

- 1. Evaluate the following series exactly.
 - (a) $\sum_{n=5}^{\infty} \left(\frac{1}{3}\right)^n$
 - (b) $1 + 3 + \frac{3^2}{2!} + \frac{3^3}{3!} + \frac{3^4}{4!} + \cdots$
- 2. Find the first four non-zero terms in the Taylor expansion of f(x) = cosx about $x = \pi/4$.
- 3. (a) Find the first four non-zero terms in the Taylor expansion of $f(x) = \frac{1}{1-x}$ about x = 0.
- (b) Integrate the formula you found in part 3(a) to find the first four non-zero terms in the Taylor expansion of f(x) = ln(1-x) about x = 0.
- (c) Use the formula you found in part 3(b) to find an approximation of ln(.9).
- 4. Using the slope field below for the differential equation y' = 1 + xy, plot the solution that passes through the point (1,1).

- 5. Solve the initial value problem $y' = -x^2/y^2$, y(0) = 1 exactly.
- 6. (a) Write down the formula that is used in the Euler approximation to the solution of the initial value problem $y' = f(x, y), y(x_0) = y_0$.
- (b) Consider the initial value problem y' = x + 1, y(0) = 1. Use Euler's method with two steps to find an approximation to the solution of the problem at x = 0.2
- (c) Find the exact solution of the problem in part (b). What is y(.2)? What is the error in the approximation of part (b) (that is, $|y(x_2)-y_2|$)?
- 7. At time t = 0, a bottle of juice at $80^{\circ}F$ is placed in a mountain stream whose temperature is $50^{\circ}F$. After 4 minutes, its temperature is $72^{\circ}F$. Let H(t) denote the temperature of the juice at time t, in minutes.
- (a) Write a differential equation for H(t), using Newton's Law of Cooling.
 - (b) Solve the differential equation, showing the steps.
 - (c) When will the temperature of the juice reach $60^{\circ}F$?