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How Java’s Floating-Point Hurts Everyone Everywhere

Topics

Abstract
Overview: Java hasevolved to target markets to which itsinitial design decisions areill-suited.
Pure Java' s Two Cruel Delusions, promises Java cannot keep

Example: Complex Arithmetic Classes; should misplotted fluid flows be exactly reproducible?

Example: Faster Matrix Multiply too valuable to forego for unneeded exact reproducibility
Self-Discipline, Reproducibility, Controllability
Java purportsto fix what ain’t broken in Floating-point
Exceptions; Algebraical Completion; lack of Flags makes Java's Floating-Point Dangerous
Misconceptions about Floating-point

Example: Disassociate “Catastrophic” from “Cancellation”; Computation asaWeb
An old Rule of Thumb iswrong because of misconceptions about Precision and Accuracy

Why so many still believe thiswrong rule of thumb; another counter-example

What’' s wrong with it (and another counter-example); how it got into so many programming languages
What to do instead; Four Rulesof Thumb for best use of modern floating-point hardware

Example: Angleat theeye; old Kernighan-Ritchie C semantics are safer than Java's

Three Williams contend for Java's numerics, it should copy old Kernighan-Ritchie C semantics

Example: 3-dimensional rectilinear geometry; Cross-products work better as matrix products

Overloaded operators; Neat solutions for nearest-point problems, ...
turned into numerical junk by Java's floating-point, work well in Kernighan-Ritchie C

Dynamic Directed Rounding Modes, Debugging Numerical Instability

Example: Needle-like triangles’ area and angles
|EEE 754 Double Extended reduces therisk of chagrin, conserves monotonicity, ...
... but not in Java. Three floating-point formats run fast; the widest isvaluablefor ...

Example: Cantilever calculation; Iterative refinement’s accuracy improves spectacularly more than 11 bits
The cheaper machines would always get better results but for Java's and Microsoft’s intransigence
How to support extra-precise arithmetic; anonynous i ndi genous ; Optimizations by the Compiler

Conclusions. Java's floating-point hurts Java vs. J++, sorepair Java's floating-point soon.
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How Java’s Floating-Point Hurts Everyone Everywhere
Abstract:

Java's floating-point arithmetic is blighted by five gratuitous mistakes:
1. Linguistically legislated exact reproducibility is at best mere wishful thinking.
2. Of two traditional policies for mixed precision evaluation, Java chose the worse.

3. Infinities and NaNs unleashed without the protection of floating-point traps and flags
mandated by |EEE Standards 754/854 belie Java's claim to robustness.

4. Every programmer’s prospects for success are diminished by Java's refusal to grant access
to capabilities built into over 95% of today's floating-point hardware.

5. Java hasreected even mildly disciplined infix operator overloading, without which extensions
to arithmetic with everyday mathematical types like complex numbers, intervals, matrices,
geometrical objects and arbitrarily high precision become extremely inconvenient.

To leave these mistakes uncorrected would be atragic sixth mistake.

The following pages expand upon material presented on Sunday morning 1 March 1998 partly to
rebut Dr. James Gosling's keynote address “Extensionsto Javafor Numerical Computation” the
previous morning (Sat. 28 Feb.); seehis http://java. sun. coni peopl e/ j ag/ FP. ht m .

For a better idea of what isin store for usin the future unless we can changeit, see

http://ww. sun. cond sm / Press/ sunfl ash/ 9803/ sunf | ash. 980324. 17. ht i and
http://math. ni st. gov/javanumneri cs/i ssues. ht ml #LanguageFeat ures .
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We agree with James Gosling about somethingslike ...

» Some kind of infix operator overloading will have to be added to Java.
« Some kind of Complex classwill have to be added to Java.
» Some changesto the VM are unavoidable.

« “ 95% of the folks out there are completely clueless about floating-point.” ( J.G., 28 Feb. 1998 )
( Maybe more than 95% ?)

. and disagree with him about other things like ...

*“ A proposal to enhance Java's numerics would split the Java community into three parts:
1. Numerical Analysts, who would unanimously be enthusiastically FOR it,
2. Others, who would be vehemently AGAINST it, and
3. Otherswho wouldn’t care.” (J.G., 28 Feb. 1998)
Actually, Numerical Analysts would be as confused as everyone else and even more divided.

« Complex arithmetic like Fortran’'s? That’s not the best way. The C9X proposal is better.
 “Loose Numerics’ ? Soppy numerics! |EEE 754 Double-Extended supported properly is better.

e ... and many more...
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To cure Java's numerical deficiencies, we too propose to modify it
but not theway Gosling would modify it.

We call our modified Java language “ Borneo.”

Borneo’s design was constrained to be Upward Compatible with Java:

» Compiling Java programswith Borneo semantics should leave integer arithmetic unchanged
and should change floating-point arithmetic at most very dlightly.

* Any old Java class aready compiled to bytecode should be unable to tell whether other
bytecode was compiled under Java's semantics or Borneo’'s.

* Borneo isdesigned to require the least possible change to the Java Virtual Machine (JVM )
that can remedy Java's floating-point deficiencies.

» Borneo addsto Java aslittleinfix operator overloading, exception flag and trap handling,
control over rounding directions and choice of precisions asis essential for good floating-point
programming. If you wish not to know about them, don’t mention them in your program.

For more information about Borneo: http://ww. cs. ber kel ey. edu/ ~dar cy/ Bor neo .

For more information about Floating-Point: http://ww. cs. ber kel ey. edu/ ~wkahan .

What followsis NOT about Borneo.

What follows explainswhy Java hasto be changed. By Sun. Urgently.
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+
Anne and Pete use the
sane program
But they do not use the
sane platform
See Pat. How? How can this be?

Pat wote one program
It can run on all platforns.

Pat used 100% Pure Java (TM
to wite the program

Run program run!

No non
wite once,

+

They have 100% Pure Java.
It works with the platforns
t hey have.

Anne and Pete are happy.
They can wor K.
Wrk, work, work!

mul —t i —pl at —f or m | an—guage
Java (TM

code

run a—ny—-where (TM

100% Pure JAVA
Pure and Sinpl e.

This parody of puffery promoting 100% Pure Javall for everyone everywherefilled page C6 in

the San Franisco Chronicle Business Section of Tues. May 6, 1997.

It was paid for and copyrighted by Sun Microsystems.

Behind Sun’s corporate facade must have twinkled a wicked sense of humor.
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Whom does Sun expect to use Java?
Everybody.

Everybody falls into one of two groups:

1. A roundup of the usual suspects

These numerical experts, engineers, scientists, statisticians, ... are used to programmingin C,
Fortran, Ada, ... ortousing programswritten in those languages. Among their programs are
many that predate |1EEE Standard 754 (1985) for Binary Floating-Point Arithmetic; these
programs, many written to be “Portable’ to the computers of the 1970s, demand no more from
floating-point than Java provides, so their trandationinto Java isamost mechanical.

2. Everybody else

“ 95% of the folks out there are completely clueless about floating-point.” (J.G., 28 Feb. 1998)
Their numerical inexpertise will not deter clever folks from writing Java programs that depend
upon floating-point arithmetic to perform parts of their computations:

» Materiaslists and blueprints for roofing, carpentry, plumbing, wiring, painting.

* Numerically controlled machine tools and roboticized manufacturing, farming and recycling.

» Customizable designs for home-built furniture, sailboats, light aircraft, go-karts, irrigation.

» Navigation for sailboats, light aircraft and spaceships while their pilots doze at the wheel.

» Economic and financial forecasts, estimated yield on investments, and portfolio management.
* Predictions of supply and demand, predictive inventory management, just-in-time delivery.

Thereisno end to thislist.
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Q & A about selling computing to Everyone Everywhere:

What would happen to the market for automobiles if transmissions and chokes were not automatic, and if brakes
and steering were not not power-assisted? Would all drivers be dextrous and strong, or would there be fewer cars
and more chauffeursasin “the good old days’ ? What if standards for vehicular body-strength, lights, brakes,
tires, seat-belts, air-bags, safety-glass, ... wererelaxed? Would cheaper cars and trucks compensate us for the
cost of caring for more cripples?

Are such questionsirrelevant to our industry? What will happen to the market for our computer hard- and software
iIf we who design them fail to make them as easy to use as we can and also robust in the face of misuse? Misuseis
unavoidable. Our industry’s vigor depends upon a vast army of programmers to cope with innumerable messy
details some of which, like floating-point, are aso complicated; and ...

In every army large enough, someone failsto get the message, or getsit wrong, or forgetsit.

Most programmers never take a competent coursein Numerical Analysis, or elseforget it. Over “ 95% of the
folks out there are completely clueless about floating-point.” ( J.G., 28 Feb. 1998) Amidst an overabundance of
JavaBeans[] and ClassLibraries, we programmers usually hasten to do our job without finding the information
we need to cope well with floating-point’s complexities. Like Coleridge’'s Ancient Mariner afloat in

“ Water, water every where, nor any drop to drink ”

we are awash in (mis- and dis-)information. To filter what we need from the world-wide web, we must know first
that we need the information, then itsname. No “ Open Sesame! ” reveals what we need to know and no more.

We trust some information: Experience tells us how programmers are likely to use floating-point. Modern error-
analysistells us how to enhance our prospects for success. It's more than merely away for expertsto validate ( we
hope) the software we distribute through prestigious numerical librarieslike LAPACK and fdl i bm Error-
analysistells us how to design floating-point arithmetic, like |IEEE Standard 754, moderately tolerant of well-
meaning ignorance among programmers though not yet among programming language designers and implementors.
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Java hasevolved ...

... from asmall language targeted towards TV -set-top boxes and networked toaster-ovens

... to alarge language and operating system targeted towards Everybody
Everything
Everywhere

... tochallenge Microsoft’'s hegemony.

Microsoft isvulnerable because its flaky Windows system is not one system but many. Would-be
vendors of software for MS Windows[] have to cope with innumerable versions, alegacy of
partially corrected bugs, unresolved incompatibilities, ... . Software often failsto install or later
malfunctions because diversity among Windows systems has become unmanageable by the smaller
software developers who cannot afford to pretest their work upon every kind of Windows system.

Java's “ Write Once, Run Anywherel] ” tantalizes software vendors with the prospect of
substantially less debugging and testing than they have had to undertake in the past.

This prospect has been invoked spurioudly to rationalize Java's adherence to bad floating-point
design decisions that mattered littlein Java's initial niche market but now can’t be reconciled with
Java's expanded scope. Later we shall seewhy Java's expanded market would be served better by
actual conformity to the letter and spirit of IEEE Standard 754 for Binary Floating-Point Arithmetic.
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Pure Java’'s Two Cruel Delusions:

“ Write Once, Run Anywherel] " and
Linguistically Enforced Exact Reproducibility of all Floating-Point Results

These do figure among ideals that should influence our decisions. So does Universal Peace.
But some ideals are better approached than reached, and best not approached too directly.
( How do you feel about Universal Death as adirect approach to Universal Peace ?)

Pure Java's two cruel delusions are inconsistent with three facts of computing life:

» Rush-to-Market engenders mistakes, bugs, versions, incompatibilities, conflicts, ... asin
Java's oft revised AWT ( Window interface), disputesbetween Sun and Microsoft, ... .
Intentionally and unintentionally divergent implementations of the JVM will exist inevitably.

« Compliance with standards that reinforce commercial disparities can be enforced only by the kind
of power to punish heretics for which emperors and popes used to yearn. JavaSoft lacks even
the power to prevent heretic versions of Java from becoming preponderant in some markets.

A healthy balance between Stability and Progress requires an approach to the Management of
Change more thoughtful than can be expected from business entities battling for market share.

Perfect uniformity and stability, if taken literally, are promises beyond Java s power to fulfill.

Suppose for argument’ s sake that the two cruel delusions were not delusions. Suppose they became
actuality at some moment in time. Thissituation couldn’t last long. To understand why consider ...

Complex Arithmetic Classes.
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Complex Arithmetic Classes.

Why Morethan One?

JavaSoft would promulgateits 100% Pure Javall Complex Arithmetic Class Library, and the
Free Software Foundation would promulgate another ( you'd havetoinstall it yourself ), and the
Regents of the University of California would offer Kahan's Complex Arithmetic Class Library.

How would Kahan's differ from JavaSoft's? Inlinewiththe C9X proposal before ANSI X3J11,
heincludesan Imaginary Class and allows complex variablesto be writtenas x + 1*y or x + y*|
(where 1 :=V(-1) isthedeclared imaginary unit) instead of stickingto Fortran-like (x,y) as
James Gosling has proposed. Kahan's imaginary class allows real and complex to mix without
forcing coercions of real to complex. Thus his classes avoid a little wasteful arithmetic ( with zero
Imaginary parts) that compilers can have trouble optimizing away. Other than that, with overloaded
infix arithmetic operators, you can’t tell the difference between Kahan's syntax and Godling's.

| magine now that you are devel oping software intended to work upon your customer’s Complex
functions, perhapsto compute their contour integrals numerically and to plot them in interesting
ways. Can you assume that your market will use only JavaSoft's Complex classes? Why should
you have to test your software's compatibility with all the competing Complex classes? Wouldn't
you rather write just once, debug just once, and then run anywhere that the official Pure JavaSoft
Complex Classes arein use, and ignore potential customers who use those heretic alternatives?

But some heresies cannot beignored.
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Example: Borda's Mouthpiece, aclassical two—dimensional fluid flow

Define complex analytic functions

9(2) = £+zINZ°+1 , and  F@ = 1+9@ +log (9(2)

Plot thevaluestaken by F(z) ascomplex variable z runsalong eleven rays

z=ri, z=riI0 ;o GHTWI0 L 20, 10

and their Complex Conjugates, taking positive r fromnear O to near +o .

Z=7

These rays are streamlines of anideal fluid flowing in the right half-plane into asink at the origin. The left half-
planeisfilled with air flowing into the sink. The vertical axisis afree boundary; itsdarker parts are walls inserted
into the flow without changing it. The function F(z) mapsthisflow conformally to aflow with the sink moved to
—oo and thewalls, pivoting around their innermost ends, turned into the left half-plane but kept straight to form the
parallel walls of along channel. ( Perhapsthe Physics isidealized excessively, but that doesn’t matter here.)

