1. Find the radius of convergence of the power series $\sum_{n=1}^{\infty} x^{n} / n$
2. Find the interval of convergence of the power series in the previous problem.
3. Write down the power series expansion about $x=0$ for the function $f(x)=e^{x}$.
4. Name the singular points of the differential equation $x y^{\prime \prime}-y=0$.
5. Find a power series solution about $x=0$ of the differential equation $y^{\prime \prime}+y=0$.
6. Find a power series solution about $x=0$ of the differential equation $y^{\prime \prime}-4 y=0$.
7. Find the recurrence relation for the terms in the power series solution about $x=0$ of the differential equation $y^{\prime \prime}+x y=0$.
8. Find the first four nonzero terms of a power series solution about $x=0$ of the differential equation $y^{\prime \prime}+x y=0$.
9. What is the radius of convergence of the power series solution of $y^{\prime \prime}+x y=0$?
10. Determine the singular points of $x^{3} y^{\prime \prime}-2 x y^{\prime}+y=0$ and classify them as regular or irregular.
11. Determine the singular points of $\left(x^{2}-16\right)^{2} y^{\prime \prime}-2 x y^{\prime}+y=0$ and classify them as regular or irregular.
12. Determine the singular points of $\left(x^{3}+x\right)^{2}(x-1) y^{\prime \prime}-2 x y^{\prime}+y=0$ and classify them as regular or irregular.
13. The point $x=0$ is a critical point of the differential equation $2 x y^{\prime \prime}+y=0$. What is the indicial equation?
14. For the previous problem, find the recurrence relation for the series solution about $x=0$.
15. Find a series solution of $2 x y^{\prime \prime}+y=0$.
16. The point $x=0$ is a critical point of the differential equation $x y^{\prime \prime}+y^{\prime}+2 y=0$. What is the indicial equation?
17. For the previous problem, find the recurrence relation for the series solution about $x=0$.
18. Find a series solution of $x y^{\prime \prime}+y^{\prime}+2 y=0$.
19. What is the name (including the order) of the differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+$ $\left(x^{2}-1 / 4\right) y=0$? Write the solution using the special function notation.
20. What is the name (including the order) of the differential equation $\left(1-x^{2}\right) y^{\prime \prime}-$ $2 x y^{\prime}+6 y=0$? Write the solution using the special function notation.
21. $R=1$
22. $[-1,1)$
23. $\sum_{k=0}^{\infty} x^{k} / k$!
24. $x=0$
25. $\sum_{k=0}^{\infty}(-1)^{k} x^{2 k} /(2 k)$! or $\sum_{k=0}^{\infty}(-1)^{k} x^{2 k+1} /(2 k+1)$!
26. $\sum_{k=0}^{\infty}(2 x)^{2 k} /(2 k)$! or $\sum_{k=0}^{\infty}(-2 x)^{2 k+1} /(2 k+1)$!
27. $c_{k+3}(k+3)(k+2)+c_{k}=0, k=0,1,2, \ldots$
28. $1-x^{3} / 6+x^{6} / 180-x^{9} / 12960$ or $x-x^{4} / 12+x^{7} / 504-x^{10} / 45360$
29. $R=\infty$
30. $x=0$ is an irregular singular point
31. $x= \pm 4$ are both regular singular points
32. $x=0,1, \pm i$ are all regular singular points
33. $r^{2}-r=0$
34. $2 c_{k+1}(k+r+1)(k+r)+c_{k}=0, k=0,1,2, \ldots$
35. $x \sum_{k=}^{\infty}(-1)^{k}(x / 2)^{k} /(k!(k+1)!)$
36. $r^{2}=0$
37. $c_{k+1}(k+r+1)^{2}+2 c_{k}=0, k=0,1,2, \ldots$
38. $\sum_{k=0}^{\infty}(-2)^{k} x^{k} /(k!)^{2}$
39. Bessel's equation of order $1 / 2, y=c_{1} J_{1 / 2}(x)+Y_{1 / 2}(x)$
40. Legendre's equation of order $2, y=c_{1} P_{2}(x)+c_{2} Q_{2}(x)$, where $Q_{2}(x)$ is given by an infinite series
41. Find the radius of convergence of the power series $\sum_{n=1}^{\infty} x^{n} / n^{2}$
42. Find the interval of convergence of the power series in the previous problem.
43. Write down the power series expansion about $x=0$ for the function $f(x)=$ $\cos x$.
44. What are the singular points of the differential equation $x(1-x) y^{\prime \prime}+y^{\prime}=0$.
45. Find a power series solution about $x=0$ of the differential equation $y^{\prime \prime}-y=0$.
46. Find a power series solution about $x=0$ of the differential equation $y^{\prime \prime}+4 y=0$.
47. Find the recurrence relation for the terms in the power series solution about $x=0$ of the differential equation $y^{\prime \prime}-x y=0$.
48. Find the first four nonzero terms of a power series solution about $x=0$ of the differential equation $y^{\prime \prime}-x y=0$.
49. What is the radius of convergence of the power series solution of $y^{\prime \prime}-x y=0$?
50. Determine the singular points of $x^{2} y^{\prime \prime}-2 x y^{\prime}+y=0$ and classify them as regular or irregular.
51. Determine the singular points of $\left(x^{2}-4\right)^{2} y^{\prime \prime}-2 x y^{\prime}+y=0$ and classify them as regular or irregular.
52. Determine the singular points of $x^{3}(x-1) y^{\prime \prime}-2 x y^{\prime}+y=0$ and classify them as regular or irregular.
53. The point $x=0$ is a critical point of the differential equation $x y^{\prime \prime}+y=0$. What is the indicial equation?
54. For the previous problem, find the recurrence relation for the series solution about $x=0$.
55. Find a series solution of $x y^{\prime \prime}+y=0$.
56. The point $x=0$ is a critical point of the differential equation $2 x y^{\prime \prime}-y^{\prime}+2 y=0$. What is the indicial equation?
57. For the previous problem, find the recurrence relation for the series solution about $x=0$.
58. Find the series solution of $2 x y^{\prime \prime}-y^{\prime}+2 y=0$.
59. What is the name (including the order) of the differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+$ $\left(x^{2}-1 / 16\right) y=0$? Write the solution using the special function notation.
