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Abstract: 

We have studied and implemented the particle swarm optimization (PSO) 

algorithm and other improved versions. Based on our analysis and understanding 

of PSO, we developed a novel algorithm which tried to overcome the problem of 

the unstable velocity. The proposed PSO is based on constricted coefficients PSO 

by letting the parameters changed by logistic function over the time. In our study, 

we found out that the selection of parameters is problem-dependent, which is 

crucial to the behavior of the algorithm. We had different results by setting up 

different parameter. Secondly, we tried to develop a novel PSO algorithm, 

However, Results are hard to be compared due to the stochastic result. Each time 

the program gave us the significantly different result for the large dimension 

problem, which also indicates that high dimension optimization problem is hard to 

solve when the population size can not be large enough in practices. Because when 

search space is huge, PSO loses its power given a limit population size. In our 

testing, constricted coefficients PSO works better for SIAM function Inertia 

weighted PSO works better for Rosenbrock function. 
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Background: 

1. Introduction  

First we give some related concepts and philosophies about PSO which stands for 

particle swarm optimization. It is a computational optimization method which 

improves the candidate solutions iteratively with regard to a given measure. PSO 

optimizes a problem by having a bunch of candidate solutions, which are called 

particles, and moving these particles around in the search-space according to given 

formulae with respect to the particle's position and velocity. Each particle's 

movement is influenced by its local best position and it is led to the best known 

positions in the search area, which are replaced by some better positions that are 

found by other particles. It is expected to move the swarm to the best solutions. 

 

PSO is originally attributed to Kennedy and Eberhart [1] and was first pointed out 

to simulate social behavior[3] as a stylized representation of the movement of 

organisms in a bird flock or fish school. This algorithm was simplified and was 

observed to achieve optimization. PSO is a metaheuristic as it makes few or no 

assumptions about the optimization problem and can search a good amount of 

candidate solutions，whereas PSO does not guarantee to find an optimal solution. 

What is more particular is that PSO does not use the gradient of the problem, 

which means that PSO does not require the optimization problem to be 

differentiable as is required by standard methods such as gradient descent or quasi-

newton methods. Therefore PSO can also be used on optimization problems that 

are partially irregular. The above are some characters and advantages of PSO over 

other methods.  
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In our implementation, we used the original PSO, inertia weighted PSO and 

constricted coefficient PSO respectively to solve the test problems which include 

2D SIAM function, 2D Rosonbrock function and high Dimensional Rosonbrock 

function.  During the process of using these three methods, we found that each 

method has its own advantages and disadvantages. Further analysis and 

comparisons about these three methods will be given in the following of this report. 

Finally, we managed to develop another kind of PSO scheme, which is called 

logitPSO to solve these functions and got satisfied results. We will also give some 

details about this improved PSO method later. 

 

The outline of this report is as follows: we will first describe the original PSO, 

inertia weighted PSO and constricted coefficient PSO briefly. After comparing the 

limitation of each method, we will then give the derived logitPSO algorithm. 

Further illustrative examples will be given, followed which we give the 

conclusions and discussions finally.  

2. Original PSO  

PSO consists of a swarm of particles each of which resides at a position in the 

search space. The fitness of each particle represents the quality of its position. The 

particles fly over the search space with a certain velocity. Both direction and speed 

of each particle are influenced by its own best position found so far.  They are also 

influenced by the best solution that was found so far by its neighbors. However, 

PSO does not guarantee an optimal solution is ever found. In order to describe the 

original PSO, we use the following notations: 
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x := position;   := velocity;  p := best position that it has found so far 

g := the best position that has been found so far in its neighborhood 

U(0,c1) is a random vector uniformly distributed in [0,c1]  

≈ denotes the element-wise multiplication operator 

The description of the original PSO can be stated as: 

a) Randomly initialize particle positions and velocities 

b) While not terminate 

i) For each particle i :  

� Evaluate the desired optimization fitness function 

� Compare it with its local best (pBest), update if necessary 

� Compare it with the global best (gBest), update if necessary 

ii) For each particle, update its velocity and position: 

 

     

 

Note that higher acceleration coefficients result in less stable systems where  the 

velocity has a tendency to explode. This is one disadvantage of this algorithm. 

Second, limiting the velocity does not necessarily prevent particles from leaving 

the search space, nor does it help to guarantee convergence. Another is that the 
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velocity is usually kept within the range ( ). One key of this algorithm is that 

the position must be usually kept within the range.  