The expected picture, “ Borda's Mouthpiece,” should show eleven streamlines of an ideal fluid flowing
into a channel under pressure so high that the fluid’s surface tears free from the inside of the channel.
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Borda's Mouthpiece

Correctly plotted Streamlines Streamlines should not cut across each other !
| | ll | | j | 1 I .lI 1 ,. I
b Ty
5 H‘“x. / - 5T Iy 7
“’\ _II__,.--"llllr e a _FH_____.-H""' a
2 T
Y(1,U) 0 y(l,U) o —
. —
T —— i S ———— T e, _""'--.__‘_
——— ", — ity “--‘
_@‘“\ T NN N -
w ™~ B N T
—L H..-"" i _ — | __,a-’" -
> __..-"f \ > _.--'*'f \
} A AN
] | ] | ] I ] 'Il ] | ]
—4 -2 0 2 4 6 8 —4 -2 0 4 6 8
X(1,U) x(1, U)
Plotted using C9X-ike Complex and Imaginary Misplotted using Fortran-ike Complex

An Ideal Fluid under high pressure escapes to the left through a channel with straight horizontal sides.
Inside the channel, the flow's boundary is free,— it does not touch the channel walls. But when -0 is
mishandled, as Fortran-style Complex arithmetic must mishandleit, that streamline of the flow along and
underneath the lower channel wall is misplotted across the inner mouth of the channel and, though it does
not show above, also asashort segment in the upper wall at itsinside end. Both plots come from the same
program using different Complex Class libraries, first with and second without an Imaginary Class.
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Lifting Flow past Joukowski’s Aerofall

Correctly Plotted Streamlines Whereisthiswing's bottom ?

Plotted using C9X-ike Complex and Imaginary Misplotted using Fortran-ike Complex

A circulating component, necessary to generate lift, speedsthe flow of an idealized fluid above the wing and slows
it below. One streamline splits at the wing's leading edge and recombines at the trailing edge. But when -0 is
mishandled, as Fortran-style Complex arithmetic must mishandleit, that streamline goes only over the wing.
The computation solves numerically nontrivial transcendental equations involving complex logarithms. Both plots
come from the same program using different Complex Class libraries, first with and second without an Imaginary
Class. Experienced practitioners programming in Fortran or C++ have learned to replace the split streamline by
two streamlines, one above and one below, separated by as few rounding errors as produce a good-1ooking plot.
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Why such plots malfunction, and avery simple way to correct them, were explained long agoin ...

“ Branch Cutsfor Complex Elementary Functions, or Much Ado About Nothing's Sign Bit” by W. Kahan, ch.
7 in The Sate of the Art in Numerical Analysis (1987) ed. by M. Powell andA. Iserles for Oxford U.P.

A streamlinegoesastray when the complex functions SQRT and LOG areimplemented, asis
necessary in Fortran and inlibraries currently distributed with C/C++ compilers, inaway that
disregardsthesignof + 0.0 in IEEE 754 arithmetic and consequently violates identities like
SQRT(CONJ(Z)) = CONJSQRT(Z)) ad LOG(CONJZ)) = CONJLOG(Z))
whenever the COMPLEX variable Z takesnegativereal values. Such anomaliesare unavoidableif
Complex Arithmetic operateson pairs (X, y) instead of notional sums x + 1-y of real and imaginary
variables. Thelanguage of pairsis incorrect for Complex Arithmetic; it needsthe Imaginary type.

A controversial Complex Arithmetic Extension to the programming language C incorporating
that correction, among other things, has been put before ANSI X3J11, custodian of the C language
standard, as part of the CO9X proposal. Itiscontroversial because it purports to help programmers
cope with certain physically important discontinuities by suspending thereat ( and nowhereelse) the
logical propositionthat “x == y” implies “f(x) == f(y) ”. Many aprogrammer will
prefer thisanomaly to its alternatives.

Themoral of thisstory: There will always be good reasons (and bad ) to call diverse versions of
hard- and software, including mathematical software, by the same name.

Nobody can copyright “ Complex Class.”
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Besides programs with the same name but designed for dlightly different results,
there are programs with the same name designed to produce essentially the same results
as quickly as possible
which must therefore produce slightly different results on different computers.

Roundoff causes resultsto differ slightly not because different computers round arithmetic differently
but because they manage memory, caches and register files differently.

Example: Matrix multiplication C:=A-B ... i.e. Cj:= Xy akbgj= a1:byj +aoby +azbs + ...
To keep pipelines full and avoid unnecessary cache misses, different computer architectures have to perform
multiplications &-by; and their subsequent additions in different orders. In the absence of roundoff the order
would not affect C because addition would be associative. Order affects accuracy only alittle in the presence of
roundoff because, for all suitable matrix norms ||...||, |IC - A-B|/(||A]]|B]]) cannot much exceed the roundoff
threshold regardless of order, and this constraint upon C suffices for most applications even if

C varies very noticeably from one computer to another.

Ordering affects speed alot. On most processorstoday, the most obvious matrix multiply program runs at least
three times slower than a program with optimal blocking and loop-unrolling. Optimization depends delicately upon
processor and cache details. For matrices of large dimensions, acode optimized for an UltraSPARC, about three
times faster thereon than an unoptimized code, runson a Pentium Pro ( after recompilation) slower than a naive
code and about six times slower than its optimal code. Speed degradation becomes worse on multi-processors.

Faster matrix multiplication is usually too valuable to forego for unneeded exact reproducibility.

Conclusion: Linguistically legislated exact reproducibility is unenforceable.
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“ The merely Difficult we doimmediately; the Impossible will take slightly longer.”
— Roya Navy maxim adopted during WW-1 by American Seabees.

Ever-increasing diversity in hardware and software compounds the difficulty of testing new software
intended for the widest possible market. Soon “Difficult” must become “Impossible” unlessthe
computing industry collectively and programmersindividualy share aburden of ...

Self-Discipline;
Modularize designs, so that diversity will add to your testing instead of multiplying it.

Know your market, or target only the markets you know;
exploit only capabilities you know to be available in all of your targeted markets.

Eliminate needless diversity wherever possible, though thisis easier said than done; ...
“ Things should be as simple as possible, but no simpler.” — Albert Einstein.

Java's designers, by pursuing the elimination of diversity beyond the point of over-
simplification, haveturned a very desirable design goal into an expendable fetish.

They have mixed up two ideas:
Exact Reproducibility, needed by some floating-point programmers sometimes, and
Predictability within Controllable Limits, needed by al programmers al the time.
By pushing Exact Reproducibility of Floating-Point to anillogical extreme, the designers ensure it
will be disparaged, disregarded and finally jettisoned, perhaps carrying Predictability away tooin
the course of a “ Business Decision” that could all too easily achieve what the British call
“ Throwing Baby out with the bath water.”
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The essence of programming is Contral.

Control requires Predictability, which should be Java's forte.

Java would impose “ Exact Reproducibility ” upon Floating-Point to makeit Predictable.
But “ Exact Reproducibility ” is JavaSoft's euphemism for “ Doas Sun’'s SPARCs do.”
Thus it denies programmers the choice of better floating-point running on most other hardware.
Denied better choices, the programmer is not exercising Control but being controlled.

Throwing Baby out with the bath water:

When “Exact Reproducibility” of floating-point becomes too burdensome to implementors whose
first priority ishigh speed, they will jettison Exact Reproducibility and, for lack of sound guidance,
they will most likely abandon Predictability along withit. That’'s happening now. That's what
Godling's “ Loose Numerics” amountsto; abetter namefor itis “ Sloppy Numerics.”

To achieve Floating-Point Predictability:
Limit programmers choices to what is reasonable and necessary as well as parsimonious, and
Limit language implementors’ choices so as always to honor the programmer’s choices.

To do so, language designers must understand floating-point well enough to validate! their
determination of “what is reasonable and necessary,” or else must entrust that determination to
someone el se with the necessary competency. But Java's designers neglected timely engagement of
Sun’s in-house numerical expertise, which would have prevented their floating-point blunders.

T Footnote: “Validate ” aprogramming language’'s design? The thought appalls people who think such design

iIsa Black Art. Many people still think Floating-Point isa Black Art. They are wrong too.
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Java purportsto fix what ain’t broken in Floating-point.

Floating-point arithmetic hardware conforming to |EEE Standard 754, asdoespractically all today’s
commercially significant hardware on desktops, is aready among the least diverse things, hard- or
software, so ubiquitousin computers. Now Java, mistakenly advertised asconformingto |EEE 754
too, pretendsto lessen itsdiversity by adding another one to the few extant varieties of floating-point.

How many significantly different floating-point hardware architectures matter today?
Four :

#0: Signal processorsthat may provide f | oat and/or fl oat - ext ended but not doubl e .
#1:. RISC-based computersthat provide 4-bytef | oat and 8-bytedoubl e but nothing wider.
#2: Power-PC; MIPSR-10000; H-P 8000: sameas #1 plus fused multiply-add operation.
#3: Intel x86, Pentium; clonesby AMD and Cyrix; Intel 80960KB; new Intel/HP IA-64; and
Motorola 680x0 and 88110 : thesameas #1 plusa 10+-byte | ong doubl e.

Over 95% of the computers on desktops have architecture #3 . Most of the rest have #2 . Both #3
and #2 can be and are used in restricted waysthat match #1 asnearly as matters. All of #1, #2, #3
support Exception Flags and Directed Roundings, capabilities mandated by |EEE Standard 754
but generally omitted from architecture #0 because they have little value in its specialized market.

Java would add a fifth floating-point architecture #0.5 between #0 and #1 .
It omits from architecture #1 the Exception Flags and Directed Roundings |EEE 754 requires.
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Java linguistically confuses the issues about floating-point Exceptions:

Java, like C++, misusestheword “ Exception” tomeanwhat |IEEE 754 calsa “ Trap.”
Java has no words for the five floating-point Events that IEEE 754 calls “Exceptions’ :

Invalid Operation, Overflow, Division-by-Zero, Underflow, Inexact Result

These eventsare not errors unlessthey are handled badly.

They arecalled “Exceptions’ becauseto any policy for handling them, imposed in advance upon all
programmers by the computer system, some programmers will have good reasons to take exception.

|EEE 754 specifiesa default policy for each exception, and allows system implementors the option
of offering programmers an aternative policy, whichisto Trap (jump) with specified information
about the exception to a programmer-sel ected trap-handler. We shall not go into traps here; they
would complicate every language issue without adding much more than speed, and little of that, to
what flags add to floating-point programming. ( Borneo would provide some support for traps.)

|IEEE 754 specifiesfive flags, one named for each exception:
Invalid Operation, Overflow, Division-by-Zero, Underflow, Inexact Result

A flag isatype of global variable raised as a side-effect of exceptional floating-point operations. Also
It can be sensed, saved, restored and lowered by aprogram. When raised it may, in some systems,
serve an extra-linguistic diagnostic function by pointing to the first or last operation that raised it.

Java lacks these flags and cannot conform to |EEE 754 without them.
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Invalid Operation, Overflow, Division-by-Zero, Underflow, Inexact Result

|EEE 754 specifiesa default policy for each of these kinds of floating-point exception:
| Signal the event by raising an appropriate one of the five flags, if it has not already been raised.
1l (Pre)substitute a default value for what would have been the result of the exceptional operation:

Name of Flag
and Exception

(Pre)substituted
Default Value

Invalid Operation

Not-a-Number (NaN), which arithmetic propagates, or
a huge integer on overflowed flt.pt. —> integer conversion

Overflow

+00 approximately, depending on Rounding Direction

Division-by-Zero

+00 ... Infinity exactly from finite operands.

Underflow

Gradua Underflow to a Subnormal (very tiny) value

Inexact Result

Rounded or Over/Underflowed result as usua

111 Resume execution of the program as if nothing exceptional had occurred.

With these default values, |EEE 754's floating-point becomesan Algebraically Completed system;
this means the computer’s every algebraic operation produces a well-defined result for all operands.

Why should computer arithmetic be Algebraically Completed ?

What's wrong with the Defaults specified for these Exceptions by |IEEE 754 ?

Why does |EEE 754 specify aflag for each of these kinds of exception?

The next three pages answer these three questions and afourth: What should Java do ?.
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Why should computer arithmetic be Algebraically Completed ?

Otherwise some exceptions would have to trap. Then robust programs could avert loss of control only by
precluding those exceptions ( at the cost of time wasted pretesting operands to detect rare hazards) or else by
anticipating them all and providing handlersfor their traps. Either way istedious and, because of a plethora of
vigible or invisible branches, prone to programming mistakes that |ose control after al. For example, ...

A Cautionary Taleof the Ariane5 (nttp://ww. esrin. esa.it/htdocs/tidc/ Press/Press96/ariane5rep. htnl )
In Junel996 asatellite-lifting rocket named Ariane 5 turned cartwheels shortly after launch and scattered itself, a
payload worth over half abillion dollars, and the hopes of European scientists over amarshin French Guiana. A
commission of inquiry with perfect hindsight blamed the disaster upon inadequate testing of the rocket’s software.

What software failure could not be blamed upon inadequate testing ?

The disaster can be blamed just as well upon a programming language (Ada) that disregarded the default
exception-handling specificationsin 1EEE Standard 754 for Binary Floating-Point Arithmetic. Hereiswhy:

Upon launch, sensors reported acceleration so strong that it caused Conversion-to-Integer Overflow in software
intended for recalibration of the rocket’s inertial guidance while on the launching pad. This software could have
been disabled upon rocket ignition but leaving it enabled had mistakenly been deemed harmless. Lacking a handler
for its unanticipated overflow trap, this software trapped to a system diagnostic that dumped its debugging datainto
an area of memory in use at the time by the programs guiding the rocket’s motors. At the same time control was
switched to a backup computer, but it had the same data. Thiswas misinterpreted as necessitating strong corrective
action: the rocket’s motors swivelled to the limits of their mountings. Disaster ensued.

Had overflow merely obeyed the |IEEE 754 default policy, the recalibration software would have raised aflag and
delivered an invalid result both to be ignored by the motor guidance programs, and the Ariane5 would have
pursued its intended tragjectory.

Themoral of thisstory: A trap too often catches creatures it was not set to catch.
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Invalid Operation, Overflow, Division-by-Zero, Underflow, Inexact Result

What’swrong with the Default values specified for these Exceptions by IEEE 754 ?