60. What is the name (including the order) of the differential equation $\left(1-x^{2}\right) y^{\prime \prime}-$ $2 x y^{\prime}+12 y=0$? Write the solution using the special function notation.
61. $R=1$
62. $[-1,1]$
63. $\sum_{k=0}^{\infty}(-1)^{k} x^{2 k} /(2 k)$!
64. $x=0,1$
65. $\sum_{k=0}^{\infty} x^{2 k} /(2 k)$! or $\sum_{k=0}^{\infty}(-x)^{2 k+1} /(2 k+1)$!
66. $\sum_{k=0}^{\infty}(-1)^{k}(2 x)^{2 k} /(2 k)$! or $\sum_{k=0}^{\infty}(-1)^{k}(2 x)^{2 k+1} /(2 k+1)$!
67. $c_{k+3}(k+3)(k+2)-c_{k}=0, k=0,1,2, \ldots$
68. $1+x^{3} / 6+x^{6} / 180+x^{9} / 12960$ or $x+x^{4} / 12+x^{7} / 504+x^{10} / 45360$
69. $R=\infty$
70. $x=0$ is a regular singular point
71. $x= \pm 2$ are both regular singular points
72. $x=0$ is an irregular singular point, $x=1$ is a regular singular point
73. $r^{2}-r=0$
74. $c_{k+1}(k+r+1)(k+r)+c_{k}=0, k=0,1,2, \ldots$
75. $x \sum_{k=0}^{\infty}(-1)^{k} x^{k} /(k!(k+1)!)$
76. $2 r^{2}-3 r=0$
77. $c_{k+1}(k+r+1)(2 k+2 r-1)+2 c_{k}=0, k=0,1,2, \ldots$
78. $c_{1}\left[1+\sum_{k=1}^{\infty}(-2)^{k} x^{k} /(k!(-1) \cdot 1 \cdot 3 \ldots(2 k-3))\right]+c_{2} x^{3 / 2}\left[1+\sum_{k=1}^{\infty}(-2)^{k} x^{k} /(k!5 \cdot 7 \cdot 9 \ldots(2 k+3))\right]$
79. Bessel's equation of order $1 / 4, y=c_{1} J_{1 / 4}(x)+c_{2} J_{-1 / 4}(x)$
80. Legendre's equation of order 3 , $y=c_{1} P_{3}(x)+c_{2} Q_{3}(x)$, where $Q_{3}(x)$ is given as an infinite series
81. The radius of convergence of the power series $\sum_{n=1}^{\infty} x^{n} / n$ is Select the correct answer.
(a) 0
(b) 1
(c) 2
(d) ∞
(e) none of the above
82. The interval of convergence of the power series in the previous problem is Select the correct answer.
(a) $\{0\}$
(b) $(-1,1)$
(c) $[-1,1]$
(d) $[-1,1)$
(e) $(-\infty, \infty)$
83. The first four terms in the power series expansion of the function $f(x)=e^{2 x}$ about $x=0$ are
Select the correct answer.
(a) $1+x+x^{2}+x^{3}$
(b) $1+2 x+2 x^{2}+2 x^{3}$
(c) $1+2 x+2 x^{2}+4 x^{3} / 3$
(d) $1+2 x+2 x^{2}+2 x^{3} / 3$
(e) $1+2 x+4 x^{2}+8 x^{3}$
84. The singular points of the differential equation $y^{\prime \prime}+y^{\prime} / x+y(x-2) /(x-3)=0$ are
Select the correct answer.
(a) none
(b) 0
(c) 0,2
(d) 0,3
(e) $0,2,3$
85. The recurrence relation for the power series solution about $x=0$ of the differential equation $y^{\prime \prime}-y=0$ is (for $k=0,1,2, \ldots$)
Select the correct answer.
(a) $(k+2)(k+1) c_{k+2}=c_{k}$
(b) $(k+2)(k+1) c_{k}=c_{k-2}$
(c) $(k+1) k c_{k+2}=c_{k}$
(d) $(k+1) k c_{k}=c_{k-2}$
(e) $(k-2)(k-1) c_{k-2}=c_{k}$
86. The solution of the recurrence relation in the previous problem is Select the correct answer.
(a) $c_{2 k}=c_{0} /(2 k), c_{2 k+1}=c_{1} /(2 k+1)$
(b) $c_{2 k}=c_{0} /(2 k)^{2}, c_{2 k+1}=c_{1} /(2 k+1)^{2}$
(c) $c_{2 k}=c_{0} /(2 k)!, c_{2 k+1}=c_{1} /(2 k+1)$!
(d) $c_{2 k}=c_{0} /(2 k+2)!, c_{2 k+1}=c_{1} /(2 k+3)!$
(e) $c_{2 k}=c_{0} /(2 k-1)!, c_{2 k+1}=c_{1} /(2 k)$!
87. A power series solution about $x=0$ of the differential equation $y^{\prime \prime}-y=0$ is Select the correct answer.
(a) $y=c_{0} \sum_{k=0}^{\infty} x^{2 k} /(2 k)!+c_{1} \sum_{k=0}^{\infty} x^{2 k+1} /(2 k+1)$!
(b) $y=c_{0} \sum_{k=0}^{\infty} x^{2 k} /(2 k)+c_{1} \sum_{k=0}^{\infty} x^{2 k+1} /(2 k+1)$
(c) $y=c_{0} \sum_{k=0}^{\infty} x^{2 k} /(2 k)^{2}+c_{1} \sum_{k=0}^{\infty} x^{2 k+1} /(2 k+1)^{2}$
(d) $y=c_{0} \sum_{k=0}^{\infty} x^{2 k} /(2 k)!+c_{1} \sum_{k=0}^{\infty} x^{2 k-1} /(2 k-1)$!
(e) $y=c_{0} \sum_{k=0}^{\infty} x^{2 k} /(2 k)+c_{1} \sum_{k=0}^{\infty} x^{2 k-1} /(2 k-1)$
88. The radius of convergence of the power series solution of $y^{\prime \prime}-y=0$ about $x=0$ is
Select the correct answer.
(a) 0
(b) 1
(c) 2
(d) ∞
(e) none of the above
89. The singular points of $x^{2}(x-1) y^{\prime \prime}-2 x y^{\prime}+y=0$ are $x=$ Select all that apply.
(a) 2
(b) -1
(c) 0
(d) 1
(e) none of the above
90. For the differential equation $\left(x^{2}-4\right)^{2} y^{\prime \prime}-2 x y^{\prime}+y=0$, the point $x=0$ is Select the correct answer.
(a) an ordinary point
(b) a regular singular point
(c) an irregular singular point
(d) a special point
(e) none of the above
91. For the differential equation $\left(x^{2}-4\right)^{2} y^{\prime \prime}-2 x y^{\prime}+y=0$, the point $x=2$ is Select the correct answer.
(a) an ordinary point
(b) a regular singular point
(c) an irregular singular point
(d) a special point
(e) none of the above
92. For the differential equation $\left(x^{2}-4\right)^{3} y^{\prime \prime}-2 x y^{\prime}+y=0$, the point $x=-2$ is Select the correct answer.
(a) an ordinary point
(b) a regular singular point
(c) an irregular singular point
(d) a special point
(e) none of the above
93. The indicial equation for the differential equation $2 x y^{\prime \prime}-y^{\prime}+2 y=0$ is Select the correct answer.
(a) $r(2 r-1)=0$
(b) $r(2 r-3)=0$
(c) $r(2 r-2)=0$
(d) $r(r-3)=0$
(e) $r(r-2)=0$
94. The recurrence relation for the differential equation $2 x y^{\prime \prime}-y^{\prime}+2 y=0$ is Select the correct answer.
(a) $c_{k+1}(k+r)(2 k+2 r-1)+2 c_{k}=0$
(b) $c_{k+1}(k+r)(k+r-1)+2 c_{k}=0$
(c) $c_{k+1}(k+r+1)(2 k+2 r-1)-2 c_{k}=0$
(d) $c_{k+1}(k+r+1)(2 k+2 r-1)+2 c_{k}=0$
(e) $c_{k+1}(k+r+1)(2 k+2 r)+2 c_{k}=0$
95. The differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1 / 16\right) y=0$ is

