3521 Fall 2010 R01 & R02 Multiple Choice Section of Final

Out[4]=

(1) The solution of y' - y = x is

Select the correct answer.

- (a) $y = -x 1 + ce^{-x}$
- (b) $y = x 1 + ce^{-x}$
- (c) $y = x 1 + ce^x$
- (d) $y = -x + 1 + ce^x$
- (e) $y = -x 1 + ce^x$
- (2) The solution of $y \sec^2 x dx + \tan x dy = 0$ is Select the correct answer.
 - (a) $y \tan x$
 - (b) $y \cot x$
 - (c) $y \tan x = c$
 - (d) $y \cot x = c$
 - (e) $y \cot x c$
- (3) The solution of y'' 6y' + 9y = 0 is

Select the correct answer.

- (a) $y = c_1 e^{3x} + c_2 x e^{3x}$
- (b) $y = c_1 e^{-6x} + c_2 e^{-3x}$
- (c) $y = c_1 e^{(7+\sqrt{13})x/2} + c_2 e^{(7-\sqrt{13})x/2}$
- (d) $y = c_1 e^{7x/2} \cos(\sqrt{13}x/2) + c_2 e^{7x/2} \sin(\sqrt{13}x/2)$
- (e) $y = c_1 e^{-3x} + c_2 x e^{-3x}$

(4) The solution of y'' - 4y' + 13y = 0 is Select the correct answer.

(a)
$$y = c_1 e^{-2x} \cos(3x) + c_2 e^{2x} \sin(3x)$$

(b)
$$y = c_1 e^{-2x} \cos(3x) + c_2 e^{-2x} \sin(3x)$$

(c)
$$y = c_1 e^{2x} \cos(3x) + c_2 e^{2x} \sin(3x)$$

(d)
$$y = c_1 e^{2x} + c_2 e^{2x}$$

(e)
$$y = c_1 \cos(3x) + c_2 \sin(3x)$$

(5) A 1-kilogram mass is hung on a spring with a spring constant of 4N/m. The mass spring system is then put into motion in a medium offering a damping force numerically equal to four times the velocity. If the mass is pulled down 10 centimeters from equilibrium and released, and a forcing function equal to $2e^{-3t}$ is applied to the system, the initial value problem describing the position, x(t), of the mass at time t is

Select the correct answer.

(a)
$$x'' - 4x' + 4x = 2e^{-3t}$$
, $x(0) = .1$, $x'(0) = 0$

(b)
$$x'' + 4x' + 4x = 2e^{-3t}$$
, $x(0) = .1$, $x'(0) = 0$

(c)
$$x'' - 4x' + 4x = 2e^{-3t}$$
, $x(0) = 10$, $x'(0) = 0$

(d)
$$x'' + 4x' + 4x = 2e^{-3t}$$
, $x(0) = 10$, $x'(0) = 0$

(e)
$$x'' + 4x = 4 + 2e^{-3t}$$
, $x(0) = 10$, $x'(0) = 0$

(6) In the previous problem, the solution for the position, x(t), is Select the correct answer.

