1. A spring attached to the ceiling is stretched one foot by a four pound weight. The value of the Hooke's Law spring constant, k, is
Select the correct answer.
(a) 4 pounds per foot
(b) $1 / 4$ pound per foot
(c) $1 / 4$ foot-pound
(d) 4 foot-pounds
(e) none of the above
2. In the previous problem, if the mass is set in motion, the natural frequency, ω, is Select the correct answer.
(a) $4 \sqrt{2} \mathrm{sec}$
(b) $4 \sqrt{2} \mathrm{sec}^{-1}$
(c) 32 sec
(d) $32 \mathrm{sec}^{-1}$
(e) sec^{-1}
3. In the previous two problems, the correct differential equation for the position, $x(t)$, of the mass at a function of time, t, is

Select the correct answer.
(a) $\frac{d^{2} x}{d t^{2}}+x / 4=0$
(b) $\frac{d^{2} x}{d t^{2}}+2 x=0$
(c) $\frac{d^{2} x}{d t^{2}}+4 x=0$
(d) $\frac{d^{2} x}{d t^{2}}+8 x=0$
(e) $\frac{d^{2} x}{d t^{2}}+32 x=0$
4. If the mass in the previous problem is pulled down two feet and released, the solution for the position is

Select the correct answer.
(a) $x=2 \cos (4 \sqrt{2} t)+2 \sin (4 \sqrt{2} t)$
(b) $x=2 \sin (4 \sqrt{2} t)$
(c) $x=2 \cos (4 \sqrt{2} t)$
(d) $x=2 \sin (4 t)$
(e) $x=2 \cos (4 t)$