Select the correct answer.
(a) Bessel's equation of order n
(b) Bessel's equation of order $1 / 16$
(c) Bessel's equation of order $1 / 4$
(d) Legendre's equation of order $1 / 16$
(e) Legendre's equation of order $1 / 4$
16. The solution of the previous problem is

Select the correct answer.
(a) $y=c_{1} P_{1 / 4}(x)+c_{2} P_{-1 / 4}(x)$
(b) $y=c_{1} P_{4}(x)+c_{2} P_{-4}(x)$
(c) $y=c_{1} J_{4}(x)+c_{2} Y_{4}(x)$
(d) $y=c_{1} J_{1 / 4}(x)+c_{2} J_{-1 / 4}(x)$
(e) $y=c_{1} J_{1 / 16}(x)+c_{2} J_{-1 / 16}(x)$
17. Consider the differential equation $2 x^{2} y^{\prime \prime}+3 x y^{\prime}+(2 x-1) y=0$. The indicial equation is $2 r^{2}+r-1=0$. The recurrence relation is $c_{k}[2(k+r)(k+r-1)+$ $3(k+r)-1]+2 c_{k-1}=0$. A series solution corresponding to the indicial root $r=-1$ is $y=x^{-1}\left[1+\sum_{k=1}^{\infty} c_{k} x^{k}\right]$, where
Select the correct answer.
(a) $c_{k}=(-2)^{k} /[k!(-1) \cdot 1 \cdot 3 \cdots(2 k-3)]$
(b) $c_{k}=-2^{k} /[k!1 \cdot 3 \cdots(2 k-3)]$
(c) $c_{k}=(-2)^{k} /[k!(-1) \cdot 1 \cdot 3 \cdots(2 k-1)]$
(d) $c_{k}=(-2)^{k} /[k!(-1)(2 k-3)!]$
(e) $c_{k}=(-2)^{k} /[k!1 \cdot 3 \cdots(2 k-5)]$
18. In the previous problem, a series solution corresponding to the indicial root $r=1 / 2$ is $y=x^{1 / 2}\left\{1+\sum_{k=1}^{\infty} c_{k} x^{k}\right\}$, where
Select the correct answer.
(a) $c_{k}=(-2)^{k} /[k!3 \cdot 5 \cdot 7 \cdots(2 k-3)]$
(b) $c_{k}=(-2)^{k} /[k!1 \cdot 3 \cdot 5 \cdots(2 k-3)]$
(c) $c_{k}=-2^{k} /[k!5 \cdot 7 \cdot 9 \cdots(2 k+1)]$
(d) $c_{k}=(-2)^{k} /[k!(2 k+3)!]$
(e) $c_{k}=(-2)^{k} /[k!5 \cdot 7 \cdot 9 \cdots(2 k+3)]$
19. The differential equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+20 y=0$ is

Select the correct answer.
(a) Bessel's equation of order 20
(b) Bessel's equation of order 4
(c) Legendre's equation of order n
(d) Legendre's equation of order 20
(e) Legendre's equation of order 4
20. The solution of the previous problem is

Select the correct answer.
(a) $y=c_{1} P_{20}(x)+c_{2} P_{-20}(x)$
(b) $y=c_{1} P_{4}(x)+c_{2} Q_{4}(x)$, where $Q_{4}(x)$ is given by an infinite series
(c) $y=c_{1} J_{4}(x)+c_{2} Y_{4}(x)$
(d) $y=c_{1} J_{1 / 4}(x)+c_{2} J_{-1 / 4}(x)$
(e) $y=c_{1} J_{20}(x)+c_{2} Y_{20}(x)$

