
Contents

1 Introduction 1

2 Floating Point Arithmetic 4

2.1 Bit Vectors . 4
2.2 Floating Point Representations . 9
2.3 Rounding . 11

3 Multiplication 16

3.1 The Program FPU-MUL . 16
3.2 Basic Results . 19
3.3 The Operations OP-MUL, OP-DIV, and OP-SQRT 22
3.4 The Operation OP-LAST . 29
3.5 The Operation OP-BACK . 30

4 Division and Square Root 33

4.1 The Program FPU-DIV-SQRT . 33
4.2 Initial Approximation . 36
4.3 The Operation OP-DIV . 40
4.4 The Operation OP-SQRT . 44
4.5 Final Rounding . 49

i

A Mechanically Checked Proof of IEEE Compliance

of the Floating Point Multiplication, Division, and

Square Root Algorithms of the AMD-K7TM Processor

David M. Russino�

January 28, 1998

Abstract

We describe a mechanically veri�ed proof of correctness of the oating point

multiplication, division, and square root instructions of The AMD-K7 micropro-

cessor. The instructions are implemented in hardware and represented here by

register-transfer level speci�cations, the primitives of which are logical operations

on bit vectors. On the other hand, the statements of correctness, derived from IEEE

Standard 754, are arithmetic in nature and considerable more abstract. Therefore,

we begin by developing a theory of bit vectors and their role in oating point repre-

sentations and rounding. We then present the hardware model and a rigorous proof

of its correctness. All of our de�nitions, lemmas, and theorems have been formally

encoded in the ACL2 logic, and every step in the proof has been mechanically

checked with the ACL2 prover.

1 Introduction

One of the challenges of formal hardware veri�cation is the \semantic gap" between
abstract behavioral speci�cations and concrete hardware models. Dealing e�ectively
with this problem requires a formalism that is exible enough to represent concepts at
di�erent levels of abstraction. In particular, speci�cations of oating point operations
are most naturally expressed in numerical terms, while their hardware implementations
are commonly modeled at the level of registers and bit vectors.

Conventional mathematical analysis may be usefully applied to numerical algorithms,
but generally fails to provide any assurance regarding the correctness of hardware imple-
mentations. On the other hand, automatic �nite-state techniques, which have been used
to verify low-level speci�cations of arithmetic circuits [3, 4], lack the expressive power
to represent high-level mathematical properties. General-purpose theorem provers o�er
an important alternative to �nite-state tools, as they provide a framework for formal
numerical analysis as well as mechanical support for checking properties of detailed
low-level models.

In our previous work [8] and that of Moore et al. [6] on the AMD-K5 oating point
unit, the ACL2 theorem prover [2] was used to support the veri�cation of the IEEE
compliance [5] of the AMD-K5 oating point division and square root operations. The
implementation of these instructions was based on microcode that accessed existing
hardware for addition, subtraction, multiplication, and rounding. It was appropriate,

1

therefore, to model the instructions in a language in which the primitive operations
included the computation of rounded products and sums, which were assumed to be im-
plemented correctly. Consequently, the analysis was conveniently limited to the familiar
realm of oating point numbers and rational arithmetic.

In contrast, the division and square root instructions of the AMD-K7 microprocessor,
which were recently designed at AMD by Stuart Oberman [7], are implemented directly
in hardware. In order to gain con�dence in their correctness, it is desirable to model
these instructions at the register-transfer level, where the basic operations are logical
functions of bit vectors. Veri�cation then requires bridging the gap between these low-
level data and operations and the abstract mathematical objects and functions that they
represent.

The subject of this paper is a mechanically veri�ed proof of correctness of the AMD-
K7 oating point multiplication, division, and square root instructions. The proof is
based on a formal description of the hardware, derived from an executable model that
was written in C and used for preliminary testing. The instructions are de�ned in terms
of bitwise logical operations and integer addition and multiplication, which are treated
as primitives.

The statements of correctness are based on IEEE standard 754 [5], which stipulates
that each operation

... shall be performed as if it �rst produced an intermediate result correct to
in�nite precision and with unbounded range, and then rounded that result
according to one of the [supported] modes

Thus, if rnd(x; rc; pc) denotes the result of rounding a number x according to a speci�ed
rounding mode rc and degree of precision pc, and u is the value computed for the product
of oating point numbers a and b in the context of rc and pc, then

u = rnd(a � b; rc; pc): (1)

Similarly, if v and w are the values computed for the quotient of a and b, and the square
root of b, respectively, then

v = rnd(a=b; rc; pc) (2)

and

w = rnd(
p
b; rc; pc): (3)

The decision to use ACL2, however, has inuenced our formulation of this last speci-
�cation. As a subset of Common Lisp [9], ACL2 includes the rational numbers as a data
type but not the reals. Consequently, we are somewhat limited in our formalization.
The reader will notice that many of our lemmas are truths about real numbers but are
presented here as propositions of rational arithmetic. More critically, since the square
root itself is not a rational function, we are unable to formalize Equation (3) directly.
Instead, we prove the following rational version: For any nonnegative rational numbers
` and h, if `2 � P � h2, then

rnd(`; rc; pc) � w � rnd(h; rc; pc): (4)

As shown in [8], the equivalence of (3) and (4) is a simple consequence of (a) the mono-
tonicity of rounding, and (b) the observation that for �xed rc and pc, the function rnd
is constant in some neighborhood of any given irrational number.

2

Applied to the design of a device as complex as a oating point divider, mathematical
proof provides a level of con�dence that cannot be achieved through testing alone. In the
present case, initial proof attempts revealed two design aws that had survived some 80
million test vectors. Furthermore, we were able to prove that the multiplier, which was
designed to allow e�cient implementation of division and square root, could e�ectively
be reduced in width from 76 to 75 bits. In our formalization of the model, this width is
represented as a parameter M , the minimum value of which was to be determined. As
revealed by our analysis, correctness requires only that M � 75.

The value of mechanical veri�cation in this context is clear: comprehensive analysis
of a commercial oating point design is di�cult if not impossible without computer
assistance; in any case, the level of investment in its correctness requires a more e�cient
means of assurance than the conventional social process by which mathematical results
are usually con�rmed. This is not an argument, however, for circumventing the normal
review process. The obligation to support a scienti�c claim cannot be satis�ed simply
by announcing that its correctness has been a�rmed by an arcane automated proof
system, the soundness of which itself is open to question. Moreover, the advantages of a
coherent, surveyable proof extend beyond the issue of reliability: it is the only means by
which a theory or result may be fully understood, applied, generalized, and assimilated
into the mathematical domain. Traditional mathematical notation is clearly a better
choice of medium for such an exposition than any formal language.

Since machine-assisted proofs have inherent advantages as well as disadvantages with
respect to more traditional methods, we endeavor to combine the bene�ts of both ap-
proaches. In the following sections, we present a detailed proof of correctness, based
on elementary mathematics and using only standard terminology and notation. In Sec-
tion 2, we establish a general theory of oating point numbers, which should be reusable
in a wide variety of applications. This is an extension of the theory presented in [8],
including some additional properties of the rounding functions, but more signi�cantly,
a comprehensive treatment of bit vectors and their role in oating point representa-
tion. The speci�c hardware model is presented in Sections 3 and 4, along with precise
formulations and detailed proofs of the above Equations (1), (2), and (4).

For the most part, each step in the proof may be readily checked by hand, requiring
no special background in either mathematics or computer hardware. The only excep-
tion occurs in Section 4.2, where the accuracy of an approximation derived from a set
of tables depends on properties of the tables that can only be veri�ed by extensive (al-
though straightforward) computation, involving approximately 105 table accesses and
106 arithmetic operations. The results of these calculations are stated without proof in
Lemmas 4.1, 4.2, and 4.3.

On the other hand, along with the table calculations, every step in the proof, includ-
ing every theorem and lemma presented below, has been formally encoded in the ACL2
logic and mechanically checked with the ACL2 prover, in the interest of eliminating the
possibility of human error. The input to the prover, culminating in formal versions of
our three main theorems, consisted of some 250 de�nitions and 3000 lemmas, in addition
to the relevant de�nitions and lemmas of the previously developed general theory [8].
For the interested reader, the �les containing this input is available by ftp [not yet].

3

2 Floating Point Arithmetic

This section is a formalization of the oating point representation of rational numbers
and rounding. The sets of rational numbers, positive rationals, integers, positive integers,
and natural numbers (nonnegative integers) will be denoted by the symbols Q;Q+ ;Z;Z+,
and N, respectively. If m 2 Z, n 2 Z+, and m = nq+ r, where q 2 Z, r 2 N, and r < n,
then we shall write rem(m;n) = r.

For x 2 Q, bxc and dxe denote the oor and ceiling of x, respectively, de�ned to be
the unique integers satisfying bxc � x < bxc+1 and dxe � x > dxe�1: We shall assume
familiarity with the basic properties of these functions, including the following:

(1) If n 2 Z, then bx+ nc = bxc+ n.

(2) If n 2 Z+, then bbxc=nc = bx=nc.
(3) If m 2 Z and n 2 Z+, then b�(m+ 1)=nc = �bm=nc � 1.

2.1 Bit Vectors

We shall exploit the natural correspondence between the bit vectors of length n and
the natural numbers in the range 0 � x < 2n, under which the vector bn�1bn�2 � � � b1b0,
where each bk 2 f0; 1g, corresponds to x =

Pn�1
k=0 2

kbk. The kth bit of x, x[k] = bk, is
formally de�ned as follows:

De�nition 2.1 For all x; k 2 N, x[k] = rem(bx=2kc; 2).

We have the following alternate characterization of x[k]:

Lemma 2.1 For all x; k 2 N, x[k] =
�

rem(x; 2) if k = 0
bx=2c[k � 1] if k > 0:

Proof: For k > 0, x[k] = rem(bx=2kc; 2) = rem(bbx=2c=2k�1c; 2) = bx=2c[k � 1]:2

Lemma 2.2 For all x; n; k 2 N,
(a) if x < 2n, then x[n] = 0;
(b) if k < n and 2n � 2k � x < 2n, then x[k] = 1.

Proof: (a) x[n] = rem(bx=2nc; 2) = rem(0; 2) = 0.
(b) Since 2n�k � 1 � x=2k < 2n�k, rem(bx=2kc; 2) = rem(2n�k � 1; 2) = 1. 2

Lemma 2.3 For all x;m; n 2 N,
(a) (x+ 2n)[n] 6= x[n]; (b) if m > n, then rem(x; 2m)[n] = x[n].

Proof: For any m � n and q 2 N,

(x+ 2mq)[n] = rem(b(x + 2mq)=2nc; 2) = rem(bx=2nc+ 2m�nq; 2):

If m = n, then rem(bx=2nc+ 2m�n; 2) = rem(bx=2nc+ 1; 2) 6= rem(bx=2nc; 2) = x[n];
if m > n, then 2m�nq is even and rem(bx=2nc+ 2m�nq; 2) = rem(bx=2nc; 2) = x[n]: 2

The left and right shift functions take three arguments: a bit vector x, its length n,
and a value s 2 f0; 1g to be shifted in:

4

De�nition 2.2 Let x; n; s 2 N with x < 2n and s < 2.
(a) shl(x; s; n) = rem(2x+ s; 2n); (b) shr(x; s; n) = bx=2c+ 2n�1s.

Concatenation is also a function of three arguments: two bit vectors, x and y, and
the length n of y:

De�nition 2.3 For all x; y; n 2 N, cat(x; y; n) = 2nx+ y.

The following function extracts a �eld of bits:

De�nition 2.4 For all x; i; j 2 N, x[i : j] = brem(x; 2i+1)=2jc.

Lemma 2.4 For all x; y; i; j 2 N, if rem(x; 2i+1) = rem(y; 2i+1), then x[i : j] = y[i : j]:

Proof: x[i : j] = brem(x; 2i+1)=2jc = brem(y; 2i+1)=2jc = y[i : j]. 2

Lemma 2.5 For all x; i; j; k; ` 2 N,
(a) if i � k and j � k, then x[i : j] = bx=2kc[i� k : j � k];
(b) if i � j + k, then x[i : j][k] = x[k + j];
(c) if i � j + k, then x[i : j][k : `] = x[k + j : `+ j].