Itsis not the only useful way to Algebraically Complete the real and complex number systems.
( Werethere just onewe'd al learn it in school and Over/Undeflow would be the only floating-point exceptions.)

Other ways? For instance, instead of two infinitieswith 1/(—0) = —oo < (' every finite real number ) < +c0 = 1/(+0) ,
acompletion with just one o =—0 = 1/0 hasitsuses. Another completion hasno oo, just NaN . There are
illegitimate completionstoo, like APL's 0/0=1. Every legitimate completion must have this property:
In the absence of roundoff and over/underflow, evaluations of an algebraic expression that differ because the
customary commutative, distributive, associative and cancellation laws have been applied can yield at most two
valuesand, if two, onemust be NaN . For instance, 2/(1+1/x) =2 at x =o0 but (2-x)/(x+1) is NaN .

By majority vote a committee chose the particular completion specified by |EEE 754 becauseit was
deemed less strange than others and more likely to render exceptionsignorable. It ensuresthat, although Invalid
Operations and Overflows can rarely beignored for long, intheir absence Underflows can usually be ignored,
and Division-by-Zero and Inexact can amost alwaysbeignored. Java too has adopted the 1EEE 754 completion
asif there were nothing exceptional about it.

But aprogrammer can have good reasons to take exception to that completion and to every other since
they jeopardize cancellation laws or other relationships usually taken for granted. For example, x/x#1 if x is 0
or not finite; x—x#0# 0:x if x isnot finite. After non-finite values have been created they may invalidate the
logic underlying subsequent computation and then disappear: (finite/Overflow) becomes 0, (NaN <7) becomes
fase, ... . Perhapsno traces will be left to arouse suspicions that plausible final results are actually quite wrong.

Thereforea program must be ableto detect that non-finite values have been created
in caseit hasto take steps necessary to compensate for them.
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Invalid Operation, Overflow, Division-by-Zero, Underflow, Inexact Result
Why does IEEE 754 specify aflag for each of these kinds of exception?

Without flags, detecting rare creationsof co and NaN before they disappear requires programmed
tests and branches that, besides duplicating tests already performed by the hardware, slow down the
program and impel a programmer to make decisions prematurely in many cases. Worse, aplethora of
tests and branches undermines a program’s modularity, clarity and concurrency.

With flags, fewer tests and branches are necessary because they can be postponed to propitious points
in the program. They almost never have to appear in lowest-level nmet hods nor innermost loops.

Default values and flags were included in |EEE 754 because they had been proved necessary for
most floating-point programmers even though afew numerical experts could often find complicated
ways to get around the lack of them. And, inthe past, if an expert bungled the avoidance of floating-
point exceptions his program’s trap would reveal the bungle to the program’s user.

Without Traps nor Flags, Java's floating-point is Dangerous.

What should Java doinstead?

Java could incorporate a standardized package of native-code flag-handling net hods. The Standard Apple
Numeric Environment (SANE) did that (Apple Numerics Manual 2d ed. 1988, Addison-Wesley). But leaving
flags out of the language predisposes compile-time optimization to thwart the purpose of flags while rearranging
floating-point operations and flag-references. Borneo would make flags part of the language and let programmers
specify ina et hod’s signature conventions for copying, saving, restoring and merging flags. Java should do the
same. Of course, aprogrammer can disregard all that stuff, in which case users of his met hods may be grateful
for the insightsinto his oversights that flags reveal afterwards.
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By now 95% of readers should be aware that there is more to floating-point than is taught in school.

Moreover, much of what istaught in school about floating-point error-analysisiswrong.

Because they are enshrined in textbooks, ancient rules of thumb dating from the era of slide-rules and mechanical
desk-top calculators continue to be taught in an erawhen numbers reside in computers for abillionth aslong as it
would take for a human mind to notice that those ancient rules don’t awayswork. They never worked reliably.

13 Prevalent Misconceptions about Floating-Point Arithmetic :
1 Floating—point numbers are all at least slightly uncertain.
2+ In floating—point arithmetic, every numberisa “ Stand-In” for all numbersthat differ fromitin
digits beyond the last digit stored, so “3” and “3.0E0” and “ 3.0D0” areall dightly different.
3+ Arithmetic much more precise than the data it operates upon is needless, and wasteful.

4+ |n floating—point arithmetic nothing isever exactly 0; butif itis, no useful purposeis served by
distinguishing +0 from -0. (We have aready seenon pp. 13- 15 why this might be wrong.)
5e¢ Subtractive cancellation always causes numerical inaccuracy, or isthe only cause of it.

6 A singularity always degrades accuracy when data approach it, so “ IlI-Conditioned ” data or problems
deserve inaccurate results.
7+ Classical formulas taught in school and found in handbooks and software must have passed the
Test of Time, not merely withstood it.
8¢ Progressisinevitable: When better formulas are found, they supplant the worse.
9« Modern “ Backward Error-Analysis” explainsall error, or excusesit.
10« Algorithmsknown to be “ Numerically Unstable” should never be used.
11. Bad results are the fault of bad data or bad programmers, never bad programming language design.
12+ Most features of |EEE Floating-Point Standard 754 are too arcane to matter to most programmers.
13« “ * Beauty istruth, truth beauty.” — that isall ye know on earth, and all ye need to know.” ... from
Keats OdeonaGrecianUrn . (Inother words, you needn’t sweat over ugly details.)
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“ The trouble with people is not that they don’'t know
but that they know so much that ain't so.”
... Josh Billings' Encyclopedia of Wit and Wisdom (1874)

The foregoing misconceptions about floating-point are quite wrong, but thisis no place to correct
them all. Several areaddressedin http://http.cs. berkel ey. edu/ ~wkahan/ Tri angl e. pdf .

Here we try first to upset beliefs in afew of those misconceptions, and than show how they
combine with historical accidents to mislead designers of modern programming languages into
perpetuating the floating-point mistakes built into so many old programming languages. To succeed
we must undermine faith in much of the floating-point doctrine taught to language designers.

Consider “ Catastrophic Cancellation,” aphrase found in several texts. Many people believe that ...
» Catastrophically bad numerical results are always due to massive cancellation in subtraction.
» Massive cancellation in subtraction always results in catastrophically bad numerical results.
Both are utterly mistaken beliefs.

So firmly werethey believed inthe early 1960s that IBM's/360 and its descendants could trap on a “ Significance
Exception” whenever 0.0 was generated by subtracting a number from itself; the SIGMA 7 clone could trap
whenever more than a programmer-chosen number of digits cancelled. For lack of a good application those traps
were never enabled. Besides, the fastest way to assign X = 0.0 wasto compute X = X-X inaregister.

The next example is designed to disassociate “Catastrophic” from “Cancellation” inareader’s

mind. Since, to most minds, money matters more than geometry, the exampleisdistilled from a
program that computes the rate of return on investment, though the connection is not obvious.
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We attempt to program the function A(x) := (x-1)/( exp(x—1) —1) asfollows:

Real Function A(Real X ) ;
Red Y, Z;
Y =X-10;
Z =EXP(Y);
If Z#1.0 then Z:=Y/(Z-1.0);
Return A :=Z;
End A .

Cancellation appearsto turn A(X) into (roundoff)/(more roundoff) when X isvery near 1.0, very
much asthe expression (x-1)/(exp(x-1) —1) for A(x) approaches 0/0 as x approaches 1. The
conventional estimate of the relative error in A is (roundoff)/(exp(x—1) — 1) . Doesthisimply that
the function A(x) cannot be computed accurately if x istoonear 1? No. Infact, A(xX) hasa
Taylor Series

AX) = 1—(x=1)/2 + (x=1)2/12 — (x=1)*720 + (x—1)®/30240 — (x-1)8/1209600 + ... for |x-1|<T
that shows how well the function A(x) behavesfor x near 1 regardless of the behavior of its
original expression. For arguments x close enoughto 1 we can compute A(X) as accurately as
needed by using enough terms of this series. When we do so and compare this computation with the
program A(X) above, we discover that the conventional error estimate is too crude:

Despite suggestions above that cancellation might render  A(X) = (roundoff)/(more roundoff)

worthless, it never loses all accuracy. A retains at least half the sig. digits arithmetic carries. |If
the arithmetic carries, say, eight sig. dec., A(X) isalways accurate to at least four. How come?
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Compute A(X) and plot its error and the conventional crude error bound in ULPs:

Crude Error Bound for A(X) : Binary Arithmetic, 24 sig. bits
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The graph above shows how nearly unimprovable conventional error bounds can be; but they still tendto o as X
approaches 1, sothey still suggest wrongly that A(X) canlosedl the digits carried. To dispel that suggestion we
must take explicit account of the discrete character of floating-point numbers: The graph shows the worst error in

A(X) tobeabout +2900 = +211-°> ULPs at which point lessthan half the 24 sig. bits carried got lost, not all bits.
Thisisno fluke; ingeneral A(X) isprovably accurate to at least half the sig. bits carried by the arithmetic.
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At first sight an obvious way to repair the inaccuracy of program A(...) isto put the series A(X) into it like this:
Real Function A(Real X ) ;
Red Y, Z;
Y :=X-10;
If |Y|<Threshold then Z:=1.0-Y-(U2-Y-(V/12-Y(1/720-Y -(1/30240 — ...))))
dse Z:=Y/(EXP(Y)-10);
Return A :=Z;
End A.
Before this program A(X) can be used, three messy questions need tidy answers:
What value should be assigned to “ Threshold” in this program?
How many terms “ ...—Y-(1/30240—...)... " of the series A(X) should this program retain?
How accurate is this program A(X) ?
The answers are complicated by a speed/accuracy trade-off that varies with the arithmetic’s precision.

Rather than tackle this complication, let's consider asimpler but subtle aternative:
Real Function A(Rea X ) ;
Red Y, Z;

Y =X-1.0;

Z:=EXP(Y);

If Z#1.0 then Z:=LN(Z2)/(Z-1.0);

Return A :=Z;

End A .

Thisthird program A(X) differsfromthefirst A(X) only by the introduction of alogarithm into the assignment
Z:=LN(2)/(Z-1.0) instead of Z:=Y/(Z—-1.0). Thislogarithm recoversthe worst error, committed when
EXP(Y) was rounded off, well enough to cancel almost all of it out. A(X) runs somewhat slower than A(X) .

This subtle program A(X) is provably always accurate within afew ULPs unless Overflow occurs.
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What general conclusions do the foregoing examples (A, A, A, A, A) support? These three:

1. Cancellationisnot areliableindication of (lost) accuracy. Quite often a drastic departure of
intermediate results (like LN(Z) above) from what would have been computed in the absence of
roundoff is no harbinger of disaster to follow. Such isthe case for matrix computationslikeinversion
and eigensystems too; they can be perfectly accurate even though, at some point in the computation,
no intermediate results resemble closely what would have been computed without roundoff. What
mattersinstead is how closely aweb of mathematical relationships can be maintained in the face of
roundoff, and whether that web connects the program’s output strongly enough to its input no matter
how far the web sags in between. Error-analysis can be very unobvious.

2. Error-analysts do not spend most our time estimating how big some error isn’'t. Instead we spend
time concocting devious programs, likethethird A(X) above, that cancel error or suppressit to the
point where nobody cares any more. Competent error-analysts are extremely rare.

3. “95% of the folks out there are completely clueless about floating-point.” ( J.G., 28 Feb. 1998)
They certainly aren’t error-analysts. They are unlikely to perceive the vulnerability to roundoff of a
formulaor program like thefirst A(X) above until after something bad has happened, whichis
more likely to happen first to you who use the program than to him who wrote it. What can protect
you from well-meaning but numerically inexpert programmers? Use Double Precision. When the
naive program A(X) isrunin arithmetic twice as precise asthe data X and the desired result, it
cannot be harmed by roundoff. Except in extremely uncommon situations, extra-precise arithmetic
generally attenuates risks due to roundoff at far less cost than the price of a competent error-analyst.
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Uh-oh. Theadvice “ Use Double Precision” contradicts an ancient Rule of Thumb, namely

“ Arithmetic should be barely more precise than the data and the desired result.”

This Rule of Thumb iswrong.

It was never quiteright, butit’sstill being built into programming languages and taught in school.

Why do so many people still believein thiswrong Rule of Thumb ?
What’ swrong with this Rule of Thumb?
How, when and why did thiswrong Rule of Thumb get put into so many programming languages?

So it'swrong. What should we be doing instead?

The next twelve pages address these questions.
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“ Arithmetic should be barely more precise than the data and the desired result.”
Why do so many people still believein thiswrong Rule of Thumb ?

It is propagated with a plausible argument whose misuse of language obscures its fallacy.

The argument goes thus. “ When we try to compute ¢ :=acb for some arithmetic operation @ drawn from

{ +, — -/}, weactually operate upon inaccurate data atAa and b+Ab, and therefore must compute instead
c+Ac = (a+Aa)a(b+Ab) . To store more ‘significant digits of c+Ac than are accurate seems surely wasteful and
possibly misleading, so ct+Ac might aswell be rounded off to no more digits than are ‘significant’ in whichever
isthe bigger (for { +,—} ) orlessprecise (for { -,/} ) of atAa and b+Ab. Inboth cases, thelarger of the
precisions of a+Aa and b+Ab turnsout to be at |east adequate for c+Ac.”

To expose the fallacy in this argument we must first cleanse some of the words in it of mud that has accreted after
decades of careless use. In the same way as avaluable distinction between “disinterested” (= impartial ) and
“uninterested” (= indifferent) isbeing destroyed, misuse is destroying the distinction between “precision” and
“accuracy”. For instance, Stephen Wolfram’s Mathematicall misuses “Precision” and “Accuracy” to mean
relative and absolute accuracy or precision.. Let’sdigressto refresh these words' meanings:

“Precision” concerns the tightness of a specification; “Accuracy” concernsits correctness. An utterly inaccurate
statement like “You arealouse” can be uttered quite precisely. The Hubble space-telescope’s mirror was ground
extremely precisely to an inaccurate specification; that precision allowed a corrective lens, installed later by a
space-walking astronaut, to compensate for the error. 3.177777777777777 isarather precise (16 sig. dec) but
inaccurate (2 sig. dec.) approximationto 1t=3.141592653589793... . Although “ exp(-10) =0.0000454" has
3 Sig. dec. of precisionitisaccurateto almost 6. Precisionisto accuracy asintent isto accomplishment; anatural
disinclination to distinguish them invitesfirst shoddy science and ultimately the kinds of cynical abuses brought to
mind by “ People’s Democracy,” “ Correctional Facility ” and “ Free Enterprise.”