2.  Inertia weighted PSO 

The concept of an inertia weight was developed to better control exploration and 

exploitation. The aim of inertia weight was to be able to control the exploration 

mechanism and eliminate the need for . The inclusion of an inertia weight in 

the PSO algorithm was first published in 1998. The inertia weight was successful 

in addressing first aim but could not completely eliminate the need of velocity 

clamping. The inertia weight (w) controls the momentum of the particle by 

weighting the contribution of the previous velocity. Equations (1) and (2) describe 

the velocity and position update equations with an inertia weight included.  

 

                         (1) 

                                                                                                 (2) 

 

This update rule allows for convergence without the use of velocity range ( ). 

Rule-of-thumb settings: ω = 0.7298and  =  = 1.49618 

3. Constricted coefficients PSO 

The constriction coefficient was introduced as an outcome of a theoretical analysis 

of swarm dynamics (Clerc and Kennedy 2002 ). Velocities are constricted, with the 

following change in the velocity update:  
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Convergence is guaranteed under the conditions that 

 

 

4.  Logistic-based constricted coefficients PSO 

After testing the Original PSO, Inertia weighted PSO and Constricted coefficients 

PSO algorithm, we found out that the algorithms have some drawback in the term 

of the converge. For the Original PSO, it considers 100% of Momentum 

component; the particles will continue their previous motion. In the early stage, the 

acceleration coefficients should be set sufficiently high, so the swarm could have 

enough energy to explore the search space. However, the velocity has a tendency 

to explode in the later stage because of higher acceleration coefficients result in 

less stable systems. In the other hand, if acceleration coefficients were set low in 

the beginning, particles move very slow which lead to the converge problem as 

well. To fix this problem, the Maximum of velocity has been proposed by the 

author. However, limiting the velocity does not necessarily prevent particles from 

leaving the search space, nor does it help to guarantee convergence. Because 

velocity only makes sense when we mean it in the right background and different 

problem have different scale. So only setting up the safe guard for the velocity still 

couldn’t overcome this drawback. 

 

About Inertia weighted PSO and Constricted coefficients PSO, the weighted 

coefficient or Constricted coefficient have been added in the original updating 

process. By setting the coefficient ω greater than one and less than zero, they both 
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discount the effect of momentum component so that the algorithm could converge 

given the large enough maximum iteration number set up. Eberhart and Shi also 

suggested decreasing ω over time (typically from 0.9 to 0.4) and thereby gradually 

changing from an exploration to exploitation so that the convergence of process 

could be fast in the later stage of the particles’ moving. In our testing study, we 

found out that the value of parameters in both Inertia weighted PSO and 

Constricted coefficients PSO should be wisely selected so as to have a decent 

result. (optimal solution). For both cases, the selection of the parameters is the 

problem dependent, which could lead to unstable result. 

 

Based on the analysis of different PSO algorithms and testing study, we proposed a 

novel PSO algorithm (logitPSO), which is variant algorithm of Constricted 

coefficients PSO with the sum of  1φ  and 2φ  fixed but their value change over time  

from a logistic function so that  particles are changing dramatically at certain small 

interval from an exploration to exploitation. 

 

The logit PSO was proposed as following: 

 

� Randomly initialize particle positions and velocities. (population size 

depends on the search space) 

� While not terminate (All particles are closed enough to the globel max or 

the maximum iteration has been reached) 

� For each particle i :  

� Evaluate the desired optimization fitness function 

� Compare it with its local best (pBest), update if necessary 

� Compare it with the global best (gBest), update if necessary 

� For each particle, update its velocity and position: 
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The constricted coefficient is defined as follow: 

 

 

Where                     and                        , and N is the maximum iteration number 

and k is the iteration number. 