Proof: (a) Let x = 2i+1q + r, where 0 � r < 2i+1. Then

bx=2kc = b2i�k+1q + r=2kc = 2i�k+1q + br=2kc;

hence

rem(bx=2kc; 2i�k+1) = br=2kc

and

bx=2kc[i� k : j � k] = bbr=2kc=2j�kc = br=2jc = brem(x; 2i+1)=2jc = x[i : j]:

(b) Using Lemma 2.3,

x[i : j][k] = rem(bbrem(x; 2i+1)=2jc=2kc; 2) = rem(brem(x; 2i+1)=2k+jc; 2)
= rem(x; 2i+1)[k + j] = x[k + j]:

(c) Using (a),

x[i : j][k : `] = bx=2jc[i� j : 0][k : `] = rem(bx=2jc; 2i�j+1)[k : `]

= brem(rem(bx=2jc; 2i�j+1); 2k+1)=2`c = brem(bx=2jc; 2k+1)=2`c
= bx=2jc[k : `] = x[k + j : `+ j]:2

We have two unary operations on bit vectors, complement and decrement:

De�nition 2.5 For all x; n 2 N, if x < 2n, then
(a) comp1(x; n) = 2n � x� 1; (b) dec1(x; n) = rem(2n + x� 1; 2n).

We have three binary logical operations, and, or, and exclusive or:

5

De�nition 2.6 For all x; y 2 N,

(a) x & y =

8<
:

0 if x = 0
2(bx=2c & by=2c) + 1 if x and y are both odd
2(bx=2c & by=2c) otherwise:

(b) x | y =

8<
:

y if x = 0
2(bx=2c | by=2c) if x and y are both even
2(bx=2c | by=2c) + 1 otherwise:

(c) x ^ y =

8<
:

y if x = 0
2(bx=2c ^ by=2c) if rem(x; 2) = rem(y; 2)
2(bx=2c ^ by=2c) + 1 otherwise:

The remainder of this subsection is a collection of properties of the binary logical
operations.

Lemma 2.6 For all x; y 2 N,
(a) x & y = 2(bx=2c & by=2c) + (rem(x; 2) & rem(y; 2));
(b) x | y = 2(bx=2c | by=2c) + (rem(x; 2) | rem(y; 2)).

Proof: The equivalences are easily checked for all possible values of rem(x; 2) and
rem(y; 2). 2

Lemma 2.7 For all x; y; z 2 N,
(a) x & 0 = 0; (e) (x & y) & z = x & (y & z);
(b) x | 0 = x; (f) (x | y) | z = x | (y | z);
(c) x & y = y & x; (g) x | (y & z) = (x | y) & (x | z);
(d) x | y = y | x; (h) x & (y | z) = (x & y) | (x & z).

Proof: First note that Lemma 2.6 implies

b(x & y)=2c = bx=2c & by=2c and rem(x & y; 2) = rem(x; 2) & rem(y; 2)

and

b(x | y)=2c = bx=2c | by=2c and rem(x | y; 2) = rem(x; 2) | rem(y; 2):

We shall prove (h); the other proofs are similar:
It is easily veri�ed that the statement holds for arguments in f0; 1g. Thus,

rem(x & (y | z); 2) = rem(x; 2) & rem(y | z; 2)

= rem(x; 2) & (rem(y; 2) | rem(z; 2))

= (rem(x; 2) & rem(y; 2)) | (rem(x; 2) & rem(z; 2))

= rem(x & y; 2)) | (rem(x & z; 2)

= rem((x & y) | (x & z); 2):

6

Now, by inductive hypothesis,

b(x & (y | z))=2c = bx=2c & b(y | z)=2c
= bx=2c & (by=2c | bz=2c)
= (b(x & y)=2c) | (b(x & z)=2c)
= (bx=2c & by=2c) | (bx=2c & bz=2c)
= b((x & y) | (x & z))=2c:

Therefore,

x & (y | z) = b(x & (y | z))=2c+ rem(x & (y | z); 2)

= b((x & y) | (x & z))=2c+ rem((x & y) | (x & z); 2)

= (x & y) | (x & z):2

Lemma 2.8 Let x; y; n 2 N.
(a) if x < 2n and y < 2n, then x | y < 2n;
(b) if y < 2n, then (2nx) | y = 2nx+ y;
(c) (2nx) | (2ny) = 2n(x | y);
(d) rem(x | y; 2n) = rem(x; 2n) | rem(y; 2n).

Proof: (a) For n > 0, bx=2c < 2n�1 and by=2c < 2n�1, which implies bx=2c | by=2c <
2n�1, hence

x | y � 2(bx=2c | by=2c) + 1 � 2(2n�1 � 1) + 1 < 2n:

(b) For n > 0, since by=2c < 2n�1,

(2nx) | y = 2(b2nx=2c | by=2c) + rem(2nx; 2) | rem(y; 2)

= 2(2n�1x | by=2c) + 0 | rem(y; 2)

= 2(2n�1x+ by=2c) + rem(y; 2)

= 2nx+ 2by=2c+ rem(y; 2)

= 2nx+ y:

(c) For n > 0,

(2nx) | (2ny) = 2(b2nx=2c | b2nx=2c) + rem(2nx; 2) | rem(2ny; 2)

= 2(2n�1x | 2n�1y) + 0 | 0 = 2(2n�1(x | y)) + 0

= 2n(x | y):

(d) Let x = 2nq1 + r1 and y = 2nq2 + r2, where 0 � r1 < 2n and 0 � r2 < 2n. Then

x | y = (2nq1 + r1) | (2
nq2 + r2) = (2nq1 | r1) | (2

nq2 | r2)

= (2nq1 | 2
nq2) | (r1 | r2) = (2n(q1 | q2)) | (r1 | r2)

= 2n(q1 | q2) + (r1 | r2):

But r1 | r2 < 2n, hence rem(x | y; 2n) = r1 | r2 = rem(x; 2n) | rem(y; 2n). 2

Lemma 2.9 Let x; y; n 2 N.
(a) x & y � x; (c) rem(x & y; 2n) = rem(x; 2n) & y;
(b) 2nx & y = 2n(x & by=2nc); (d) if x < 2n, then x & y = x & rem(y; 2n).

7

Proof: (a) If x = 0, then x & y = 0 � x, and for x > 0,

x & y = 2(bx=2c & by=2c) + (rem(x; 2) & rem(y; 2)) � 2bx=2c+ rem(x; 2)

= x:

(b) For n > 0,

2nx & y = 2(b2nx=2c & by=2c) + rem(2nx; 2) & rem(y; 2)

= 2(2n�1x & by=2c) + 0 & rem(y; 2)

= 2(2n�1(x & bby=2c=2n�1c)) + 0

= 2n(x & by=2nc):

(c) Let x = 2nq + r, 0 � r < 2n. Then 0 � r & y � r < 2n and

x & y = (2nq + r) & y = (2nq | r) & y

= (2nq & y) | (r & y) = (2n(q & by=2nc) | (r & y)
= (2n(q & by=2nc) + (r & y):

Therefore, rem(x & y; 2n) = r & y = rem(x; 2n) & y.
(d) Since x & y � x < 2n, x & y = rem(x & y; 2n) = x & rem(y; 2n): 2

Lemma 2.10 Let x; y; n 2 N.
(a) (x & y)[n] = x[n] & y[n]; (b) (x | y)[n] = x[n] | y[n].

Proof: The proofs are similar; we present the proof of (a), which proceeds by induc-
tion: For n = 0,

(x & y)[0] = rem(x & y; 2) = rem(x; 2) & rem(y; 2) = x[0] & y[0];

for n > 0,

(x & y)[n] = b(x & y)=2c[n� 1] = (bx=2c & by=2c)[n� 1]

= bx=2c[n� 1] & by=2c[n� 1] = x[n] & y[n]:2

Lemma 2.11 Let x; n; k 2 N, k < n.
(a) x & 2k = 2kx[k]; (c) x & (2n � 2k) = 2k(x[n� 1 : k]);
(b) x | 2k = x+ 2k(1� x[k]);

Proof: (a) In the case k = 0, we have

x & 1 = 2(bx=2c & 0) + rem(x; 2) = rem(x; 2) = x[0];

and for k > 0, by Lemma 2.1,

x & 2k = 2(bx=2c & 2k�1) = 2(2k�1bx=2c[k � 1]) = 2kx[k]:

(b) For k = 0, we have

x | 1 = 2(bx=2c | 0) + 1 = 2bx=2c+ 1 = x+ 1� rem(x; 2) = x+ 1� x[0];

8

and for k > 0,

x | 2k = 2fbx=2c | 2k�1g+ rem(x; 2)

= 2
�bx=2c+ 2k�1(1� bx=2c[k � 1])

	
+ rem(x; 2)

= 2bx=2c+ rem(x; 2) + 2k(1� bx=2c[k � 1])

= x+ 2k(1� x[k]):

(c) It su�ces to prove the identity under the assumption x < 2n, because then, by
Lemmas 2.9 and 2.4, we have for arbitrary x:

x & (2n � 2k) = rem(x; 2n) & (2n � 2k) = rem(x; 2n)[n : k] = x[n : k]:

For k = 0, we show by induction that x & (2n � 1) = x. The case n = 0 is trivial,
and for n > 0, since b(2n � 1)=2c = 2n�1 � 1; we have

x & (2n � 1) = 2(bx=2c & (2n�1 � 1)) + rem(x; 2)

= 2bx=2c+ rem(x; 2) = x:

Now, for k > 0,

x & (2n � 2k) = 2(bx=2c & (2n�1 � 2k�1)) = 2 � 2k�1bx=2c[n� 2 : k � 1]

= 2kbrem(bx=2c; 2n�1)=2k�1c = 2kbbx=2c=2k�1c
= 2kbx=2kc = 2k(x[n� 1 : k]):2

Lemma 2.12 Let n; k; ` 2 N, ` � k < n. Then

(2n � 2` � 1) & (2n � 2k) =

�
2n � 2k+1 if ` = k
2n � 2k if ` < k:

Proof: Applying Lemma 2.11 (c), we have

(2n � 2` � 1) & (2n � 2k) = 2k(2n � 2` � 1)[n� 1 : k] = 2kb(2n � 2` � 1)=2kc
= 2k(2n�k + b�(2` + 1)=2kc
= 2n � 2k(b2`�kc+ 1):2

2.2 Floating Point Representations

Floating point representation is based on the observation that every nonzero rational
number x admits a unique factorization,

x = sgn(x)sig(x)2expo(x);

where sgn(x) 2 f1;�1g (the sign of x), 1 � sig(x) < 2 (the signi�cand of x), and
expo(x) 2 Z (the exponent of x).

De�nition 2.7 Let x 2 Q. If x 6= 0, then

(a) sgn(x) = x=jxj;
(b) expo(x) is the unique integer that satis�es 2expo(x) � jxj < 2expo(x)+1;
(c) sig(x) = jxj2�expo(x).

9

A oating point representation of x consists of three bit vectors, corresponding to
sgn(x), sig(x), and expo(x). A format is de�ned by the number of bits allocated to
sig(x) and expo(x):

De�nition 2.8 Let � = (�; �) 2 Z+ � Z+. Then � is a oating point format. A �-
encoding is a triple (s;m; e) 2 N � N � N such that s < 2, m < 2�, and e < 2�.
If z = (s;m; e), then s = get-sign(z), m = get-man(z), and e = get-expo(z). If
m � 2��1, then z is a normal �-encoding.

The formats that are supported by the AMD-K7 oating point operations include
(24; 7), (53; 10), and (64; 15), which correspond to single, double, and extended precision
as speci�ed by IEEE, as well as a larger format, (68; 18). In addition, in order to allow for
the rounding error incurred by our iterative division and square root algorithms, which
are required to produce results that are correctly rounded to 68 bits, the multiplier must
support a somewhat more precise internal format. One of the objectives of our analysis is
to determine the minimum required size of this format, and hence the minimum width
of the multiplier. Thus, we introduce an integer parameter M , which represents the
multiplier width and determines the internal format (M; 18). We assume that M � 75,
for as we shall see in Section 4, our proofs of correctness for division and square root
will depend on this constraint.

In our formulation of the algorithms, the oating point formats are encoded as sym-
bols:

De�nition 2.9 A precision control speci�er is any of the symbols

PC-32, PC-64, PC-80, PC-87, and PC-*,

which correspond to the oating point formats

(24; 7), (53; 10), (64; 15), (68; 18), and (M; 18),

respectively. The �rst four of these symbols are called external precision control speci-
�ers. If � is any precision control speci�er and � = (�; �) is the corresponding format,
then mbits(�) = �:

The number x represented by a normal (�; �)-encoding (s;m; e) is given by sgn(x) =
(�1)s, sig(x) = 2��1m, and expo(x) = e� (2��1 � 1). Thus, the exponent is biased in
order to provide for an exponent range 1� 2��1 � expo(x) � 2��1:

De�nition 2.10 Let z = (s;m; e) be a �-encoding, where � = (�; �) is a oating point

format. Then decode(z; �) = (�1)s �m � 2e�2��1��+2: In the case � = (M; 18), we shall
designate x simply as an encoding, and decode(x; (M; 18)) will be denoted as x̂.