June 18, 1998 5:32 am Work in Progress — Subject to Supersession Page 32



How Java’s Floating-Point Hurts Everyone Everywhere

Strictly speaking, anumber can possess neither precision nor accuracy.

A number possesses only its value.

Precision attaches to the format into which the number iswritten or stored or rounded. Better ( higher or wider )
precision implies finer resolution or higher density among the numbers representable in that format. All three of

3 3.0EO 3.0DO0O
have exactly the same value though the first iswritten like a 2-byte | NTEGER in Fortran or i nt in C, the
second iswritten like a 4-byte REAL in Fortran or 8-byte doubl e in C, andthethird iswritten for 8-byte
DOUBLE PREC SI ON in Fortran. To some eyes these numbers are written in order of increasing precision. To
other eyestheinteger “ 3” isexact and therefore more precise than any floating-point “ 3.0” can be. Precision
(usualy Relative precision) iscommonly gauged in “ significant digits” regardless of a number’s significance.

Many atextbook asserts that a floating-point number represents the set of all numbers that differ from it by no
more than afraction of the difference between it and its neighbors with the same floating-point format. This
figment of the author’ s imagination may influence programmers who read it but cannot otherwise affect computers
that do not read minds. A number can represent only itself, and does that perfectly.

Accuracy connects anumber to the context in which it isused. Without its context, accuracy makes no more
sense than the sentence “ Rosco isvery tall.” does before we know whether Rosco isan edifice, an elephant, a
sailboat, apygmy, abasketball player, or aboy being fitted with a new suit for his confirmation. In context,
better (higher) accuracy implies smaller error. Error (usually Absolute error) isthe difference between the
number you got and the number you desired. Relative error isthe absolute error in  In(what you got) andis

often approximated by (absolute error)/(what you got) and gaugedin “ significant digits.”

To distinguish between Precision and Accuracy isimportant. “ The difference between the right word
and the almost right word is ... the difference between lightning and the lightning bug.” — Mark Twain
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Precision and Accuracy arerelated, indirectly, through a speed — accuracy trade-off.

Beforethe mid 1980s, floating-point arithmetic’s accuracy fell short of its precision on several commercialy
significant computers. Today only the Cray X-MP/Y-MP/.../J90 family failsto round every arithmetic operation
within afraction of an ULP, and only the IBM /360/370/390 family and its clones have non-binary floating-
point not rounded within half an ULP. All other commercially significant floating-point hardware now on and
under desktops rounds binary within half an ULP asrequired by IEEE Standard 754 unless directed otherwise.
That iswhy we rarely have to distinguish an arithmetic operation’ s accuracy from its precision nowadays. But ...

Accuracy < Precision for most floating-point computations, not all.

The loss of accuracy can be severe if aproblem or itsdata are 1ll-conditioned, which means that the correct result
is hypersensitive to tiny perturbationsinitsdata. Theterm “ Ill-conditioned ” suggests that the data does not
deserve an accurate result; often that sentiment isreally “ sour grapes.” Datathat deserve accurate results can be
served badly by a naive programmer’ s choice of an algorithm numerically unstable for that data although the
program may have delivered satisfactory results for all other data upon which it was tested. Without a competent
error-analysis to distinguish this numerical instability from ill-condition, inaccuracy is better blamed upon “ bad
luck.” Surprisingly many numerically unstable programs, like A(X) above, lose up to half the sig. digits carried
by the arithmetic; someloseall, asif the program harbored a grudge against certain otherwise innocuous data.

Despite how most programs behave, no law limits every program’s output to less accuracy than its arithmetic’s
precision. On the contrary, aprogram can simulate arithmetic of arbitrarily high precision and thus compute its
output to arbitrarily high accuracy limited only by over/underflow thresholds, memory capacity, clevernessand
time. ( Learn how from papers by David Bailey, by Douglas Priest, and by Jonathan Shewchuk.) Since very
high precision isslow, aprogrammer may substitute devious tricks to reach the same goal sooner without ever
calling high-precision arithmetic subroutines. His program may become hard to read but, writtenin Fortran with
Nno EQUIVALENCE statementsor in Pascal with no variant recordsor in C withno uni on typesorin Java
with no bit-twiddling, and using integer-typed variables only to index into arrays and count repetitions, it can be
written in every language to run efficiently enough on all computers commercially significant today except Crays.
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It would seem then that today’ s common programming languages pose no insurmountabl e obstacles
to satisfactory floating-point accuracy; itislimited mainly by a programmer’s clevernessandtime. Ay, there's
therub. Clever programmers are rare and costly; programmers too clever by half are the bane of our industry. An
unnecessary obstacle, albeit surmountable by numerical cleverness, levies unnecessary costs and risks against
programs written by numerically inexpert but otherwise clever programmers. If programming languages are to
evolve to curb the cost of programming ( not just the cost of compilers) then, aswe shall see, they should
support arbitrarily high precision floating-point explicitly, and they should evaluate floating-point expressions
differently than they do now. But they don't.

Current programming languages flourish despite their numerical defects, asif the ability of anumerical
expert to circumvent the defects proved that they didn’t matter. When a programmer learns one of these languages
he learns al so the floating-point misconceptions and faulty rules of thumb implicit in that language without ever
learning much else about numerical analysis. Thus does belief persist in the misconceptions and faulty rules of
thumb despite their contradiction by abundantly many counter-examples about which programmers do not learn.
A(X) above was one simple counter-example; here is another:

Let f(x) .= (tan(sin(x)) —sin(tan(x)) )/x7 . If x=0.0200000 isaccurateto 6 sig. dec., how accurately doesit
determine f(x) and how much precision must arithmetic carry to obtain that accuracy from the given expression?
This x determines f(x) = 0.0333486813 to about 9 sig. dec. but at least 19 must be carried to get that 9.

The precision declared for storing a floating-point variable,
the accuracy with which its value approximates some ideal,
the precision of arithmetic performed subsequently upon it,
and the accuracy of afinal result computed from that value
cannot be correlated reliably using only the rules of a programming language without error-analysis.
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“ Arithmetic should be barely more precise than the data and the desired result.”
What’' swrong with this Rule of Thumb?

By themselves, numbers possess neither precision nor accuracy. In context, a number can be less
accurate or ( likeintegers) more accurate than the precision of the format in which it is stored. Anyway, to
achieve results at |least about as accurate as data deserve, arithmetic precision well beyond the precision of data
and of many intermediate results is often the most efficient choice albeit not the choice made automatically by
programming languages like Java. |dedlly, arithmetic precision should be determined not bottom-up ( solely
from the operand’ s precisions) but rather top-down from the provenance of the operands and the purposes to
which the operation’ s result, an operand for subsequent operations, will be put. Besides, inisolation that
intermediate result’s “accuracy” is often irrelevant no matter how much less than its precision.

What matters in floating-point computation is how closely aweb of mathematical relationships can
be maintained in the face of roundoff, and whether that web connects the program’s output strongly
enough to its input no matter how far the web sags in between. A web of relationships just adequate
for reliable numerical output is no more visible to the untrained eye than is a spider’ sweb to afly.

Under these circumstances, we must expect most programmers to leave the choice of every floating-
point operation’ s precision to a programming language rather than infer a satisfactory choice from a
web invisible without an error-analysis unlikely to be attempted by most programmers.

Error-analysisis alwaystedious, often fruitless, without it programmers who despair of choosing precision well,
but have to choose it somehow, are tempted to opt for speed because they know benchmarks offer no reward for
accuracy. The speed-accuracy trade-off is so tricky we would all be better off if the choice of precision could be
automated, but that would require error-analysis to be automated, which is provably impossible in general.
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Why hasn’t error-analysis been automated? Not for lack of trying.

The closest we can come to automated error-analysisis Interval Arithmetic. It isascheme, used more
in Europe thanin America, that approximates every real variable not by a single floating-point number but by a
pair computed to surely straddle the variable’ strue value. By exploiting |EEE 754's directed roundings, we can
implement Interval Arithmetic to run no more than afew times slower than ordinary arithmetic; speed israrely
at issue. Moreimportant is that our numerical algorithms must be recast to make use of Interval Arithmetic in
just the right places lest it produce awfully pessimistic error bounds. Besides, nobody wants error bounds; we
desire final results known to be reliable because their errors have been proved inconsequential .

Therefore we cannot get full value from Interval Arithmetic unlessit isintegrated into our programming
language along with arithmetic of arbitrarily high precision variable at run-time. Moreover, to help recast
algorithms into forms suitable for Interval Arithmetic, we need automated algebra systems, akinto Macsymall,
Maplell or Mathematicall, capable of generating derivatives and divided differences of a program from its text.

It is a daunting investment.

Recurring attempts to invent cheaper substitutes for Interval Arithmetic have all failed in the end
after enough local limited success initialy to tantalize their inventors with dreams of glory.

Among these attempts are ...

 Significance Arithmetic,

 Probabilistic Error-Estimates, and

» Repeated Recomputation with Ever Increasing Precision.
The next two pages describe these attempts.
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Sgnificance Arithmetic is one of those recurring attempts. 1t was advocated for floating-point hardware first by
N. Metropolis and R. Ashenhurst inthelate 1950s. Theideaisto store for each number only those significant digits believed to be
correct and discard therest. For instance, “ 3.140” might be interpreted as the interval of numbers between 3.1395 and 3.1405 in
the same way as some texts would have us treat all floating-point numbers. Something like that is built into Mathematicall. Most
implementations provide a special way to store those floating-point numbers intended to represent only themselves exactly. Every
implementor has to choose for each kind of arithmetic operation a rule whereby the result’s number of significant digitsretained is
determined from the operands’ numbers of significant digits stored. Some choices tend to be pessimistic; in the course of many
arithmetic operations, retained sig. digits tend to dwindle faster than correct digits would for ordinary floating-point operations.
Other choices tend to be optimistic; retained sig. digits tend to accrete faster than correct digits would. Some choices are pessimistic
for one computations, optimistic for another. Computations can always be contrived for which digits accrete and/or dwindle at the

rate of at least half adigit too much per operation. Blind faith in Significance Arithmetic isfaith misplaced.

Probabilistic error-estimates have an long history of failures. The hope wasthat the results of afew repeated
recomputations, with random roundoff-like perturbations augmenting roundoff in every arithmetic operation, would scatter to an
extent indicative of their errors. Hardware to do thiswasfirst built into the IBM 7030 Stretch inthe late 1950s. Alas, scatter far
tinier than error has a surprisingly high probability when the error isgross. See “The Improbability of Probabilistic Error Analyses
for Numerical Computations’ in http://http. cs. ber kel ey. edu/ ~wkahan/ i npr ober . ps for adisparaging critique.

The futility of all such smple-minded attempts to automate error-analysis is exposed by an example contrived by
Jean-Michel Muller around 1980 and modified dightly here. Given G(y, z) := 108 — ( 815 —1500/z )/ly and
initial values Xg:=4 and Xq:=4.25, define Xn41 := G(Xn, Xn.1) for n=1,2,3, ... inturn. We seek the [imit
L to which the sequence {x,} tends; x,—> L as n—> +oo . Inthe absence of an analysisthat finds L exactly
let us compute the sequence {X,} until xp.; differsnegligibly from xy or elseuntil N =1000, say, and then
stop with xy asour estimate of L . All fast floating-point hardware and every implementation of Significance

Arithmetic or randomized arithmetic will allege L = 100 very convincingly. Try it! Thecorrect limitis L =5.
Interval Arithmetic deliversanarrow interval around L =5 instead of aworthlesswide interval only if it carries
enormous precision, rather morethan 5N sig. bits. However, changing either xg:=4 or X; :=4.25 ever o

dightly changesthetrue L from 5 to 100. which may then be miscomputed if N isnot huge enough.
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Repeated Recomputation with Ever Increasing Precision isyour best bet for removing the obscuration of
roundoff from afloating-point computation. The ideaisto rerun a program repeatedly, each time with the same
input data but with all local and intermediate variables and all constant literals redeclared to higher precision, until
successive outputs converge closely enough to overwhelm skepticism. Each repetition should ideally increase
precision by afactor near V2 ; gofrom, say, 8sig.dec. to 12 to 16 to 24 to 32 ..., so after awhile each
repetition will cost roughly as much time as have all previous repetitions. This prescription is easier to follow in
languages like Axiom[l, Derivell, Macsymall, Maplell and Mathematicall, whose mathematical libraries
were designed for this purpose, thanto follow in languageslike Lisp, C++ and Fortran 9X that were not
designed with this prescription in mind. (“Easier” does not mean “easy;” the aforementioned languages manage
literal constants and mixed-precision expressions in inconvenient ways that invite mistakes.)

This prescription isimpractical in Java primarily because it lacks operator overloading.

Ever increasing precision usually works, but it can be slow. And it iscertainly not fool proof.

For example, for real variables x and z define three continuous real functions E, Q and H thus:

E(z):= if z=0 then 1 ese (exp(2) —1)/z; Q(X) = |x=V(x*+1) | — U(x +V(x>+1)); H(X):= E(Q(X)?).
Thenletting x =15.0, 16.0, 17.0, ..., 9999.0 inturn compute H(x) in floating-point arithmetic rounded to the
same precision in al expressions. No matter how high the precision, the computation amost always delivers the
samewrong H(x) =0. Tryit! In perfect arithmetic Q(x) =0 instead of roundoff, sothecorrect H(x) =1.

( This “numerical instability” can be cured by changing E(z) theway A(X) waschangedinto A(X) above.)

Conclusion: In general thereis no way to automate error-analyses without which we cannot choose
arithmetic precision aptly nor guarantee the correctness of floating-point results. For programmers
who will not perform error-analyses we must build into programming languages the rules of thumb
that choose precisions in ways that usually work and aren’t too slow. But Java hasn't done that.
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“ Arithmetic should be barely more precise than the data and the desired result.”

How, when and why did thiswrong Rule of Thumb get put into so many programming languages?

