- 1. Write $\frac{\partial r}{\partial x}$ in terms of polar coordinates?
- 2. Write $\frac{\partial u}{\partial x}$, expressed in terms of polar coordinates?
- 3. Write down the Laplacian of $u(r, \theta)$ in polar coordinates.
- 4. Consider the problem $r^2 \frac{\partial^2 u}{\partial r^2} + r \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial \theta^2} = 0$; $u(c, \theta) = f(\theta)$. Describe a physical situation having this as a mathematical model.
- 5. In the previous problem, separate variables using $u(r, \theta) = R(r)\Theta(\theta)$. What are the resulting differential equations and boundary conditions?
- 6. In the previous problem, what are the solutions of the eigenvalue problem. Is the eigenvalue problem a regular Sturm-Liouville problem?
- 7. In the three previous problems, what are the product solutions?
- 8. In the previous four problems, what is the infinite series solution of the problem $r^2 \frac{\partial^2 u}{\partial r^2} + r \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial \theta^2} = 0; u(c, \theta) = f(\theta)?$
- 9. What is the solution of the problem $r^2 R'' + rR' + \lambda R = 0$, R(0) = 0, R(1) = 0? Is this a regular Sturm-Liouville problem?
- 10. Write down the problem for the radial vibrations of a circular membrane of radius c, clamped along its circumference, with an initial displacement of f(r) and an initial velocity of zero.
- 11. In the previous problem, separate variables with u(r,t) = R(r)T(t). What are the resulting differential equations and boundary/initial conditions?
- 12. In the previous problem, what are the solutions of the eigenvalue problem? Is the problem a regular Sturm-Liouville problem?
- 13. In the previous three problems, what are the product solutions?
- 14. In the previous four problems, What is the infinite series solution of the problem for the radial vibrations of a circular membrane of radius c, clamped along its circumference, with an initial displacement of f(r) and an initial velocity of zero?
- 15. Write down the relationships between Cartesian and spherical coordinates.
- 16. In the previous problem, what is $\frac{\partial r}{\partial x}$, where r is the distance from the origin?
- 17. Write down the Laplacian of $u(r, \phi, \theta)$ in spherical coordinates.
- 18. The steady-state temperature distribution in a sphere of radius c is given by Laplace's equation in spherical coordinates. Assume that the temperature on the boundary is a given function, $f(\theta)$. Separate variables, using $u(r, \theta) = R(r)\Theta(\theta)$. What are the resulting differential equations and boundary conditions for R and Θ ?
- 19. In the previous problem, what are the solutions of the eigenvalue problem?
- 20. In the previous three problems, what is the infinite series solution of the original problem?

- 1. $\frac{\partial r}{\partial r} = \cos \theta$
- 2. $\frac{\partial u}{\partial x} = \cos\theta \frac{\partial u}{\partial r} \frac{\sin\theta}{r} \frac{\partial u}{\partial \theta}$
- 3. $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}$
- 4. Steady-state temperature distribution in a circular plate of radius c with specified temperature, f, along the boundary
- 5. $r^2 R'' + rR' \lambda R = 0$, R(0) is bounded, $\Theta'' + \lambda \Theta = 0$, $\Theta(0) = \Theta(2\pi)$
- 6. $\lambda = n^2$, $\Theta = c_n \cos(n\theta) + d_n \sin(n\theta)$, $n = 0, 1, 2, \dots$, no it is not regular

7.
$$u = c$$
 if $n = 0$, $u = r^n(c_n \cos(n\theta) + d_n \sin(n\theta))$ if $n = 1, 2, 3, ...$

- 8. $u = c_0 + \sum_{n=1}^{\infty} r^n (c_n \cos(n\theta) + d_n \sin(n\theta)), \text{ where } c_0 = \int_0^{2\pi} f(\theta) d\theta / (2\pi),$ $c_n = \int_0^{2\pi} f(\theta) \cos(n\theta) d\theta / (c^n \pi),$ $d_n = \int_0^{2\pi} f(\theta) \sin(n\theta) d\theta / (c^n \pi)$
- 9. R = 0; no, it is not regular

10.
$$a^2(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r}\frac{\partial u}{\partial r}) = \frac{\partial^2 u}{\partial t^2}$$
; $u(0,t)$ is bounded, $u(c,t) = 0$; $u(r,0) = f(r)$, $u_t(r,0) = 0$

- 11. $rR'' + R' + \lambda rR = 0$; R(0) is bounded, R(c) = 0; $T'' + \lambda a^2T = 0$; T'(0) = 0
- 12. $\lambda = z_n^2/c^2$; $R = J_0(z_n r/c)$, n = 1, 2, 3, ..., where $J_0(z_n) = 0$; no it is not regular

13.
$$u = J_0(z_n r/c) \cos(z_n a t/c)$$

14.
$$u = \sum_{n=1}^{\infty} a_n J_0(z_n r/c) \cos(z_n a t/c)$$
, where $a_n = 2 \int_0^c r J_0(z_n r/c) f(r) dr/(c^2 J_1^2(z_n))$

- 15. $x = r \cos \phi \sin \theta$, $y = r \sin \phi \sin \theta$, $z = r \cos \theta$, $r^2 = x^2 + y^2 + z^2$, $\tan \phi = y/x$, $\cos \theta = z/\sqrt{x^2 + y^2 + z^2}$
- 16. $\frac{\partial r}{\partial x} = \cos \phi \sin \theta$
- 17. $\frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 u}{\partial \phi^2} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{\cot \theta}{r^2} \frac{\partial u}{\partial \theta}$
- 18. $r^2 R'' + 2rR' \lambda R = 0$, $\sin \theta \Theta'' + \cos \theta \Theta' + \lambda \sin \theta \Theta = 0$, Θ is bounded for all θ
- 19. $\lambda = n(n+1), \Theta = P_n(\cos \theta), n = 1, 2, 3, \dots$
- 20. $u = \sum_{n=1}^{\infty} a_n r^n P_n(\cos \theta)$, where $a_n = (2n+1) \int_0^{\pi} f(\theta) P_n(\cos \theta) \sin \theta d\theta / (2c^n)$

- 1. Write $\frac{\partial r}{\partial u}$ in terms of polar coordinates?
- 2. Write $\frac{\partial u}{\partial u}$ in terms of polar coordinates?
- 3. Consider the problem $r^2 \frac{\partial^2 u}{\partial r^2} + r \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial \theta^2} = 0$, $u(1,\theta) = 0$, $u(2,\theta) = f(\theta)$, u(r,0) = 0, $u(r,\pi/2) = 0$. Describe a physical situation having this as a mathematical model.
- 4. In the previous problem, separate variables using $u(r, \theta) = R(r)\Theta(\theta)$. What are the resulting differential equations and boundary conditions?
- 5. In the previous problem, what are the solutions of the eigenvalue problem. Is the eigenvalue problem a regular Sturm-Liouville problem?
- 6. In the three previous problems, what are the product solutions?
- 7. In the previous four problems, what is the infinite series solution of the problem $r^2 \frac{\partial^2 u}{\partial r^2} + r \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial \theta^2} = 0; u(1,\theta) = 0, u(2,\theta) = f(\theta); u(r,0) = 0, u(r,\pi/2) = 0?$
- 8. Write down the two dimensional heat equation in polar coordinates.
- 9. What is the solution of the problem $r^2 R'' + rR' + \lambda R = 0$, R(1) = 0, R(2) = 0? Is this a regular Sturm-Liouville problem?
- 10. Write down the problem for the steady-state temperature in a circular cylinder of radius 1 and height 4, with a temperature of zero at z = 0 and at r = 1, and a constant temperature, u_0 , at z = 4.
- 11. In the previous problem, separate variables with u(r, z) = R(r)Z(z). What are the resulting differential equations and boundary conditions?
- 12. In the previous problem, what are the solutions of the eigenvalue problem? Is the problem a regular Sturm-Liouville problem?
- 13. In the previous three problems, what are the product solutions?
- 14. In the previous four problems, What is the infinite series solution of the problem for the steady-state temperature in a circular cylinder of radius 1 and height 4, with a temperature of zero at z = 0 and at r = 1, and a constant temperature, u_0 , at z = 4?
- 15. Write down the relationships between Cartesian and spherical coordinates.
- 16. Write $\frac{\partial r}{\partial u}$ in terms of spherical coordinates?
- 17. Consider the steady-state temperature distribution, $u(r, \theta)$, in a uniform spherical mass of radius 5 with the temperature given as a function, $f(\theta)$ on the boundary. Write down the boundary value problem that models this situation.
- 18. In the previous problem, separate variables, using $u(r, \theta) = R(r)\Theta(\theta)$. What are the resulting differential equations and boundary conditions?
- 19. In the previous problem, what are the solutions of the eigenvalue problem?
- 20. In the previous three problems, what is the infinite series solution of the problem for the steady-state temperature distribution, $u(r, \theta)$, in a uniform spherical mass of radius 5 with the temperature given as a function, $f(\theta)$ on the boundary?

- 1. $\frac{\partial r}{\partial y} = \sin \theta$
- 2. $\frac{\partial u}{\partial y} = \sin \theta \frac{\partial u}{\partial r} + \frac{\cos \theta}{r} \frac{\partial u}{\partial \theta}$
- 3. Steady-state temperature distribution in a quarter circular annulus of inner radius 1 and outer radius 2 with zero temperature at r = 1, $\theta = 0$, and $\theta = \pi/2$, and fixed temperature $f(\theta)$ at r = 2

4.
$$r^2 R'' + rR' - \lambda R = 0, R(1) = 0, \Theta'' + \lambda \Theta = 0, \Theta(0) = 0, \Theta(\pi/2) = 0$$

5.
$$\lambda = 4n^2$$
, $\Theta = \sin(2n\theta)$, $n = 1, 2, 3, \dots$; yes, it is regular

6.
$$u = (r^{2n} - r^{-2n})\sin(2n\theta)$$

7.
$$u = \sum_{n=1}^{\infty} c_n (r^{2n} - r^{-2n}) \sin(2n\theta)$$
, where $c_n = 4 \int_0^{\pi/2} f(\theta) \sin(2n\theta) d\theta / ((2^{2n} - 2^{-2n})\pi)$

8.
$$k\left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r}\frac{\partial u}{\partial r} + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2}\right) = \frac{\partial u}{\partial t}$$

9.
$$\lambda = (n\pi/\ln 2)^2$$
, $R = \sin(n\pi\ln r/\ln 2)$, $n = 1, 2, 3, \dots$, yes, it is regular

10.
$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial z^2} = 0, u(1,z) = 0, u(r,0) = 0, u(0,z)$$
 is bounded, $u(r,4) = u_0$

11. $rR'' + R' + \lambda rR = 0$, R(0) is bounded, R(1) = 0, $Z'' - \lambda Z = 0$, Z(0) = 0

12.
$$\lambda = z_n^2$$
, $R = J_0(z_n r)$, $n = 1, 2, 3, ...$, where $J_0(z_n) = 0$; no, it is not regular.