Our characterization of the rational numbers that are represented by normal encod-
ings is based on the following:

De�nition 2.11 Let x 2 Q and n 2 Z+. Then x is n-exact i� sig(x)2n�1 2 Z.

The following basic property of n-exact numbers is proved in [8]:

Lemma 2.13 If x 2 Q+ , n 2 Z+, and x is n-exact, then the least n-exact number that
is greater than x is x+ 2expo(x)+1�n.

10

We shall also require this trivial characterization of n-exact bit vectors:

Lemma 2.14 Let x; n; k 2 Z+, 2n�1 � x < 2n. and k < n. The following are equiva-
lent:

(a) 2k divides x; (c) x[n� 1 : k] = x=2k;
(b) x is (n� k)-exact; (d) x[k � 1 : 0] = 0.

De�nition 2.12 Let x 2 Q and let � = (�; �) be a oating point format. Then x is
�-representable i� x is �-exact and �2��1+1 � expo(x) � 2��1. If � = (M; 18), then
we shall say that x is representable.

The inverse of decode is given by the following:

De�nition 2.13 Let � = (�; �) be a oating point format and let x be �-representable,
x 6= 0. Then encode(x; �) = (s;m; e); where

(a) if sgn(x) = 1, then s = 0, and if sgn(x) = �1, then s = 1;
(b) m = sig(x)2��1;
(c) e = expo(x) + 2��1 � 1.

Lemma 2.15 Let � = (�; �) be a oating point format, let z = (s;m; e) be a normal
�-encoding, and let x = decode(z; �).

(a) sgn(x) = (�1)s; (d) x is �-representable;
(b) sig(x) = m=2��1; (e) encode(x; �) = z.
(c) expo(x) = e� 2��1 + 1;

Proof: Let � = (�; �). Then

x = (�1)sm2e�(2��1�1)��+1 = (�1)s(m21��)2e�(2��1�1):

But 2��1 � m < 2� yields 1 � m21�� < 2, which implies (a), (b), and (c). Now (d)
follows from the relation 0 � e < 2�, and (e) from De�nition 2.13. 2

2.3 Rounding

A rounding mode is a function M that computes an n-exact number M(x; n) corre-
sponding to an arbitrary rational x and a degree of precision n 2 Z+. We de�ne �ve
rounding modes:

De�nition 2.14 A rounding mode is any of the functions trunc, away, near, inf,
and minf, where, for x 2 Q and n 2 Z+,

(a) trunc(x; n) = sgn(x)b2n�1sig(x)c2expo(x)�n+1;

(b) away(x; n) = sgn(x)d2n�1sig(x)e2expo(x)�n+1;

(c) if z = b2n�1sig(x)c and f = 2n�1sig(x)� z, then

near(x; n) =

8>><
>>:

trunc(x; n) if f < 1=2
away(x; n) if f > 1=2
trunc(x; n) if f = 1=2 and z is even
away(x; n) if f = 1=2 and z is odd;

11

(d) inf(x; n) =

�
away(x; n) if x � 0
trunc(x; n) if x < 0;

(e) minf(x; n) =

�
trunc(x; n) if x � 0
away(x; n) if x < 0:

Only four of these modes are supported by the IEEE standard. In our representation
of the algorithms, they will be encoded as symbols:

De�nition 2.15 A rounding control speci�er is any of the symbols

RC-CHOP, RC-POS, RC-NEG, and RC-NEAR,

which correspond to the rounding modes

trunc, inf, minf, and near,

respectively. Let � be a rounding control speci�er corresponding to the rounding mode
M, let � be a precision control speci�er, and let x 2 Q. Then

rnd(x; �; �) =M(x;mbits(�)):

Some of the basic properties of the rounding modes, which are proved in [8], are
listed in the following eight lemmas:

Lemma 2.16 If x 2 Q, M is a rounding mode, and n 2 Z+, then

(a) sgn(M(x; n)) = sgn(x);
(b) if M2 ftrunc; away; nearg, thenM(�x; n) = �M(x; n).

Lemma 2.17 If x; y 2 Q, x � y,M is a rounding mode, and n 2 Z+, then

M(x; n) �M(y; n):

Lemma 2.18 If x 2 Q, M is a rounding mode, and n 2 Z+, then

(a) M(x; n) is n-exact; (b) if x is n-exact, then x =M(x; n).

Lemma 2.19 If x 2 Q, M is a rounding mode other than near, m;n 2 Z+, and m � n,
then

M(M(x; n);m) =M(x;m):

Lemma 2.20 If x 2 Q and n 2 Z+, then

jxj � 2expo(x)�n+1 < jtrunc(x; n)j � jxj � jaway(x; n)j < jxj+ 2expo(x)�n+1:

Lemma 2.21 If x 2 Q and n 2 Z+, then

(a) expo(trunc(x; n)) = expo(x);
(b) expo(away(x; n)) = expo(x) unless jaway(x; n)j = 2expo(x)+1.

Lemma 2.22 If x; a 2 Q, n 2 Z+, and a is n-exact, then

(a) if a � jxj, then a � jtrunc(x; n)j; (b) if a � jxj, then a � jaway(x; n)j.
Lemma 2.23 Let x; y 2 Q and n 2 Z+. If y is n-exact, then jx� yj � jx� near(x; n)j.

12

We shall require a number of properties in addition to the above. The next lemma
provides an implementation of truncation of bit vectors.

Lemma 2.24 Let x;m; n; k 2 N. If 0 < k < n � m and 2n�1 � x < 2n, then

trunc(x; k) = x & (2m � 2n�k):

Proof: By Lemma 2.11,

trunc(x; k) = b2k�1�expo(x)xc2expo(x)+1�k = bx=2n�kc2n�k

= 2n�k(x[n� 1 : n� k]) = x & (2n � 2n�k):

But by Lemma 2.9,

x & (2m � 2n�k) = x & rem(2m � 2n�k; 2n) = x & (2n � 2n�k):2

Lemma 2.24 is also the basis for our implementations of the other rounding modes,
which therefore must be characterized in terms of truncation:

Lemma 2.25 Let x 2 Q+ , m 2 Z+, and n 2 Z+. If x is m-exact and m � n, then

away(x; n) = trunc(x+ 2expo(x)+1(2�n � 2�m); n):

Proof: Let a = trunc(x+ 2expo(x)+1(2�n � 2�m); n). Since

a < x+ 2expo(x)+1�n � away(x; n) + 2expo(away(x;n))+1�n;

a � away(x; n) by Lemma 2.13.
If x is n-exact, then a � trunc(x; n) = x = away(x; n), and hence a = away(x; n).

Thus, we may assume x is not n-exact. But then since x > trunc(x; n) and x is m-exact,

x � trunc(x; n) + 2expo(x)+1�m

and hence

x+ 2expo(x)+1(2�n � 2�m) � trunc(x; n) + 2expo(x)+1�n = away(x; n);

which implies a � away(x; n). 2

The remainder of this section addresses the properties of near rounding, concluding
with its characterization as a truncated sum.

Lemma 2.26 If x 2 Q and n 2 Z+, then jx� near(x; n)j � 2expo(x)�n.

Proof: By Lemma 2.16, we may assume x > 0. Let a = trunc(x; n) + 2expo(x)+1�n.
By Lemmas 2.18 and 2.23, if the statement fails, then

trunc(x; n) < x� 2expo(x)�n < x+ 2expo(x)�n < away(x; n);

hence a < away(x; n). Then by Lemmas 2.13 and 2.22(a), we have a < x, contradicting
Lemma 2.22(b). 2

Lemma 2.27 Let x 2 Q and n 2 Z+. If x is (n+ 1)-exact but not n-exact, then

(a) trunc(x; n) = x� sgn(x)2expo(x)�n; (b) away(x; n) = x+ sgn(x)2expo(x)�n:

13

Proof Again we may assume x > 0. Let a = x � 2expo(x)�n and b = x + 2expo(x)�n.
Since x > 2expo(x), x � 2expo(x) + 2expo(x)+1�n by Lemma 2.13, hence a � 2expo(x) and
expo(a) = expo(x).

By hypothesis, x2n�expo(x) is odd. Let x2n�expo(x) = 2k + 1. Then

a2n�1�expo(a) = (x� 2expo(x)�n)2n�1�expo(x) = (2k + 1)=2� 1=2 = k 2 Z:
Thus, a is n-exact, and by Lemma 2.13, so is a+2expo(a)+1�n = b. Now by Lemma 2.22,
a � trunc(x; n), but if a < trunc(x; n), then Lemma 2.13 would imply b � trunc(x; n),
contradicting x < b. This establishes (a), and the proof of (b) is similar. 2

Lemma 2.28 Let x; a 2 Q+ , and n 2 Z+. If a is n-exact, then

(a) if x > a+ 2expo(a)�n, then near(x; n) � a+ 2expo(a)+1�n;
(b) if x < a+ 2expo(a)�n, then near(x; n) � a;
(c) if x > a� 2expo(x)�n, then near(x; n) � a.

Proof: (a) Let b = a + 2expo(a)+1�n. If near(x; n) < b, then Lemma 2.13 yields
near(x; n) � a, hence jnear(x; n)� xj > jnear(x; n) � bj; contradicting Lemma 2.23.

(b) If near(x; n) > a, then near(x; n) � b, and a contradiction may be derived as
in (a).

(c) By Lemma 2.17, we may assume x < a. Let c = a�2expo(x)+1�n. Then c < x < a.
Since a > x � 2expo(x), a � 2expo(x) + 2expo(x)+1�n, and hence x > c � 2expo(x), which
implies expo(c) = expo(x). But expo(c) � expo(a) and therefore

c2n�1�expo(c) = a2n�1�expo(c) � 1 2 Z;
i.e., c is n-exact. Now since x > a�2expo(x)�n = c+2expo(c)�n; (a) implies near(x; n) �
c+ 2expo(c)+1�n = a: 2

Lemma 2.29 Let n 2 Z, n > 1, and x 2 Q. If x is (n+ 1)-exact but not n-exact, then
near(x; n) is (n� 1)-exact.

Proof: Again we may assume x > 0. Let z = b2n�1sig(x)c and f = 2n�1sig(x)� z.
Since 2n�1sig(x) =2 Z, 0 < f < 1. But 2nsig(x) = 2z+2f 2 Z, hence 2f 2 Z and f = 1

2 .
If z is even, then

near(x; n) = trunc(x; n) = z2expo(x)+1�n

and by Lemma 2.21,

2n�2�expo(near(x;n))near(x; n) = 2n�2�expo(x)z2expo(x)+1�n = z=2 2 Z:
If z is odd, then

near(x; n) = away(x; n) = (z + 1)2expo(x)+1�n:

We may assume away(x; n) 6= 2expo(x)+1, hence by Lemma 2.21,

2n�2�expo(near(x;n))near(x; n) = 2n�2�expo(x)(z + 1)2expo(x)+1�n = (z + 1)=2 2 Z:2
Lemma 2.30 Let n 2 Z, n > 1, and x 2 Q+ . If x+ 2expo(x)�n � 2expo(x)+1, then

near(x; n) = 2expo(x)+1 = trunc(x+ 2expo(x)�n; n):

14

Proof: Suppose near(x; n) 6= 2expo(x)+1. Then Lemma 2.21 implies near(x; n) <
2expo(x)+1 and by Lemmas 2.13 and 2.26,

2expo(x)+1 � near(x; n) + 2expo(x)+1�n � x� 2expo(x)�n + 2expo(x)+1�n

= x+ 2expo(x)�n � 2expo(x)+1:

It follows that x = 2expo(x)+1 � 2expo(x)�n is (n + 1)-exact but not n-exact, while
near(x; n) = 2expo(x)+1 � 2expo(x)+1�n is n-exact but not (n � 1)-exact, contradicting
Lemma 2.29.