It started in 1963. Before then IBM’s 709/7090/7094 mainframes had been delivering sums and products of
SINGLE PRECISION variablesinto a DOUBLE PRECISION floating-point accumulator that mimicked old electro-
mechanical calculatorslikethe Friden designed decades earlier for statisticians and actuaries. IBM’s Fortan
compilersroutinely truncated this DOUBLE sum or product to SINGLE when combining it arithmetically with a
SINGLE operand, but retained the registers DOUBLE value when combining it witha DOUBLE variable, asin
scalar product accumulation DSUM = DSUM + SA(1)*SB(l) . This matched what experienced programmers had
been doing in assembly language but was unobvious to other programmers. In 1963 the Fortran IV compiler
released with IBSY S 13 adopted a strict bottom-up semantics that truncated sums and products of SINGLES
from DOUBLE to SINGLE immediately, thusreplacing the interpretation dble(DSUM + SA(1)*SB(J)) rounded
once by atwice-rounded dble(DSUM + sngl(SA(1)*SB(1))) . To obtain the older semantics now programmers
had to write DSUM = DSUM + DPROD(SA(1),SB(1)) but few knew that and fewer knew why it had changed.

IBM wished to wean programmers from old 7094 habitsin anticipation of its System/360’'s utterly different
multi-register floating-point architecture revealed in 1964. The new semantics appealed alsoto CDC because
their CDC 6600, designed by Seymour Cray with eight SINGLE PRECISION floating-point registers almost as
wideas IBM’s DOUBLE PRECISION, ran faster that way. Compiler writers liked the new simpler semantics; it
helped fit fast one-pass compilers entirely into the core memories of that era, and its determination of arithmetic
precision bottom-up complied with a “ context-free” paradigm adopted by computer linguists. Although earlier
computers and their languages had been designed by people who expected to use them daily, by 1963 design had
fallen to computer- and language- “architects’ who did not have to use their handiwork to earn their daily bread.

What isan Architect ? He designs a house for another to build and someone else to inhabit.

In 1966 delegatesfrom IBM’s user-group SHARE heard Gene Amdahl,
architect of System/360, admit about its floating-point that ...
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“ If we had known then what we know now, we wouldn’t have done it that way.”

Error-analysts like Hirondo Kuki who warned about the new architectures’ impact upon floating-point were not
heeded until too late. Besides, we were fully occupied developing portable numerical software to run on a now
madly proliferating diversity of competing computer arithmetics; bottom-up arithmetic semantics was the least of
our concerns. In 1967 someof System/360’s floating-point hardware defects were repaired, but not Fortran’s.

In 1988 ANSI C copied Fortran’s mistake. Beforethen Kernighan-Ritchie C had evaluated all
floating-point expressionsin doubl e regardless of whether operandswere f | oat s or doubl es. Thiswasthe
right thing to do albeit for the wrong reason: theold DEC PDP-11 onwhich C had first been developed a
decade earlier ran faster that way. But CDC’'s descendants from Cray’s 6600 and the newer CRAY machines
ran much slower that way because their doubl e arithmetic had to be simulated in software. Besides, their

fl oat wasamost aswide as everyoneelse’'s doubl e, so Cray’s doubl e wasaluxury rarely needed. And
compiler writers taught to revere “ context free” felt more comfortable with Fortran-like bottom-up semantics.
Consequently when ANSI X3J11 alowed ( but did not oblige) C compilersto use Fortran-style bottom-up
semanticsinstead of Kernighan-Rirchie al-double, CRAY's C was not the only compiler to switch. This
switch degraded some programs’ accuracy sometimes severely on some machines. Usually, severe degradation
occurred only for rare seemingly random data. The cure wasthe insertion of (doubl e) castsinafew placesin
afew programs, but hardly any programs were corrected that way. Vendors prefer that software users accept
aberrations due to roundoff as Actsof God instead of errorsinduced by historically accidental |anguage defects.

Example: Should removal of algebraically redundant parentheses correct a “ programmer’s error ” ?
( Such parentheses are usually best |eft in place, but hereisafloating-point exception of an entirely different kind.)

A Java programmer wrote “ C=(F-32)*(5/9) " instead of “ C=(F-32)*5/9" to convert
Fahrenheit F to Celsius C; see comp.lang.java.help for 1997/07/02 . It could have been C
or Fortran. Isthejoke onthe programmer? Or on usfor perpetuating ancient blunders blindly?
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“ Arithmetic should be barely more precise than the data and the desired result.”
Soit’'s wrong. What should we be doing instead?

We must institute better rules for the determination of arithmetic precision than the bottom-up rule
inferred naively froma “ context free” principlethat is at best alinguistic idealization.

|deally, floating-point precision should be determined by the programmer from an error-analysis
that takes account of operands’ provenances and the purpose that each operation’s result will serve.
Sometimes thisideal is achievable. Then the programmer must be able to use type-declarations,
similar to those that determine the meanings of expressionsinvolving integers, characters, arrays
and other classes, to express hisintent succintly without superfluous locutions ( like casts) that
obscure mathematical formulas. And the compiler must honor his stated intent scrupulously, taking
only those liberties the programmer has licensed explicitly. Such liberties ( optimizations) will be
described later; they exclude “ loose numerics” that would undermine a programmer’s control.

“ 95% of the folks out there are completely clueless about floating-point.” (J.G., 28 Feb. 1998)
Error-analysisis no option for them. For them, programming languages must determine floating-
point precision by default from rules of thumb that, taking both accuracy and speed into account,
optimize prospects for successful use of their programs. Such rules of thumb are on the next page.

What about taking account of cost? It matters for embedded systems sold in millions, for PDAS, for clever
credit cards, ... that simulate floating-point in firmware to reduce hardware costs. If they perform little floating-
point, its speed doesn’'t matter. Otherwise they use floating-point hardware enough to justify the space it occupies
on chip; signal processing islikethat. We assume full hardware support for Java's or Borneo's floating-point.
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Four Rulesof Thumb for Best Use of Modern Floating-point Hardware

0. All Rulesof Thumb but thisone are fallible. Good reasons to break rules arise occasionally.

1. Store large volumes of data and results no more precisely than you need and trust.
Storing superfluous digits wastes memory holding them and time copying them.

2. Evaluate arithmetic expressions and, except possibly for gargantuan arrays, declare temporary
(local ) variables all with the widest finite precision that is not too slow nor too narrow. Here
“too narrow” applies only when a declared variable in afloating-point expression or assignment is more
precise than the hardware can support at full speed, and then arithmetic throughout the expression has to be at
least as precise asthat variable even if slowed by the ssmulation of itswider precision in software. Thisisalso
the precision to which to round infinitely precise literal constants and integer-typed variables. Otherwise
expressions containing only f | oat variables should be evaluated, inthe style of Kernighan-Ritchie C, in
doubl e or, better, | ong doubl e if the hardware supportsit at full speed. Of course explicit casts and
assignments to a narrower precision must round superfluous digits away as the programmer directs.

3. Objects represented by numbers should ideally have one parsimonious representation, called
“fiducial” and rounded according to rule 1, from which all other representations and attributes
are computed according to rule 2. For instance, atriangle can be represented fiducially by f 1 oat
vertices from which edges are computed in doubl e, or by fl| oat edgesfrom which vertices are
computed in doubl e. Computing either from the other in f1 oat may render them inconsistent if the
triangle istoo obtuse. In general, agood fiducial representation can be hard to determine. Moreover, an
object in motion may require two representations, a f | oat fiducial snapshot and amoving doubl e.
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Example: Given the angles of declination and right ascension of two very distant stars, what angle
do they subtend at the eye of an astronaut floating slowly in space not too far from the solar system?

Let D bethegivendeclination and A theright ascension, in degrees, for one star; they satisfy
—180° <A <180 and -90° <D <90°. Similarly let D+d and A+a be given for the other star.
Then awell-known formulafor the angle V the stars subtend at the eyeis

V = 2-arcsin V( sin?(d/2) + cos(D+d)-cos(D)-sin*(a/2) ) .
Thisformulais easy to derive and serves earth-bound astronomers well because their V isusually asmall angle.
However, an astronaut might beinterested in angles V very near 180° for which thisformulaloses about half the

sig. digits arithmetic carries. Try it! Theloss can occur despite that every term inside V(...) ispositive, so ...
Don't blame cancellation; thereisn't any. Thisformulajust doesn’t like V too near 180° .

Given fl oat data A, a D, d, Javas (and ANSI C's) Fortran-like semanticswill let f|1 oat V be computed
far less accurately than the data deserve at some future time when trigonometric functionsfor f | oat precision are
added tothe j ava. | ang. Mat h library. ( Currently it hasonly doubl e.) At that time the formula above for V
(written V =(f| oat )(2*asi n...) in Java) may malfunction in subtle ways that could not show up when its
program was first written and tested. How likely will this malfunction, if it occurs, be diagnosed correctly?

Once written and tested, can the program serve safely Everywhere, including outer space?

It would be safe enough if Java used old-fashioned Kernighan-Ritchie C floating-point semantics.

( A better way to compute V isfrom aformulafully accurate for all data, if such can befound. It does exist:
V = 2-arctan V( ((TD+ta+1)td + ta)/( ((td+1)ta+1)-TD + 1)) wherein TD = tan’(D+d/2) , td = tan*(d/2) and
ta=tan’(a/2) . It'sfast too. Would you have found it? Can you proveit? How much time will you need?)
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What can’t be proved right
about floating-point
Isvery likely wrong.

Java's treatment of Floating-Point is provably wrong-headed.

The mistakes must be corrected by Sun
lest Java's claim to leadership be undermined
and its mission jeopardized.

Only if 100% Pure Javall isacknowledged to be better Java
can it compete against Microsoft’s J++ .

Thefirst step with the least cost and biggest payoff isto
abandon Fortran-like bottom-up floating-point semantics, and

adopt Kernighan-Ritchie C floating-point semantics.
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Three Williams

contend for
Java’_s
numerics

William K.

William G.
="

It isbizarre that a programming language, promulgated to Everyman to program Everything to run
Everywhere, hasfloating-point syntax and semantics that is so disadvantageous to the overwhelming
majority of programmers and users of the overwhelming majority of computers on desktops. Java's
floating-point semantics can’'t be blamed upon unawareness of old-fashioned Kernighan-Ritchie C .

June 18, 1998 5:32 am Work in Progress — Subject to Supersession Page 46



How Java’s Floating-Point Hurts Everyone Everywhere

A Java Technicality
Overloaded net hods selected according to the types, f1 oat or doubl e, of their arguments:

Currently Java widensa f | oat argumentto doubl e if thisisthetypethat a met hod expects, accordingtoits
si gnat ur e. If the selection of the et hod depends upon whether itsargument is f1 oat or doubl e, thena
way to inhibit that widening must be available to a programmer who intends to select that net hod’s f | oat
version. Borneo hasintroduced a convention that Java too can adopt for the purpose: inhibit widening of an
argument with an explicit (1 oat) cast. For example, t an(x) should deliversa doubl e result no matter
whether x is fl oat or doubl e, but tan((fl oat)x) shoulddelivera fl oat result provided a suitable
tan nmet hod isavallable. Thus, aprogrammer who gives no thought to the question gets the safer default.

The adoption of old-fashioned Kernighan-Ritchie C semanticsfor floating-point entails no change to
the JVM, very little changeto the Java language, and some changesin the behavior of pre-existing
Java programs after they are recompiled. These last changes will almost never be significantly
disadvantageous. Accuracy will amost alwaysimprove. Speed may drop 20%, most likely on Sun
SPARCs. On DECAIlphas and Intel processorsand their clones speed will change imperceptably,
and it may increase on older Power PCs, because their register architectures favor doubl e.

There is no substantial downside risk associated with Java's adoption of old-fashioned Kernighan-
Ritchie C semantics for floating-point, and it could improve thereliability of Java's floating-point

computation awesomely. Here follows an elaborate eight-page example:

Three-dimensional rectilinear geometry.

June 18, 1998 5:32 am Work in Progress — Subject to Supersession Page 47



How Java’s Floating-Point Hurts Everyone Everywhere

Matrix Notation for 3-Dimensional Euclidean Geometry
Lines, Planesand Cross—Products:

L et bold-faced lower-case letters p, q, 1, ..., X, Y, Z stand for real 3-dimensional column-vectors.
Then row vector p' = [P1, P2, P3] isthetranspose of column vector p, and p'.q isthescaar
product peq of row p' and column q. Euclidean length Ip|| =V(p"p).

Do not confusethescalar p'-q=q"-p withthe 3-by—3 matrices (“dyads’) p-q' #q-p' nor with
the vector cross-product pxq =—-gxp .

Aswe shall see, cross-products are soimportant asto justify introducing anotation p®, pronounced

“ p—cross,” for a 3-by—3 skew-symmetric (p®" =-p®) matrix defined by the vector cross-product
thus: pxq =p®q. Explicitly the matrix p® is

"0 b, b,

p, 0 —p,

__p2 pl 0 _

The main advantage of a matrix notation for these geometrical entitiesis that matrix multiplication is
associative: p'-q™r = (p"-q%)r = pT-(q®r) = p(gxr) and p®q°r = (p®q%)r = p*(q®r) = px(qxr)
unlike scalar and cross-products; (peq)-r # p-(ger) and (pxq)xr # px(gxr) . Besideslegihility,
this matrix notation promotes simpler expressions, shorter proofs, and easier operator overloadingin
programming languages.
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For Readers Reluctant to Abandon ¢« and x Products

( Other readers can skip this page.)

We're not abandoning familiar locutions; we' re just writing most of them shorter. Compare the
Triple Product formula (pxg)xr = qg-per —p-qer with its matrix equivalent (p®-q)*= gqp'-p-q",
or Jacobi’s Identity px(qxr) + gx(rxp) = — x(pxq) with itsequivalent p®-q®—q%p® = (p* q)¢
Lagrange’s Identity (txu)e(vxw) = tev-uew — usv-tew with (t%u)"-(v®w) = det([t, u]T-[v, wl),
succintness and ease of proof. Some things don’'t change much; pxq =-qgxp becomes
p*q=—q%p, so p®p=o0 (thezerovector), and pe(gxr) = p'-q%r = det([p, g, r]) .

The notations' difference becomes pronounced as problems become more complicated. For instance,

given aunit vector p (with ||p]|=1) andascalar Y, what orthogona matrix R = (R")™ rotates
Euclidean 3-space through an angle | radians around the axis p ? In other words, R-x isto
transform avector x by rotating it through an angle  about an axis p fixed through the origin o.