ANSWER KEY

Zill Differential Equations 9e Chapter 6 Form C

1. b
2. d
3. c
4. d
5. a
6. c
7. a
8. d
9. c, d
10. a
11. b
12. b
13. b
14. d
15. с
16. d
17. a
18. e
19. e
20. b
21. The radius of convergence of the power series $\sum_{n=1}^{\infty} x^{n} / n!$ is Select the correct answer.
(a) 0
(b) 1
(c) 2
(d) ∞
(e) none of the above
22. The interval of convergence of the power series in the previous problem is Select the correct answer.
(a) $\{0\}$
(b) $(-1,1)$
(c) $[-1,1]$
(d) $(-1,1]$
(e) $(-\infty, \infty)$
23. The first four nonzero terms in the power series expansion of the function $f(x)=$ $\sin x$ about $x=0$ are
Select the correct answer.
(a) $1-x+x^{2} / 2-x^{3} / 3$
(b) $x-x^{3} / 6+x^{5} / 120-x^{7} / 5040$
(c) $x+x^{3}+x^{5}+x^{7}$
(d) $1+x^{2} / 2+x^{4} / 4+x^{6} / 6$
(e) $1-x^{2} / 2+x^{4} / 24-x^{6} / 720$
24. The singular points of the differential equation $x y^{\prime \prime}+y^{\prime}+y(x+2) /(x-4)=0$ are
Select the correct answer.
(a) none
(b) 0
(c) $0,-2$
(d) 0,4
(e) $0,-2,4$
25. The recurrence relation for the power series solution about $x=0$ of the differential equation $y^{\prime \prime}+y=0$ is
Select the correct answer.
(a) $(k+2)(k+1) c_{k+2}+c_{k}=0$
(b) $(k+2)(k+1) c_{k}+c_{k-2}=0$
(c) $(k+1) k c_{k+2}+c_{k}=0$
(d) $(k+1) k c_{k}+c_{k-2}=0$
(e) $(k-2)(k-1) c_{k-2}+c_{k}=0$
26. The solution of the recurrence relation in the previous problem is Select the correct answer.
(a) $c_{2 k}=c_{0}(-1)^{k} /(2 k), c_{2 k+1}=c_{1}(-1)^{k} /(2 k+1)$
(b) $c_{2 k}=c_{0}(-1)^{k} /(2 k)^{2}, c_{2 k+1}=c_{1}(-1)^{k} /(2 k+1)^{2}$
(c) $c_{2 k}=c_{0}(-1)^{k} /(2 k)!, c_{2 k+1}=c_{1}(-1)^{k} /(2 k+1)$!
(d) $c_{2 k}=c_{0}(-1)^{k} /(2 k+2)!, c_{2 k+1}=c_{1}(-1)^{k} /(2 k+3)$!
(e) $c_{2 k}=c_{0}(-1)^{k} /(2 k-1)$!, $c_{2 k+1}=c_{1}(-1)^{k} /(2 k)$!
27. A power series solution about $x=0$ of the differential equation $y^{\prime \prime}+y=0$ is Select the correct answer.
(a) $y=c_{0} \sum_{k=0}^{\infty}(-1)^{k} x^{2 k} /(2 k)!+c_{1} \sum_{k=0}^{\infty}(-1)^{k} x^{2 k+1} /(2 k+1)$!
(b) $y=c_{0} \sum_{k=0}^{\infty}(-1)^{k} x^{2 k} /(2 k)+c_{1} \sum_{k=0}^{\infty}(-1)^{k} x^{2 k+1} /(2 k+1)$
(c) $y=c_{0} \sum_{k=0}^{\infty}(-1)^{k} x^{2 k} /(2 k)^{2}+c_{1} \sum_{k=0}^{\infty}(-1)^{k} x^{2 k+1} /(2 k+1)^{2}$
(d) $y=c_{0} \sum_{k=0}^{\infty}(-1)^{k} x^{2 k} /(2 k)!+c_{1} \sum_{k=0}^{\infty}(-1)^{k} x^{2 k-1} /(2 k-1)$!
(e) $y=c_{0} \sum_{k=0}^{\infty}(-1)^{k} x^{2 k} /(2 k)+c_{1} \sum_{k=0}^{\infty}(-1)^{k} x^{2 k-1} /(2 k-1)$
28. The radius of convergence of the power series solution of $y^{\prime \prime}+y=0$ about $x=0$ is
Select the correct answer.
(a) 0
(b) 1
(c) 2
(d) ∞
(e) none of the above
29. For the equation $\left(x^{2}-16\right)^{3}(x-1) y^{\prime \prime}-2 x y^{\prime}+y=0$, the point $x=0$ is Select the correct answer.
(a) an ordinary point
(b) a regular singular point
(c) an irregular singular point
(d) a special point
(e) none of the above
30. For the equation $\left(x^{2}-16\right)^{3}(x-1) y^{\prime \prime}-2 x y^{\prime}+y=0$, the point $x=1$ is Select the correct answer.
(a) an ordinary point
(b) a regular singular point
(c) an irregular singular point
(d) a special point
(e) none of the above
31. For the equation $\left(x^{2}-16\right)^{3}(x-1) y^{\prime \prime}-2 x y^{\prime}+y=0$, the point $x=4$ is Select the correct answer.
(a) an ordinary point
(b) a regular singular point
(c) an irregular singular point
(d) a special point
(e) none of the above
32. The indicial equation for the differential equation $x y^{\prime \prime}+2 y^{\prime}-x y=0$ is Select the correct answer.
(a) $r(r-1)=0$
(b) $r(r+2)=0$
(c) $r(2 r+1)=0$
(d) $r(2 r-1)=0$
(e) $r(r+1)=0$
33. The recurrence relation for the differential equation $x y^{\prime \prime}+2 y^{\prime}-x y=0$ is Select the correct answer.
(a) $c_{k}(k+r)(k+r-1)+c_{k-2}=0$
(b) $c_{k}(k+r)(k+r-1)-c_{k-2}=0$
(c) $c_{k}(k+r+1)^{2}-c_{k-2}=0$
(d) $c_{k}(k+r+2)(k+r+1)+c_{k-2}=0$
(e) $c_{k}(k+r)(k+r+1)-c_{k-2}=0$
34. Consider the differential equation $x y^{\prime \prime}-x y^{\prime}+y=0$. The indicial equation is $r(r-1)=0$. The recurrence relation is $c_{k+1}(k+r+1)(k+r)-c_{k}(k+r-1)=0$. A series solution corresponding to the indicial root $r=0$ is
Select the correct answer.
(a) $y_{1}=x$
(b) $y_{1}=x^{2}$
(c) $y_{1}=\sum_{k=0}^{\infty}(-2 x)^{k} /[k!(-1) \cdot 1 \cdot 3 \cdots(2 k-1)]$
(d) $y_{1}=\sum_{k=0}^{\infty}(-2 x)^{k} /[k!(2 k-3)!]$
(e) $y_{1}=\sum_{k=0}^{\infty}(-2 x)^{k} /[k!1 \cdot 3 \cdots(2 k-3)]$
35. In the previous problem, a second solution is

Select the correct answer.
(a) $y_{2}=e^{x}$
(b) $y_{2}=x \int e^{x} / x^{2} d x$
(c) $y_{2}=1+\sum_{k=1}^{\infty} c_{k} x^{k}$, where $c_{k}=(k-1) /(k(k+1))$
(d) $y_{2}=1+\sum_{k=1}^{\infty} c_{k} x^{k}$, where $c_{k}=1 / k^{2}$
(e) none of the above
16. The differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1 / 25\right) y=0$ is

Select the correct answer.
(a) Bessel's equation of order n
(b) Bessel's equation of order $1 / 25$
(c) Bessel's equation of order $1 / 5$
(d) Legendre's equation of order $1 / 25$
(e) Legendre's equation of order $1 / 5$
17. The solution of the previous problem is

Select the correct answer.
(a) $y=c_{1} P_{1 / 5}(x)+c_{2} P_{-1 / 5}(x)$
(b) $y=c_{1} P_{5}(x)+c_{2} P_{-5}(x)$
(c) $y=c_{1} J_{5}(x)+c_{2} Y_{5}(x)$
(d) $y=c_{1} J_{1 / 5}(x)+c_{2} J_{-1 / 5}(x)$
(e) $y=c_{1} J_{1 / 25}(x)+c_{2} Y_{1 / 25}(x)$
18. The differential equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+12 y=0$ is

Select the correct answer.
(a) Bessel's equation of order 12
(b) Bessel's equation of order 3
(c) Legendre's equation of order 12
(d) Legendre's equation of order 3
(e) Legendre's equation of order 4
19. The solution of the previous problem is

Select the correct answer.
(a) $y=c_{1} P_{3}(x)+c_{2} P_{-3}(x)$
(b) $y=c_{1} P_{3}(x)+c_{2} Q_{3}(x)$, where $Q_{3}(x)$ is given by an infinite series
(c) $y=c_{1} J_{4}(x)+c_{2} Y_{4}(x)$
(d) $y=c_{1} J_{3}(x)+c_{2} Y_{3}(x)$
(e) $y=c_{1} J_{12}(x)+c_{2} Y_{12}(x)$
20. Find three positive values of λ for which the differential equation $\left(1-x^{2}\right) y^{\prime \prime}-$ $2 x y^{\prime}+\lambda y=0$ has polynomial solutions.