Now suppose 2expo(x)+1 6= trunc(x + 2expo(x)�n; n). Since 2expo(x)+1 is n-exact,
2expo(x)+1 < trunc(x+ 2expo(x)�n; n) by Lemma 2.22. But then by Lemma 2.13,

trunc(x+ 2expo(x)�n; n) � 2expo(x)+1 + 2expo(x)+2�n > x+ 2expo(x)�n:2

Lemma 2.31 If n 2 Z, n > 1, and x 2 Q+ , then

near(x; n) =

�
trunc(x+ 2expo(x)�n; n� 1) if x is (n+ 1)-exact but not n-exact

trunc(x+ 2expo(x)�n; n) otherwise:

Proof: If x+ 2expo(x)�n � 2expo(x)+1, then by Lemmas 2.19 and 2.30,

near(x; n) = 2expo(x)+1 = trunc(x+ 2expo(x)�n; n) = trunc(x + 2expo(x)�n; n� 1):

Thus, we may assume x + 2expo(x)�n < 2expo(x)+1, and it follows from Lemmas 2.21
and 2.26 that

expo(near(x; n)) = expo(x + 2expo(x)�n) = expo(x):

Case 1: x is n-exact
By Lemma 2.22, trunc(x+ 2expo(x)�n; n) � x. But since

trunc(x+ 2expo(x)�n; n) � x+ 2expo(x)�n < x+ 2expo(x)+1�n;

Lemma 2.13 yields trunc(x+ 2expo(x)�n; n) � x, hence

trunc(x+ 2expo(x)�n; n) = x = near(x; n):

Case 2: x is not (n+ 1)-exact
We have near(x; n) > x � 2expo(x)�n, for otherwise we would have near(x; n) =

x� 2expo(x)�n by Lemma 2.26, and since near(x; n) is (n+ 1)-exact, so would be

near(x; n) + 2expo(near(x;n))�n = x� 2expo(x)�n + 2expo(near(x;n))�n = x:

Since near(x; n) � x+2expo(x)�n, near(x; n) � trunc(x+2expo(x)�n; n) by Lemma 2.22.
But since

trunc(x+ 2expo(x)�n; n) � x+ 2expo(x)�n < near(x; n) + 2expo(x)+1�n;

trunc(x+ 2expo(x)�n; n) � near(x; n).

Case 3: x is (n+ 1)-exact but not n-exact

15

First suppose near(x; n) > x. Since near(x; n) is (n + 1)-exact, near(x; n) � x +
2expo(x)�n, hence near(x; n) = x+ 2expo(x)�n, and by Lemma 2.29,

trunc(x+ 2expo(x)�n; n� 1) = trunc(near(x; n); n � 1) = near(x; n):

Now suppose near(x; n) < x. Then near(x; n) < x+2expo(x)�n implies near(x; n) �
trunc(x+ 2expo(x)�n; n� 1). But since

trunc(x+ 2expo(x)�n; n� 1) � x+ 2expo(x)�n = x� 2expo(x)�n + 2expo(x)+1�n

< near(x; n) + 2expo(x)+2�n;

we have trunc(x+ 2expo(x)�n; n� 1) � near(x; n). 2

3 Multiplication

3.1 The Program FPU-MUL

The multiplication algorithm is represented by the program FPU-MUL, as listed in
Figures 1 and 2. The program is coded in a simple language, consisting of assignments
and conditional branches. The primitive operations are logical operations on bit vectors
and integer addition and multiplication, the implementation of which is not addressed
here.

The algorithm is intended to be implemented with three distinct (integer) multipliers,
which operate on the same two M -bit factors, yielding identical products of either 2M
or 2M � 1 bits. The output of the �rst multiplier is manipulated under the assumption
that overow occurs, i.e., the product has 2M bits. In parallel, the output of the second
multiplier is similarly manipulated under the opposite assumption. Meanwhile, the most
signi�cant bit produced by the third multiplier is examined to determine which of the
�rst two results will actually be used while the other is discarded.

The inputs to this program include two encodings, x and y, of the numbers to be
multiplied, as well as two speci�ers, rc and pc, which control the rounding of the product.
Irrespective of this rounding, the result is returned in the (M; 18) format. Thus, the
output z is expected to satisfy

ẑ = rnd(x̂ŷ; rc; pc):

As a notational convenience, the following function gives the position of the least signif-
icant bit of an (M; 18)-encoding that has been rounded to a given degree of precision:

De�nition 3.1 For any precision control speci�er �, lsb(�) = 2M �mbits(�).

In addition to computing products, the multiplication hardware performs several
auxiliary functions in support of the divide and square root operations. These are
speci�ed by the input op, the value of which may be any of the symbols OP-MUL, OP-DIV,
OP-SQRT, OP-LAST, and OP-BACK.

Basic oating point multiplication is performed in the case op = OP-MUL: the inputs
x and y are simply multiplied and rounded according to the speci�ers pc and rc, and the
IEEE compliant result is returned as the output z, as described by Theorem 1. The same
holds for op = OP-DIV and op = OP-SQRT, but an additional output r is returned in these

16

Program FPU-MUL(op,pc,lastpc,rc,x,y,z,r,d,inexact):

sign get-sign(x) ^ get-sign(y);
man-unrounded get-man(x) � get-man(y);
overflow man-unrounded[2M � 1];
if man-unrounded[lsb(pc)� 3 : 0] = 0
then sticky-no-overflow 0
else sticky-no-overflow 1;

sticky-with-overflow sticky-no-overflow | man-unrounded[lsb(pc)� 2];
inexact-no-overflow sticky-with-overflow;
inexact-with-overflow inexact-no-overflow | man-unrounded[lsb(pc)� 1];
if op = OP-BACK

then if overflow = 1
then inexact inexact-with-overflow
else inexact inexact-no-overflow;

if op = OP-BACK then
rconst-with-overflow comp1(2Mget-man(d); 2M)

else if op = OP-LAST then
rconst-with-overflow 2lsb(lastpc)�2

else if rc = RC-NEAR then
rconst-with-overflow 2lsb(pc)�1

else if (sign = 1 ^ rc = RC-NEG) _ (sign = 0 ^ rc = RC-POS) then

rconst-with-overflow 2lsb(pc) � 1
else rconst-with-overflow 0;

rconst-no-overflow shr(rconst-with-overflow; 0; 2M);
if op = OP-BACK
then fadd-with-overflow (man-unrounded+ rconst-with-overflow + 1)[2M : 0];

add-no-overflow (man-unrounded+ rconst-no-overflow + 1)[2M � 1 : 0]g
else fadd-with-overflow (man-unrounded+ rconst-with-overflow)[2M : 0];

add-no-overflow (man-unrounded+ rconst-no-overflow)[2M � 1 : 0]g;
round-carryout-no-overflow add-no-overflow[2M � 1];
round-carryout-with-overflow add-with-overflow[2M];
if op = OP-LAST

then ftrunc-with-overflow 22M � 2lsb(lastpc)�1;
trunc-no-overflow 22M � 2lsb(lastpc)�2g

else ftrunc-with-overflow 22M � 2lsb(pc);
trunc-no-overflow 22M � 2lsb(pc)�1g;

Figure 1: FPU-MUL

17

if rc = RC-NEAR^ sticky-no-overflow = 0 ^ add-no-overflow[lsb(pc)� 2] = 0
then man-rounded-no-overflow

 (22M�2round-carryout-no-overflow | add-no-overflow)
& ((22M � 1� 2lsb(pc)�1) & trunc-no-overflow)

else man-rounded-no-overflow
 (22M�2round-carryout-no-overflow | add-no-overflow)

& trunc-no-overflow;
if rc = RC-NEAR^ sticky-with-overflow = 0 ^ add-with-overflow[lsb(pc)� 1] = 0
then man-rounded-with-overflow

 (22M�1round-carryout-with-overflow | add-with-overflow)

& ((22M � 1� 2lsb(pc)) & trunc-with-overflow);
else man-rounded-with-overflow

 (22M�1round-carryout-with-overflow | add-with-overflow)
& trunc-with-overflow;

exp-unrounded (get-expo(x) + get-expo(y) + 217 + 1)[17 : 0];
exp-rounded-with-overflow
 (exp-unrounded+ round-carryout-with-overflow + 1)[17 : 0];

exp-rounded-no-overflow (exp-unrounded+ round-carryout-no-overflow)[17 : 0];
if get-man(x) = 0 then

z (sign; 0; get-expo(x))
else if get-man(y) = 0 then
z (sign; 0; get-expo(y))

else if overflow = 1 then
z (sign;man-rounded-with-overflow[2M � 1 : M]; exp-rounded-with-overflow)

else z (sign;man-rounded-no-overflow[2M � 2 : M � 1]; exp-rounded-no-overflow);
if op = OP-DIV then
if overflow = 1 then
r (0; comp1(man-unrounded; 2M)[2M � 2 : M � 1]; 217 � 2)

else if round-carryout-no-overflow = 0 then
r (0; comp1(man-unrounded; 2M)[2M � 1 : M]; 217 � 1)

else r (0; 2M � 1; 217 � 2)
else if op = OP-SQRT then
if overflow = 1 then
r (0; (comp1(man-unrounded; 2M) | 22M�1)[2M � 1 : M]; 217 � 2)

else if round-carryout-no-overflow = 0 then
r (0; shr(comp1(man-unrounded; 2M)[2M � 2 : 0]; 1; 2M)[2M � 1 : M]; 217 � 1)

else r (0; 2M � 1; 217 � 2)

Figure 2: FPU-MUL (continued)

18

cases: for OP-DIV, r̂ is an approximation of 2� x̂ŷ; for OP-SQRT, r̂ is an approximation
of (3� x̂ŷ)=2. The errors of these approximations are given by Lemma 3.5.

When FPU-MUL is called by division or square root, pc is always PC-*, indicating
the internal format (M; 18). However, on the �nal iteration of either of these operations,
signaled by OP-LAST, the product is rounded to a lower precision, as determined by the
input lastpc. This behavior is described formally by Lemma 3.7.

Finally, the symbol OP-BACK indicates a back multiplication to determine whether the
product previously computed by OP-LAST is an overestimate or an underestimate of the
exact value sought. The value given by the input d is subtracted from the product from
x and y. In the case of division, x is the denominator, y is the approximate quotient,
and d is the numerator; in the square root case, both x and y are the approximate square
root and d is the radicand. In both cases, the results of the comparison are given by the
outputs z and inexact, as stated in Lemma 3.8.

Thus, our analysis will be based on an execution of

FPU-MUL(op,pc,lastpc,rc,x,y,z,r,d,inexact),

under the following assumptions regarding the inputs:

(a) op 2 fOP-MUL; OP-DIV; OP-SQRT; OP-LAST; OP-BACKg;
(b) pc is a precision control speci�er;

(c) if op = OP-LAST, then lastpc is an external precision control speci�er;

(d) rc is a rounding control speci�er;

(e) x and y are normal encodings;

(f) if op = OP-BACK, then d is a normal encoding.

3.2 Basic Results

For convenience, we introduce several auxiliary variables. First, we de�ne

sticky =

�
sticky-with-overflow if overflow = 1
sticky-no-overflow if overflow = 0:

Each of the variables rconst, add, round-carryout, trunc, man-rounded, and expo-
rounded is de�ned in the analogous manner. We also de�ne

P =

�
2M if overflow = 1
2M � 1 if overflow = 0,

� = mbits(pc);

and

trunc0 =

�
trunc; if rc 6= RC-NEAR or sticky = 1 or add[P � �� 1] = 1
trunc & (22M � 1� 2P��); otherwise:

19

Lemma 3.1

(a) sig(man-unrounded) = sig(x̂)sig(ŷ)=2overflow;
(b) expo(man-unrounded) = P � 1;
(c) sig(x̂ŷ) = sig(man-unrounded);
(d) expo(x̂ŷ) = expo(x̂) + expo(ŷ) + overflow.

Proof: Since x and y are normal encodings,

22M�2 � man-unrounded = get-man(x) � get-man(y) < 22M ;

and (b) follows from Lemma 2.2.
By Lemma 2.15,

man-unrounded = 2M�1sig(x̂)2M�1sig(ŷ)

= sig(x̂)sig(ŷ)2�overflow22M�2+overflow

= sig(x̂)sig(ŷ)2�overflow2expo(man-unrounded);

which implies (a).
To derive (c) and (d), we need only observe that

x̂ŷ = sgn(x̂)sig(x̂)2expo(x̂)sgn(ŷ)sig(ŷ)2expo(ŷ)

= sgn(x̂ŷ)
�
sig(x̂)sig(ŷ)=2overflow

�
2expo(x̂)+expo(ŷ)+overflow:2

Lemma 3.2

(a) sticky = 0 i� man-unrounded is (�+ 1)-exact;
(b) inexact = 0 i� man-unrounded is �-exact;

Proof: We have sticky-no-overflow = 0, 2lsb(pc)�2 divides man-unrounded, and

sticky-with-overflow = 0

, 2lsb(pc)�2 divides man-unrounded and man-unrounded[lsb(pc)� 2] = 0
, 2lsb(pc)�2 divides man-unrounded and 2 divides man-unrounded=2lsb(pc)�2

, 2lsb(pc)�1 divides man-unrounded.