An ostensibly simple formula R := exp(y-p?%) uses the skew-symmetric cross-product matrix p®
defined before. Here exp(...) is not the array exponential that is applied elementwise, but isthe
matrix exponential; think of R = R(y) asamatrix-valued function of { that solvesthe differential

equation dR/dy = p*R = R-p® starting from R(0) =1 , theidentity matrix. Computed from p and
P directly, R=1 + 2:( cos(@/2)1 + (sin(/2)-p® )-(sin(y/2)-p%) . Rewriting this expression with
solely » and x products doesn’'t improveit. Tryit! Surely R =exp(y-p%) must be preferred.
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Geometric Operations as Overloaded Operatorsin Java/Borneo

We contemplate defining classes of 3-dimensional real (f | oat, doubl e, and | ong doubl e
too when available) rows, columnsand matrices interpreted as vectors and geometrical mappings.
Java's infix operators +, — *,/ areto be overloaded to combine these geometrical objects with each
other and with scalars, subject to restrictions of the kind taught in sound courseson Linear Algebra.

In Java-like Borneo programswe canwrite | (x) for [[x]| for both rowsand columns x, and write

Tr p(p) for p' and Crs(p) for p®. However, toalow Trp and Crs and theliketo be called
without prepending a class or package name, Java/Borneo classes that use them would have to
include ahost of “wrapper” static methodslike

static colvector Trp(rowector rT) { return rT.Trp() ; } .
Alternatively, we can use postfix locutionslike x.I () and p.Tr p() and p.Cr s() and suffer the
annoyance of Java's redundant () insilence asthe price paid for freedom from wrappers.

We must not write p*q for the scalar product peq nor the cross-product pxq lest they become
non-associative invitations to blunder. Instead we write the scalar product peq as Tr p(p)*q for

p'-q, andthecross-product pxq as Cr s(p)*q for p®q . If youlike Dot (p, q) and Cr oss(p, q)
respectively, or p.Dot (q) and p.Cr oss(q), usethem instead; but we avoid them because our
mathematical matrix notation from the previous two pages transliterates so immediately to our Java-
like notation with overloaded operators described on this page, and vice-versa.

In what follows, computational solutions to several common geometrical problems are presented in
our mathematical matrix notation because it is slightly easier to read than Java could ever be.
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Applications of Cross-Productsto Nearest-Point Problems

Cross-products pxq, or p¢-q In our matrix notation, figure prominently instead of determinantsto
provide neat textbook solutions of many commonplace geometrical problems. For example, given

theequations p'x =1, b"x=R, w'x=Q of three planes, their point of intersection is
z= (1th%w + Bw®p + Q-p®b )/(pT-b%w) .

Neat formulas are more memorable and therefore more likely to be used by programmers than are
ugly numerical algorithmslike Gaussian Elimination even if the latter are numerically more stable.
Gaussian Elimination is also faster than the foregoing formula, but a programmer can easily fix that
by rewriting z= ( (b®w)-1t+ p®(b-Q - w-R) )/(p"-(b*w)) and reusing acommon subexpression.
Still, thisnot so stable numerically as Gaussian Elimination with pivotal exchanges.

Like Beauty, the neatness of aformulaand often its speed lie more easily in the eye of the beholding
programmer than does numerical stability. Textbook formulas don’t show off roundoff. The reader
will not easily determine which are numerically unstable among the next page's neat solutions for
seven commonplace geometrical problems each of the following Nearest-Point kind:

Given apoint y and specifications for ageometrical object G, weseek apoint z in G nearest y .

We expect the line segment joining y and z to stick out of G perpendicularly. If two formulasfor
z are offered below they suffer differently from rounding errors; the first formula suffers less than
the second whenever ||z—y|| <<|ly|]| and the second less than the first whenever |[|z|| << |ly|| . Unless
parentheses indicate otherwise, associative products A-B-C should be evaluated in whichever order,
(A-B)-C or A.(B-C), requiresfewer arithmetic operations, doing so below diminishes roundoff too.
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1. Giventheequation p'x =1 of aplane [], thepoint z in [] nearest vy is
z=y—p(pTy-m/pl° = (pmt—p®p®y )lIpll* .

2. Given three points u, u+v and u+w through which one plane [] passes, thepoint z in []

nearest y is z=y—pp (y-u)lpl’ = u—p®p*(y—u)/lipl® wherein p=v®w.

3. Giventhreepoints u, v and w through which one plane [] passes, thepoint z in [] nearest

yis z=y-pp'(y—u)lpl’ = u—p*p*(y—u)lpll* wherein p=(v—u)®(w—u). Theorder
of u, v and w ispermutable in each formula separately. To diminish roundoff in p choose u to
maximize |[v—-w]|; in z choose u to minimize |ly —u|| inthefirst formula, |[u]| inthe second.

4. Giventwo points u and u+v through which oneline £ passes, thepoint z in £ nearest y is
z= y+VOVEy—w/VZ = (vvTy =VvEVEU)VIE = u+ vy —u)|vIP .

5. Giventwo points u and u+v through which oneline £ passes, and two points y and y+w
through which another line ¥ passes, the point nearest £ in ¥ is x= y—w-p" vy —u)/||p|l?
wherein p=v®w. Nearest ¥ in £ is z= x—pp'(y=u)|p|? = u—=vp"w®y—u)|pl®.
6. Giventwo points u and w through which oneline £ passes, thepoint z in £ nearest y is
z=y+VOVE iy —u)/|VZ = (vvTy=vEvEu)VIZ = u+ vy —u)/|v|® whereinv=w—u.

Since u and w are permutable, choose u to minimize |ly —u|| inthefirst and last formulas, and
to minimize ||u|| inthe middle formula, whichisbestif |[z]| << |Ju]| too.

7. Given thetwo equations p"x =1 and b":x =B of aline £, thepoint z in £ nearest y is
2=y +V&(p(R-bTy) —b-(repTy) YIVIP = (vvTy+v¥(p-B-b-1) )|V wherein v=p®b.
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We have just seen seven neat solutions for commonplace geometrical problems that

Java's floating-point expression-evaluation turns into

Numerica Junk.

HOW ? WHY ?

Java getsusinto troublethat old-fashioned Kernighan-Ritchie C avoided by rounding everything by
default to doubl e unless an explicit cast specified otherwise.

Java gets usinto trouble because it rounds all subexpressionsinvolving exclusively f | oat
operandsto f | oat precision.

Let's see how it happens: ...
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HOW ? An example shows how Java-like floating-point malfunctions:

7. Given thetwo equations p"x =1 and b":x =R of aline £, thepoint z in £ nearest y is
z=y +Vo(p-(B-b"y) —b-(rep"y) YIVIF = (vv'y +v¥(p-B-b-m) )/|vI* wherein v=p®b.

Trydata p' =[ 38006, 23489, 14517], m=8972, b'=[23489, 14517, 8972], R=5545,

and y'=[1, -1, 1], all storedexactly as 1 oats. Thisdatawill cause trouble because it defines
£ astheintersection of two nearly parallél planes, so tiny changesin data can change z drastically.

When all arithmetic is performed naively in fl oat thetwo formulasabovefor z yield respectively
le: [1, 1, -1] and zZT: [ 1.000000054, 1.000000054, —1.500000148] instead of the

correct z' =[ 13, 2/3, —4/3] which is computed correctly rounded when all intermediate results
( subexpressions) are evaluated in doubl e before z isrounded back to fI oat .

Naively computed z; and z, arenot so far from z asto be obviously wrong if z were unknown,

and yet too far away to be acceptable for most purposes. Worst of all, the distances from both planes
that intersect in £ to z; isabout 0.81, to z, about 0.65, soneither z; nor z, can be correct

solutions for problem 7 with slightly different data. The naive results are geometrically impossible.

Computed entirely in f1 oat arithmeticupon fl oat data, every neat solutionto problems 1-7 is
numerically unstable. Skilled numerical analysts can reformulate them as constrained |east-squares
problems and solve them to acceptable accuracy using only fl oat arithmetic, but not so quickly nor
so accurately as doubl e works above. The neat solutions are fine if computed extra-precisely.
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WHY ? Bilinear formsvulnerableto roundoff followed by cancellation occur frequently:

Scalar products: pb = p'b = p by +p,Ch,+p, D, .
p, LB—b, Ot
Linear combinations: p-B—b-Tt = |p,[B-b, 0T .
P3P —by 0
P, ths—p3 by
Cross products: pxb = p*b = |p, b, —p, (b,
Py thy =Py [y

These entities are geometrically redundant; they are so correlated that (p-3—b-1)+(pxb) =0 for
all data {p, b, 3} . Evenif dataare “accurate’ to few sig. digits and computed entities to fewer,
their geometrical redundancy must be conserved as accurately as possible. We can tolerate slightly
Inaccurate results interpretable as realizable geometrical objects dightly different from our original
intent, but not geometrically impossible objectslikea pxb too far from orthogonal to p and b.

Therefore these bilinear forms must be computed carrying somewhat more precision than in the data,
thereby preserving geometrical redundancy despite “losses’ of several digitsto cancellation. At any
precision, prolonged chains of computation risk losing geometrical redundancy. The wider isthe
precision, thelonger isthat |oss postponed and the more often prevented, provided that extra-precise
arithmetic does not run intolerably slowly. And extra precision usually costs less than error-analysis.
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Dynamic Directed Rounding M odes

All hardware conforming to |EEE Standard 754 for Binary Floating-Point Arithmetic must ( and all
do) afford the programmer away to specify Dynamically one of four Rounding Modes:
Round to Nearest (the default), and three Directed Rounding Modes —

Round towards O ( truncate), Round Up (towards + ), Round Down (towards —» ) .
That these modes are Dynamic means they are selected by setting two bits in a control word in the floating-point
hardware. Programmers should regard a rounding mode as a global variable implicitly influencing every floating-
point operation not protected from that influence by a Satic assignment of its rounding mode. For these static
assignmentsthe DEC Alpha provides two bitsin the op-code of every floating-point operation to achieve the same
effect as other machines accomplish by saving, setting and some time later restoring the control word's bits.

Alpha's and Java's designers seem to have had none but arcane uses, like Interval Arithmetic and
error-bounding, in mind for the directed rounding modes. That may be why Java forbade them.
That mind-set isalmost right. Most programmers, and all programmers most the time, have no use for directed
rounding modes. Consequently almost all programs include no mention of them and should be compiled to get the
default rounding mode from the control word’s two bits. However ...

“Almost all trueisentirely alie” — a Yiddish folk-saying.

Many aprogrammer will encounter a compelling reason to run the same subprogram four times, each

time choosing a different rounding mode to govern the way all but the statically rounded arithmetic

operations in the subprogram are rounded, and then compare the subprogram’s four outputs. Why?
Numerical Instability.

It may be suspected as the cause of dubious output from a program comprising several subprograms

of diverse provenances, pedigrees and perspicuities. How is numerical instability to be debugged?
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Debugging Numerical Instability:

It is difficult even for experts. We try first to blame the instability upon one subprogram. If thiscan
be done, and if the subprogram is our own, we hope we can fix it; and if the subprogram came from
someone else we hope he canfix it. Either way, let's start by trying to determine whom to blame.

Into our program comprising several subprograms let us insert two kinds of modifications:

» Display, fileor print intermediate values put out from some subprograms into others.

» Rerun some or al subprogramsin all four rounding modes and compare intermediate val ues.
Doubts fall first upon the first subprogram(s), if any, whose outputs vary much more than expected.

Of course this scheme can't be fool proof since error-analysis can’t be automated in general; see pp. 38-39 and 41
for three examplesand p. 35 for perhaps another that defy this scheme. And after the scheme casts suspicion upon
a subprogram we must analyze it and rule out other causes before we condemn it as unstable. Among other reasons
for violent roundoff-induced fluctuations in a subprogram’s output, and ways to cope with them, are ...
» The function computed accurately by the subprogram has a singularity so near the datathat it amplifies
tiny changes in datainto violent fluctuations of the function; therefore don’t let its data change.
» The fluctuations don’t matter so long as they conform to some constraint; try to find it and determine some
measures of departure from that constraint to display/file/print instead. It's easier said than done.
» By design, the subprogram malfunctions under any but the default mode, so don’t change that. ( Rare.)

Despitethese caveats, rerunswith directed roundings focus attention where it belongs far more often
than not. This scheme works for exampleson pp. 27, 44, 51 - 55, and the next several examples:

Needle-like Triangle b A
c

C B
a
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Example: Computing the area A of aneedle-like triangle
Needle-like Triangle b A

C B
a

A classical formuladueto Heron of Alexandria,
A = V(s(s-9)(sh)(s<)) where s=(atb+c)/2 ,
isthe formula still taught in schools despite its numerical instability for needle-like triangles.

Inthe 1950s and 1960s computer programmers rearranged his formulato stabilize it asfollows: First sort a, b, ¢
sothat a=b=c; thiscostsat most three comparisons. If c-(ab) <0 then the data are not side-lengths of areal
triangle; otherwise compute its area

A= V( (a+(b+c))-(c(ah))-(c+(@h))-(a+(b—)) )/4 .
Don’'t remove parentheses from this formulal 1t can’t giveriseto V(< 0). It workson all but Cray’s computers.
Nowadays only error-analysts and afew programmers know this stable formula though it is explained on p. 153
in Floating-Point Computation by P. Sterbenz (1973) Prentice-Hall, and in “ Miscalculating Area and Angles of
aNeedle-like Triangle” http://http.cs. berkel ey. edu/ ~wkahan/ Tri angl e. ps , and elsewhere.

L et’s compare both formulas on two nearby needle-like triangles, and compare also the effects of the
different Directed Rounding Modes mandated by |EEE 754 but forbiddento usby Java. Sinceall
dataare f | oat s, weaso comparetheeffect of Java's al-f | oat arithmetic semanticswith that of
Kernighan-Ritchie C all-doubl e arithmetic upon evaluationsof Heron's unstable formula

The 1st triangle's a=12345679., b =12345678., ¢ =1.01233995, Condition no. = 500000000.
The 2nd triangle’'s a= 12345679., b = 12345679., c¢=1.01233995, Conditionno.=2.
Infinitesimal relative perturbations in the data get amplified by the Condition number when they are transmitted to
A . The 1st triangleisill-conditioned; the 2nd iswell-conditioned and deserves an accurately computed A .
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Table: Sensitivity to Rounding of two different formulasto calculate
the Area A of aTriangle from the Lengthsof its Sides
( calculations performed upon 4-byte fl oat data).