(a)
$$x = 2.2e^{-2t} - 1.9te^{-2t} + 2e^{-3t}$$

(b)
$$x = 2.2e^{-2t} + 1.9te^{-2t} + 2e^{-3t}$$

(c)
$$x = 2.2e^{-2t} - 1.9te^{-2t} - 2e^{-3t}$$

(d)
$$x = 1.9e^{-2t} + 2.2te^{-2t} + 2e^{-3t}$$

(e)
$$x = -1.9e^{-2t} + 2.2te^{-2t} + 2e^{-3t}$$

- (7) The solution of y' + y = x is Select the correct answer.
 - (a) $y = x 1 + ce^x$
 - (b) $y = -x + 1 + ce^x$
 - (c) $y = -x 1 + ce^x$
 - (d) $y = -x 1 + ce^{-x}$
 - (e) $y = x 1 + ce^{-x}$
- (8) The solution of $y \cos x dx + \sin x dy = 0$ is Select the correct answer.
 - (a) $y \sin x$
 - (b) $y \cos x$
 - (c) $y \sin x = c$
 - (d) $y \cos x = c$
 - (e) $y\cos x c$
- The solution of y'' + 4y' 5y = 0 is Select the correct answer.
 - (a) $y = c_1 e^{-x} + c_2 e^{5x}$
 - (b) $y = c_1 e^x + c_2 e^{5x}$
 - (c) $y = c_1 e^x + c_2 e^{-5x}$
 - (d) $y = c_1 e^{-x} + c_2 x e^{-5x}$
 - (e) $y = c_1 e^{2x} + c_2 e^{3x}$
- (10) Two linearly independent solutions of the differential equation y'' 6y' + 25y = 0 are Select the correct answer.
 - (a) $y_1 = e^{3x}, y_2 = e^{4x}$
 - (b) $y_1 = e^{-3x}$, $y_2 = e^{-4x}$
 - (c) $y_1 = e^{-3x}\cos(4x)$, $y_2 = e^{-3x}\sin(4x)$
 - (d) $y_1 = e^{3x} \cos(4x), y_2 = e^{3x} \sin(4x)$
 - (e) $y_1 = e^{4x}\cos(3x)$, $y_2 = e^{4x}\sin(3x)$

- (11) The solution of y'' 6y' + 13y = 0 is Select the correct answer.
 - (a) $y = c_1 e^{-3x} \cos(2x) + c_2 e^{3x} \sin(2x)$
 - (b) $y = c_1 e^{-3x} \cos(2x) + c_2 e^{-3x} \sin(2x)$
 - (c) $y = c_1 e^{3x} \cos(2x) + c_2 e^{3x} \sin(2x)$
 - (d) $y = c_1 e^{3x} + c_2 e^{3x}$
 - (e) $y = c_1 \cos(2x) + c_2 \sin(2x)$
- (12) The correct form of the particular solution of $y'' 3y' + 2y = e^x$ is Select the correct answer.
 - (a) $y_p = Ax^2e^x$
 - (b) $y_p = Ax^3e^x$
 - (c) $y_p = Ae^x$
 - (d) $y_p = Axe^x$
 - (e) none of the above
- (13) The solution of the differential equation y' = xy is Select the correct answer.
 - (a) $y = ce^x$
 - (b) $y = ce^{x^2}$
 - (c) $y = c + e^x$
 - (d) $y = ce^{x^2/2}$
 - (e) $y = c + e^{x^2/2}$
- (14) The solution of (x + 2y)dx + ydy = 0 is Select the correct answer.
 - (a) $\ln x + \ln(y+x) = c$
 - (b) $\ln((y+x)/x) = c$
 - (c) $\ln(y+x) + x/(y+x) = c$
 - (d) $\ln(y+x) + x/(y+x) + c$
 - (e) it cannot be solved

- (15) The solution of the differential equation $y' y/x = y^2$ is Select the correct answer.
 - (a) y = c/x x/2
 - (b) y = 1/(c/x x/2)
 - (c) $y = (cx x \ln x)$
 - (d) $y = 1/(cx x \ln x)$
 - (e) $y = 1 + ce^x$
- (16) Solve the problem y' = (x+1)y, y(0) = 1 numerically for y(0.2) using h = 0.1. Select the correct answer.
 - (a) 1.1
 - (b) 1.11
 - (c) 1.2
 - (d) 1.21
 - (e) 1.221
- (17) A particular solution of the differential equation $y'' 2y' + y = e^x$ is Select the correct answer.
 - (a) $y_p = x^2 e^x / 2$
 - (b) $y_p = xe^x/2$
 - (c) $y_p = xe^x$
 - (d) $y_p = e^x$
 - (e) $y_p = e^{-x}/4$
- Without solving for the undetermined coefficients, the correct form of a particular solution of the differential equation $y'' + 4y' + 5y = e^{-2x} \cos x$ is Select the correct answer.
 - (a) $y_p = Ae^{-2x}\cos x$
 - (b) $y_p = Ae^{-2x}\cos x + Be^{-2x}\sin x$
 - (c) $y_p = Ae^{-2x}\sin x$
 - (d) $y_p = Axe^{-2x}\cos x + Bxe^{-2x}\sin x$
 - (e) $y_p = Axe^{-2x}\cos x + Be^{-2x}\sin x$