Select the correct answer.
(a) 2, 6, 12
(b) $1,2,3$
(c) $1,4,9$
(d) $2,4,6$
(e) $2,6,10$

1. d
2. e
3. b
4. d
5. a
6. c
7. a
8. d
9. a
10. b
11. c
12. e
13. e
14. a
15. b
16. c
17. d
18. d
19. b
20. a
21. The radius of convergence of the power series $\sum_{n=1}^{\infty} x^{n} / n^{3 / 2}$ is Select the correct answer.
(a) 0
(b) 1
(c) 2
(d) ∞
(e) none of the above
22. The interval of convergence of the power series in the previous problem is Select the correct answer.
(a) $(-1,1)$
(b) $[-1,1]$
(c) $[-1,1)$
(d) $(-\infty, \infty)$
(e) none of the above
23. Write down the power series expansion about $x=0$ for the function $f(x)=e^{3 x}$.
24. What are the singular points of the differential equation $\sin x y^{\prime \prime}-y=0$?
25. The recurrence relation for the power series solution about $x=0$ of the differential equation $y^{\prime \prime}+y^{\prime}=0$ is
Select the correct answer.
(a) $(k+2)(k+1) c_{k+2}+(k+1) c_{k+1}=0$
(b) $(k+2)(k+1) c_{k+2}+k c_{k}=0$
(c) $(k+1) k c_{k+2}+k c_{k}=0$
(d) $(k+1) k c_{k}+(k-2) c_{k-2}=0$
(e) $(k-2)(k-1) c_{k-2}+k c_{k}=0$
26. The solution of the recurrence relation in the previous problem is (let $c_{1}=1$) Select the correct answer.
(a) $c_{k}=(-1)^{k} / k$
(b) $c_{k}=(-1)^{k} / k^{2}$
(c) $c_{k}=(-1)^{k} / k$!
(d) $c_{k}=(-1)^{k} /((k+2)(k+1))$
(e) $c_{k}=(-1)^{k} /((k-1)(k-2))$
27. A power series solution about $x=0$ of the differential equation $y^{\prime \prime}+y^{\prime}=0$ is Select the correct answer.
(a) $y=c_{0} \sum_{k=0}^{\infty}(-1)^{k} x^{2 k} /(2 k)^{2}+c_{1} \sum_{k=0}^{\infty}(-1)^{k} x^{2 k+1} /(2 k+1)^{2}$
(b) $y=c_{0} \sum_{k=0}^{\infty}(-1)^{k} x^{2 k} /(2 k)!+c_{1} \sum_{k=0}^{\infty}(-1)^{k} x^{2 k+1} /(2 k+1)$!
(c) $y=c_{0} \sum_{k=0}^{\infty}(-1)^{k} x^{2 k} /(2 k)+c_{1} \sum_{k=0}^{\infty}(-1)^{k} x^{2 k+1} /(2 k+1)$
(d) $y=c_{0}+c_{1} \sum_{k=0}^{\infty}(-1)^{k} x^{k} / k$!
(e) $y=c_{0} \sum_{k=0}^{\infty} x^{k} / k!+c_{1} \sum_{k=0}^{\infty}(-1)^{k} x^{k} / k$!
28. The radius of convergence of the power series solution of $y^{\prime \prime}+y^{\prime}=0$ about $x=0$ is

Select the correct answer.
(a) 0
(b) 1
(c) 2
(d) ∞
(e) none of the above
9. Determine the singular points of $x^{3} y^{\prime \prime}-2 x y^{\prime}+y=0$ and classify them as regular or irregular.
10. Determine the singular points of $\left(x^{2}-1\right)^{2} y^{\prime \prime}-2 x y^{\prime}+y=0$ and classify them as regular or irregular.
11. Determine the singular points of $\left(x^{3}+x\right)^{2}(x-1)^{3} y^{\prime \prime}-2 x y^{\prime}+y=0$ and classify them as regular or irregular.
12. The indicial equation for the differential equation $x^{2} y^{\prime \prime}-(x-2 / 9) y=0$ is Select the correct answer.
(a) $r^{2}-2 / 9=0$
(b) $r^{2}+r+2 / 9=0$
(c) $r^{2}-r-2 / 9=0$
(d) $r^{2}+r-2 / 9=0$
(e) $r^{2}-r+2 / 9=0$
13. The recurrence relation for the differential equation $x^{2} y^{\prime \prime}-(x-2 / 9) y=0$ is Select the correct answer.
(a) $c_{k+1}((k+r+1)(k+r)+2 / 9)+c_{k}=0$
(b) $c_{k+1}((k+r)(k+r-1)+2 / 9)+c_{k}=0$
(c) $c_{k+1}((k+r+1)(k+r)+2 / 9)-c_{k}=0$
(d) $c_{k+1}((k+r)(k+r-1)+2 / 9)-c_{k}=0$
(e) $c_{k+1}((k+r+1)(k+r)-2 / 9)+2 c_{k}=0$
14. Consider the differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1 / 4\right) y=0$. The indicial equation is $r^{2}-1 / 4=0$. The recurrence relation is $c_{k}\left[(k+r)^{2}-1 / 4\right]+c_{k-2}=0$. One series solution corresponding to the indicial root $r=-1 / 2$ is $y=x^{-1 / 2}(1+$ $\sum_{k=1}^{\infty} c_{k} x^{2 k}$), where
Select the correct answer.
(a) $c_{k}=(-1)^{k} /(2 k)$!
(b) $c_{k}=-1^{k} / k$!
(c) $c_{k}=(-1)^{k} / k$!
(d) $c_{k}=-1^{k} /(2 k)$!
(e) $c_{k}=(-1)^{k} / k!^{2}$
15. The point $x=0$ is a critical point of the differential equation $3 x y^{\prime \prime}+(2-x) y^{\prime}-$ $y=0$. What is the indicial equation?
16. For the previous problem, find the recurrence relation for the series solution about $x=0$.
17. Find the series solution of $3 x y^{\prime \prime}+(2-x) y^{\prime}-y=0$.
18. The differential equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0$ is

Select the correct answer.
(a) Bessel's equation of order 2
(b) Bessel's equation of order 1
(c) Legendre's equation of order 2
(d) Legendre's equation of order 1
(e) Legendre's equation of order n
19. The solution of the previous problem is

Select the correct answer.
(a) $y=c_{1} P_{1}(x)+c_{2} P_{-1}(x)$
(b) $y=c_{1} P_{1}(x)+c_{2} Q_{1}(x)$, where $Q_{1}(x)$ is given by an infinite series
(c) $y=c_{1} J_{1}(x)+c_{2} Y_{1}(x)$
(d) $y=c_{1} J_{2}(x)+c_{2} Y_{2}(x)$
(e) $y=c_{1} J_{1}(x)+c_{2} J_{-1}(x)$
20. In the previous two problems, what is the polynomial solution?