 

Based on the nature of the logistic function which can be seen in the following 

graph 2φ  is relatively small in the first half stage of the whole process, in where the 

local component is dominating the whole update process and the algorithm is 

mainly about the exploration. When k is greater than our pre-set switch point, 2φ  is 

increasing dramatically and in this stage, in where the global component is 

dominating the whole update process and the algorithm is working on the 

exploitation. By designing the parameters changed over time based on the logistic 

function of guarantee maximum iteration number and its iteration number will 

guarantee the convergence of the algorithm. 
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Testing Study  

1. Two dimension SIAM function 

Here we test these four algorithms on two-dimensional SIAM function. The range 

is .  It is a multimodel function with 6 local minimums.  The optimal 

function value is  -1.864183379308362 

First, we used the original PSO to solve it and got the following results: 

  

  x   f 

0.5 4 (0.073989,  0.047033) -1.734773 

4 0.5 (0.072733,  0.046374) -1.734772 

0 2 (0.075191,  -0.093183) -1.864183 

2 0 (-0.023386,  0.047773) -1.861672 

2 2 (0.074477,  0.046680) -1.734773 

     Table I 
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From Table I, we see that when  and  the result is the best.  In this 

case, the algorithm puts more ‘efforts’ to find the global optimum.  

Then we use the Inertia weighted PSO to solve the same problem and got the result: 

weight c1=c2 x f No. of 

Iteration 

0.7298 1.49618 (0.073584629022878,   

0.046124034082284) 

-1.734773021811118 500 

0.5 1.49618 (0.022531759829990,   

0.005818958450126) 

-1.734773021811118 500 

0.7 1.49618 (0.027244766510358,   

-0.088923333425637) 

-1.864183379308362 500 

0.9 1.49618 (0.026328347338718,   

-0.049650109134200) 

-1.864183379307904 500 

 Table II 

From Table II, we learned that when weight=0.7, the results are better.  

The constricted coefficients PSO is employed to solve it again. Results are listed 

as: 

c1 c2 x f No. of 

Iteration 

1 4 (0.074587999105150 ，，，， 

  -0.092084380747153) 

-1.864183379308362 85 

2 3 (0.073584628703011 ，，，，   

0.046124034340407) 

-1.734773021811117 58 

3 2  (0.073589218892025 ，，，，  

0.046145655099420) 

-1.734771690319168 500 

4 1 (0.074876073508515 ，，，，   

0.019093728765458) 

-1.864183379245115 500 
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TableIII 

We got Table III without setting .  

Then we set  and got Table IV. 

c1 c2 x f No. of 

Iteration 

1 4 (0.046424363190564,   

0.043796115527356) 

-1.383690685967499 500 

2 3 (0.047075669674033,   

-0.042561737834101) 

-1.767801956648655 500 

3 2 (0.065607101979307,   

0.016740756647798) 

-1.516538889228189 500 

4 1 (0.073609844387129,   

0.045546011869654) 

-1.733878318501754 500 

Table IV 

As the end of this section, we use the improved logitPSO method and get optimal 

function value of -1.864183379308356 with optimal point (0.074617237633969, -

0.092086037908579) after 500 iterations.   
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2. Two Dimension Rosenbrock function  

 

Here we test these three algorithms on two-dimensional Rosenbrock function. The 

range is [-10, 10]^2 .  It is a unimodel function with just 1 local and 1 global 

minimum.  The optimal function value is 0 with the value of coordinate (1, 1). 

Original PSO: 

First, we used the original PSO to solve it and got the following results: 

C1 C2 x y f Steps 

0.001 0 1.848079 3.464551 0.960840 500 

0 0.001 1.055420 1.073297 0.168034 500 

0.001 0.001 0.943059 0.891614 0.003750 500 

0.001 0.002 1.011934 1.029707 0.003388 500 

0.002 0.001 1.114412 1.242337 0.013108 500 

Table V 

From Table V, we see that when .001 and the result c2 = 0.002 is the best. 

However, the convergence rate is very low.  
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About Inertia weighted PSO: 

w C1 C2 x y f Step

s 

0.3 1.4961

8 

1.49618 1.183961191953628 1.402429416456036 0.033885984204462 500 

0.3* 1.4961

8 

1.49618 1.050740930664612 1.104049930632629 0.002574646364804 500 

0.5 1.4961

8 

1.49618 2.316519516405876 5.368288395064672 1.733633993326170 500 

0.5* 1.4961

8 

1.49618 1.000000002032773 1.000000004192520 5.744383999612768e-

018 

500 

0.7298 1.4961

8 

1.49618 0.999996971969966 0.999994058449295 1.047999535255821e-

011 

500 

0.7298* 1.4961

8 

1.49618 1.000000221024119 1.000000443790460 4.915517809560085e-

014 

500 

0.9 1.4961

8 

1.49618 1.000417116486312 1.000833587998260 1.740532327878462e-

007 

500 

0.9* 1.4961

8 

1.49618 0.855483014525343 0.728477376134214 0.022023419836644 500 

Table VI 

Note: * represents the case of no using . 
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From Table VI, we can see that for Rosenbrock function, when ω = 0.5,  =  = 

0.49618 is the best, and even better than Rule-of-thumb settings: ω = 0.7298 and 

 =  = 1.49618. So, we can say the selection of parameters is problem 

dependent. 