- (19) The solution of the differential equation $x^2y'' + 3xy' + y = 0$ is Select the correct answer.
 - (a) $y = c_1 x^{-1} + c_2 x^{-1} \ln x$
 - (b) $y = c_1 x^{-1} + c_2 x^{-2}$
 - (c) $y = c_1 x^{(-3+\sqrt{5})/2} + c_2 x^{(-3-\sqrt{5})/2}$
 - (d) $y = c_1 x + c_2 x \ln x$
 - (e) $y = c_1 x + c_2 x^2$
- (20) Two linearly independent solutions of the differential equation y'' 4y' + 5y = 0 are Select the correct answer.
 - (a) $y_1 = e^x$, $y_2 = e^{5x}$
 - (b) $y_1 = e^{-x}$, $y_2 = e^{-5x}$
 - (c) $y_1 = e^{2x} \cos x$, $y_2 = e^{2x} \sin x$
 - (d) $y_1 = e^x \cos(2x), y_2 = e^x \sin(2x)$
 - (e) $y_1 = e^{-x}\cos(2x), y_2 = e^{-2x}\sin(2x)$
- (21) Two linearly independent solutions of the differential equation y'' + 6y' + 9y = 0 are Select the correct answer.
 - (a) $y_1 = e^{3x}$, $y_2 = xe^{3x}$
 - (b) $y_1 = e^{-3x}$, $y_2 = xe^{-3x}$
 - (c) $y_1 = e^{3x}$, $y_2 = e^{-3x}$
 - (d) $y_1 = e^{3x} \cos(x), y_2 = e^{3x} \sin(x)$
 - (e) $y_1 = e^{-3x}\cos(3x), y_2 = e^{-3x}\sin(x)$
- (22) The solution of the differential equation $x^2y'' 5xy' + 5y = 0$ is Select the correct answer.
 - (a) $y = c_1 x + c_2 x^5$
 - (b) $y = c_1 x^2 \cos(\ln x) + c_2 x^2 \sin(\ln x)$
 - (c) $y = c_1 x \cos(2 \ln x) + c_2 x \sin(2 \ln x)$
 - (d) $y = c_1 x^{(5+\sqrt{5})/2} + c_2 x^{(5-\sqrt{5})/2}$
 - (e) $y = c_1 e^{2x} \cos x + c_2 x e^{2x} \sin x$

- (23) A particular solution of the differential equation $y'' + 2y' 8y = e^{2x}$ is Select the correct answer.
 - (a) $y_p = xe^{2x}/6$
 - (b) $y_p = xe^{2x}/2$
 - (c) $y_p = x^2 e^{2x} / 6$
 - (d) $y_p = xe^{2x}$
 - (e) $y_p = e^{2x}$
- (24) A spring attached to the ceiling is stretched one foot by a four pound weight. The value of the Hooke's Law spring constant, k is

Select the correct answer.

- (a) 4 pounds per foot
- (b) 1/4 pound per foot
- (c) 1/4 foot pound
- (d) 4 foot pounds
- (e) none of the above
- (25) In the previous problem, if the mass is set in motion, the natural frequency, ω , is Select the correct answer.
 - (a) $4\sqrt{2}$ sec
 - (b) $4\sqrt{2} \sec^{-1}$
 - (c) 32 sec
 - (d) 32 sec^{-1}
 - (e) \sec^{-1}