Thus, sticky = 0 i� 2P�(�+1) divides man-unrounded, and (a) follows from Lemma 2.14.
Similarly, it may be shown that inexact = 0 i� 2P�� divides man-unrounded, which

implies (b). 2

Lemma 3.3

(a) man-rounded = (2P�1round-carryout) | (add & trunc0);
(b) man-rounded[P � 1] = 1;
(c) expo(man-rounded) � expo(add) = P � 1 + round-carryout;
(d) man-rounded is divisible by 2P�M .

Proof: (a) In all cases,

man-rounded = (2P�1round-carryout | add) & trunc0

and trunc0[P � 1] = 1. Thus, by Lemmas 2.7 and 2.11,

man-rounded = (2P�1round-carryout & trunc0) | (add & trunc0)

= 2P�1round-carryout | (add & trunc0)

20

(b) By Lemma 2.10, we may assume round-carryout = 0 and hence

man-rounded[P � 1] = add[P � 1]:

Note that

add =

�
rem(man-unrounded+ rconst+ 1; 2P+1) if op = OP-BACK

rem(man-unrounded+ rconst; 2P+1) otherwise;

and that since

man-unrounded+ rconst+ 1 � (2P � 1) + (2P � 1) + 1 < 2P+1;

we have

2P�1 � man-unrounded � add < 2P+1:

But since round-carryout = add[P] = 0, Lemma 2.2 implies add < 2P and hence
add[P � 1] = 1.

(c) If round-carryout = 0, then

man-rounded = add & trunc0 � add < 2P ;

by Lemma 2.9, and man-rounded[P � 1] = 1 implies man-rounded � 2p�1, hence

expo(man-rounded) = expo(add) = P � 1:

On the other hand, if round-carryout = add[P] = 1, then expo(add) = P , while
man-rounded < 2P+1 by Lemma 2.8, hence expo(man-rounded) � P .

(d) Since 2P�M divides trunc, the result follows from Lemmas 2.9 and 2.8. 2

Lemma 3.4 z is a normal encoding and

(a) sgn(ẑ) = sgn(x̂ŷ);
(b) sig(ẑ) = rem(man-rounded; 2P)=2P�1;
(c) rem(expo(ẑ); 218) = rem(expo(x̂ŷ) + round-carryout; 218).

Proof: First, observe that

z = (sign;man-rounded[P � 1 : P �M]; exp-rounded):

Let � = rem(man-rounded; 2P). By Lemma 2.3,

�[P � 1] = man-rounded[P � 1] = 1;

hence expo(�) = P � 1. Since man-rounded is divisible by 2P�M , so is �. Thus, by
Lemmas 2.4 and 2.14,

get-man(z) = man-rounded[P � 1 : P �M] = �[P � 1 : P �M] = �=2P�M :

It follows that

expo(get-man(z)) = expo(�)� (P �M) = (P � 1)� (P �M) = M � 1:

21

Since

get-expo(z) = exp-rounded = rem(exp-unrounded+ round-carryout+ overflow; 218);

0 < get-expo(z) < 218, and hence z is a normal encoding. The proof is completed by
applying Lemma 2.15:

(a) sgn(ẑ) = (�1)sign, hence sgn(ẑ) = 1, sign = 0, get-sign(x) = get-sign(y),
sgn(x̂) = sgn(ŷ), sgn(x̂ŷ) = 1.

(b) sig(ẑ) = get-man(z)=2M�1 = (�=2P�M)=2M�1 = �=2P�1.

(c) expo(ẑ) = get-expo(z)� (217 � 1), where

get-expo(z)
= rem(exp-unrounded+ round-carryout + overflow; 218)
= rem(get-expo(x) + get-expo(y) + 217 + 1 + round-carryout+ overflow; 218)
= rem(expo(x̂) + expo(ŷ) + 218 � 2 + 217 + 1 + round-carryout+ overflow; 218)
= rem(expo(x̂) + expo(ŷ) + overflow + 217 � 1 + round-carryout; 218)
= rem(expo(x̂ŷ) + 217 � 1 + round-carryout; 218):2

3.3 The Operations OP-MUL, OP-DIV, and OP-SQRT

This is our statement of IEEE compliance for multiplication:

Theorem 1 Assume that op 2 fOP-MUL; OP-DIV; OP-SQRTg, rc is a rounding control
speci�er, pc is a precision control speci�er, and x and y are normal encodings. If
rnd(x̂ŷ; rc; pc) is representable, then ẑ = rnd(x̂ŷ; rc; pc).

Proof: Let

rc0 =

8<
:

RC-NEG if rc = RC-POS

RC-POS if rc = RC-NEG

rc otherwise.

Then rnd(�x̂ŷ; rc; pc) = �rnd(x̂ŷ; rc0; pc). Also, by inspection of the code that de�nes
FPU-MUL, it is easy to see that replacing either get-sign(x) or get-sign(y) by its com-
plement and rc by rc0 has the e�ect of negating ẑ. It follows that it su�ces to prove the
theorem under the assumptions x̂ > 0 and ŷ > 0, which imply that sign = 0.

Note that (under these assumptions)

rconst =

8<
:

2P���1 if rc = RC-NEAR

2P�� � 1 if rc = RC-POS

0 otherwise:

In all cases, rconst < 2P . Since man-unrounded < 2P as well,

add = rem(man-unrounded+ rconst; 2P+1) = man-unrounded+ rconst:

If rc = RC-NEAR and sticky = add[P � �� 1] = 0, then by Lemma 2.12,

trunc0 = (22M � 2P��) & (22M � 1� 2P��) = (22M � 2P��+1);

22

and otherwise

trunc0 = (22M � 2P��):

We shall show that

rem(man-rounded; 2P) = rnd(man-unrounded; rc; pc)2�round-carryout;

by considering the following cases:

Case 1: round-carryout = 0
Since man-rounded < 2P by Lemma 3.3, we must show

man-rounded = rnd(man-unrounded; rc; pc):

Subcase 1.1: rc = RC-NEAR

First suppose sticky = add[P � �� 1] = 0. Then Lemma 2.3 implies

man-unrounded[P � �� 1] = 1;

and by Lemmas 3.2 and 2.14, man-unrounded is (�+ 1)-exact but not �-exact. Thus,
by Lemmas 3.3, 2.24, and 2.31,

man-rounded = (man-unrounded+ 2P���1) & (22M � 2P��+1)

= trunc(man-unrounded+ 2P���1; �� 1)

= near(man-unrounded; �)

= rnd(man-unrounded; rc; pc):

In the remaining case, man-unrounded is either �-exact or not (� + 1)-exact, and the
same three lemmas yield

man-rounded = (man-unrounded+ 2P���1) & (22M � 2P��)

= trunc(man-unrounded+ 2P���1; �)

= near(man-unrounded; �)

= rnd(man-unrounded; rc; pc):

Subcase 1.2: rc = RC-POS

By Lemmas 2.24 and 2.25,

man-rounded = (man-unrounded+ 2P�� � 1) & (22M � 2P��)

= trunc(man-unrounded+ 2P�� � 1; �)

= away(man-unrounded; �)

= rnd(man-unrounded; rc; pc):

Subcase 1.3: rc = RC-CHOP or rc = RC-NEG

By Lemma 2.24,

man-rounded = man-unrounded & (22M � 2P��)

= trunc(man-unrounded; �)

= rnd(man-unrounded; rc; pc):

23

Case 2: round-carryout = 1
In this case,

2P � add = man-unrounded+ rconst < 2P + rconst;

which implies

0 � rem(add; 2P) < rconst < 2P��:

By Lemmas 3.3, 2.9, and 2.8,

rem(man-rounded; 2P) = rem(2P�1 | (add & trunc0); 2P)

= 2P�1 | (rem(add; 2P) & trunc0)

= 2P�1 | (rem(add; 2P) & rem(trunc0; 2P��))

= 2P�1 | (rem(add; 2P) & 0)

= 2P�1:

Thus, it su�ces to show that rnd(man-unrounded; rc; pc) = 2P .

Subcase 2.1: rc = RC-NEAR

Since

man-unrounded+ 2P�1�� = man-unrounded+ rconst � 2P ;

near(man-unrounded; �) = 2P by Lemma 2.30.

Subcase 2.2: rc = RC-POS

Let a = 2P � 2P��. Then

man-unrounded � 2P � rconst = 2P � 2P�� + 1 > a;

and since a is �-exact,

away(man-unrounded; �) � a+ 2expo(a)+1�� = a+ 2P�� = 2P ;

which implies away(man-unrounded; �) = 2P .

Subcase 2.3: rc = RC-CHOP or rc = RC-NEG

This case is precluded by our earlier observation that 0 < rconst.

The proof is completed by applying Lemmas 3.4 and 3.1, which yield

sgn(ẑ) = sgn(x̂ŷ) = 1;

sig(ẑ) = rnd(man-unrounded; rc; pc)2�round-carryout�P+1

= rnd(sig(x̂ŷ); rc; pc)2�round-carryout;

and for some k 2 Z,

expo(ẑ) = expo(x̂ŷ) + round-carryout+ 218k:

24

Thus,

ẑ = rnd(sig(x̂ŷ); rc; pc)2expo(x̂ŷ)+2
18k = rnd(x̂ŷ; rc; pc)22

18k:

But since rnd(x̂ŷ; rc; pc) is representable, i.e., 1 � 2�17 � expo(rnd(x̂ŷ; rc; pc)) � 217,
and the same is true of ẑ,

j218kj = jexpo(ẑ)� expo(rnd(x̂ŷ; rc; pc))j < 218;

and hence k = 0. 2

In the OP-DIV and OP-SQRT cases, an additional value is returned:

Lemma 3.5 Let op 2 fOP-DIV; OP-SQRTg, pc = PC-*, and rc = RC-NEAR. Assume that
x and y are normal encodings, 3=2 < sig(x̂)sig(ŷ) < 3, and j1� x̂ŷj < 1=8. Then

(a) r is a normal encoding;
(b) r̂ < 1, ẑ � 1;
(c) if op = OP-DIV, then 2� x̂ŷ � 21�M � r̂ < 2� x̂ŷ;
(d) if op = OP-SQRT, then (3� x̂ŷ)=2� 21�M � r̂ < (3� x̂ŷ)=2:

Proof: First note that the hypothesis implies that expo(x̂ŷ) is either 0 or �1, and it
follows from Lemma 3.4 that

expo(ẑ) = expo(x̂ŷ) + round-carryout:

We consider the following cases:

Case 1: overflow = 1
In this case, expo(man-unrounded) = 2M � 1, but by Lemma 3.1,

man-unrounded = sig(x̂ŷ)22M�1 = sig(x̂)sig(ŷ)22M�2 < 3 � 22M�2

and hence

add = man-unrounded+ 2M�1 < 3 � 22M�2 + 2M�1 < 22M

and round-carryout = 0. We have expo(ẑ) = expo(x̂ŷ) = 0, for otherwise

x̂ŷ = sig(x̂ŷ)=2 = sig(x̂)sig(ŷ)=4 < 3=4;

contradicting j1� x̂ŷj < 1=8. Thus,

x̂ŷ = sig(x̂ŷ) = sig(man-unrounded) = man-unrounded=22M�1:

Also note that

comp1(man-unrounded; 2M) = 22M �man-unrounded� 1 � 22M � 22M�1 � 1 < 22M�1:

Subcase 1.1: op = OP-DIV

get-man(r) = comp1(man-unrounded; 2M)[2M � 2 : M � 1]

= b(22M �man-unrounded� 1)=2M�1c
= 2M+1 + b�(man-unrounded+ 1)=2M�1c
= 2M+1 � bman-unrounded=2M�1c � 1:

25

But

bman-unrounded=2M�1c � man-unrounded=2M�1 = 2M x̂ŷ

and

bman-unrounded=2M�1c > man-unrounded=2M�1 � 1 = 2M x̂ŷ � 1;

hence

2M�1 � 2M+1 � 2M x̂ŷ � 1 � get-man(r) < 2M+1 � 2M x̂ŷ � 2M

and r is normal. Since expo(r̂) = 217 � 2� (217 � 1) = �1, r̂ < 1 � ẑ and

2� x̂ŷ � 2�M � r̂ = 2�Mget-man(r) < 2� x̂ŷ:

Subcase 1.2: op = OP-SQRT

By Lemmas 2.2 and 2.11,

comp1(man-unrounded; 2M) | 22M�1 = comp1(man-unrounded; 2M) + 22M�1

= 22M + 22M�1 �man-unrounded� 1

< 22M ;

hence

get-man(r) = (comp1(man-unrounded; 2M) | 22M�1)[2M � 1 : M]

= (22M + 22M�1 �man-unrounded� 1)[2M � 1 : M]

= b(22M + 22M�1 �man-unrounded� 1)=2Mc
= 2M + 2M�1 + b�(man-unrounded+ 1)=2Mc
= 3 � 2M�1 � bman-unrounded=2Mc � 1:

But

bman-unrounded=2Mc � man-unrounded=2M = 2M�1x̂ŷ

and

bman-unrounded=2Mc > man-unrounded=2M � 1 = 2M�1x̂ŷ � 1;

implying

2M�1 � 2M�1(3� x̂ŷ)� 1 � get-man(r) < 2M�1(3� x̂ŷ) � 2M ;

hence r is normal. Again, expo(r̂) = �1 and r̂ < 1 � ẑ. Thus

(3� x̂ŷ)=2� 2�M � r̂ = get-man(r)=2M < (3� x̂ŷ)=2:

Case 2: overflow = 0
In this case, expo(man-unrounded) = 2M � 2, and expo(x̂ŷ) = �1, for otherwise

x̂ŷ = sig(x̂ŷ) = sig(x̂)sig(ŷ) > 3=2;

26

contradicting j1� x̂ŷj < 1=8. Thus

x̂ŷ = sig(x̂ŷ)=2 = sig(man-unrounded)=2 = man-unrounded=22M�1:

Subcase 2.1: round-carryout = 0
Since expo(ẑ) = expo(x̂ŷ) = �1, ẑ < 1.