Heron's Formula Better Formula Heron's Formula
s=((a+b)+c)/2 J@+b+c) mc-(a-b))LlKM(a ) & +(b ©))
Rounding sis=a)lls -b) (s =) (al subexpressions
mode (unstablein f1 oat ) (stablein f1 oat ) doubl e like K-R C)
a=12345679 > b=12345678 > ¢=1.01233995 > a-b
to nearest 0.0 972730.06 972730.06
to +oo 17459428.0 972730.25 972730.06
to —oo 0.0 972729.88 972730.00
to0 -0.0 972729.88 972730.00
a=12345679 = b=12345679 > ¢=1.01233995 > ab
to nearest 12345680.0 6249012.0 6249012.0
to +co 12345680.0 6249013.0 6249012.5
to —oo 0.0 6249011.0 6249012.0
to 0 0.0 6249011.0 6249012.0

Note that only incorrect results change drastically when the rounding mode changes, and

that old-fashioned Kernighan-Ritchie C getsfineresultsfrom an “unstable” formula.
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Heron's formulais one of many schoolbook trigonometric formulas that dislike certain triangles:
Needle-like Triangle b A
C A B

a

c

C = arccos( (&2 + b?—c?)/(2-ab) ) = 2-arctan( V( (s-a)-(s-b)/(s(sC)) ) )
c= V(& +b?-2-abcosC)

B =arcsin( (b/a).snA) ... Thisformulamay deliver the smaller of two angles B’ and B”
and dislikes triangles with B too near 90° .

For better formulas than these classical formulas see
“ Miscalculating Area and Angles of a Needle-like Triangle “
http://http.cs. berkel ey. edu/ ~wkahan/ Tri angl e. ps

These classical formulas have withstood the Test of Time, not passed it.
Their unnecessary inaccuracies could be detected with the aid of directed roundings., but ...

What isa Java programmer to do? With f | oat data, herunssomerisk that Java's floating-point
will get wretched results from a program that delivered fine results under old-fashioned Kernighan-
Ritchie C . Hishardware includes the tools he most needs to debug wretched results but Java denies
him their use. Maybe better formulaslurk in placeslike “ Miscalculating ... Triangle” cited above,
but what are his chances of finding them? What are our chancesif he doesn’'t, and we use his code?
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Java's designers blundered if they deemed features of |EEE Standard 754 for Binary Floating-
Point Arithmetic that they did not appreciate to be features usable by none but numerical experts.

The facts are quite the opposite.

In 1977 thosefeatureswere designed into the Intel 8087 to servethe widest possible market, Java's
market — Everybody Everywhere. A few yearslater similar features and more were built into the
Motorola 68881/2 to go with the 68020 and 68030, and live oninthe 68040 and 88110, but they
are fading from the marketplace. Today Intel’s floating-point architecture, now borne by Pentiums
and their clones, isthe most nearly ubiquitous of all architectures., And yet one of its numerically
most valuable features continues to be under-utilized for lack of linguistic support. That featureis...

|IEEE 754 double-extended precision, also knownas | ong doubl e.

Thisformat occupies 10 bytes, carries 64 sig. bitsof precision and 15 bits of exponent range. The
Motorola chipsstoreditin 12 bytes, allocating two for future expansion explicitly foretold by

|EEE 754. But the programming language community appears not to understand how nor why this
format is intended to be used.

How: | ong doubl e isintended to support doubl e andf | oat theway
doubl e supports fl oat in Kernighan-Ritchie C .

Why: Extra-precise arithmetic attenuates the risk of chagrin due to roundoff. This

risk isimpossible to estimate well enough to determine insurance premiums;
it isusually too small for most of usto notice, too big for al of usto ignore.

June 18, 1998 5:32 am Work in Progress — Subject to Supersession Page 61



How Java’s Floating-Point Hurts Everyone Everywhere

How much does extra precision attenuate the risk of chagrin due to roundoff?

Consider some algorithm that has been programmed to solve a problem for all input data, except
perhaps a set of measure zero in data-space, and that would achieve this goal if the program were
executed with infinite precision at infinite speed. For example, Gaussian Elimination with pivotal
exchanges would solve all square systems of linear equations except those whose determinant
vanishes, which happens on a surface in the space of all square matrices of any particular dimension.

Because we compute with finite precision, thereisa population of data sets for which the problem
has a solution but the program computes it too inaccurately, whence arises chagrin due to roundoff.

For data of any precision fixed in advance, increasing the precision of the program'’s arithmetic
shrinks the population of data whence arises chagrin. The rate of shrinkage depends upon the
algorithm under consideration. Typically, that population shrinks by about 1/2 for every extrabit of
arithmetic precision carried until a Law of Diminishing Returns setin. Typically, carrying 11 extra
bits of arithmetic precision shrinks the risk of chagrin by a factor smaller than 0.0005, enough to
change a program’s or a computer’s perceived reliability from Bad to Good.

(Atypical agorithmsexist for which the rate of shrinkage isdifferent, better like 1/4 per extrabit for some, worse
like 1/vV2 per extrabit for those that lose half the bits carried, ..., no shrinkage at all for a contrived few.)

For instance, Heron's classical formulafor Area A goesbad for atiny fraction of triangular shapes.
If the shapes are plotted in a plane region, these shapes whence comes chagrin lie in anarrow ribbon:
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Map Triangles to Pointsinthe Plane by taking side-engths (& b, c) as Barycentric Coordinates:
a>bFc
|b=0=c-a c=0=ab

Every point (a,b,c) inthis
triangle represents afamily
of Similar triangles.

Every triangle Similar toa
given generic triangle maps
to six of these points.

Points near the boundary
(thickened here) represent
Needle-like triangles.

Points between the center and
the hyperbolic arcs represent
triangles with all angles acute
c>atb b>c+a and utterly well-conditioned
areas A(ab,c) .

But A(ab,c) iscomputed by
Heron's formulainaccurately
at pointsin the thickened
boundary layer regardless of
how well- or ill-conditioned

a=0z=b-c A may be at that point.

When Heron's formulais computed, every extrasig. bit of arithmetic precision carried halves the width of
the boundary layer thus halving the population of triangles whose areas are computed too inaccurately.
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Therevised formulafor A with sorted a, b, ¢ isaccurate at all triangles. Everybody should useit.
But they won't.

The better formula has been published at least four times but not where most programmers who might need it are
likely to look it up. Heron's formulaiswhat they will almost surely find insteadin their school books.

In general, programmerswho use alittle (or alot of ) floating-point arithmetic may be very clever at things they
care about, but not at error-analysis of floating-point. ( Not even the great John von Neumann got it quite right.)
And all of us shall occasionally run their programs unwittingly, and be thus exposed to risks of which they were
unaware. Extra-precise arithmetic, if not too slow, isthe easiest way to attenuate those risksin practically all
computations, not just the examples presented in this document, and to solve numerous other problems too. ...

Extra Precision as aWay to Conserve Interest Rates Monotonicity

A little-known requirement for certain financial computations of Rates of Return is Monotonicity.
Thismeansthat if asmall change in data causes a computed result to change, its change should not go in the wrong
direction. For instance, if the return on an investment isincreased, its computed rate of return must not decrease;
If the repayments on aloan are diminished, its computed interest rate must not increase. The conservation of
monotonicity becomes more challenging as it becomes more important during computations designed to optimize
rates of return. These rates satisfy equations that can have more than one root, and then the choice of the right root
can be spoiled if monotonicity islost to roundoff. Roundoff affects an equation’s solution both during the
eguation’s computation and in the accuracy criterion that stops the equation-solving iteration. To prevent changesin
results from becoming artifacts of roundoff instead of consequences of changed data, equations must be solved
more accurately than might naively have been thought adequate. Experience indicates 11 extra bits suffice here.

By far the easiest way to conserve monotonicity isto compute extra-precisely, carrying enough extra
precision ( say 11 bits) to keep roundoff’s effect utterly negligible compared with the effect of end-
figure perturbationsin data, provided of course that extra-precise computation does not run too slow.
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The floating—point arithmetics on AMD/Cyrix/Intel chipsin PCs, and on Motorola chips in old’
Macintoshes and Sun llls, were designed to attenuate the risks you face and to help you diagnose
them. They were designed to evaluate at full speed every subexpression to 10+-byte Extended

Precision thereby attenuating the incidence of dangerously inaccurate results by orders of magnitude.
DEC'sAlpha chip, and PowerPC chipsused on current Power Macs and IBM RS/6000s, were designed to
evaluate at full speed every subexpression to 8-byte Double-Precision, like old-fashioned K-R C, to somewhat
attenuate therisksyou face. All these chipswere designed to help you debug inaccuracy by rerunning subprograms,
whose source-code you can't or won't change, unchanged but in different rounding modes upon data that produce
suspicious results. Attenuating risks does not eliminate them nor does the foregoing diagnostic technique work
every time. Still, ...

these hardware designs do improve your chances. But not with Java programs.

Speed Above All Else

Forced to choose between speed and safety, most people choose speed. Thisisthe only conclusion
consistent with what happens on our highways. Even people who distrust Our Government ( for no
apparent reason ) trust the accuracy of computer arithmetic, so they too choose speed above all else.
Knowing what most programmers will do, those of us who design computer systems have to design
them in ways that enhance rather than detract from the programmer’s prospects for success lest his
failure turn into our failure. Therefore prudence, if not due diligence, obliges programming
language implementors to evaluate all floating-point expressions by default in the widest precision
that does not run too slow, unless the programmer has gone to some trouble to demand otherwise.

TFootnote: Post hoc, ergo propter hoc. ( What occurred must have been caused by whatever just preceded it.) The decline of Apple
Computers dates from their abandonment of the superior floating-point architecture of the Motorola 680x0 processor in favor of the
faster but numerically inferior Power PC. Intel’s, the only floating-point left that offers that superiority, isubiquitous. Coincidence?
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How many floating-point formats run fast on most desktop hardware today?

Three:
|EEE 754 Single |EEE 754 Double |EEE 754 Double-Extended
4-byte f | oat 8-byte doubl e 10+-byte | ong doubl e .
24 Sig. bits 53 sig. hits 64+ sig. bits
7-bit exponent 11-bit exponent 15+-bit exponent

Over 95% of the hardware on desktops support all three asrecommended by IEEE 754, though the
10+-byte format may be storedin 10, 12 or 16 bytesin memory to avert word-alignment penalties.

Java, like Microsoft, forbidsthe majority of usthat have the 10+-byte format from using it.
We paid for it but we can’t benefit from it.

Some computers have set aside room in their instruction-sets for currently unimplemented 16-byte Quadr upl e
Pr eci si on floating-point. Too slow to use much now, it will run practically asfast as f| oat and doubl e
some day when it isimplemented on-chip like them. It will invade alot of chip area, so we are trying to postpone
itsarrival by devising adequately fast and accurate numerical algorithmsthat usetricksinstead of Quadr upl e. Its
day will come anyway. And then programsthat usethe 10+-byte | ong doubl e format properly will, after
recompilation to use Quadr upl e instead, continue to work at least aswell asthey ever did. Meanwhile, afew
compilers support slow software-simulated Quadr upl e; and afew support a variety of not-so-slow 16-byte
Doubled-doubl e formatsthat are rounded in waystoo perverseto qualify as |EEE 754 Double-Extended formats.

Linguistic support for three floating-point types, the third somewhat variable, instead of just two will

impose a substantial burden upon compiler writers. Do any applications benefit enough from extra
precision to pay for it? Yes, elastic deformations of thin sheets. Here is an oversmplified example.
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Cantilever Calculation

A uniform steel spar is clamped horizontal at one end and loaded with a mass at the other. How far
does the spar bend under |oad?

T
Thecalculationis discretized: For someinteger N large enough ( typically inthethousands) we compute
approximate deflections { Xg=0, Xy, X, X3, ..., XNy XN = deflection at tip}  at uniformly spaced
stations along the spar. Discretization errors, the differences between these approximations and true

deflections, tendto O like /N2 . These X;j 's are the components of a column vector x that satisfiesa

system A-x=Db of linear equationsin which column vector b representstheload (the massat the end
plus the spar’s own weight ) and the matrix A lookslikethisfor N =10:

_9—4100

O 00 0O
46 41 o0 o0 O0O00O0
146 -41 00000
o1-46-41 0000

A=|001-46-41000
O 001-46-410o00
o oo0o01-46-41o0o0
O 0o0o0o0o01-46-41
O 00 0O0OO0O1-45=2
O 00 0O OO1-21]

June 18, 1998 5:32 am Work in Progress — Subject to Supersession Page 67



How Java’s Floating-Point Hurts Everyone Everywhere

The loss of accuracy to roundoff during Gaussian elimination ( triangular factorization ) poses a
Dilemma:

Discretization error —> 0 like 1/N?, sofor redlistic resultswewant N big.
Roundoff is amplified by O(N%), so for accurate resultswewant N small.

Accuracy losesvery roughly 41og,N sig. bitsto roundoff. For realistic problems ( crash-testing car

bodies, aircraft wings, ...), typically N >10000. With doubl e arithmetic carrying theusua 53
sig. bits (about 16 sig. dec.) we must expect to lose aimost all accuracy to roundoff occasionally.

|ter ative Refinement mollifies the dilemma:

Computethe residual r :=A-x—b for x.
Thisresidual tells how much the alleged solution dissatisfies the equation we wish to solve.

Solve A-Ax =r for a correction AXx.
By reusing the same triangular factors aswere used to “solve” A-x =b for
asolution x contaminated by roundoff, we compute Ax very quickly.

Update x to x —Ax inthe hope of reducing its error x—A"1b, oritsresidua r, or both.
When N isbig, the error can be enormous even though the residual 1ooks negligible.

Repeat as often as necessary.
How often? That’s a good question.