13.
$$u = J_0(z_n r) \sinh(z_n z)$$

14.
$$u = \sum_{n=1}^{\infty} c_n J_0(z_n r) \sinh(z_n z)$$
, where $c_n = u_0 \int_0^1 r J_0(z_n r) dr / (\sinh(4z_n) \int_0^1 r J_0^2(z_n r) dr)$

15. $x = r \cos \phi \sin \theta$, $y = r \sin \phi \sin \theta$, $z = r \cos \theta$, $r^2 = x^2 + y^2 + z^2$, $\tan \phi = y/x$, $\cos \theta = z/\sqrt{x^2 + y^2 + z^2}$

16.
$$\frac{\partial r}{\partial u} = \sin \phi \sin \theta$$

- 17. $\frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{\cot \theta}{r^2} \frac{\partial u}{\partial \theta} = 0; \ u(5,\theta) = f(\theta)$
- 18. $r^2 R'' + 2rR' \lambda R = 0$; R(0) is bounded; $\sin(\theta)\Theta'' + \cos(\theta)\Theta' + \lambda\sin(\theta)\Theta = 0$; Θ is bounded everywhere

19.
$$\lambda = n(n+1), \Theta = P_n(\cos \theta), n = 1, 2, 3, \dots$$

20.
$$u = \sum_{n=1}^{\infty} a_n r^n P_n(\cos \theta)$$
, where $a_n = (2n+1) \int_0^{\pi} f(\theta) P_n(\cos \theta) \sin \theta d\theta / (5^n 2)$

- 1. In changing from Cartesian to polar coordinates, $\frac{\partial r}{\partial x}$ is Select the correct answer.
 - (a) $\sin \theta$
 - (b) $\cos\theta$
 - (c) $\sin \theta / r$
 - (d) $\cos \theta / r$
 - (e) $-\sin\theta/r$
- 2. In changing from Cartesian to polar coordinates, $\frac{\partial u}{\partial x}$ is Select the correct answer.
 - (a) $\sin\theta \frac{\partial u}{\partial r} + \cos\theta \frac{\partial u}{\partial \theta}/r$
 - (b) $\sin\theta \frac{\partial u}{\partial r} \cos\theta \frac{\partial u}{\partial \theta} / r$
 - (c) $\cos\theta \frac{\partial u}{\partial r} \sin\theta \frac{\partial u}{\partial \theta}/r$
 - (d) $\cos\theta \frac{\partial u}{\partial r} + \cos\theta \frac{\partial u}{\partial \theta}/r$
 - (e) $\sin\theta \frac{\partial u}{\partial r} + \cos\theta \frac{\partial u}{\partial \theta}$
- 3. The Laplacian in polar coordinates is

- (a) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r^2} \frac{\partial u}{\partial r} + \frac{1}{r} \frac{\partial^2 u}{\partial \theta^2}$
- (b) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}$
- (c) $\frac{\partial^2 u}{\partial r^2} \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}$
- (d) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}$
- (e) $\frac{\partial^2 u}{\partial r^2} \frac{1}{r} \frac{\partial u}{\partial r} \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}$
- 4. Consider the steady-state temperature distribution in a circular disc of radius c centered at the origin, with temperature given as a function, $f(\theta)$ on the boundary. The mathematical model of this situation is

- (a) $\frac{\partial^2 u}{\partial r^2} \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, \ u(c,\theta) = f(\theta)$
- (b) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, \ u(c,\theta) = f(\theta)$
- (c) $\frac{\partial^2 u}{\partial r^2} \frac{1}{r} \frac{\partial u}{\partial r} \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, \ u(c,\theta) = f(\theta)$
- (d) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r^2} \frac{\partial u}{\partial r} + \frac{1}{r} \frac{\partial^2 u}{\partial \theta^2} = 0, \ u(c,\theta) = f(\theta)$
- (e) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, \ u(c,\theta) = f(\theta)$

5. In the previous problem, separate variables using $u(r, \theta) = R(r)\Theta(\theta)$. The resulting problems are

Select the correct answer.

(a) $r^2 R'' + rR' - \lambda R = 0$, $\Theta'' - \lambda \Theta = 0$, $\Theta(\theta) = \Theta(\theta + 2\pi)$ (b) $r^2 R'' + rR' + \lambda R = 0$, $\Theta'' + \lambda \Theta = 0$, $\Theta(\theta) = \Theta(\theta + 2\pi)$ (c) $r^2 R'' + rR' - \lambda R = 0$, $\Theta'' + \lambda \Theta = 0$, $\Theta(\theta) = \Theta(\theta + 2\pi)$ (d) $r^2 R'' + rR' - \lambda R = 0$, $\Theta'' + \lambda \Theta = 0$, $\Theta(\theta) = \Theta(\theta + \pi)$ (e) $r^2 R'' + rR' + \lambda R = 0$, $\Theta'' + \lambda \Theta = 0$, $\Theta(\theta) = \Theta(\theta + \pi)$

- 6. In the previous problem, the solution of the eigenvalue problem is Select the correct answer.
 - (a) $\lambda = n, \, \Theta = c_n \cos(n\theta) + d_n \sin(n\theta), \, n = 0, 1, 2, \dots$
 - (b) $\lambda = n^2$, $\Theta = c_n \cos(n\theta) + d_n \sin(n\theta)$, n = 0, 1, 2, ...
 - (c) $\lambda = n^2$, $\Theta = c_n \cos(n\theta) + d_n \sin(n\theta)$, n = 1, 2, 3, ...
 - (d) $\lambda = n^2, R = r^n, n = 0, 1, 2, \dots$
 - (e) $\lambda = n, R = r^n, n = 0, 1, 2, \dots$
- 7. In the three previous problems, the product solutions are Select the correct answer.
 - (a) $u_n = (a_n r^n + b_n r^{-n})(c_n \cos(n\theta) + d_n \sin(n\theta)), n = 0, 1, 2, \dots$
 - (b) $u_n = r^n (c_n \cos(n\theta) + d_n \sin(n\theta)), n = 1, 2, 3, ...$
 - (c) $u_n = r^n (c_n \cos(n\theta) + d_n \sin(n\theta)), n = 0, 1, 2, ...$
 - (d) $u_n = r^n (c_n e^{n\theta} + d_n e^{-n\theta}), n = 0, 1, 2, \dots$
 - (e) $u_n = r^n (c_n e^{n\theta} + d_n e^{-n\theta}), n = 1, 2, 3, \dots$
- 8. In the previous four problems, the infinite series solution of the original problem is $u = A_0 + \sum_{n=1}^{\infty} r^n (A_n \cos(n\theta) + B_n \sin(n\theta))$ where Select all that apply.
 - (a) $A_0 = \int_0^{2\pi} f(\theta) d\theta / (2\pi)$ (b) $A_n = \int_0^{2\pi} f(\theta) \sin(n\theta) d\theta / (c^n \pi)$ (c) $A_n = \int_0^{2\pi} f(\theta) \cos(n\theta) d\theta / (c^n \pi)$ (d) $B_n = \int_0^{2\pi} f(\theta) \sin(n\theta) d\theta / (c^n \pi)$
 - (e) $B_n = \int_0^{2\pi} f(\theta) \cos(n\theta) d\theta / (c^n \pi)$

9. The solution of $r^2 R'' + r R' + \lambda R = 0$, R(0) = 0, R(1) = 0 is

Select the correct answer.

- (a) $\lambda = n\pi, R = \sin(n\pi \ln r)$
- (b) $\lambda = (n\pi)^2, R = \sin(n\pi \ln r)$
- (c) $\lambda = (n\pi)^2$, $R = \sin(n\pi \ln r) + \cos(n\pi \ln r)$
- (d) $\lambda = n\pi$, $R = \sin(n\pi \ln r) \cos(n\pi \ln r)$
- (e) none of the above
- 10. Consider the steady-state temperature distribution in a circular cylinder of radius 2 and height 3, with zero temperature at r = 2 and at z = 3 and a temperature of 10 at z = 0. The mathematical model for this problem is

Select the correct answer.