Subcase 2.1.1: op = OP-DIV

get-man(r) = (22M �man-unrounded� 1)[2M � 1 : M]

= b(22M �man-unrounded� 1)=2Mc
= 2M + b�(man-unrounded+ 1)=2Mc
= 2M � bman-unrounded=2Mc � 1:

In this case,

2M�1x̂ŷ � 1 < bman-unrounded=2Mc � 2M�1x̂ŷ

and

2M�1 � 1 < 2M � 2M�1x̂ŷ � 1 � get-man(r) < 2M � 2M�1x̂ŷ < 2M :

Since expo(r̂) = (217 � 1)� (217 � 1) = 0, r̂ � 1 > ẑ, and

2� x̂ŷ � 21�M � r̂ = get-man(r)=2M�1 < 2� x̂ŷ:

Subcase 2.1.2: op = OP-SQRT

Note that

comp1(man-unrounded; 2M) = 22M �man-unrounded� 1 � 22M � 22M�1 = 22M�1;

while comp1(man-unrounded; 2M) < 22M , hence

rem(comp1(man-unrounded; 22M); 22M�1)

= comp1(man-unrounded; 2M)� 22M�1

= 22M�1 �man-unrounded� 1:

Therefore, applying Lemma 2.11, we have

get-man(r) = shr(comp1(man-unrounded; 2M)[2M � 2 : 0]; 1; 2M)[2M � 1 : M]

= shr(rem(comp1(man-unrounded; 2M); 22M�1); 1; 2M)[2M � 1 : M]

= shr(22M�1 �man-unrounded� 1; 1; 2M)[2M � 1 : M]

= (22M�1 + b(22M�1 �man-unrounded� 1)=2c)[2M � 1 : M]

= b(22M�1 + b(22M�1 �man-unrounded� 1)=2c)=2Mc
= 2M�1 + bb(22M�1 �man-unrounded� 1)=2c)=2Mc
= 2M�1 + b(22M�1 �man-unrounded� 1)=2M+1c
= 2M�1 + 2M�2 + b�(man-unrounded+ 1)=2M+1c)
= 3 � 2M�2 � bman-unrounded=2M+1c � 1:

27

But

2M�2x̂ŷ � 1 < bman-unrounded=2M+1c � 2M�2x̂ŷ;

hence

2M�1 � 1 < 2M�2(3� x̂ŷ)� 1 � get-man(r) < 2M�2(3� x̂ŷ) < 2M :

Again, expo(r̂) = 0, r̂ � 1 > ẑ, and

(3� x̂ŷ)=2� 21�M � r̂ = get-man(r)=2M�1 < (3� x̂ŷ)=2:

Subcase 2.2: round-carryout = 1
In this case, get-man(r) = 2M �1 and r̂ = 1�2�M < 1, while expo(ẑ) = expo(x̂ŷ)+

1 = 0, so ẑ � 1. Since add = man-unrounded+ 2M�2 � 22M�1, we have

22M�1 � 2M�2 � man-unrounded < 22M�1

and hence

1� 2�1�M � x̂ŷ < 1;

which implies

2� x̂ŷ � (2�M + 2�1�M) � r̂ < 2� x̂ŷ � 2�M

and

(3� x̂ŷ)=2� (2�M + 2�2�M) � r̂ < (3� x̂ŷ)=2� 2�M :2

The following corollary of Lemma 3.5 allows the outputs of FPU-MUL to be used as
inputs on the next iteration of FPU-DIV-SQRT:

Lemma 3.6 Let op 2 fOP-DIV; OP-SQRTg, pc = PC-*, and rc = RC-NEAR. Assume that
x and y are normal encodings, 3=2 < sig(x̂)sig(ŷ) < 3, and j1� x̂ŷj < 1=8. Then

(a) if op = OP-DIV, then 3=2 < sig(ẑ)sig(r̂) < 3;
(b) if op = OP-SQRT, then 3=2 < sig(ẑ)sig(near(r̂2;M)) < 3;

Proof: Note �rst that by Theorem 1, j1� ẑj � 1=8. Now suppose that ẑ < 1. Then
7=8 � ẑ < 1. If op = OP-DIV, then 1 � r̂ < 2� x̂ŷ � 9=8, hence sig(ẑ)sig(r̂) = 2ẑr̂ and
3=2 < 7=4 � 2ẑr̂ < 9=4 < 3. For the case op = OP-SQRT, let w = near(r̂2;M). Since
1 � r̂ < (3 � x̂ŷ)=2 < 17=16, 1 � r̂2 < 289=256 < 3=2, which implies 1 � w < 3=2.
Thus, sig(ẑ)sig(w) = 2ẑw and 3=2 < 7=4 < 2ẑw < 3.

On the other hand, if ẑ � 1, then 1 � ẑ < 9=8. If op = OP-DIV, then 1 > r̂ �
2� x̂ŷ � 21�M � 7=8� 21�M > 3=4, and again sig(ẑ)sig(r̂) = 2ẑr̂, where 3=2 < 2ẑr̂ <
9=4 < 3. If op = OP-SQRT, then 1 > r̂ � (3� x̂ŷ)=2� 21�M � 15=16� 21�M > 7=8 and
1 > r̂2 > 49=64, which implies 1 >� w � 49=64 > 3=4. Thus, sig(ẑ)sig(w) = 2ẑw and
3=2 < 2ẑw � 9=4 < 3.2

28

3.4 The Operation OP-LAST

In the OP-LAST case, the product is rounded to mbits(lastpc) + 1 bits, essentially by
near rounding:

Lemma 3.7 If op = OP-LAST, pc = PC-*, rc = RC-NEAR, mbits(lastpc) = �, x and y
are normal encodings, and

2�217(2� 2���1) � jx̂ŷj < 22
17

(2� 2���1);

then

(a) ẑ is (�+ 1)-exact; (b) expo(x̂ŷ) � expo(ẑ); (c) jẑ � x̂ŷj � 2expo(x̂ŷ)���1:

Proof: Note that

add = man-unrounded+ 2P���2

and by Lemma 2.12,

trunc = 22M � 2P���1 = trunc0:

Let � = rem(man-rounded; 2P). We shall show that

j�2round-carryout �man-unroundedj � 2P���2

and that

1� 217 � expo(x̂ŷ) + round-carryout � 217;

by considering the following two cases:

Case 1: round-carryout = 0
By Lemma 3.3, expo(add) = expo(man-rounded) = P � 1, hence

� = man-rounded = add & (22M � 2P���1) = trunc(add; �+ 1)

by Lemma 2.24. Thus, by Lemma 2.20,

� � add = man-unrounded+ 2P���2

and

� > add� 2(P�1)�(�+1)+1 = man-unrounded� 2P���2:

If expo(x̂ŷ) = 2�17, then 2�217(2� 2���1) � jx̂ŷj < 2�217+1, hence

man-unrounded = 2P�1sig(x̂ŷ) � 2P�1(2� 2���1) = 2P � 2P���2;

contradicting add < 2P . Thus, 1� 217 � expo(x̂ŷ) � 217:

Case 2: round-carryout = 1
In this case,

2P � add = man-unrounded+ 2P���2 < 2P + 2P���2;

29

which implies

j2P �man-unroundedj < 2P���2

as well as

rem(add; 2P) < 2P���2:

Thus, by Lemmas 3.3, 2.9, 2.8, and 2.7,

� = rem(2P�1 | (add & trunc0); 2P) = 2P�1 | (rem(add; 2P) & trunc0)

= 2P�1 | (rem(add; 2P) & rem(trunc0; 2P���2)) = 2P�1 | (rem(add; 2P) & 0)

= 2P�1;

and therefore

j2��man-unroundedj = j2P �man-unroundedj < 2P���2:

If expo(x̂ŷ) = 217, then 22
17 � jx̂ŷj < 22

17

(2� 2���1), hence

man-unrounded = 2P�1sig(x̂ŷ) < 2P�1(2� 2���1) = 2P � 2P���2;

contradicting add � 2P . Thus, 1� 217 � expo(x̂ŷ) + 1 � 217:

Note that in both cases, � is (�+1)-exact, hence so is ẑ, since sig(ẑ) = �21�P . Since

1� 217 � expo(x̂ŷ) + round-carryout � 217;

and expo(ẑ) must lie in the same interval,

expo(ẑ) = expo(x̂ŷ) + round-carryout:

Thus,

jẑ � x̂ŷj = j�21�P 2expo(x̂ŷ)+round-carryout � sig(x̂ŷ)2expo(x̂ŷ)j
= 2expo(x̂ŷ)+1�P j�2round-carryout �man-unroundedj
� 2expo(x̂ŷ)+1�P 2P���2

= 2expo(x̂ŷ)���1:2

3.5 The Operation OP-BACK

In the OP-BACK case, the product is compared, by way of subtraction, to the input d.
The results of the comparison are given by the outputs z and inexact:

Lemma 3.8 If op = OP-BACK, pc = PC-*, rc = RC-CHOP, x and y are normal encodings,

and jx̂ŷ � d̂j < 2expo(d̂)�3, then

(a) jx̂ŷj < jd̂j , get-man(z)[M � 2] = 1;

(b) x̂ŷ = d̂, get-man(z)[M � 2 : 0] = inexact = 0.

30

Proof: (a) Since

rconst-with-overflow = comp1(2Mget-man(d); 2M)

= 22M � 2Mget-man(d)� 1

and

rconst-no-overflow = shr(rconst-with-overflow; 0; 2M)

= b(22M � 2Mget-man(d)� 1)=2c
= 22M�1 � 2M�1get-man(d)� 1;

we have

rconst = 2P � 2P�Mget-man(d)� 1;

and thus

add = rem(2P +man-unrounded� 2P�Mget-man(d); 2P+1)

= rem(2P + 2P�1sig(x̂ŷ)� 2P�1sig(d̂); 2P+1)

= rem(2P�1(2 + sig(x̂ŷ)� sig(d̂)); 2P+1)

= 2P�1(2 + sig(x̂ŷ)� sig(d̂)):

Note also that trunc0 = trunc = 22M � 2P�M :
By Lemmas 2.4, 2.5, 2.11, and 3.3,

get-man(z)[M � 2 : 0] = (man-rounded[P � 1 : P �M])[M � 2 : 0]

= man-rounded[P � 2 : P �M]

= (add & trunc0)[P � 2 : P �M]

= (2P�Madd[2M � 1 : P �M])[P � 2 : P �M]

= add[2M � 1 : P �M][M � 2 : 0]

= add[P � 2 : P �M]

= �[P � 2 : P �M];

where � = rem(add; 2P�1). In particular, by Lemma 2.5,

get-man(z)[M � 2] = get-man(z)[M � 2 : 0][M � 2] = �[P � 2 : P �M][M � 2] = �[P � 2]:

We must show

�[P � 2] = 1, jx̂ŷj < jd̂j:
Since

jx̂ŷ � d̂j = j2expo(x̂ŷ)�expo(d̂)sig(x̂ŷ)� sig(d̂)j2expo(d̂) < 2expo(d̂)�3;

we have

j2expo(x̂ŷ)�expo(d̂)sig(x̂ŷ)� sig(d̂)j < 2�3;

which implies jexpo(x̂ŷ)� expo(d̂)j � 1. Thus, we have three cases to consider:

31

Case 1: expo(x̂ŷ) = expo(d̂)

In this case, jsig(x̂ŷ)� sig(d̂)j < 2�3.