For detailssee “ Roundoff Degrades an |dealized Cantilever” by W. Kahan and Melody Y. Ivory,
http://http. cs. berkel ey. edu/ ~wkahan/ Canti | ever. ps , from which the following results are extracted.
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The following results were obtained from two iterative refinement programsfor MATLAB v. 4.2 to
run on several brands of computers. The computers group naturally into two families, namely
1: HPPA-RISC, IBM RS6000, (=Apple Power-Mac, Sun SPARC, SGI MIPS, DEC Alpha)
2. Intel-based PCs and clones, 680x0-based Apple Macs, (= 68020-based Sun l11).

Both programs run on both families of machines though each program was designed for optimal
results on its respective family:
1: Refine Residual program repeats iterative refinement until the residual r becomes negligible,
and then uses r to estimate an upper bound for the error in x .
2: Refine Error program repeats iterative refinement until the decrement Ax stops diminishing,
and then uses Ax to estimate an upper bound for the error in x .

Like Java, MATLAB 4.2 was intended to get the same results on all machines except for stepstaken
to multiply matrices as fast as possible on each machine. Ultimately Java too will have to let fast
matrix multiply programs exploit concurrency in pipelines, register files and cacheslest performance
be degraded by factorsworsethan 3. Therefore different machines will deliver different results.

From which family of computers would you expect to get the more accurate results?

Legend:  «eeeeeees No. of correct sig. bitsininitial x delivered by Gaussian Elimination.
— No. of correct sig. bitsinfinal x delivered by lterative Refinement.
No. of sig. bits computed error bound says are correct in final x .
xRk k No. of steps of Iterative Refinement required to get final x .
Numbers are plotted against the dimension N of matrix A .
The graphs look better printed by a Laser-Printer than displayed by Adobe Acrobat Reader.
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Although iterative refinement on RISC-based workstations soon renders the residual negligible, the error
isn’t improved much (it may be worsened ), and the error-bound is about 1000 times too pessimistic.
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On RISC-based workstations, iterative refinement designed to attenuate the error usually doesn’t do much
good and, aswith residual refinement, the estimated error-bound isroughly 1000 timestoo pessimistic.
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Whenever iterative refinement on PCs and old Macs refines the residual it reduces the error too but the
user can’t know since the error-bound doesn’t change (it becomes about a million times too pessimistic ).
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Refine Error REAL*10 Residual 68040-Mac & '86/Pentium PC
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On PCs and old Macs, iterative refinement designed to attenuate the error succeeds spectacularly, and the
estimated error-bound reveal s this improvement to the user who can now rely upon it.

June 18, 1998 5:32 am Work in Progress — Subject to Supersession Page 73



How Java’s Floating-Point Hurts Everyone Everywhere

The cheaper (\and more popular ) machines delivered results more accurate by far. They can do the
same for eigensystems iteratively refined from occasionally (and inevitably ) inaccurate results of
MATLAB's “eig” function, thereby enhancing the designs of optimized control systems.

How do the cheaper ( and more popular ) machines get the more accurate results? They accumulate
matrix productsin extra-preciseregisters ( 11 extrasig. bits) at full speed, though MATLAB 4.2 affordsusersno
accessto | ong doubl e variables. http://http. cs. berkel ey. edu/ ~wkahan/ i eee754st at us/ bal ef ul . ps
presents more details. On 680x0-based Macs the current version 5.2 of MATLAB still worksthat way, but ...
MATLAB 5.2 on MSWindows no longer accumulates extra-precisely. Why not?

Microsoft’s current compilers seem to have turned off the 11 extrabits of precisionin Intel-based
PC's registers. You paid for it, but Microsoft deniesyou its benefits.

Why? Intel’s8087 floating-point coprocessor wasimminent in 1980 when Bill Gates predicted the sockets built
into the IBM PC for it would almost all stay empty. Actually 8087s and later 80287s and 387s filled millions of
these sockets — so many that several '87 clone makers entered that market. Cyrix started that way. Meanwhile
Gates prophecy shaped Microsoft’'s policy and practice; its Basic, Fortran and C compilerswere optimized for
software-simulated floating-point without the '87s | ong doubl e format. Itssupport by Borland’'s C forced
Microsoft’'s C grudgingly to support it too for awhile but it was dropped later when Borland was deemed no
longer athreat and Microsoft had begun the development of Windows NT onthe DEC Alpha chip, which lacks
the | ong doubl e format. Gates business decisionstook no account of the format’s value to you.

And now Java forbids you to mention or use extra-precise | ong doubl e arithmetic, though
|EEE Standard 754 recommendsits use and over 95% of computers on desktops have it built into
their hardware. You paid for it, but Java deniesyou its benefits.
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Does this denial make more sense than if Microsoft or Java similarly forbade you to use your ...
XGA or SVGA video display, projector or printer, with higher resolution or more colors?
Sound-Board with higher-fidelity audio or four-way stereo?

Higher resolution pointing device? 3-D surface sensing or holographic display?
Microphone? Camera? Radio? TV? Fax board? Scanner?

Faster modem or Ethernet for faster reaction to competitive situations?

Faster CPU capable of supporting higher-resolution Virtual Reality?

Bigger memory, and bigger and faster disks?
L ?

Of course Java does not forbid you to use these extraordinary hardware capabilitiesif you have
them. Quitethe contrary; it continually accretes APlIs and revisionstoits AWT to cope with them.
Why should you be denied the same access to better floating-point hardware if you have it?

Was somebody at JavaSoft burnt by Sun’s numerically benighted compilerson theold Sunllis?
Their Motorola 68020+68881/2 chips superb floating-point was crippled by anomalies caused by their compiler’s
denial, to programmersfor their own declared variables, of the | ong doubl e register-format in which the
compiler evaluated all floating-point expressions. To make matters worse, the compiler rounded registers down to
doubl e when their contents spilled from the register file. Consequently programmer’s could neither predict nor
control arithmetic precision. Will Jim Godling’s “ Loose Numerics’ unleash similar anomalies again?

“Compatibility” isoften intoned to excuse doing nothing to fix floating-point. But Java has aready

inflicted incompatibilitiesupon JVM implementorsin the course of passing fromversion 1.0 to 1.2
to add features some programmers find useful. Why should floating-point be denied similar relief?
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How to support extra-precise arithmetic

Upward compatibility from the Java language, and minimal changestothe JVM, haveled Borneo
to follow adifferent approach than has been put before ANSI X3J11 inthe C9X proposal. A crucial
requirement for both proposalsis Control. Exact reproducibility hasto be available to a programmer
who needs it and who exercises the modest self-discipline required to achieveit. At the sametime, a
programmer who aims for the widest possible market has to be able to specify what he wishes not to
control, and in thiscase his program must able to discover what the compiler has chosen to do. And
all thisisto be accomplished as parsimoniously as possible without obscurantism or excessive length.
To keep this document’s length down, some simplifications and omissions have been perpetrated
with aview to persuading the reader that extra-precise arithmetic can be insinuated into Java without
destroying its spirit or advantages. For more details see the Borneo specification.

Names for primitive floating-point types or for Borneo floating-point cl asses:

fl oat 4-byte |EEE 754 Single with 24 sig. bits, usually hardware supported.
doubl e 8-byte |EEE 754 Double with 53 sig. bits, usually hardware supported.
| ong doubl e = 10+-byte IEEE 754 Double Extended with at least 64 sig. bits etc.

{ longdouble(k) k-byte IEEE 754 Double Extended ( for future use only with k >> 10.)

quadruple = long double(16) with 113 sig. bitsrounded as |EEE 754/854 requires.
DoubledDouble = 16-byteswith at least about 106 sig. bits perhaps rounded perversely. }
I ndi genous the widest floating-point format supported in hardware at full speed

| ong doubl e = doubl e ext ended on hardware that doesit
doubl e on computer hardware that does nothing wider.
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The anonynous declaration
Except for the simplest floating-point expressions, temporary values are needed to hold intermediate
results of subexpressions, conversionsfrom i nt eger typesor non-binary formats, and arguments
passed to subprograms. |If the programmer has not declared the types of these anonymous values
explicitly, the language must adopt rules to determine these types. Java's rules are defined by a pass
strictly bottom-up through the expression tree, widening the narrower of two operands to match the
wider before they are combined. K-R C widensto doubl e everything narrower and contemplates
nothing wider. Tofit in with Java's linguistic proclivities, Borneo allows a programmer to declare
aminimum width to which everything narrower is to be widened before Java's rules are invoked:
anonynous f | oat follow Java's rules (Borneo's default; it must match Java's)
anonynous doubl e widen every narrower operand to doubl e asdoes K-RC
anonynous | ong doubl e  widen every narrower operand to | ong doubl e (useonintel)
anonynous i ndi genous widen every narrower operand to | ndi genous.
Of course, Java should be repaired promptly to adopt anonynous doubl e asitsdefault, which
would then become Borneo’'s default too. The scope of an anonynous declaration is a block.

The anonynous declaration is adequate when hardware-supported formats are few. It functions
properly with Java's net hod resolution only if some subprogram’s arguments explicitly cast to a width narrower
than the anonynous width are not widened again. Thisis not what we would have chosen to do had we started
from scratch. To diminish the language’s capture cross-section for error when augmented by Interval Arithmetic
and dynamically variable arbitrarily high precision, we should not widen operands but rather control the accuracy
of generic (inthe Fortran sense) operations and functions. But that is a story for another day.

Godling’s “Loose Numerics’ doesn't offer programmers the control our scheme gives them: they can
choose our anonynous doubl e for reproducibility or anonynous i ndi genous to exploit hardware fully.
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Optimizations by the Compiler

Their purpose is to speed the execution of a program without invalidating its output, not to achieve
high ratings on benchmarks that pay scant attention to much about programs besides their speed. An
optimization that changes a program’s output in away not licensed by the language nor by the programmer in the
text of his program is best deemed a compiler malfunction. Only two such licenses are worth granting for the

“optimization” of floating-point operations. One licenses associativity; the other licensesthe fused multiply-
accumulate on PowerPCs, HP 8000s and MIPS R10000s.

Unlike commutativity (nowadays), associativity can be spoiled by roundoff or over/underflow. For
that reason, compilers must always honor the parentheses ( see the better formulafor A on p. 58) or conventions
that programmers depend upon to control the order of operations. However, matrix multiplication is one of afew
instances in which associativity ( hereof addition) isworth licensing to keep pipelines full and caches hit at the
cost of ausually tolerable change in output; seep. 16.

The fused multiply-accumulate (fused mac) computes expressions of theform xx-y + z with one
final rounding error instead of two. Usually this enhances accuracy dlightly aswell as speed, but it

can cause calamity in afew peculiar situations. For instance, V(b®>—a<c) cansigna Invalid because of a

negative computed value for (b2 —ac) eventhough the predicate (b2 < ac) tests FALSE . For thisreason, and to
match results from computers that lack afused mac, compilers must inhibit its use when a programmer withdraws
animplicit licenseto useit. Java grants no such license now, but refusing to discuss the fused mac merely ensures
that it will be used clandestinely to get higher scores on benchmarks with no provision for aprogrammer to inhibit it
in the few places where it hurts. And programmers who wish to program for only machines that have it need a way
toinsist uponit. In hardware afused mac can accelerate DoubledDouble substantially, and can compute
expressionslike ax —by intheformulason p. 55 to nearly full doubl e accuracy from doubl e operandsin
three operations! Why should Java outlaw special software for special computer configurations?
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Certain optimizations are necessary to prevent old-fashioned K-R C semantics from being blamed
unnecessarily for poor performance. At first sight, afrequently occurring assignment X =Y®©Z involving
floats X,Y,Z injust one algebraic operation @ appearsto requirethat Y and Z be converted to doubl e, and
that YoZ be computed and rounded to doubl e, and then rounded againto f| oat tobestoredin X . The same
result X (and the same exceptionsif any ) are obtained sooner by rounding YoZ to fl oat directly. In other
words, Kernighan-Ritchie C runs here asfast as does Java now, so performance isno excuse not to change.

Certain “optimizations’ that work on integers must not be used on floating-point. These prohibited
optimizations fall into two categories. mistaken use of identities, and invalid statement reordering.

Theidentitiesto avoid are the onesthat areinvalidated by the existence of signed zeros, infinitiesand
NaN. Forinstance, don'ttryto “ simplify ” 0xx, x£0, x—x, x==x, x!=x, 0x, ox, 0/x,
x/0, x/x, cof/x or x/oo. Practicaly the only identitiesleft are x:y =y-x, X+y = y+x, X-y = -y+X
but not (y—x), and 1-x = x which issafe only because Javaand Borneo disallow signaling NaNs.

Reordering floating-point assignments is dangerous in the presence of floating-point traps, flagsand
modes. That iswhy the flags and modes discussed in this document should be made part of the
language and thus recognized as floating-point assignments of a sort: the flags are like global
variables alterable as side-effects of exceptional operations, the modes are like global variables that
influence floating-point operations. Between references ( they should berare) to flags and modes,
and within basic blocks, non-speculative floating-point code rescheduling is permissible except
perhaps if floating-point traps are enabled. Perhaps floating-point exceptions are best handled
without traps, but that is atopic for another day.

June 18, 1998 5:32 am Work in Progress — Subject to Supersession Page 79



How Java’s Floating-Point Hurts Everyone Everywhere
Conclusions

We think we' ve made our case. Java's floating-point hurts everyone everywhere. It didn’'t have to.

Java's floating-point suffers from serious oversights. The same could be said of several other
programming languages, some of them venerable, but Java lackstheir historical excuses.

Java's oversights undermineits mission, whichisto liberate the world or alarge part of it from
Microsoft’'s hegemony. This missionislike the conduct of awar on many fronts. It isadifficult war
to win but easy to lose to adefeat on any front. One of these is the floating-point front.

Towin, Java hasto surpass Microsoft’'s J++ in attractiveness to software developers. This means
better design better thought through, less proneto error, easier to debug, ... and many other things.

Java's floating-point is not an example of better design etc., but it can berepaired. We think we have
shown how and, more important, why. We think our repairs preserve what isvaluablein Java at
least aswell as JavaSoft hasin the course of its updates— nobody who wishes to avoid our flags,

i ndi genous, anonynous, and directed roundings has to use them. But the repairs must be effected
soon or it will be too late. I1n the computing world the costs to everyone everywhere of correcting
mistakes grow horribly with the passage of time unless the mistakes are part of something that
doesn’'t matter.

(C) 1998 W. Kahan and J. Darcy
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