- (a) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \frac{\partial^2 u}{\partial z^2} = 0, \ u(2, z) = 0, \ u(r, 3) = 0, \ u(r, 0) = 10$ (b) $\frac{\partial^2 u}{\partial r^2} - \frac{1}{r} \frac{\partial u}{\partial r} - \frac{\partial^2 u}{\partial z^2} = 0, \ u(2, z) = 0, \ u(r, 3) = 0, \ u(r, 0) = 10$ (c) $\frac{\partial^2 u}{\partial r^2} - \frac{1}{r^2} \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial z^2} = 0, \ u(2, z) = 0, \ u(r, 3) = 0, \ u(r, 0) = 10$ (d) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial z^2} = 0, \ u(2, z) = 0, \ u(r, 3) = 0, \ u(r, 0) = 10$
- (e) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r^2} \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial z^2} = 0, u(2, z) = 0, u(r, 3) = 0, u(r, 0) = 10$
- 11. In the previous problem, after separating variables, the resulting problems are Select the correct answer.
 - (a) $rR'' R' + \lambda rR = 0$, R(0) is bounded, R(2) = 0, $Z'' + \lambda Z = 0$, Z(3) = 0(b) $rR'' + R' - \lambda rR = 0$, R(0) is bounded, R(2) = 0, $Z'' - \lambda Z = 0$, Z(3) = 0(c) $rR'' - R' - \lambda rR = 0$, R(0) is bounded, R(2) = 0, $Z'' - \lambda Z = 0$, Z(3) = 0(d) $rR'' + R' + \lambda rR = 0$, R(0) is bounded, R(2) = 0, $Z'' - \lambda Z = 0$, Z(3) = 0(e) $rR'' + R' + \lambda rR = 0$, R(0) is bounded, R(2) = 0, $Z'' + \lambda Z = 0$, Z(3) = 0

12. In the previous problem, the solution of the eigenvalue problem is Select the correct answer.

- (a) $\lambda = z_n^2/4$, where $J_0(z_n) = 0$; $R = J_0(z_n r/2)$
- (b) $\lambda = z_n^2$, where $J_0(z_n) = 0$; $R = J_0(z_n r)$
- (c) $\lambda = n\pi/9, Z = \cos(n\pi z/3)$
- (d) $\lambda = n^2 \pi^2 / 9, Z = \cos(n\pi z / 3)$
- (e) $\lambda = n^2 \pi^2 / 9, Z = \sin(n\pi z / 3)$

- 13. In the previous three problems, the product solutions are Select the correct answer.
 - (a) $u = J_0(n\pi r/3)\cos(n\pi z/3)$
 - (b) $u = J_0(n^2\pi^2 r/9)\cos(n\pi z/3)$
 - (c) $u = J_0(n^2 \pi^2 r/9) \sin(n\pi z/3)$
 - (d) $u = J_0(z_n r) \cosh(z_n(z-3))$
 - (e) $u = J_0(z_n r/2) \sinh(z_n(z-3)/2)$
- 14. In the previous four problems, the infinite series solution is (for certain values of the constants)

- (a) $u = \sum_{n=1}^{\infty} c_n J_0(n\pi r/3) \cos(n\pi z/3)$ (b) $u = \sum_{n=1}^{\infty} c_n J_0(n^2 \pi^2 r/9) \cos(n\pi z/3)$ (c) $u = \sum_{n=1}^{\infty} c_n J_0(n^2 \pi^2 r/9) \sin(n\pi z/3)$ (d) $u = \sum_{n=1}^{\infty} c_n J_0(z_n r/2) \sinh(z_n(z-3)/2)$ (e) $u = \sum_{n=1}^{\infty} c_n J_0(z_n r) \cosh(z_n(z-3))$
- 15. The relationships between Cartesian and spherical coordinates are Select all that apply.
 - (a) $r^2 = x^2 + y^2$
 - (b) $\tan \phi = y/x$
 - (c) $x = r \cos \phi \sin \theta$
 - (d) $y = r \cos \phi \cos \theta$
 - (e) $z = r \cos \theta$
- 16. When changing from Cartesian to spherical coordinates, $\frac{\partial r}{\partial z} =$ Select the correct answer.
 - (a) $\cos \phi$
 - (b) $\cos\theta$
 - (c) $\tan \theta$
 - (d) $\sin \phi$
 - (e) $\sin \theta$

17. When changing from Cartesian to spherical coordinates, $\frac{\partial \phi}{\partial x} =$ Select the correct answer.

- (a) $-\sin\phi/(r\sin\theta)$
- (b) $\sin \phi / (r \sin \theta)$
- (c) $-\cos\phi/(r\sin\theta)$
- (d) $\cos \phi / (r \cos \theta)$
- (e) $\sin \phi / (r \cos \theta)$

18. In the problem $\frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{\cot \theta}{r^2} \frac{\partial u}{\partial \theta} = 0$, separate variables, using $u(r, \theta) = R(r)\Theta(\theta)$. The resulting problems for R and Θ are

- (a) $r^2 R'' + 2rR' + \lambda R = 0$, R(0) is bounded; $\sin(\theta)\Theta'' + \cos(\theta)\Theta' + \lambda\sin(\theta)\Theta = 0$, Θ is bounded on $[0, \pi]$.
- (b) $r^2 R'' + 2rR' \lambda R = 0$, R(0) is bounded; $\sin(\theta)\Theta'' + \cos(\theta)\Theta' + \lambda\sin(\theta)\Theta = 0$, Θ is bounded on $[0, \pi]$.
- (c) $r^2 R'' + 2rR' \lambda R = 0$, R(0) is bounded; $\sin(\theta)\Theta'' + \cos(\theta)\Theta' \lambda\sin(\theta)\Theta = 0$, Θ is bounded on $[0, \pi]$.
- (d) $r^2 R'' 2rR' \lambda R = 0$, R(0) is bounded; $\sin(\theta)\Theta'' + \cos(\theta)\Theta' + \lambda\sin(\theta)\Theta = 0$, Θ is bounded on $[0, \pi]$.
- (e) $r^2 R'' + 2rR' \lambda R = 0$, R(0) is bounded; $\sin(\theta)\Theta'' \cos(\theta)\Theta' + \lambda\sin(\theta)\Theta = 0$, Θ is bounded on $[0, \pi]$.
- 19. In the previous problem, the solution of the eigenvalue problem is Select the correct answer.
 - (a) $\lambda = n(n+1), R = r^n, n = 1, 2, 3, \dots$
 - (b) $\lambda = n(n-1), R = r^{-n}, n = 1, 2, 3, \dots$
 - (c) $\lambda = n(n-1), \Theta = P_n(\cos \theta), n = 1, 2, 3, \dots$
 - (d) $\lambda = n(n+1), \Theta = P_n(\cos \theta), n = 1, 2, 3, \dots$
 - (e) $\lambda = n(n+1), \Theta = P_n(\sin \theta), n = 1, 2, 3, \dots$
- 20. In the previous two problems, the product solutions are Select the correct answer.
 - (a) $u = r^n P_n(\cos \theta)$
 - (b) $u = r^{-n} P_n(\cos \theta)$
 - (c) $u = r^n P_n(\sin \theta)$
 - (d) $u = r^{-n} P_n(\sin \theta)$
 - (e) none of the above

1. b 2. c 3. b 4. e 5. c 6. b 7. c 8. a, c, d 9. e 10. d 11. d 12. a 13. e 14. d 15. b, c, e 16. b 17. a 18. b 19. d 20. a

- 1. In changing from Cartesian to polar coordinates, $\frac{\partial r}{\partial y}$ is Select the correct answer.
 - (a) $\sin \theta$
 - (b) $\cos \theta$
 - (c) $\sin \theta / r$
 - (d) $\cos \theta / r$
 - (e) $-\sin\theta/r$
- 2. In changing from Cartesian to polar coordinates, $\frac{\partial u}{\partial y}$ is Select the correct answer.
 - (a) $\cos\theta \frac{\partial u}{\partial r} \sin\theta \frac{\partial u}{\partial \theta}/r$
 - (b) $\cos\theta \frac{\partial u}{\partial r} + \cos\theta \frac{\partial u}{\partial \theta}/r$
 - (c) $\sin\theta \frac{\partial u}{\partial r} + \cos\theta \frac{\partial u}{\partial \theta}$
 - (d) $\sin\theta \frac{\partial u}{\partial r} + \cos\theta \frac{\partial u}{\partial \theta}/r$
 - (e) $\sin\theta \frac{\partial u}{\partial r} \cos\theta \frac{\partial u}{\partial \theta}/r$
- 3. Consider the steady-state temperature distribution in a half circular disc of radius c centered at the origin, with temperature given as a function, $f(\theta)$ on the boundary r = c and zero on the boundaries $\theta = 0$ and $\theta = \pi$. The mathematical model of this situation is

- (a) $\frac{\partial^2 u}{\partial r^2} \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, \ u(c,\theta) = f(\theta), \ u(r,0) = 0, \ u(r,\pi) = 0$
- (b) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, \ u(c,\theta) = f(\theta), \ u(r,0) = 0, \ u(r,\pi) = 0$
- (c) $\frac{\partial^2 u}{\partial r^2} \frac{1}{r} \frac{\partial u}{\partial r} \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, \ u(c,\theta) = f(\theta), \ u(r,0) = 0, \ u(r,\pi) = 0$
- (d) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r^2} \frac{\partial u}{\partial r} + \frac{1}{r} \frac{\partial^2 u}{\partial \theta^2} = 0, \ u(c,\theta) = f(\theta), \ u(r,0) = 0, \ u(r,\pi) = 0$ (e) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, \ u(c,\theta) = f(\theta), \ u(r,0) = 0, \ u(r,\pi) = 0$
- 4. In the previous problem, separate variables using $u(r, \theta) = R(r)\Theta(\theta)$. The resulting problems are

- (a) $R'' + rR' r^2\lambda R = 0, \Theta'' + \lambda\Theta = 0, \Theta(0) = 0, \Theta(\pi) = 0$
- (b) $R'' + rR' + r^2\lambda R = 0, \Theta'' + \lambda\Theta = 0, \Theta(0) = 0, \Theta(\pi) = 0$
- (c) $r^2 R'' + rR' \lambda R = 0$, $\Theta'' \lambda \Theta = 0$, $\Theta(0) = 0$, $\Theta(\pi) = 0$
- (d) $r^2 R'' + rR' + \lambda R = 0, \ \Theta'' + \lambda \Theta = 0, \ \Theta(0) = 0, \ \Theta(\pi) = 0$
- (e) $r^2 R'' + rR' \lambda R = 0, \Theta'' + \lambda \Theta = 0, \Theta(0) = 0, \Theta(\pi) = 0$