Suppose �rst that jx̂ŷj < jd̂j. Then sig(x̂ŷ) < sig(d̂) and

2P > add = 2P�1(2 + sig(x̂ŷ)� sig(d̂)) > 2P�1(2� 2�3) > 2P�1 + 2P�2:

Thus,

2P�2 < � < 2P�1;

and �[P � 2] = 1 by Lemma 2.2.

On the other hand, if jx̂ŷj � jd̂j, then sig(x̂ŷ) � sig(d̂) and

2P � add < 2P�1(2 + 2�3) < 2P + 2P�2;

hence � < 2P�2 and �[P � 2] = 0.

Case 2: expo(x̂ŷ) = expo(d̂) + 1

Here, jx̂ŷj > jd̂j and

0 < 2sig(x̂ŷ)� sig(d̂) < 2�3:

Thus,

sig(x̂ŷ) <
1

2
sig(d̂) + 2�4 � 1 + 2�4

and

sig(d̂) > 2sig(x̂ŷ)� 2�3 � 2� 2�3:

It follows that

add < 2P�1(2 + 1 + 2�4 � 2 + 2�3) < 2P�1 + 2P�2:

But add > 2P�1(2 + 1� 2) = 2P�1, hence � < 2P�2 and �[P � 2] = 0.

Case 3: expo(x̂ŷ) = expo(d̂)� 1

In this case, jx̂ŷj < jd̂j and

0 < sig(d̂)� 1

2
sig(x̂ŷ) < 2�3:

Thus, sig(d̂) < 1 + 2�3, sig(x̂ŷ) > 2� 2�2, and

add > 2P�1(2 + 2� 2�2 � 1� 2�3) > 3 � 2P�1 � 2P�2 = 2 � 2P�1 + 2P�2:

But

add < 2P�1(2 + 2� 1) = 3 � 2P�1;

hence � > 2P�2 and �[P � 2] = 1.

(b) Note that by Lemmas 3.1 and 3.2, inexact = 0 i� x̂ŷ isM -exact. Thus, if x̂ŷ = d̂,
then inexact = 0 and add = 2P , which implies � = 0, and hence get-man(z)[M � 2 :
0] = 0.

32

Conversely, suppose

get-man(z)[M � 2 : 0] = �[P � 2 : P �M] = inexact = 0:

Then sig(x̂ŷ) is M -exact, i.e., 2M�1sig(x̂ŷ) 2 Z, hence 2P�1sig(x̂ŷ) is divisible by

2P�M . Similarly, 2P�1sig(d̂) is divisible by 2P�M , and hence, so are add and �. Thus,

� = (�=2P�M)2P�M = b�=2P�Mc2P�M = �[P � 2 : P �M]2P�M = 0:

Since x̂ŷ = �d̂ is impossible, we need only show jx̂ŷj = jd̂j. In view of (a), we may

assume jx̂ŷj � jd̂j. Thus, there are two cases to consider:

Case 1: expo(x̂ŷ) = expo(d̂)

In this case, sig(x̂ŷ) � sig(d̂), which implies

� = 2P�1(sig(x̂ŷ)� sig(d̂)) = 0;

hence sig(x̂ŷ) = sig(d̂) and jx̂ŷj = jd̂j.
Case 2: expo(x̂ŷ) = expo(d̂) + 1

If this were to occur, then we would have

� = 2P�1(1 + sig(x̂ŷ)� sig(d̂)) = 0;

implying sig(d̂) = 1 + sig(x̂ŷ) � 2, which is impossible. 2

4 Division and Square Root

4.1 The Program FPU-DIV-SQRT

The hardware for division and square root is represented by the program FPU-DIV-
SQRT, shown in Figures 3 and 4. Our analysis will be based on an execution of

FPU-DIV-SQRT(op,pc,rc,a,b,z),

with inputs as follows:

(a) op 2 fOP-DIV; OP-SQRTg;
(b) pc is an external precision control speci�er;

(c) rc is a rounding control speci�er;

(d) a and b are normal encodings.

In the case op = OP-DIV, the output z represents an appropriately rounded approxima-

tion of the quotient â=b̂; when op = OP-SQRT, a is ignored and an approximation of
p
b̂

is returned.
Both operations are based on Goldschmidt's Algorithm [1], a variant of Newton-

Raphson approximation. Our analysis of division will involve a sequence �0; �1; �2; �3 of
approximations to 1=b̂, where �0 is derived from a table and the other �i are computed by
three successive Newton-Raphson iterations. The square root involves a similar sequence

of approximations to 1=
p
b̂.

33

Program FPU-DIV-SQRT(op,pc,rc,a,b,z):

if op = OP-DIV then
fsign get-sign(a) ^ get-sign(b);
p-value recip-rom-p(get-man(b)[M � 2 : M � 11]);
n-value recip-rom-n(cat(get-man(b)[M � 2 : M � 6];

get-man(b)[M � 12 : M � 16];
5));

estimate (p-value+ n-value)[16 : 0];
x0 (get-sign(b);

2M�17estimate | 2M�1,
(218 � 2 + comp1(get-expo(b); 18) + estimate[16])[17 : 0]);

FPU -MUL(OP-DIV; PC-*; NIL; RC-NEAR; b; x0; d0; r0; NIL; NIL);
FPU -MUL(OP-MUL; PC-*; NIL; RC-NEAR; a; x0; n0; NIL; NIL; NIL);
if pc = PC-32

then FPU -MUL(OP-LAST; PC-*; pc; RC-NEAR; n0; r0; q; NIL; NIL; NIL)
else fFPU -MUL(OP-DIV; PC-*; NIL; RC-NEAR; d0; r0; d1; r1; NIL; NIL);

FPU -MUL(OP-MUL; PC-*; NIL; RC-NEAR; n0; r0; n1; NIL; NIL; NIL);
if pc = PC-64

then FPU -MUL(OP-LAST; PC-*; pc; RC-NEAR; n1; r1; q; NIL; NIL; NIL)
else fFPU -MUL(OP-DIV; PC-*; NIL; RC-NEAR; d1; r1; d2; r2; NIL; NIL);

FPU -MUL(OP-MUL; PC-*; NIL; RC-NEAR; n1; r1; n2; NIL; NIL; NIL);
FPU -MUL(OP-LAST; PC-*; pc; RC-NEAR; n2; r2; q; NIL; NIL; NIL)gg;

FPU -MUL(OP-BACK; PC-*; NIL; RC-CHOP; b; q; rem; NIL; a; inexact)g

else if op = OP-DIV-SQRT then
fsign 0;
p-value sqrt-rom-p(cat(get-expo(b)[0]; get-man(b)[M � 2 : M � 11]; 10));
n-value sqrt-rom-n(cat(get-expo(b)[0];

cat(get-man(b)[M � 2 : M � 6];
get-man(b)[M � 12 : M � 16];
5);

10));
estimate (p-value+ n-value)[16 : 0];
x0 (get-sign(b);

2M�17estimate | 2M�1,
shr((218 + 217 � 3 + comp1(get-expo(b); 19) + estimate[16])[18 : 0]; 0; 19));

FPU -MUL(OP-MUL; PC-*; NIL; RC-NEAR; x0; x0; t0; NIL; NIL; NIL);
FPU -MUL(OP-MUL; PC-*; NIL; RC-NEAR; b; x0; d0; NIL; NIL; NIL);
FPU -MUL(OP-SQRT; PC-*; NIL; RC-NEAR; b; t0; n0; r0; NIL; NIL);

Figure 3: FPU-DIV-SQRT

34

if pc = PC-32

then FPU -MUL(OP-LAST; PC-*; pc; RC-NEAR; d0; r0; q; NIL; NIL; NIL)
else fFPU -MUL(OP-MUL; PC-*; NIL; RC-NEAR; r0; r0; t1; NIL; NIL; NIL);

FPU -MUL(OP-MUL; PC-*; NIL; RC-NEAR; d0; r0; d1; NIL; NIL; NIL);
FPU -MUL(OP-SQRT; PC-*; NIL; RC-NEAR; n0; t1; n1; r1; NIL; NIL);
if pc = PC-64

then FPU -MUL(OP-LAST; PC-*; pc; RC-NEAR; d1; r1; q; NIL; NIL; NIL)
else fFPU -MUL(OP-MUL; PC-*; NIL; RC-NEAR; r1; r1; t2; NIL; NIL; NIL);

FPU -MUL(OP-MUL; PC-*; NIL; RC-NEAR; d1; r1; d2; NIL; NIL; NIL);
FPU -MUL(OP-SQRT; PC-*; NIL; RC-NEAR; n1; t2; n2; r2; NIL; NIL);
FPU -MUL(OP-LAST; PC-*; pc; RC-NEAR; d2; r2; q; NIL; NIL; NIL)gg;

FPU -MUL(OP-BACK; PC-*; NIL; RC-CHOP; q; q; rem; NIL; b; inexact)g;

if get-man(rem)[M � 2 : 0] = 0
then rem-zero comp1(inexact; 1)
else rem-zero 0;

rem-neg comp1(get-man(rem)[M � 2]; 1) &comp1(rem-zero; 1);
rem-pos get-man(rem)[M � 2];
q-lsb get-man(q)[M �mbits(pc)];
q-guard get-man(q)[M �mbits(pc)� 1];
if op = OP-DIV^ get-man(a) = 0 then
z (sign; 0; get-expo(a))

else if op = OP-SQRT^ get-man(b) = 0 then
z (sign; 0; get-expo(b))

else if ((rc = RC-POS^ sign = 1) _ (rc = RC-NEG^ sign = 0) _ rc = RC-CHOP)
^q-guard = 0 ^ rem-neg = 1 then

if get-man(q) & (2M � 2M�mbits(pc)) = 2M�1

then z (sign; 2M � 2M�mbits(pc); dec1(get-expo(q); 18))
else z (sign;

((get-man(q) & (2M � 2M�mbits(pc))) + 2M � 2M�mbits(pc))[M � 1 : 0];
get-expo(q))

else if (((rc = RC-POS^ sign = 0) _ (rc = RC-NEG^ sign = 1))
^(q-guard = 1 _ rem-pos = 1))
_(rc = RC-NEAR^ q-guard = 1 ^ rem-pos = 1)
_(rc = RC-NEAR^ q-guard = 1 ^ rem-zero = 1 ^ q-lsb = 1) then

if get-man(q) & (2M � 2M�mbits(pc)) = 2M � 2M�mbits(pc)

then z (sign; 2M�1; (get-expo(q) + 1)[17 : 0])
else z (sign;

((get-man(q) & (2M � 2M�mbits(pc))) + 2M�mbits(pc))[M � 1 : 0];
get-expo(q))

else z (sign; get-man(q) & (2M � 2M�mbits(pc)); get-expo(q)).

Figure 4: FPU-DIV-SQRT (continued)

35

Although the algorithm does not explicitly compute the �i for i > 0, a sequence of
calls to FPU-MUL produces an encoding q of either â�i or b̂�i, modulo rounding error,
according to whether op = OP-DIV or op = OP-SQRT, where (a) i = 1 if pc = PC-32,
(b) i = 2 if pc = PC-64, and (c) i = 3 if pc = PC-80 or pc = PC-87. Lemmas 4.9 and 4.13

give estimates of the errors jq̂ � â=b̂j and jq̂�
p
b̂j. Note that the constraint M � 75 on

the multiplier width is required in the proofs of these lemmas.
The approximation q̂ is compared to the exact value by means of a �nal call to FPU-

MUL with op = OP-BACK. Using the results of this comparison, q is then adjusted to
produce the correctly rounded result z. The correctness of this result is guaranteed by
Theorems 2 and 3.