1. b
2. b
3. $\sum_{k=0}^{\infty}(3 x)^{k} / k$!
4. $x=n \pi, n$ is an integer
5. a
6. c
7. d
8. d
9. $x=0$ is an irregular singular point
10. $x= \pm 1$ are both regular singular points
11. $x=0, \pm i$ are regular singular points, $x=1$ is an irregular singular point
12. e
13. c
14. a
15. $3 r^{2}-r=0$
16. $(3 k+3 r+2) c_{k+1}-c_{k}=0$
17. $c_{0} x^{1 / 3} \sum_{k=0}^{\infty}(x / 3)^{k} / k!+c_{1}\left[1+\sum_{k=1}^{\infty} x^{k} /(2 \cdot 5 \cdot 8 \cdots(3 k-1))\right]$
18. d
19. b
20. $P_{1}(x)=x$
21. Find the radius of convergence of the power series $\sum_{n=1}^{\infty} x^{n} / n^{1 / 2}$.
22. Find the interval of convergence of the power series in the previous problem.
23. The first four nonzero terms in the power series expansion of the function $f(x)=$ $\sin x$ about $x=0$ are
Select the correct answer.
(a) $1-x+x^{2} / 2-x^{3} / 3$
(b) $x-x^{3} / 6+x^{5} / 120-x^{7} / 5040$
(c) $x+x^{3}+x^{5}+x^{7}$
(d) $1+x^{2} / 2+x^{4} / 4+x^{6} / 6$
(e) $1-x^{2} / 2+x^{4} / 24-x^{6} / 720$
24. The singular points of the differential equation $y^{\prime \prime}+y^{\prime} / x+y(x-2) /(x-3)=0$ are
Select the correct answer.
(a) none
(b) 0
(c) 0,2
(d) 0,3
(e) $0,2,3$
25. Find a power series solution about $x=0$ of the differential equation $y^{\prime \prime}-y^{\prime}=0$.
26. Find a power series solution about $x=0$ of the differential equation $y^{\prime \prime}+4 y=0$.
27. Find the recurrence relation for the terms in the power series solution about $x=0$ of the differential equation $y^{\prime \prime}+x^{2} y=0$.
28. Find the first four nonzero terms of a power series solution about $x=0$ of the differential equation $y^{\prime \prime}+x^{2} y=0$.
29. What is the radius of convergence of the power series solution of $y^{\prime \prime}+x^{2} y=0$?
30. For the differential equation $\left(x^{2}-1\right)^{3}(x+2) y^{\prime \prime}-2 x y^{\prime}+y=0$, the point $x=1$ is

Select the correct answer.
(a) an ordinary point
(b) a regular singular point
(c) an irregular singular point
(d) a special point
(e) none of the above
11. For the differential equation $\left(x^{2}-1\right)^{3}(x+2) y^{\prime \prime}-2 x y^{\prime}+y=0$, the point $x=2$ is

Select the correct answer.
(a) an ordinary point
(b) a regular singular point
(c) an irregular singular point
(d) a special point
(e) none of the above
12. For the differential equation $\left(x^{2}-1\right)^{3}(x+2) y^{\prime \prime}-2 x y^{\prime}+y=0$, the point $x=-2$ is

Select the correct answer.
(a) an ordinary point
(b) a regular singular point
(c) an irregular singular point
(d) a special point
(e) none of the above
13. The point $x=0$ is a critical point of the differential equation $4 x y^{\prime \prime}+y^{\prime} / 2+y=0$. What is the indicial equation?
14. For the previous problem, find the recurrence relation for the series solution about $x=0$.
15. Find the series solution of $4 x y^{\prime \prime}+y^{\prime} / 2+y=0$.
16. The differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1 / 9\right) y=0$ is

Select the correct answer.
(a) Bessel's equation of order n
(b) Bessel's equation of order $1 / 9$
(c) Bessel's equation of order $1 / 3$
(d) Legendre's equation of order $1 / 9$
(e) Legendre's equation of order $1 / 3$
17. The solution of the previous problem is

Select the correct answer.
(a) $y=c_{1} P_{1 / 3}(x)+c_{2} P_{-1 / 3}(x)$
(b) $y=c_{1} P_{3}(x)+c_{2} P_{-3}(x)$
(c) $y=c_{1} J_{3}(x)+c_{2} Y_{3}(x)$
(d) $y=c_{1} J_{1 / 3}(x)+c_{2} J_{-1 / 3}(x)$
(e) $y=c_{1} J_{1 / 9}(x)+c_{2} Y_{1 / 9}(x)$
18. What is the name (including the order) of the differential equation $\left(1-x^{2}\right) y^{\prime \prime}-$ $2 x y^{\prime}+12 y=0$
19. In the previous problem, what is the recurrence relation for the series solution about $x=0$?
20. What is the solution of the differential equation in the previous two problems?

1. $R=1$
2. $[-1,1)$
3. b
4. d
5. $c_{0}+c_{1} \sum_{k=1}^{\infty} x^{k} / k!$
6. $c_{0} \sum_{k=0}^{\infty}(-1)^{k}(2 x)^{2 k} /(2 k)!+c_{1} \sum_{k=0}^{\infty}(-1)^{k}(2 x)^{2 k+1} /(2 k+1)$!
7. $c_{k} k(k-1)+c_{k-4}=0$
8. $1-x^{4} / 12+x^{8} / 672-x^{12} / 88704$ or $x-x^{5} / 20+x^{9} / 1440-x^{13} / 224640$
9. $R=\infty$
10. c
11. a
12. b
13. $4 r^{2}-7 r / 2=0$
14. $c_{k+1}(k+r+1)(4 k+4 r+1 / 2)+c_{k}=0$
15. $c_{0}\left[1+\sum_{k=1}^{\infty}(-2 x)^{k} /(k!1 \cdot 9 \cdots(8 k-7)]+c_{1} x^{7 / 8}\left[1+\sum_{k=1}^{\infty}(-2 x)^{k} /(k!15 \cdot 23 \cdots(8 k+\right.\right.$ 7)]
16. c
17. d
18. Legendre's equation of order 3
19. $c_{k+2}(k+2)(k+1)-c_{k}(k+4)(k-3)=0$
20. $c_{1}\left(x-5 x^{3} / 3\right)+c_{0}\left[1+\sum_{k=1}^{\infty} 2^{k} x^{2 k}(-3)(-1) 1 \cdot 3 \cdots(2 k-5) /(2 k)!\right]$
21. The radius of convergence of the power series $\sum_{n=1}^{\infty} x^{n} / n^{3}$ is