- 5. In the previous problem, the solution of the eigenvalue problem is Select the correct answer.
 - (a) $\lambda = n^2, R = r^n, n = 0, 1, 2, \dots$
 - (b) $\lambda = n, R = r^n, n = 0, 1, 2, \dots$
 - (c) $\lambda = n, \Theta = c_n \cos(n\theta) + d_n \sin(n\theta), n = 0, 1, 2, \dots$
 - (d) $\lambda = n^2, \, \Theta = d_n \sin(n\theta), \, n = 1, 2, 3, \dots$
 - (e) $\lambda = n^2, \, \Theta = c_n \cos(n\theta), \, n = 0, 1, 2, \dots$
- 6. In the three previous problems, the product solutions are Select the correct answer.
 - (a) $u_n = r^n (c_n e^{n\theta} + d_n e^{-n\theta}), n = 0, 1, 2, ...$ (b) $u_n = r^n (c_n e^{n\theta} + d_n e^{-n\theta}), n = 1, 2, 3, ...$ (c) $u_n = r^n (c_n \cos(n\theta) + d_n \sin(n\theta)), n = 0, 1, 2, ...$ (d) $u_n = r^n \cos(n\theta), n = 0, 1, 2, ...$ (e) $u_n = r^n \sin(n\theta), n = 1, 2, 3, ...$
- 7. In the previous four problems, the infinite series solution of the original problem is $u = \sum_{n=1}^{\infty} r^n (A_n \cos(n\theta) + B_n \sin(n\theta))$ where Select all that apply.
 - (a) $A_n = \int_0^{2\pi} f(\theta) \cos(n\theta) d\theta / (c^n \pi)$ (b) $B_n = \int_0^{2\pi} f(\theta) \sin(n\theta) d\theta / (c^n \pi)$ (c) $B_n = \int_0^{2\pi} f(\theta) \cos(n\theta) d\theta / (c^n \pi)$ (d) $A_n = 0$
 - (e) $B_n = 0$
- 8. The two dimensional wave equation in polar coordinates is Select the correct answer.

$$\begin{aligned} \text{(a)} \quad a^2 \left(\frac{\partial^2 u}{\partial r^2} - \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} \right) &= \frac{\partial^2 u}{\partial t^2} \\ \text{(b)} \quad a^2 \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} - \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} \right) &= \frac{\partial^2 u}{\partial t^2} \\ \text{(c)} \quad a^2 \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} \right) &= \frac{\partial^2 u}{\partial t^2} \\ \text{(d)} \quad a^2 \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r^2} \frac{\partial u}{\partial r} + \frac{1}{r} \frac{\partial^2 u}{\partial \theta^2} \right) &= \frac{\partial^2 u}{\partial t^2} \\ \text{(e)} \quad a^2 \left(\frac{\partial^2 u}{\partial r^2} - \frac{1}{r^2} \frac{\partial u}{\partial r} + \frac{1}{r} \frac{\partial^2 u}{\partial \theta^2} \right) &= \frac{\partial^2 u}{\partial t^2} \end{aligned}$$

9. The solution of $r^2 R'' + rR' + \lambda R = 0$, R(1) = 0, R(2) = 0 is Select the correct answer.

(a) $\lambda = n\pi / \ln 2, R = \sin(n\pi \ln r / \ln 2)$

- (b) $\lambda = (n\pi/\ln 2)^2$, $R = \sin(n\pi\ln r/\ln 2)$
- (c) $\lambda = (n\pi/\ln 2)^2$, $R = \cos(n\pi \ln r/\ln 2)$
- (d) $\lambda = n\pi / \ln 2, R = \cos(n\pi \ln r / \ln 2)$
- (e) none of the above
- 10. Consider the vibrations of a circular membrane of radius 2, clamped along the circumference, with an initial displacement of $1 \sin(\pi r/2)$ and an initial velocity of zero. The mathematical model for this situation is

Select the correct answer.

- (a) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} = \frac{\partial^2 u}{\partial t^2}, \ u(2,t) = 0, \ u(r,0) = 1 \sin(\pi r/2), \ u_t(r,0) = 0$
- (b) $\frac{\partial^2 u}{\partial r^2} \frac{1}{r} \frac{\partial u}{\partial r} = \frac{\partial^2 u}{\partial t^2}, \ u(2,t) = 0, \ u(r,0) = 1 \sin(\pi r/2), \ u_t(r,0) = 0$
- (c) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} = -\frac{\partial^2 u}{\partial t^2}, u(2,t) = 0, u(r,0) = 1 \sin(\pi r/2), u_t(r,0) = 0$
- (d) $\frac{\partial^2 u}{\partial r^2} \frac{1}{r^2} \frac{\partial u}{\partial r} = -\frac{\partial^2 u}{\partial t^2}, \ u(2,t) = 0, \ u(r,0) = 1 \sin(\pi r/2), \ u_t(r,0) = 0$
- (e) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r^2} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial t^2}, u(2,t) = 0, u(r,0) = 1 \sin(\pi r/2), u_t(r,0) = 0$
- 11. In the previous problem, separate variables using u(r,t) = R(r)T(t). The resulting problems are

- (a) $rR'' + R' + r\lambda R = 0$, R(0) is bounded, R(2) = 0, $T'' \lambda T = 0$, T'(0) = 0
- (b) $rR'' + R' + r\lambda R = 0$, R(0) is bounded, R(2) = 0, $T'' + \lambda T = 0$, T'(0) = 0
- (c) $rR'' + R' r\lambda R = 0$, R(0) is bounded, R(2) = 0, $T'' + \lambda T = 0$, T'(0) = 0
- (d) $rR'' + R' + \lambda R = 0$, R(0) is bounded, R(2) = 0, $T'' + \lambda T = 0$, T'(0) = 0
- (e) $rR'' + R' + \lambda R = 0$, R(0) is bounded, R(2) = 0, $T'' \lambda T = 0$, T'(0) = 0
- 12. In the previous problem, the solution of the eigenvalue problem is Select the correct answer.
 - (a) $\lambda = n\pi$, $T = a_n \cos(n\pi t) + b_n \sin(n\pi t)$
 - (b) $\lambda = n^2 \pi^2$, $T = a_n \cos(n\pi t) + b_n \sin(n\pi t)$
 - (c) $\lambda = z_n^2/4$, where $J_0(z_n) = 0$, $R = J_0(z_n r/2)$
 - (d) $\lambda = z_n/2$, where $J_0(z_n) = 0$, $R = J_0(z_n r/2)$
 - (e) $\lambda = z_n^2$, where $J_0(z_n) = 0$, $R = J_0(z_n r)$

- 13. In the previous three problems, the product solutions are Select the correct answer.
 - (a) $u = J_0(z_n r/2)(a_n \cos(z_n t/2) + b_n \sin(z_n t/2))$
 - (b) $u = J_0(z_n r/2)a_n \cos(z_n t/2)$
 - (c) $u = J_0(z_n r/2) b_n \sin(z_n t/2)$
 - (d) $u = J_0(n\pi r)b_n \sin(n\pi t)$
 - (e) $u = J_0(n\pi r)a_n\cos(n\pi t)$
- 14. In the previous four problems, the infinite series solution of the original problem is (for certain values of the constants a_n and b_n)

- (a) $u = \sum_{n=1}^{\infty} a_n J_0(z_n r/2) \cos(z_n t/2)$ (b) $u = \sum_{n=1}^{\infty} b_n J_0(z_n r/2) \sin(z_n t/2)$ (c) $u = \sum_{n=1}^{\infty} b_n J_0(n\pi r) \sin(n\pi t)$ (d) $u = \sum_{n=1}^{\infty} a_n J_0(n\pi r) \cos(n\pi t)$ (e) $u = \sum_{n=1}^{\infty} J_0(z_n r/2)(a_n \cos(n\pi t) + b_n \sin(n\pi t))$
- 15. The equations relating Cartesian and spherical coordinates include Select all that apply.
 - (a) $y = r \cos \phi \cos \theta$
 - (b) $x = r \cos \phi \sin \theta$
 - (c) $r = x^2 + y^2 + z^2$
 - (d) $z = r \cos \theta$
 - (e) $\tan \phi = y/x$
- 16. In changing from Cartesian to spherical coordinates, $\frac{\partial r}{\partial x}$ becomes Select the correct answer.
 - (a) $\sin\phi\sin\theta$
 - (b) $\sin\phi\cos\theta$
 - (c) $\cos\phi\sin\theta$
 - (d) $\cos\phi\cos\theta$
 - (e) $\sin \phi$

- 17. In separating variables, using $u(r,\theta) = R(r)\Theta(\theta)$, in the equation $\frac{\partial^2 u}{\partial r^2} + \frac{2}{r}\frac{\partial u}{\partial r} + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2} + \frac{\cot \theta}{r^2}\frac{\partial u}{\partial \theta} = 0$, the resulting equation for R is Select the correct answer.
 - (a) $r^2 R'' + 2r R' \lambda R = 0$
 - (b) $r^2 R'' 2r R' \lambda R = 0$
 - (c) $rR'' + 2rR' \lambda rR = 0$
 - (d) $rR'' + 2R' \lambda rR = 0$
 - (e) $r^2 R'' 2rR' \lambda rR = 0$
- 18. Using the separation of the previous problem, the equation for Θ becomes Select the correct answer.
 - (a) $\Theta'' \lambda \Theta = 0$
 - (b) $\Theta'' + \lambda \Theta = 0$
 - (c) $\sin(\theta)\Theta'' + \cos(\theta)\Theta' + \lambda\sin(\theta)\Theta = 0$
 - (d) $\cos(\theta)\Theta'' \sin(\theta)\Theta' + \lambda\sin(\theta)\Theta = 0$
 - (e) $\sin(\theta)\Theta'' \cos(\theta)\Theta' + \lambda\sin(\theta)\Theta = 0$
- 19. In the previous problem, if we also require that Θ be bounded everywhere, the solution of the eigenvalue problem is

- (a) $\lambda = n(n+1), \Theta = P_n(\sin \theta), n = 1, 2, 3, \dots$
- (b) $\lambda = n(n-1), \Theta = \sin(n\theta), n = 1, 2, 3, ...$
- (c) $\lambda = n(n-1), \Theta = \cos(n\theta), n = 1, 2, 3, \dots$
- (d) $\lambda = n(n+1), \Theta = P_n(\cos \theta), n = 1, 2, 3, \dots$
- (e) $\lambda = n(n-1), \Theta = P_n(\sin \theta), n = 1, 2, 3, \dots$
- 20. In the previous three problems, the solution for R is Select the correct answer.
 - (a) $R = r^n$
 - (b) $R = r^{-n-1}$
 - (c) $R = c_1 r^n + c_2 r^{-n-1}$
 - (d) $R = c_1 r^n + c_2 r^{n+1}$
 - (e) $R = c_1 r^n + c_2 r^{n-1}$

- 1. a
- 2. d
- 3. e
- 4. e
- 5. d
- 6. e
- 7. b, d
- 8. c
- 9. b
- 10. a
- 11. b
- 12. c
- 13. b
- 14. a
- 15. b, d, e
- 16. c
- 17. a
- 18. c
- 19. d
- 20. c