And we also can see that when choosing an appropriate ω, no using of  is 

better than using of . 

However, the convergence rates of both using of  and no using of  are 

low. 

 

 

  Constricted coefficients PSO: 

C1 C2 x y f Steps 

1 4 0.2074 0.0393 0.6296 96 

1* 4 0.3522 0.1173 0.4242 61 

2 8 1.4179 2.0114 0.1747 500 

2* 8 2.4258 5.8853 2.0330 44 

3 12 1.5179 2.3042 0.2682 500 

3* 12 1.3112 1.7205 0.0970 37 

Note: * represents the case of  no using . 

Table VII 

From Table VII, we can see that by using Constricted coefficients PSO algorithm, 

the convergence rate of no using  is much higher than that of using . 
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3. High-D Rosonbrock function  

We further consider testing all the PSO algorithms on the Generalized Rosenbrock 

function, which is defined as following: 

 

Difficulty level of the testing function is defined by the formula )ln(σ− , where σ  is 

the probability of success by randomly choosing a position in the search space. 

 

 

Rosenbrock Function is represented here on 2]10,10[− . There is a barely noticeable 

global minimum at (1, 1). For the majority of optimization algorithms it is difficult 

to find the global minimum, and PSO in its initial versions and also our proposed 

version are no exception when the dimension becomes larger. 
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Then we checked the difficulty given from the table at Page 57 Particle Swarm 

Optimization Maurice Clerc, 2005. It shows as following: 

 

 

We can see that t the evolution of the difficulty according to the dimensionality of 

the problem increases is almost linear. However, because Difficulty level of the 

testing function is defined by the formula )ln(σ− ,  The true difficulty thus increases 

exponentially. 

 

On the 5-dimensiton Rosenbrock testing function: 

 

  dimension Value of Object 

function 

Position attained the 

minimum 

converge 

oPSO  5D 0.00027224 (1.0003,1.0002,1.0005,1.0002,   

0.9990) 

500* 

wPSO 5D 1.53E-14  (1.0000    1.0000    1.0000    

1.0000    1.0000 

500* 

ccPSO 5D 1.1515 (0.8090    0.6571    0.4367    

0.1899    0.0217) 

500* 

logitPSO 5D 6.57E-05 (1.0009    1.0018    1.0035    

1.0070    1.0141) 

440 
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* Indicates the maximum iteration number has been reached. 

 

We found out that Inertia weighted PSO has the best result among all the 

algorithms, followed by our logitPSO, Constricted coefficients PSO and the 

original PSO. 

On the 5-dimensiton Rosenbrock testing function: 

 

 

  dimension Value of Object 

function 

converge 

oPSO  10D 1.786600 500* 

wPSO 10D 0.047223 500* 

ccPSO 10D 0.467570 500* 

logitPSO 10D 0.00098987 459 

* Indicates the maximum iteration number has been reached. 

 

We found out that our logitPSO has the best result among all the algorithms, 

followed by our Inertia weighted PSO, logitPSO, Constricted coefficients PSO and 

the original PSO. 

 

 

Conclusion  

We have studies the particle swarm optimization algorithm and other improved 

versions. Based on our analysis and understanding of PSO, we developed a novel 

algorithm which tried to overcome the problem of the stable  velocity letting the 

parameters changed by logistic function over the time. In our study, we found out 

that selection of the parameters is problem-dependent, which is crucial to the 
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behavior of the algorithm. We had different result by setting up different parameter. 

Secondly, we tried to develop a novel PSO algorithm, However, Results are hard 

to compare due to the stochastic result. Each time the program gave us the different 

result for the large dimension problem, which indicates that the population size is 

not large enough.  We learnt that high dimension optimization problem is hard to 

solve. Because when search space is huge, PSO loses its power given a limit 

population size. In our testing, ccPSO works better for SIAM function wPSO 

works better for Rosenbrock function. 
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