Select the correct answer.
(a) 0
(b) 1
(c) 2
(d) ∞
(e) none of the above
2. The interval of convergence of the power series in the previous problem is Select the correct answer.
(a) $(-1,1)$
(b) $[-1,1]$
(c) $[-1,1)$
(d) $(-\infty, \infty)$
(e) none of the above
3. Write down the power series expansion about $x=0$ for the function $f(x)=$ $\sin x$.
4. Identify the singular points of the differential equation $\ln x \cdot y^{\prime \prime}+y^{\prime}=0$.
5. The recurrence relation for the power series solution about $x=0$ of the differential equation $y^{\prime \prime}-y^{\prime}=0$ is
Select the correct answer.
(a) $(k+1) c_{k+1}=c_{k} k$
(b) $(k+1) c_{k}=c_{k-1}(k-1)$
(c) $(k+2)(k+1) c_{k+2}=c_{k} k$
(d) $(k+1) k c_{k}=c_{k-2}(k-2)$
(e) $(k-2)(k-1) c_{k-2}=c_{k} k$
6. The solution of the recurrence relation in the previous problem is

Select the correct answer.
(a) $c_{k}=c_{0} / k$
(b) $c_{k}=c_{0} / k^{2}$
(c) $c_{k}=c_{0} / k$!
(d) $c_{k}=c_{0}(-1)^{k} /(2 k)$!
(e) $c_{k}=c_{0}(-1)^{k} /(2 k+1)$!
7. A power series solution about $x=0$ of the differential equation $y^{\prime \prime}-y^{\prime}=0$ is Select the correct answer.
(a) $y=c_{0} \sum_{k=0}^{\infty} x^{2 k} /(2 k)!+c_{1} \sum_{k=0}^{\infty} x^{2 k+1} /(2 k+1)$!
(b) $y=c_{0} \sum_{k=0}^{\infty} x^{2 k} /(2 k)+c_{1} \sum_{k=0}^{\infty} x^{2 k+1} /(2 k+1)$
(c) $y=c_{0}+c_{1} \sum_{k=1}^{\infty} x^{k} / k$!
(d) $y=c_{0} \sum_{k=0}^{\infty} x^{k} / k!+c_{1} \sum_{k=0}^{\infty}(-x)^{k} / k$!
(e) none of the above
8. The radius of convergence of the power series solution of $y^{\prime \prime}-y^{\prime}=0$ about $x=0$ is
Select the correct answer.
(a) 0
(b) 1
(c) 2
(d) ∞
(e) none of the above
9. Determine the singular points of $x^{3} y^{\prime \prime}+5 x y^{\prime}+y=0$ and classify them as regular or irregular.
10. Determine the singular points of $(1-\cos x) y^{\prime \prime}-2 x y^{\prime}+y=0$ and classify them as regular or irregular.
11. Determine the singular points of $(x-\sin x)(x-1)^{2} y^{\prime \prime}-2 x y^{\prime}+y=0$ and classify them as regular or irregular.
12. The indicial equation for the differential equation $x y^{\prime \prime}+(1-x) y^{\prime}-y=0$ is Select the correct answer.
(a) $r(r+1)=0$
(b) $r(r-1)=0$
(c) $r^{2}-1=0$
(d) $r^{2}+1=0$
(e) $r^{2}=0$
13. The recurrence relation for the differential equation $x y^{\prime \prime}+(1-x) y^{\prime}-y=0$ is Select the correct answer.
(a) $c_{k+1}(k+r)+c_{k}=0$
(b) $c_{k+1}(k+r)-c_{k}=0$
(c) $c_{k+1}(k+r+1)-c_{k}=0$
(d) $c_{k+1}(k+r+1)+c_{k}=0$
(e) $c_{k+1}(k+r+1)(k+r)-2 c_{k}=0$
14. The solution of $x y^{\prime \prime}+(1-x) y^{\prime}-y=0$ is

Select the correct answer.
(a) $c_{1} e^{x}+c_{2} e^{x}\left(\ln x+\sum_{k=1}^{\infty}(-1)^{k} x^{k} /(k \cdot k!)\right.$
(b) $c_{1} e^{-x}+c_{2} e^{-x}\left(\ln x+\sum_{k=1}^{\infty}(-1)^{k} x^{k} /(k \cdot k!)\right.$
(c) $c_{1} e^{x}+c_{2} e^{x}\left(\ln x+\sum_{k=1}^{\infty} x^{k} /(k \cdot k!)\right.$
(d) $c_{1} e^{-x}+c_{2} e^{-x}\left(\ln x+\sum_{k=1}^{\infty} x^{k} /(k \cdot k!)\right.$
(e) $c_{1} \sum_{k=0}^{\infty}(-1)^{k} x^{k} /(k \cdot k!)+c_{2} e^{x}\left(\ln x+\sum_{k=1}^{\infty}(-1)^{k} x^{k} /(k \cdot k!)\right.$
15. The point $x=0$ is a critical point of the differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+$ $\left(x^{2}-1 / 9\right) y=0$. What is the indicial equation?
16. For the previous problem, find the recurrence relation for the series solution about $x=0$.
17. Find the series solution of $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1 / 9\right) y=0$.
18. What is the name of the differential equation in the previous problem?
19. Write the solution of the previous four problems in terms of the special function notation.
20. Use the recurrence relation $(k+1) P_{k+1}(x)-(2 k+1) x P_{k}(x)+k P_{k-1}(x)=0$ and $P_{0}(x)=1, P_{1}(x)=x$ to generate the next two Legendre polynomials.