- 1. Write $\frac{\partial \theta}{\partial x}$ in terms of polar coordinates?
- 2. Write $\frac{\partial u}{\partial u}$ in terms of polar coordinates?
- 3. Write down the Laplacian of $u(r, \theta)$ in polar coordinates.
- 4. Consider the steady-state temperature distribution in a half circular annular disc with $1 \leq r \leq 2, 0 \leq \theta \leq \pi$, with zero temperature on the curved boundaries r = 1 and r = 2, zero temperature on the boundary $\theta = 0$, and a given temperature, f(r), on the boundary $\theta = \pi$. The mathematical model of this situation is

- $\begin{array}{ll} \text{(a)} & \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, \, u(1,\theta) = 0, \, u(2,\theta) = 0, \, u(r,0) = 0, \, u(r,\pi) = f(r) \\ \text{(b)} & \frac{\partial^2 u}{\partial r^2} + \frac{1}{r^2} \frac{\partial u}{\partial r} + \frac{1}{r} \frac{\partial^2 u}{\partial \theta^2} = 0, \, u(1,\theta) = 0, \, u(2,\theta) = 0, \, u(r,0) = 0, \, u(r,\pi) = f(r) \\ \text{(c)} & \frac{\partial^2 u}{\partial r^2} \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, \, u(1,\theta) = 0, \, u(2,\theta) = 0, \, u(r,0) = 0, \, u(r,\pi) = f(r) \\ \text{(d)} & \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, \, u(1,\theta) = 0, \, u(2,\theta) = 0, \, u(r,0) = 0, \, u(r,\pi) = f(r) \\ \text{(e)} & \frac{\partial^2 u}{\partial r^2} \frac{1}{r} \frac{\partial u}{\partial r} \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, \, u(1,\theta) = 0, \, u(2,\theta) = 0, \, u(r,0) = 0, \, u(r,\pi) = f(r) \\ \end{array}$
- 5. In the previous problem, separate variables using $u(r, \theta) = R(r)\Theta(\theta)$. The resulting problems are

- (a) $r^2 R'' + rR' \lambda R = 0, R(1) = 0, R(2) = 0, \Theta'' \lambda \Theta = 0, \Theta(0) = 0$
- (b) $r^2 R'' + rR' + \lambda R = 0$, R(1) = 0, R(2) = 0, $\Theta'' \lambda \Theta = 0$, $\Theta(0) = 0$
- (c) $r^2 R'' + rR' + \lambda R = 0$, R(1) = 0, $\Theta'' + \lambda \Theta = 0$, $\Theta(0) = 0$, $\Theta(\pi) = 0$
- (d) $R'' + rR' r^2\lambda R = 0$, R(1) = 0, R(2) = 0, $\Theta'' + \lambda\Theta = 0$, $\Theta(0) = 0$
- (e) $R'' + rR' + r^2\lambda R = 0$, R(1) = 0, $\Theta'' + \lambda\Theta = 0$, $\Theta(0) = 0$, $\Theta(\pi) = 0$
- 6. In the previous problem, the solution of the eigenvalue problem is Select the correct answer.
 - (a) $\lambda = n, \Theta = c_n \cos(n\theta) + d_n \sin(n\theta), n = 0, 1, 2, \dots$
 - (b) $\lambda = n^2, \, \Theta = d_n \sin(n\theta), \, n = 1, 2, 3, \dots$
 - (c) $\lambda = n^2, \, \Theta = c_n \cos(n\theta), \, n = 0, 1, 2, \dots$
 - (d) $\lambda = (n\pi/\ln 2)^2$, $R = \sin(n\pi\ln r/\ln 2)$, n = 1, 2, 3, ...
 - (e) $\lambda = (n\pi/\ln 2), R = \sin(n\pi\ln r/\ln 2), n = 1, 2, 3, \dots$

- 7. In the three previous problems, the product solutions are Select the correct answer.
 - (a) $u_n = r^n (c_n \cos(n\theta) + d_n \sin(n\theta)), n = 0, 1, 2, ...$
 - (b) $u_n = r^n (d_n \sin(n\theta)), n = 1, 2, 3, \dots$
 - (c) $u_n = r^n(c_n \cos(n\theta)), n = 0, 1, 2, \dots$
 - (d) $u_n = \sin(n\pi \ln r / \ln 2) \cosh(n\pi\theta / \ln 2), n = 1, 2, 3, \dots$
 - (e) $u_n = \sin(n\pi \ln r / \ln 2) \sinh(n\pi\theta / \ln 2), n = 1, 2, 3, \dots$
- 8. In the results of previous four problems, the infinite series solution of the problem for the steady-state temperature distribution in a half circular annular disc with $1 \leq r \leq 2, \ 0 \leq \theta \leq \pi$, with zero temperature on the curved boundaries r = 1 and r = 2, zero temperature on the boundary $\theta = 0$, and a given temperature, f(r), on the boundary $\theta = \pi$ is (for certain values of the constants c_n and d_n)

Select all that apply.

(a) $u = \sum_{n=1}^{\infty} c_n r^n (c_n \cos(n\theta) + d_n \sin(n\theta))$

(b)
$$u = \sum_{n=1}^{\infty} c_n r^n (d_n \sin(n\theta))$$

- (c) $u = \sum_{n=1}^{\infty} c_n r^n (c_n \cos(n\theta))$
- (d) $u = \sum_{n=1}^{\infty} d_n \sin(n\pi \ln r / \ln 2) \cosh(n\pi\theta / \ln 2)$
- (e) $u = \sum_{n=1}^{\infty} d_n \sin(n\pi \ln r / \ln 2) \sinh(n\pi\theta / \ln 2)$
- 9. What is the solution of the problem $\Theta'' + \lambda \Theta = 0$, $\Theta(\theta) = \Theta(\theta + 2\pi)$? Is this a regular Sturm-Liouville problem?
- 10. Write down the relationships between Cartesian and spherical coordinates.
- 11. For spherical coordinates, what is $\frac{\partial r}{\partial r}$
- 12. For spherical coordinates, what is $\frac{\partial \phi}{\partial z}$?
- 13. The mathematical model for steady-state temperature distribution, u(r, z), in a cylinder of radius 3 and height 5, with zero temperature at z = 0 and r = 3 and with a given constant temperature u_0 on the side z = 5 is

- (a) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial z^2} = 0, \ u(r,0) = 0, \ u(3,z) = 0, \ u(r,5) = u_0$
- (b) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r^2} \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial z^2} = 0, \ u(r,0) = 0, \ u(3,z) = 0, \ u(r,5) = u_0$
- (c) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r} \frac{\partial^2 u}{\partial z^2} = 0, u(r,0) = 0, u(3,z) = 0, u(r,5) = u_0$
- (d) $\frac{\partial^2 u}{\partial r^2} \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial z^2} = 0, u(r,0) = 0, u(3,z) = 0, u(r,5) = u_0$
- (e) $\frac{\partial^2 u}{\partial r^2} \frac{1}{r} \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial z^2} = 0, \ u(r,0) = 0, \ u(3,z) = 0, \ u(r,5) = u_0$

- 14. In the previous problem, separate variables, using u(r, z) = R(r)Z(z). The resulting problems for R and Z are (including the condition that R(0) is bounded) Select the correct answer.
 - (a) $rR'' + R' \lambda R = 0$, R(3) = 0, $Z'' \lambda Z = 0$, Z(0) = 0, $Z(5) = u_0$ (b) $rR'' + R' - \lambda R = 0$, R(3) = 0, $Z'' - \lambda Z = 0$, Z(0) = 0, (c) $rR'' + R' + \lambda rR = 0$, R(3) = 0, $Z'' - \lambda Z = 0$, Z(0) = 0, (d) $rR'' + R' + \lambda rR = 0$, R(3) = 0, $Z'' + \lambda Z = 0$, Z(0) = 0, (e) $rR'' + R' - \lambda rR = 0$, R(3) = 0, $Z'' + \lambda Z = 0$, Z(0) = 0, $Z(5) = u_0$
- 15. In the previous problem, the solution of the eigenvalue problem is Select the correct answer.
 - (a) $\lambda = (n\pi/5)^2$, $Z = \cos(n\pi z/5)$, n = 1, 2, 3, ...(b) $\lambda = (n\pi/5)^2$, $Z = \sin(n\pi z/5)$, n = 1, 2, 3, ...(c) $\lambda = n\pi/5$, $Z = \sin(n\pi z/5)$, n = 1, 2, 3, ...(d) $\lambda = z_n/3$, $R = J_0(z_n r/3)$, n = 1, 2, 3, ..., where $J_0(z_n) = 0$ (e) $\lambda = (z_n/3)^2$, $R = J_0(z_n r/3)$, n = 1, 2, 3, ..., where $J_0(z_n) = 0$
- 16. In the previous three problems, the product solutions are Select the correct answer.
 - (a) $u = J_0(z_n r/3) \cosh(z_n z/3)$
 - (b) $u = J_0(z_n r/3) \sinh(z_n z/3)$
 - (c) $u = J_0(n\pi r/5)\cos(n\pi z/5)$
 - (d) $u = J_0(n\pi r/5)\sin(n\pi z/5)$
 - (e) $u = J_0(n\pi r/3)\cos(n\pi z/5)$
- 17. Write down the infinite series solution for the previous four problems.
- 18. Write down the Laplacian of a function $u(r, \phi, \theta)$ in spherical coordinates.
- 19. If the function u in spherical coordinates is independent of θ , what are the equations resulting from the separation of variables, using $u(r, \phi) = R(r)\Phi(\phi)$?
- 20. If the function u in spherical coordinates is independent of ϕ , what are the equations resulting from the separation of variables, using $u(r, \theta) = R(r)\Phi(\theta)$?

