1. A spring attached to the ceiling is stretched one foot by a four pound weight. The value of the Hooke's Law spring constant, k, is

Select the correct answer.

- (a) 4 pounds per foot
- (b) 1/4 pound per foot (17)
- (c) 1/4 foot-pound
- (d) 4 foot-pounds
- (e) none of the above
- 2. In the previous problem, if the mass is set in motion, the natural frequency, ω , is Select the correct answer.
 - (a) $4\sqrt{2}$ sec (b) $4\sqrt{2}$ sec⁻¹ (c) 32 sec (18)
 - (d) 32 sec^{-1}
 - (e) \sec^{-1}
- 3. In the previous two problems, the correct differential equation for the position, x(t), of the mass at a function of time, t, is

Select the correct answer.

(a)
$$\frac{d^2x}{dt^2} + x/4 = 0$$

(b) $\frac{d^2x}{dt^2} + 2x = 0$
(c) $\frac{d^2x}{dt^2} + 4x = 0$
(d) $\frac{d^2x}{dt^2} + 8x = 0$
(e) $\frac{d^2x}{dt^2} + 32x = 0$
(19)

4. If the mass in the previous problem is pulled down two feet and released, the solution for the position is

Select the correct answer.

(a)
$$x = 2\cos(4\sqrt{2t}) + 2\sin(4\sqrt{2t})$$

(b) $x = 2\sin(4\sqrt{2t})$
(c) $x = 2\cos(4\sqrt{2t})$
(d) $x = 2\sin(4t)$
(e) $x = 2\cos(4t)$
(20)