1. b
2. b
3. $\sum_{k=0}^{\infty}(-1)^{k} x^{2 k+1} /(2 k+1)$!
4. all $x \leq 0$
5. a
6. c
7. c
8. d
9. $x=0$ is an irregular singular point
10. $x=2 n \pi, n$ is an integer, are all regular singular points
11. $x=0$ is an irregular singular point, $x=1$ is a regular singular point
12. e
13. c
14. a
15. $r^{2}-1 / 9=0$
16. $c_{k}\left((k+r)^{2}-1 / 9\right)+c_{k-2}=0$
17. $c_{0} x^{1 / 3}\left[1+\sum_{k=1}^{\infty}(-3)^{k} x^{2 k} /\left(2^{k} k!8 \cdot 14 \cdots(6 k+2)\right]+c_{1} x^{-1 / 3}\left[1+\sum_{k=1}^{\infty}(-3)^{k} x^{2 k} /\left(2^{k} k!4\right.\right.\right.$.
$10 \cdots(6 k-2))]$
18. Bessel's equation of order $1 / 3$
19. $c_{0} J_{1 / 3}(x)+c_{1} J_{-1 / 3}(x)$
20. $P_{2}(x)=\left(3 x^{2}-1\right) / 2, P_{3}(x)=\left(5 x^{3}-3 x\right) / 2$
21. Find the radius of convergence of the power series $\sum_{n=1}^{\infty} x^{n}$.
22. Find the interval of convergence of the power series in the previous problem.
23. The first four nonzero terms in the power series expansion of the function $f(x)=$ e^{-x} about $x=0$ are
Select the correct answer.
(a) $1-x+x^{2} / 2-x^{3} / 3$
(b) $1-x+x^{2} / 2-x^{3} / 6$
(c) $1+x+x^{2} / 2+x^{3} / 6$
(d) $1+x+x^{2} / 2+x^{3} / 3$
(e) $1-x^{2} / 2+x^{4} / 24-x^{6} / 720$
24. The singular points of the differential equation $\left(1-e^{x}\right) y^{\prime \prime}+y^{\prime} /(x-5)+$ $y(x-4) /(x-7)=0$ are
Select the correct answer.
(a) none
(b) 0
(c) $0,4,5$
(d) $0,4,7$
(e) $0,5,7$
25. Find a power series solution about $x=0$ of the differential equation $y^{\prime \prime}+y=0$.
26. Find a power series solution about $x=0$ of the differential equation $y^{\prime \prime}+4 y^{\prime}=0$.
27. Find the recurrence relation for the terms in the power series solution about $x=0$ of the differential equation $y^{\prime \prime}-x y=0$.
28. Find the first four nonzero terms of a power series solution about $x=0$ of the differential equation $y^{\prime \prime}-x y=0$.
29. For the equation $\left(x^{2}-1\right)^{3}(x+2) y^{\prime \prime}-2 x y^{\prime}+y=0$, the point $x=1$ is Select the correct answer.
(a) an ordinary point
(b) a regular singular point
(c) an irregular singular point
(d) a special point
(e) none of the above
30. For the differential equation $\left(x^{2}-1\right)^{3}(x+2) y^{\prime \prime}-2 x y^{\prime}+y=0$, the point $x=2$ is

Select the correct answer.
(a) an ordinary point
(b) a regular singular point
(c) an irregular singular point
(d) a special point
(e) none of the above
11. For the differential equation $(x-1)^{3}(x+2)^{2} y^{\prime \prime}-2 x y^{\prime}+y=0$, the point $x=-2$ is

Select the correct answer.
(a) an ordinary point
(b) a regular singular point
(c) an irregular singular point
(d) a special point
(e) none of the above
12. The point $x=0$ is a critical point of the differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+$ $\left(x^{2}-1 / 4\right) y=0$. What is the indicial equation?
13. For the previous problem, find the recurrence relation for the series solution about $x=0$.
14. Find the series solution of $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1 / 4\right) y=0$.
15. What is the name of the differential equation in the previous problem?
16. The differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1 / 36\right) y=0$ is Select the correct answer.
(a) Bessel's equation of order n
(b) Bessel's equation of order $1 / 36$
(c) Bessel's equation of order $1 / 6$
(d) Legendre's equation of order $1 / 36$
(e) Legendre's equation of order $1 / 6$
17. The solution of the previous problem is

Select the correct answer.
(a) $y=c_{1} P_{1 / 6}(x)+c_{2} P_{-1 / 6}(x)$
(b) $y=c_{1} P_{6}(x)+c_{2} P_{-6}(x)$
(c) $y=c_{1} J_{6}(x)+c_{2} Y_{6}(x)$
(d) $y=c_{1} J_{1 / 6}(x)+c_{2} J_{-1 / 6}(x)$
(e) $y=c_{1} J_{1 / 36}(x)+c_{2} J_{-1 / 36}(x)$
18. Find $P_{4}(x)$, using the recurrence relation $(k+1) P_{k+1}-(2 k+1) x P_{k}(x)+$ $k P_{k-1}(x)=0$ and $P_{0}(x)=1, P_{1}(x)=x$.
19. The differential equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+30 y=0$ is

Select the correct answer.
(a) Bessel's equation of order 30
(b) Bessel's equation of order 5
(c) Legendre's equation of order 5
(d) Legendre's equation of order 6
(e) Legendre's equation of order 30
20. The solution of the previous problem is

Select the correct answer.
(a) $y=c_{1} J_{5}(x)+c_{2} Y_{5}(x)$
(b) $y=c_{1} J_{1 / 5}(x)+c_{2} Y_{1 / 5}(x)$
(c) $y=c_{1} J_{30}(x)+c_{2} Y_{30}(x)$
(d) $y=c_{1} P_{30}(x)+c_{2} P_{-30}(x)$
(e) $y=c_{1} P_{5}(x)+c_{2} Q_{5}(x)$, where $Q_{5}(x)$ is given by an infinite series

1. $R=1$
2. $(-1,1)$
3. b
4. e
5. $c_{0} \sum_{k=0}^{\infty}(-1)^{k} x^{2 k} /(2 k)!+c_{1} \sum_{k=0}^{\infty}(-1)^{k} x^{2 k+1} /(2 k+1)$!
6. $c_{0}+c_{1} \sum_{k=1}^{\infty}(-4 x)^{k} / k!$
7. $c_{k+3}(k+3)(k+2)-c_{k}=0$
8. $1+x^{3} / 6+x^{6} / 180+x^{9} / 12960$ 0r $x+x^{4} / 12+x^{7} / 504+x^{10} / 45360$
9. c
10. a
11. b
12. $r^{2}-1 / 4=0$
13. $c_{k+2}\left((k+r+2)^{2}-1 / 4\right)+c_{k}=0$
14. $c_{0} x^{-1 / 2} \sum_{k=0}^{\infty}(-1)^{k} x^{2 k} /(2 k)!+c_{1} x^{-1 / 2} \sum_{k=0}^{\infty}(-1)^{k} x^{2 k+1} /(2 k+1)$!
15. Bessel's equation of order $1 / 2$
16. c
17. d
18. $P_{4}(x)=\left(35 x^{4}-30 x^{2}+3\right) / 8$
19. c
20. e