1.	$rac{\partial heta}{\partial x} = -\sin heta / r$
2.	$\frac{\partial u}{\partial y} = \sin\theta \frac{\partial u}{\partial r} + \frac{\cos\theta}{r} \frac{\partial u}{\partial \theta}$
3.	$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}$
4.	a
5.	b
6.	d
7.	e
8.	e
9.	$\lambda = n^2$, $\Theta = c_1 \cos(n\theta) + c_2 \sin(n\theta)$, $n = 0, 1, 2,;$ no, it is not regular
10.	$ x = r \sin \theta \cos \phi, \ y = r \sin \theta \sin \phi, \ z = r \cos \theta, \ r^2 = x^2 + y^2 + z^2, \ \tan \phi = y/x, \\ \cos \theta = z/\sqrt{x^2 + y^2 + z^2} $
11.	$\frac{\partial r}{\partial x} = \sin\theta\cos\phi$
12.	$rac{\partial \phi}{\partial z}=0$
13.	a
14.	C
15.	e
16.	b
17.	$u = \sum_{n=1}^{\infty} c_n J_0(z_n r/3) \sinh(z_n z/3), \text{ where } c_n = u_0 \int_0^3 r J_0(z_n r/3) dr / (\sinh(5z_n/3) \int_0^3 r J_0^2(z_n r/3) dr)$
18.	$u_{rr} + 2u_r/r + u_{\phi\phi}/(r^2\sin^2\theta) + u_{\theta\theta}/r^2 + \cot\theta u_{\theta}/r^2$
19.	Not possible, because of the $1/\sin^2\theta$ term multiplying $u_{\phi\phi}$

20. $r^2 R'' + 2r R' - \lambda R = 0$, $\sin \theta \Theta'' + \cos \theta \Theta' + \lambda \sin \theta \Theta = 0$

- 1. In changing from Cartesian to polar coordinates, $\frac{\partial \theta}{\partial y}$ is Select the correct answer.
 - (a) $\sin \theta$
 - (b) $\cos\theta$
 - (c) $\cos \theta / r$
 - (d) $\sin \theta / r$
 - (e) $-\sin\theta/r$
- 2. In changing from Cartesian to polar coordinates, $\frac{\partial u}{\partial y}$ is Select the correct answer.
 - (a) $\cos\theta \frac{\partial u}{\partial r} \frac{\sin\theta}{r} \frac{\partial u}{\partial \theta}$ (b) $\cos\theta \frac{\partial u}{\partial r} + \frac{\cos\theta}{r} \frac{\partial u}{\partial \theta}$ (c) $\sin\theta \frac{\partial u}{\partial r} + \cos\theta \frac{\partial u}{\partial \theta}$ (d) $\sin\theta \frac{\partial u}{\partial r} - \frac{\cos\theta}{r} \frac{\partial u}{\partial \theta}$ (e) $\sin\theta \frac{\partial u}{\partial r} + \frac{\cos\theta}{r} \frac{\partial u}{\partial \theta}$
- 3. The Laplacian in polar coordinates is

- (a) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r^2} \frac{\partial u}{\partial r} + \frac{1}{r} \frac{\partial^2 u}{\partial \theta^2}$
- (b) $\frac{\partial^2 u}{\partial r^2} \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}$
- (c) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}$
- (d) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}$
- (e) $\frac{\partial^2 u}{\partial r^2} \frac{1}{r} \frac{\partial u}{\partial r} \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}$
- 4. Consider the problem $r^2 \frac{\partial^2 u}{\partial r^2} + r \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial \theta^2} = 0$; $u(c, \theta) = f(\theta)$, u(r, 0) = 0, $u(r, \pi) = 0$. Describe a physical situation having this as a mathematical model.
- 5. In the previous problem, separate variables using $u(r, \theta) = R(r)\Theta(\theta)$. What are the resulting differential equations and boundary conditions?
- 6. In the previous problem, what are the solutions of the eigenvalue problem? Is the eigenvalue problem a regular Sturm-Liouville problem?
- 7. In the three previous problems, what are the product solutions?
- 8. In the previous four problems, what is the infinite series solution of the problem $r^2 \frac{\partial^2 u}{\partial r^2} + r \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial \theta^2} = 0; \ u(c,\theta) = f(\theta), \ u(r,0) = 0, \ u(r,\pi) = 0?$

- 9. The two dimensional heat equation in polar coordinates is Select the correct answer.
 - (a) $k\left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r}\frac{\partial u}{\partial r} + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2}\right) = \frac{\partial u}{\partial t}$ (b) $k\left(\frac{\partial^2 u}{\partial r^2} - \frac{1}{r}\frac{\partial u}{\partial r} + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2}\right) = \frac{\partial u}{\partial t}$ (c) $k\left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r}\frac{\partial u}{\partial r} - \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2}\right) = \frac{\partial u}{\partial t}$ (d) $k\left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r^2}\frac{\partial u}{\partial r} + \frac{1}{r}\frac{\partial^2 u}{\partial \theta^2}\right) = \frac{\partial u}{\partial t}$ (e) $k\left(\frac{\partial^2 u}{\partial r^2} - \frac{1}{r^2}\frac{\partial u}{\partial r} + \frac{1}{r}\frac{\partial^2 u}{\partial \theta^2}\right) = \frac{\partial u}{\partial t}$
- 10. The solution of $r^2 R'' + rR' + \lambda R = 0$, R(0) = 0, R(1) = 0 is Select the correct answer.
 - (a) $\lambda = n\pi, R = \sin(n\pi \ln r)$
 - (b) $\lambda = (n\pi)^2, R = \sin(n\pi \ln r)$
 - (c) $\lambda = (n\pi)^2$, $R = \sin(n\pi \ln r) + \cos(n\pi \ln r)$
 - (d) $\lambda = n\pi$, $R = \sin(n\pi \ln r) \cos(n\pi \ln r)$
 - (e) none of the above
- 11. Write down the relationships between Cartesian and spherical coordinates.
- 12. In changing from Cartesian to spherical coordinates, what is $\frac{\partial \theta}{\partial x}$?
- 13. In changing from Cartesian to spherical coordinates, what is $\frac{\partial \phi}{\partial x}$?
- 14. The two-dimensional wave equation in polar coordinates is Select the correct answer

$$\begin{aligned} \text{(a)} \quad a^2 \left(\frac{\partial^2 u}{\partial r^2} - \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\{\partial^2 u}{\partial \theta^2} \right) &= \frac{\partial^2 u}{\partial t^2} \\ \text{(b)} \quad a^2 \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r^2} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} \right) &= \frac{\partial^2 u}{\partial t^2} \\ \text{(c)} \quad a^2 \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r^2} \frac{\partial u}{\partial r} + \frac{1}{r} \frac{\partial^2 u}{\partial \theta^2} \right) &= \frac{\partial^2 u}{\partial t^2} \\ \text{(d)} \quad a^2 \left(\frac{\partial^2 u}{\partial r^2} - \frac{1}{r^2} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} \right) &= \frac{\partial^2 u}{\partial t^2} \\ \text{(e)} \quad a^2 \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} \right) &= \frac{\partial^2 u}{\partial t^2} \end{aligned}$$

15. Consider the wave equation from the previous problem, but consider the case where u is independent of θ . Separate variables, using u(r,t) = R(r)T(t). The resulting equations for R and T are

Select the correct answer

(a) $r^2 R'' + rR' + \lambda R = 0, T'' + a^2 \lambda T = 0$ (b) $r^2 R'' + rR' - \lambda R = 0, T'' + a^2 \lambda T = 0$ (c) $rR'' + R' - \lambda rR = 0, T'' + a^2 \lambda T = 0$ (d) $rR'' + R' + \lambda rR = 0, T'' + a^2 \lambda T = 0$ (e) $rR'' + R' + \lambda rR = 0, T'' - a^2 \lambda T = 0$

- 16. In the previous problem, assume that R satisfies the boundary conditions R(0) is bounded, R(1) = 0. The solution of the resulting eigenvalue problem is Select the correct answer
 - (a) $\lambda = z_n, R = J_0(z_n r), n = 1, 2, 3, \dots$, where $J_0(z_n) = 0$
 - (b) $\lambda = z_n^2$, $R = J_0(z_n r)$, $n = 1, 2, 3, \dots$, where $J_0(z_n) = 0$
 - (c) $\lambda = (n\pi)^2$, $R = J_0(n\pi r)$, n = 1, 2, 3, ...
 - (d) $\lambda = n\pi, R = J_0(n\pi r), n = 1, 2, 3, \dots$
 - (e) $\lambda = n^2, R = J_0(nr), n = 1, 2, 3, \dots$
- 17. In the previous two problems, the product solutions are Select the correct answer
 - (a) $u = J_0(z_n r) \sin(a z_n t)$
 - (b) $u = J_0(z_n r) \cos(a z_n t)$
 - (c) $u = J_0(z_n r)(a_n \cos(az_n t) + b_n \sin(az_n t))$
 - (d) $u = J_0(n\pi r)(a_n \cos(an\pi t) + b_n \sin(an\pi t))$
 - (e) $u = J_0(nr)(a_n \cos(ant) + b_n \sin(ant))$
- 18. Write down the three-dimensional wave equation for $u(r, \phi, \theta, t)$ in spherical coordinates.
- 19. In the previous problem, assume that the function u is independent of ϕ and θ . What are the equations that result from separation of variables using u(r,t) = R(r)T(t)?
- 20. What is the solution of the eigenvalue problem $rR'' + R' + \lambda rR = 0$, R(0) is bounded, R(1) = 0?

