1 local and 1 global

minimum. The optimal function value is 0 with the value of coordinate (1, 1).

Original PSO:

First, we used the original PSO to solve it and got the following results:

C1 C2 x y f Steps

0.001 0 1.848079 3.464551 0.960840 500

0 0.001 1.055420 1.073297 0.168034 500

0.001 0.001 0.943059 0.891614 0.003750 500

0.001 0.002 1.011934 1.029707 0.003388 500

0.002 0.001 1.114412 1.242337 0.013108 500

Table V

From Table V, we see that when .001 and the result c2 = 0.002 is the best.

However, the convergence rate is very low.

 13

About Inertia weighted PSO:

w C1 C2 x y f Step

s

0.3 1.4961

8

1.49618 1.183961191953628 1.402429416456036 0.033885984204462 500

0.3* 1.4961

8

1.49618 1.050740930664612 1.104049930632629 0.002574646364804 500

0.5 1.4961

8

1.49618 2.316519516405876 5.368288395064672 1.733633993326170 500

0.5* 1.4961

8

1.49618 1.000000002032773 1.000000004192520 5.744383999612768e-

018

500

0.7298 1.4961

8

1.49618 0.999996971969966 0.999994058449295 1.047999535255821e-

011

500

0.7298* 1.4961

8

1.49618 1.000000221024119 1.000000443790460 4.915517809560085e-

014

500

0.9 1.4961

8

1.49618 1.000417116486312 1.000833587998260 1.740532327878462e-

007

500

0.9* 1.4961

8

1.49618 0.855483014525343 0.728477376134214 0.022023419836644 500

Table VI

Note: * represents the case of no using .

 14

From Table VI, we can see that for Rosenbrock function, when ω = 0.5, = =

0.49618 is the best, and even better than Rule-of-thumb settings: ω = 0.7298 and

 = = 1.49618. So, we can say the selection of parameters is problem

dependent.

And we also can see that when choosing an appropriate ω, no using of is

better than using of .

However, the convergence rates of both using of and no using of are

low.

 Constricted coefficients PSO:

C1 C2 x y f Steps

1 4 0.2074 0.0393 0.6296 96

1* 4 0.3522 0.1173 0.4242 61

2 8 1.4179 2.0114 0.1747 500

2* 8 2.4258 5.8853 2.0330 44

3 12 1.5179 2.3042 0.2682 500

3* 12 1.3112 1.7205 0.0970 37

Note: * represents the case of no using .

Table VII

From Table VII, we can see that by using Constricted coefficients PSO algorithm,

the convergence rate of no using is much higher than that of using .

 15

3. High-D Rosonbrock function

We further consider testing all the PSO algorithms on the Generalized Rosenbrock

function, which is defined as following:

Difficulty level of the testing function is defined by the formula)ln(σ− , where σ is

the probability of success by randomly choosing a position in the search space.

Rosenbrock Function is represented here on 2]10,10[− . There is a barely noticeable

global minimum at (1, 1). For the majority of optimization algorithms it is difficult

to find the global minimum, and PSO in its initial versions and also our proposed

version are no exception when the dimension becomes larger.

∑
=

+ −+−=
1-D

1i

22

1

2 })(100)1({)(iii xxxxf

 16

Then we checked the difficulty given from the table at Page 57 Particle Swarm

Optimization Maurice Clerc, 2005. It shows as following:

We can see that t the evolution of the difficulty according to the dimensionality of

the problem increases is almost linear. However, because Difficulty level of the

testing function is defined by the formula)ln(σ− , The true difficulty thus increases

exponentially.

On the 5-dimensiton Rosenbrock testing function:

 dimension Value of Object

function

Position attained the

minimum

converge

oPSO 5D 0.00027224 (1.0003,1.0002,1.0005,1.0002,

0.9990)

500*

wPSO 5D 1.53E-14 (1.0000 1.0000 1.0000

1.0000 1.0000

500*

ccPSO 5D 1.1515 (0.8090 0.6571 0.4367

0.1899 0.0217)

500*

logitPSO 5D 6.57E-05 (1.0009 1.0018 1.0035

1.0070 1.0141)

440

 17

* Indicates the maximum iteration number has been reached.

We found out that Inertia weighted PSO has the best result among all the

algorithms, followed by our logitPSO, Constricted coefficients PSO and the

original PSO.

On the 5-dimensiton Rosenbrock testing function:

 dimension Value of Object

function

converge

oPSO 10D 1.786600 500*

wPSO 10D 0.047223 500*

ccPSO 10D 0.467570 500*

logitPSO 10D 0.00098987 459

* Indicates the maximum iteration number has been reached.

We found out that our logitPSO has the best result among all the algorithms,

followed by our Inertia weighted PSO, logitPSO, Constricted coefficients PSO and

the original PSO.

Conclusion

We have studies the particle swarm optimization algorithm and other improved

versions. Based on our analysis and understanding of PSO, we developed a novel

algorithm which tried to overcome the problem of the stable velocity letting the

parameters changed by logistic function over the time. In our study, we found out

that selection of the parameters is problem-dependent, which is crucial to the

 18

behavior of the algorithm. We had different result by setting up different parameter.

Secondly, we tried to develop a novel PSO algorithm, However, Results are hard

to compare due to the stochastic result. Each time the program gave us the different

result for the large dimension problem, which indicates that the population size is

not large enough. We learnt that high dimension optimization problem is hard to

solve. Because when search space is huge, PSO loses its power given a limit

population size. In our testing, ccPSO works better for SIAM function wPSO

works better for Rosenbrock function.

References:

1. Particles Swarm Optimization, James Kennedy and Russel Eberthart. 1995

2. Good Parameters Particle Swarm Optimization, Magnus Erik and Hvass Pedersn. 2010

3. wiki page about PSO: http://en.wikipedia.org/wiki/Particle_swarm_optimization

4. Particles Swarm Optimization, Maurice Clerc. 2005

5. Particles Swarm Optimization, Aleksandar Lazinica. 2009

6. Simplifying Particle Swarm Optimization, Magnus Erik Hvass Pedersen, Andrew John
Chipperfield. 2009

7. A Particle Swarm Optimization-based Heuristic for Scheduling Workflow Applications in

Cloud Computing Environments, Suraj Pandey, LinlinWu, Siddeswara Mayura Guru,
Rajkumar Buyya.

