1. A spring attached to the ceiling is stretched 2.45 meters by a four kilogram mass. The value of the Hooke's Law spring constant, k is

Select the correct answer.

- (a) 1/4 meter-Newton
- (b) 4 meter-Newtons
- (c) 1/4 Newton per meter
- (d) 16 Newtons per meter
- (e) none of the above
- 2. In the previous problem, if the mass is set in motion, the natural frequency, ω , is Select the correct answer.
 - (a) 2sec
 - (b) $2 \sec^{-1}$
 - (c) 4 sec
 - (d) $4 \, \text{sec}^{-1}$
 - (e) $16 \ {\rm sec}^{-1}$
- 3. In the previous two problems, if the mass is set into motion in a medium that imparts a damping force numerically equal to 16 times the velocity, the correct differential equation for the position, x(t), of the mass at a function of time, t, is

Select the correct answer.

- (a) $\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + x/4 = 0$
- (b) $\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 2x = 0$
- (c) $\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 4x = 0$
- (d) $\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 8x = 0$
- (e) $\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 32x = 0$
- 4. If the mass in the previous problem is pulled down two centimeters and released, the solution for the position is

Select the correct answer.

- (a) $x = 0.02e^{-2t} + 0.04te^{-2t}$
- (b) $x = 2e^{-2t} + 4te^{-2t}$
- (c) $x = 0.02e^{2t} 0.04te^{2t}$
- (d) $x = e^{-2t} \sin t$
- (e) $x = 0.02e^{-2t} \cos t$

1. d	
2. b	
3. c	
4. a	
5. d	
6. e	
7. b	
8. a	
9. c	
10. e	
11. a	
12. b	
13. e	
14. b	
15. d	
16. e	
17. d	
18. e	
19. c	
20. d	