MA2160 Sections 6 and 8 Exam 1
 February 11, 2004
 Do all problems
 Show all work

1. Suppose $\bar{u}=-1 \bar{i}-2 \bar{j}+2 \bar{k}, \bar{v}=\bar{i}+4 \bar{j}$, and $\bar{w}=4 \bar{i}+2 \bar{j}-4 \bar{k}$. Find the following.
(a) (4 points) $\|\bar{u}\|$,
(b) (4 points) a unit vector in the direction of \bar{u},
(c) (8 points) write \bar{v} as the sum of two vectors, one in the direction of \bar{u} and the other perpendicular to \bar{u},
(d) (8 points) $\bar{v} \times \bar{w}$,
(e) (8 points) the volume of the parallelepiped with adjacent sides \bar{u}, \bar{v}, and \bar{w}.
2. (12 points) Let P, Q, and R be three points with Cartesian coordinates $(5,-2,0),(-2,2,-1)$, and $(3,2,-4)$. Find an equation of the plane containing P, Q, and R .
3. (12 points) An airplane is heading west at an airspeed of $400 \mathrm{~km} / \mathrm{hr}$, but there is a wind blowing from the southwest at $30 \mathrm{~km} / \mathrm{hr}$. Set up a coordinate system so that the x-axis points east. Find the vector which represents the velocity of the plane relative to the ground.
4. Evaluate the following integrals.
(a) (6 points) $\int\left(x^{3}+2 x+\sin x\right) d x$,
(b) (6 points) $\int x e^{2 x} d x$,
(c) $(6$ points $) \int \frac{x+3}{x^{3}+3 x^{2}+2 x} d x$,
(d) $(6$ points $) \int \frac{1}{4+x^{2}} d x$.
5. (8 points) Evaluate the definite integral $\int_{0}^{1} x^{2} e^{\left(x^{3}+5\right)} d x$ exactly.
6. Consider the definite integral $\int_{0}^{4} x^{2} d x$.
(a) (6 points) Find $\operatorname{LEFT}(2)$, $\operatorname{RIGHT}(2)$, and $\operatorname{TRAP}(2)$.
(b) (4 points) Evaluate the integral exactly.
(c) (2 points) Which of the answers in part (a) is most accurate?