- 1. c
- 2. e
- 3. d
- 4. Steady-state temperature distribution in a half circular plate of radius c, with zero temperature on the diameter and a given temperature, $f(\theta)$ on the curved side
- 5. $r^2 R'' + rR' \lambda R = 0$, R(0) is bounded, $\Theta'' + \lambda \Theta = 0$, $\Theta(0) = 0$, $\Theta(\pi) = 0$
- 6. $\lambda = n^2$, $\Theta = \sin(n\theta)$, $n = 1, 2, 3, \ldots$; yes, it is regular
- 7. $u = r^n \sin(n\theta)$

8.
$$u = \sum_{n=1}^{\infty} a_n r^n \sin(n\theta)$$
, where $a_n = 2 \int_0^{\pi} f(\theta) \sin(n\theta) d\theta / (c^n \pi)$

9. a

 $10. \ e$

- 11. $x = r \cos \phi \sin \theta$, $y = r \sin \phi \sin \theta$, $z = r \cos \theta$, $r^2 = x^2 + y^2 + z^2$, $\tan \phi = y/x$, $\cos \theta = z/\sqrt{x^2 + y^2 + z^2}$
- 12. $\frac{\partial \theta}{\partial x} = \cos \phi \cos \theta / r$
- 13. $\frac{\partial \phi}{\partial x} = -\sin \phi / (r \sin \theta)$
- 14. e
- 15. d
- 16. b
- 17. c
- 18. $a^{2} \left(\frac{\partial^{2} u}{\partial r^{2}} + \frac{2}{r} \frac{\partial u}{\partial r} + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} u}{\partial \phi^{2}} + \frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}} + \frac{\cot \theta}{r^{2}} \frac{\partial u}{\partial \theta} \right) = \frac{\partial^{2} u}{\partial t^{2}}$ 19. $rR'' + 2R' + \lambda rR = 0, \ T'' + a^{2}\lambda T = 0$ 20. $\lambda = z_{n}^{2}, \ R = J_{0}(z_{n}r), \ n = 1, 2, 3, \dots, \text{ where } J_{0}(z_{n}) = 0$

- 1. Write $\frac{\partial \theta}{\partial y}$ in terms of polar coordinates?
- 2. Write $\frac{\partial u}{\partial r}$ in terms of polar coordinates?
- 3. Consider the steady-state temperature distribution in a quarter of a circular disc of radius c centered at the origin, with temperature given as a function, $f(\theta)$ on the boundary r = c and zero on the boundaries $\theta = 0$ and $\theta = \pi/2$. The mathematical model of this situation is

- (a) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r^2} \frac{\partial u}{\partial r} + \frac{1}{r} \frac{\partial^2 u}{\partial \theta^2} = 0, \ u(c,\theta) = f(\theta), \ u(r,0) = 0, \ u(r,\pi/2) = 0$ (b) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, \ u(c,\theta) = f(\theta), \ u(r,0) = 0, \ u(r,\pi/2) = 0$
- (b) $\frac{\partial r^2}{\partial r^2} + \frac{\partial r}{r^2} + \frac{\partial r}{r^2} \frac{\partial \theta^2}{\partial \theta^2} = 0, \ u(c, b) = f(b), \ u(r, 0) = 0, \ u(r, \pi/2) = 0$
- (c) $\frac{\partial^2 u}{\partial r^2} \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, \ u(c,\theta) = f(\theta), \ u(r,0) = 0, \ u(r,\pi/2) = 0$
- (d) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, \ u(c,\theta) = f(\theta), \ u(r,0) = 0, \ u(r,\pi/2) = 0$
- (e) $\frac{\partial^2 u}{\partial r^2} \frac{1}{r} \frac{\partial u}{\partial r} \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, \ u(c,\theta) = f(\theta), \ u(r,0) = 0, \ u(r,\pi/2) = 0$
- 4. In the previous problem, separate variables using $u(r, \theta) = R(r)\Theta(\theta)$. The resulting problems are (including the conditions: R(0) is bounded, $\Theta(0) = 0$, $\Theta(\pi/2) = 0$) Select the correct answer.
 - (a) $R'' + rR' r^2\lambda R = 0, \Theta'' + \lambda\Theta = 0$
 - (b) $R'' + rR' + r^2\lambda R = 0, \Theta'' + \lambda\Theta = 0$
 - (c) $r^2 R'' + rR' \lambda R = 0, \Theta'' \lambda \Theta = 0$
 - (d) $r^2 R'' + rR' \lambda R = 0, \Theta'' + \lambda \Theta = 0$
 - (e) $r^2 R'' + rR' + \lambda R = 0, \Theta'' + \lambda \Theta = 0$
- 5. In the previous problem, the solution of the eigenvalue problem is Select the correct answer.
 - (a) $\lambda = 2n, \Theta = c_n \cos(2n\theta) + d_n \sin(2n\theta), n = 0, 1, 2, ...$ (b) $\lambda = 4n^2, \Theta = d_n \sin(2n\theta), n = 1, 2, 3, ...$ (c) $\lambda = 4n^2, \Theta = c_n \cos(2n\theta), n = 0, 1, 2, ...$ (d) $\lambda = 4n^2, R = r^{2n}, n = 0, 1, 2, ...$ (e) $\lambda = 2n, R = r^{2n}, n = 0, 1, 2, ...$
- 6. In the three previous problems, the product solutions are Select the correct answer.
 - (a) $u_n = r^{2n}(c_n e^{2n\theta} + d_n e^{-2n\theta}), n = 0, 1, 2, \dots$
 - (b) $u_n = r^{2n}(c_n e^{2n\theta} + d_n e^{-2n\theta}), n = 1, 2, 3, \dots$
 - (c) $u_n = r^{2n}(c_n \cos(2n\theta) + d_n \sin(2n\theta)), n = 0, 1, 2, \dots$
 - (d) $u_n = r^{2n} \cos(2n\theta), n = 0, 1, 2, \dots$
 - (e) $u_n = r^{2n} \sin(2n\theta), n = 1, 2, 3, \dots$

- 7. In the previous four problems, the infinite series solution of the original problem is $u = \sum_{n=1}^{\infty} r^{2n} (A_n \cos(2n\theta) + B_n \sin(2n\theta))$ where Select all that apply.
 - (a) $A_n = 0$
 - (b) $B_n = 0$
 - (c) $B_n = 4 \int_0^{\pi/2} f(\theta) \sin(2n\theta) d\theta / (c^{2n}\pi)$

(d)
$$B_n = 4 \int_0^{\pi/2} f(\theta) \cos(2n\theta) d\theta / (c^{2n}\pi)$$

(e) $A_n = 4 \int_0^{\pi/2} f(\theta) \cos(2n\theta) d\theta / (c^{2n}\pi)$

- 8. Write down the two dimensional heat equation in polar coordinates.
- 9. What is the solution of the problem $\Theta'' + \lambda \Theta = 0$, $\Theta(0) = 0$, $\Theta(\pi) = 0$? Is this a regular Sturm-Liouville problem?
- 10. Write down the relationships between Cartesian and spherical coordinates.
- 11. In changing from Cartesian to spherical coordinates, what is $\frac{\partial \theta}{\partial y}$?
- 12. In changing from Cartesian to spherical coordinates, what is $\frac{\partial \phi}{\partial y}$?
- 13. Consider the equation $\frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{\cot \theta}{r^2} \frac{\partial u}{\partial \theta} = 0$. This might represent Select the correct answer
 - (a) steady-state temperature in a circular plate
 - (b) steady-state temperature in a circular cylinder
 - (c) steady-state temperature in a sphere
 - (d) a vibrating circular cylinder
 - (e) none of the above
- 14. In the previous problem, separation of variables using $u(r, \theta) = R(r)\Theta(\theta)$ results in Select the correct answer

(a)
$$r^2 R'' + 2rR' + \lambda R = 0$$
, $\sin(\theta)\Theta'' + \cos(\theta)\Theta' + \lambda\sin(\theta)\Theta = 0$
(b) $r^2 R'' + 2rR' - \lambda R = 0$, $\sin(\theta)\Theta'' + \cos(\theta)\Theta' + \lambda\sin(\theta)\Theta = 0$
(c) $r^2 R'' - 2rR' + \lambda R = 0$, $\sin(\theta)\Theta'' + \cos(\theta)\Theta' + \lambda\sin(\theta)\Theta = 0$
(d) $r^2 R'' - 2rR' - \lambda R = 0$, $\sin(\theta)\Theta'' + \cos(\theta)\Theta' + \lambda\sin(\theta)\Theta = 0$
(e) $rR'' + 2R' - \lambda rR = 0$, $\sin(\theta)\Theta'' + \cos(\theta)\Theta' + \lambda\sin(\theta)\Theta = 0$

15. In the previous problem, the restriction on Θ is that Θ is bounded everywhere. The solution of this eigenvalue problem is

- (a) $\lambda = n^2 \pi^2$, $\Theta = \sin(n\pi\theta)$, n = 1, 2, 3, ...
- (b) $\lambda = n^2, \Theta = \sin(n\theta), n = 1, 2, 3, ...$
- (c) $\lambda = n, \Theta = \sin(n\theta), n = 1, 2, 3, ...$
- (d) $\lambda = n(n+1), \Theta = P_n(\cos \theta), n = 1, 2, 3, \dots$
- (e) $\lambda = n^2, \, \Theta = P_n(\cos \theta), \, n = 1, 2, 3, \dots$
- 16. Consider the problem $\frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} = \frac{\partial^2 u}{\partial t^2}$, u(0,t) = 0, u(2,t) = 0, u(r,0) = f(r), $\frac{\partial u}{\partial t}(r,0) = 0$. Verify that the left hand side can be written as $\frac{1}{r} \frac{\partial^2 (ru)}{\partial r^2}$, and simplify by using the substitution v = ru.
- 17. In the previous problem, separate variables using v(r,t) = R(r)T(t). What are the resulting problems for R and T?
- 18. In the previous problem, what are the solutions of the eigenvalue problem?
- 19. In the previous three problems, what are the product solutions?
- 20. In the previous four problems, what is the infinite series solution of the problem $\frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} = \frac{\partial^2 u}{\partial t^2}, u(0,t) = 0, u(2,t) = 0, u(r,0) = f(r), \frac{\partial u}{\partial t}(r,0) = 0?$

1.	$rac{\partial heta}{\partial y} = \cos heta / r$
2.	$\frac{\partial u}{\partial x} = \cos\theta \frac{\partial u}{\partial r} - \sin\theta \frac{\partial u}{\partial \theta} / r$
3.	b
4.	d
5.	b
6.	e
7.	a, c
8.	$k\left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r}\frac{\partial u}{\partial r} + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2}\right) = \frac{\partial u}{\partial t}$
9.	$\lambda = n^2, \Theta = \sin(n\theta), n = 1, 2, 3, \ldots; \text{yes, it is regular}$
10.	$x = r \sin \theta \cos \phi, \ y = r \sin \theta \sin \phi, \ z = r \cos \theta, \ r^2 = x^2 + y^2 + z^2, \ \tan \phi = y/x, \\ \cos \theta = z/\sqrt{x^2 + y^2 + z^2}$
11.	$\frac{\partial \theta}{\partial y} = \cos \theta \sin \phi / r$
12.	$\frac{\partial \phi}{\partial y} = \cos \phi / (r \sin \theta)$
13.	C
14.	b
15.	d
16.	$\frac{1}{r}\frac{\partial^2}{\partial r^2}(ru) = \frac{1}{r}\frac{\partial}{\partial r}(u+r\frac{\partial u}{\partial r}) = \frac{1}{r}\left(\frac{\partial u}{\partial r} + \frac{\partial u}{\partial r} + r\frac{\partial^2 u}{\partial r^2}\right) = \frac{\partial^2 u}{\partial r^2} + \frac{2}{r}\frac{\partial u}{\partial r}, \ \frac{\partial^2 v}{\partial r^2} = \frac{\partial^2 v}{\partial t^2}$
17.	$R'' + \lambda R = 0, R(0) = 0, R(2) = 0, T'' + \lambda T = 0, T'(0) = 0$
18.	$\lambda = (n\pi/2)^2, R = \sin(n\pi r/2), n = 1, 2, 3, \dots$
19.	$u = \sin(n\pi r/2)\cos(n\pi t/2)$
20.	$u = \sum_{n=1}^{\infty} c_n \sin(n\pi r/2) \cos(n\pi t/2)$, where $c_n = \int_0^2 f(r) \sin(n\pi r/2) dr$

- 1. In changing from Cartesian to polar coordinates, $\frac{\partial \theta}{\partial x}$ is Select the correct answer.
 - (a) $\sin \theta$
 - (b) $\cos\theta$
 - (c) $\cos \theta / r$
 - (d) $\sin \theta / r$
 - (e) $-\sin\theta/r$
- 2. In changing from Cartesian to polar coordinates, $\frac{\partial u}{\partial x}$ is Select the correct answer.
 - (a) $\cos\theta \frac{\partial u}{\partial r} + \frac{\cos\theta}{r} \frac{\partial u}{\partial \theta}$
 - (b) $\cos\theta \frac{\partial u}{\partial r} \frac{\sin\theta}{r} \frac{\partial u}{\partial \theta}$
 - (c) $\sin\theta \frac{\partial u}{\partial r} + \cos\theta \frac{\partial u}{\partial \theta}$
 - (d) $\sin\theta \frac{\partial u}{\partial r} \frac{\cos\theta}{r} \frac{\partial u}{\partial \theta}$
 - (e) $\sin\theta \frac{\partial u}{\partial r} + \frac{\cos\theta}{r} \frac{\partial u}{\partial \theta}$
- 3. Consider the problem $r^2 \frac{\partial^2 u}{\partial r^2} + r \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial \theta^2} = 0$, $u(1,\theta) = 0$, $u(2,\theta) = 0$, u(r,0) = 0, $u(r,\pi/2) = f(r)$. Describe a physical situation having this as a mathematical model.
- 4. In the previous problem, separate variables using $u(r, \theta) = R(r)\Theta(\theta)$. What are the resulting problems?
- 5. In the previous problem, what are the solutions of the eigenvalue problem. Is the eigenvalue problem a regular Sturm-Liouville problem?
- 6. In the three previous problems, what are the product solutions?
- 7. In the previous four problems, what is the infinite series solution of the original problem?
- 8. The solution of $r^2 R'' + r R' + \lambda R = 0$, R(1) = 0, R(3) = 0 is Select the correct answer.
 - (a) $\lambda = n\pi / \ln 3, R = \cos(n\pi \ln r / \ln 3)$
 - (b) $\lambda = n\pi / \ln 3, R = \sin(n\pi \ln r / \ln 3)$
 - (c) $\lambda = (n\pi/\ln 3)^2$, $R = \sin(n\pi \ln r/\ln 3)$
 - (d) $\lambda = (n\pi/\ln 3)^2$, $R = \cos(n\pi \ln r/\ln 3)$
 - (e) none of the above
- 9. Write down the relationships between Cartesian and spherical coordinates.
- 10. Write $\frac{\partial \theta}{\partial z}$ in terms of spherical coordinates?
- 11. Write $\frac{\partial \phi}{\partial z}$ in terms of spherical coordinates?

12. Consider the steady-state temperature in a circular cylinder of radius 2 and height 3, with zero temperature at r = 2, temperature of 20 at z = 3, and which is insulated at z = 0. The mathematical model for the temperature, u(r, z), is (including: u(0, z) is bounded, u(2, t) = 0, u(r, 3) = 20)

Select the correct answer

- (a) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial z^2} = 0, \ \frac{\partial u}{\partial z}(r,0) = 0$
- (b) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} = \frac{\partial^2 u}{\partial z^2}, \ \frac{\partial u}{\partial z}(r,0) = 0$
- (c) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} = \frac{\partial^2 u}{\partial z^2}, u(r,0) = 0$
- (d) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial z^2} = 0, \ u(r,0) = 0$
- (e) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r^2} \frac{\partial u}{\partial r} = \frac{\partial^2 u}{\partial z^2}, \ \frac{\partial u}{\partial z}(r,0) = 0$
- 13. In the previous problem, after separating variables using u(r, z) = R(r)Z(z), the resulting problems are

Select the correct answer

- (a) $rR'' + R' \lambda rR = 0$, R(0) is bounded, R(2) = 0, $Z'' + \lambda Z = 0$, Z'(0) = 0, Z(3) = 0
- (b) $r^2 R'' + rR' \lambda R = 0$, R(0) is bounded, R(2) = 0, $Z'' + \lambda Z = 0$, Z'(0) = 0, Z(3) = 0
- (c) $r^2 R'' + rR' + \lambda R = 0$, R(0) is bounded, R(2) = 0, $Z'' + \lambda Z = 0$, Z(3) = 0
- (d) $rR'' + R' + \lambda rR = 0$, R(0) is bounded, R(2) = 0, $Z'' \lambda Z = 0$, Z'(0) = 0
- (e) $rR'' + R' + \lambda rR = 0$, R(0) is bounded, R(2) = 0, $Z'' + \lambda Z = 0$, Z'(0) = 0, Z(3) = 0
- 14. The solution of the eigenvalue problem of the previous problem is Select the correct answer
 - (a) $\lambda = n\pi/3$, $Z = \cos(n\pi z/3)$, n = 1, 2, 3, ...(b) $\lambda = n\pi/3$, $Z = \sin(n\pi z/3)$, n = 1, 2, 3, ...(c) $\lambda = z_n/2$, $R = J_0(z_n r/2)$, where $J_0(z_n) = 0$, n = 1, 2, 3, ...(d) $\lambda = z_n^2$, $R = J_0(z_n r)$, where $J_0(z_n) = 0$, n = 1, 2, 3, ...(e) $\lambda = z_n^2/4$, $R = J_0(z_n r/2)$, where $J_0(z_n) = 0$, n = 1, 2, 3, ...
- 15. Product solutions of the previous three problems are

- (a) $u = J_0(z_n r/2) \sinh(z_n z/2)$
- (b) $u = J_0(z_n r/2) \cosh(z_n z/2)$
- (c) $u = J_0(n^2\pi^2 r/9)\cos(n\pi z/3)$
- (d) $u = J_0(n\pi r/3)\sin(n\pi z/3)$
- (e) $u = J_0(n\pi r/3)\cos(n\pi z/3)$

16. The infinite series solution of the previous four problems is (for certain values of the constants c_n)

- (a) $u = \sum_{n=1}^{\infty} c_n J_0((n\pi/3)^2 r) \cos(n\pi z/3)$
- (b) $u = \sum_{n=1}^{\infty} c_n J_0(z_n r/2) \sinh(z_n z/2)$
- (c) $u = \sum_{n=1}^{\infty} c_n J_0(z_n r/2) \cosh(z_n z/2)$
- (d) $u = \sum_{n=1}^{\infty} c_n J_0(n\pi r/3) \sin(n\pi z/3)$
- (e) $u = \sum_{n=1}^{\infty} c_n J_0(n\pi r/3) \cos(n\pi z/3)$
- 17. Write down the Laplacian of u in cylindrical coordinates.
- 18. Write down the Laplacian of u in spherical coordinates.
- 19. What difficulty would you encounter if you were to try to solve Laplace's equation in spherical coordinates for a function which depends only on r and ϕ and is independent of θ ?
- 20. What is the solution of $\sin(\theta)\Theta'' + \cos(\theta)\Theta' + \lambda\sin(\theta)\Theta = 0$, Θ is bounded on $[0,\pi]$?

1. e

2. b

3. Steady-state temperature distribution in a quarter circular annulus between r = 1 and r = 2, with zero temperature on r = 1, r = 2, and $\theta = 0$, and temperature of f on $\theta = \pi/2$

4.
$$r^2 R'' + rR' + \lambda R = 0, R(1) = 0, R(2) = 0, \Theta'' - \lambda \Theta = 0, \Theta(0) = 0$$

- 5. $\lambda = (n\pi/\ln 2)^2$, $R = \sin(n\pi\ln r/\ln 2)$, n = 1, 2, 3, ...
- 6. $u = \sin(n\pi \ln r / \ln 2) \sinh(n\pi\theta / \ln 2)$
- 7. $u = \sum_{n=1}^{\infty} c_n \sin(n\pi \ln r / \ln 2) \sinh(n\pi\theta / \ln 2)$, where $c_n = \int_1^2 rf(r) \sin(n\pi \ln r / \ln 2) dr / (\sinh(n\pi^2 / (2\ln 2))) \int_1^2 r \sin^2(n\pi \ln r / \ln 2) dr)$

8. c

- 9. $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$, $r^2 = x^2 + y^2 + z^2$, $\tan \phi = y/x$, $\cos \theta = z/\sqrt{x^2 + y^2 + z^2}$
- 10. $\frac{\partial \theta}{\partial z} = -\sin \theta / r$
- 11. $\frac{\partial \phi}{\partial z} = 0$
- 12. a
- 13. d
- 14. e
- 15. b
- 16. c
- 17. $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 u}{\partial z^2}$ 18. $\frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 u}{\partial \phi^2} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{\cot \theta}{r^2} \frac{\partial u}{\partial \theta}$ 19. θ appears in the coefficient of $\frac{\partial^2 u}{\partial \phi^2}$
- 20. $\lambda = n(n+1), \Theta = P_n(\cos \theta), n = 1, 2, 3, \dots$