4.2 Initial Approximation

The initial approximation x0 to the reciprocal of b, in the case op = OP-DIV, is derived
from a pair of tables, each consisting of 210 bit vectors, which we represent by the func-
tions recip-rom-p and recip-rom-n. If sig(b̂) has the binary representation 1:b1b2b3 : : : ,
then the bit vectors

b1b2 : : : b9b10 = get-man(b)[M � 2 : M � 11]

and

b1 : : : b5b11 : : : b15 = cat(get-man(b)[M � 2 : M � 6]; get-man(b)[M � 12 : M � 16]; 5)

are used as indices into these tables. The results are added and the 16-bit sum is
appended to a leading 1 and M � 17 trailing 0's to produce get-man(x0). For op =
OP-SQRT, a separate pair of tables, represented by the functions sqrt-rom-p and sqrt-
rom-n, is similarly used to derive an initial approximation to the reciprocal of the square
root of b.

The functions R0, S0, and S1, which are de�ned in terms of these functions, represent
the computation of get-man(x0) in the three cases listed in Lemma 4.4 below.

De�nition 4.1 For all i 2 N,
(a) R0(i) = 216 + recip-rom-p(i[14 : 5]) + recip-rom-n(cat(i[14 : 10]; i[4 : 0]; 5));
(b) S0(i) = 216 + sqrt-rom-p(i[14 : 5]) + sqrt-rom-n(cat(i[14 : 10]; i[4 : 0]; 5));
(c) S1(i) = 216 + sqrt-rom-p(210 + i[14 : 5])

+sqrt-rom-n(210 + cat(i[14 : 10]; i[4 : 0]; 5)).

While space does not allow a complete listing of the tables here, we list instead the
following three lemmas, which contain all required relevant information, and which have
all been veri�ed by direct computation, using ACL2:

Lemma 4.1 For all i 2 N, if i < 215, then R0(i) 2 N, S0(i) 2 N, S1(i) 2 N, and

expo(R0(i)) = expo(S0(i)) = expo(S1(i)) = 16:

Lemma 4.2 For all i 2 N, if i < 215, then

(a) 232 � 3 � 216 < R0(i)(2
15 + i) < R0(i)(2

15 + i+ 1) < 232 + 3 � 216;
(b) 248 � 3 � 232 < S0(i)

2(215 + i) < S0(i)
2(215 + i+ 1) < 248 + 3 � 232;

(c) 249 � 3 � 233 < S1(i)
2(215 + i) < S1(i)

2(215 + i+ 1) < 249 + 3 � 233;

36

Lemma 4.3 For all i 2 N, if i < 215, then S0(i)
2 < 233 � S1(i)

2:

The relationship between x0 and b may be described in terms of R0, S0, and S1:

Lemma 4.4 Let I = get-man(b)[M � 2 : M � 16]. Assume that if op = OP-DIV, then
get-expo(b) � 218 � 3. Then x0 is normal and

(a) sgn(x̂0) =

�
sgn(b̂) if op = OP-DIV

1 if op = OP-SQRT;

(b) sig(x̂0) =

8<
:

2�16R0(I) if op = OP-DIV

2�16S0(I) if op = OP-SQRT and get-expo(b)[0] = 0
2�16S1(I) if op = OP-SQRT and get-expo(b)[0] = 1;

(c) expo(x̂0) =

� �expo(b̂)� 1 if op = OP-DIV

�bexpo(b̂)=2c � 1 if op = OP-SQRT:

Proof: First consider the case op = OP-DIV. By Lemma 2.5,

get-man(b)[M � 2 : M � 11] = get-man(b)[M � 2 : M � 16][14 : 5] = I [14 : 5];

hence p-value = recip-rom-p(I [14 : 5]). Similarly,

n-value = recip-rom-n(cat(I [14 : 10]; I [4 : 0]; 5)):

By Lemma 4.1,

p-value+ n-value = R0(I)� 216 < 217 � 216 = 216;

hence

estimate = p-value+ n-value < 216

and by Lemma 2.8,

get-man(x0) = 2M�17estimate | 2M�1 = 2M�17(estimate | 216)

= 2M�17(estimate+ 216) = 2M�17R0(I):

Since estimate[16] = 0 and get-expo(b) � 218 � 3,

get-expo(x0) = rem(218 � 2 + 218 � get-expo(b)� 1; 218) = 218 � 3� get-expo(b):

The OP-DIV case now follows easily from Lemmas 4.1 and 2.15.
In the case op = OP-SQRT, we may similarly show that get-man(x0) = 2M�17Sj(I),

where j = get-expo(b)[0]. Now

(218 + 217 � 3 + comp1(get-expo(b); 19) + estimate[16])[18 : 0]

= (218 + 217 � 3 + comp1(get-expo(b); 19))[18 : 0]

= rem(218 + 217 � 3 + comp1(get-expo(b); 19); 219)

= rem(218 + 217 � 3 + 219 � get-expo(b)� 1; 219)

= rem(218 + 217 � 3 + 219 � (expo(b̂) + 217 � 1)� 1; 219)

= rem(218 � expo(b̂)� 3; 219)

= 218 � expo(b̂)� 3:

37

Thus,

get-expo(x0) = shr(218 � expo(b̂)� 3; 0; 19)

= b(218 � expo(b̂)� 3)=2c
= 217 � 1 + b�(expo(b̂) + 1)=2c;

and

expo(x̂0) = b�(expo(b̂) + 1)=2c = �bexpo(b̂)=2c � 1:2

The error associated with x0 is characterized by the next two lemmas, which also
establish the bounds required by Lemma 3.5:

Lemma 4.5 If op = OP-DIV and get-expo(b) � 218 � 3, then

(a) j1� x̂0b̂j < 3 � 2�16; (b) 3=2 < sig(x̂0)sig(b̂) < 3.

Proof: (a) By Lemma 4.4,

x̂0b̂ = sig(x̂0)sig(b̂)2
expo(x̂0)+expo(b̂) = sig(x̂0)sig(b̂)=2:

Let I = get-man(b)[M � 2 : M � 16]. Since 2M�1 � get-man(b) < 2M ,

I = brem(get-man(b); 2M�1)=2M�16c = b(get-man(b)� 2M�1)=2M�16c
= bget-man(b)=2M�16 � 215c;

hence

get-man(b)=2M�16 � 215 � 1 < I � get-man(b)=2M�16 � 215;

which along with Lemma 2.15, implies

2�15(215 + I) � sig(b̂) < 2�15(215 + I + 1):

Thus, by Lemmas 4.4 and 4.2,

1� 3 � 2�16 < 2�32R0(I)(2
15 + I) � x̂0b̂ < 2�32R0(I)(2

15 + I + 1) < 1 + 3 � 2�16:

(b) This follows from (a) and the observation that sig(x̂0)sig(b̂) = 2x̂0b̂. 2

Lemma 4.6 If op = OP-SQRT, b̂ > 0, and get-expo(b) � 218 � 3, then

(a) j1� x̂0
2b̂j < 3 � 2�16;

(b) 3=2 < sig(x̂0
2)sig(b̂) < 3;

(c) x̂0
2 is representable.

Proof: Let I = get-man(b)[M � 2 : M � 16] and expo(b̂) = 2r + s, where 0 � s � 1.

Case 1: s = 0
(a) In this case, get-expo(b)[0] = 1. By Lemma 4.4,

x̂0
2b̂ = sig(x̂0)

2sig(b̂)22expo(x̂0)+expo(b̂) = sig(x̂0)
2sig(b̂)22(�r�1)+2r

= sig(x̂0)
2sig(b̂)=4 = 2�34S1(I)

2sig(b̂):

38

Thus, by Lemma 4.2,

1� 3 � 2�16 < 2�49S1(I)
2(215 + I) � x̂0

2b̂ < 2�49S1(I)
2(215 + I + 1) < 1 + 3 � 2�16:

(b) By Lemmas 4.4 and 4.3, sig(x̂0)
2 = 2�32S1(I)

2 � 2, which implies sig(x̂0
2) =

sig(x̂0)
2=2. Thus,

x̂0
2b̂ = sig(x̂0)

2sig(b̂)=4 = sig(x̂0
2)sig(b̂)=2:

The claim now follows from (a).
(c) By Lemmas 4.1 and 4.4, x̂0 is 17-exact, and it follows that x̂0

2 is M -exact. Since

expo(b̂) � 1� 217,

expo(x̂0) � �b(1� 217)=2c � 1 = 216 � 1

and

expo(x̂0
2) � 2expo(x̂0) + 1 � 217 � 1:

But since expo(b̂) = get-expo(b)� (217 � 1) � (218 � 3)� (217 � 1) = 217 � 2,

x̂0
2 = sig(x̂0

2)sig(b̂)=2b̂ � sig(b̂)=2b̂ = 2�1�expo(b̂) � 21�217 ;

hence expo(x̂0
2) � 1� 217.

Case 2: s = 1
(a) In this case, get-expo(b)[0] = 0. By Lemma 4.4,

x̂0
2b̂ = sig(x̂0)

2sig(b̂)22expo(x̂0)+expo(b̂) = sig(x̂0)
2sig(b̂)22(�r�1)+2r+1

= sig(x̂0)
2sig(b̂)=2 = 2�33S0(I)

2sig(b̂):

Thus, by Lemma 4.2,

1� 3 � 2�16 < 2�48S0(I)
2(215 + I) � x̂0

2b̂ < 2�48S0(I)
2(215 + I + 1) < 1 + 3 � 2�16:

(b) By Lemmas 4.4 and 4.3, sig(x̂0)
2 = 2�32S0(I)

2 < 2, which implies sig(x̂0
2) =

sig(x̂0)
2. Thus,

x̂0
2b̂ = sig(x̂0)

2sig(b̂)=2 = sig(x̂0
2)sig(b̂)=2:2

(c) As in Case 1, x̂0
2 is M -exact and expo(x̂0

2) � 217 � 1. Since expo(b̂) � 217 � 2

and expo(b̂) is odd, expo(b̂) � 217 � 3, hence

expo(x̂0) � �b(217 � 3)=2c � 1 = 1� 216

and

expo(x̂0
2) � 2expo(x̂0) � 2� 217:

39

4.3 The Operation OP-DIV

Given an initial approximation �0 of 1=b̂, the Newton-Raphson formula

�i = �i�1(2� b̂�i�1)

gives a converging sequence of approximations �1; �2; : : : The relative error of �i is�����
1=b̂� �i

1=b̂

����� = j1� b̂�ij:

Thus, the following lemma (which is proved by simple arithmetic) shows that this se-
quence is quadratically convergent:

Lemma 4.7 Let b; x 2 Q and let y = x(2� bx). Then 1� by = (1� bx)2:

Using Lemma 4.7, we shall derive an error estimate for q̂ as an approximation of â=b̂.
First, we prove the following technical lemma:

Lemma 4.8 Assume q̂ is (�+ 1)-exact, where � � 1, and q̂ 6= 0. Let � 2 Q satisfy

expo(�) � expo(q̂);

jq̂ � �j � 2expo(�)���1;

and

jâ=b̂� �j < 2expo(â=b̂)���2:

Then

jq̂ � â=b̂j < 2min(expo(q̂);expo(â=b̂))��:

Proof: First note that jq̂j � 3
4 j�j > 9

16 jâ=b̂j, hence expo(q̂) � expo(â=b̂)� 1. Since

jq̂ � â=b̂j � jq̂ � �j+ jâ=b̂� �j < 2expo(q̂)���1 + 2expo(q̂)���1 = 2expo(q̂)��;

we may assume expo(â=b̂) < expo(q̂). But jâ=b̂j > jq̂j=2, hence expo(â=b̂) = expo(q̂)� 1.

We may also assume expo(�) = expo(q̂), for otherwise expo(�) � expo(â=b̂) and

jq̂ � â=b̂j � jq̂ � �j+ jâ=b̂� �j < 2expo(�)���1 + 2expo(â=b̂)���1 � 2expo(â=b̂)��:

If jq̂j > 2expo(q̂), then jq̂j � 2expo(q̂) + 2expo(q̂)�� by Lemma 2.13, and

jq̂ � â=b̂j � jq̂j � jâ=b̂j > 2expo(q̂) + 2expo(q̂)�� � 2expo(â=b̂)+1 = 2expo(q̂)��:

Therefore, jq̂j = 2expo(q̂), which implies j�j � jq̂j and

jq � â=b̂j = jq̂j � jâ=b̂j � j�j � jâ=b̂j � j� � â=b̂j < 2expo(â=b̂)��:2

We shall assume here that â and b̂ are both positive; this assumption will be relieved
in the proof of the main theorem:

40

Lemma 4.9 Assume op = OP-DIV, â > 0, b̂ > 0, expo(b̂) � 217 � 2, 3 � 2�217 < jâ=b̂j <
3 � 2217�1, and mbits(pc) = �. Then q is normal, q̂ is (�+ 1)-exact and

jq̂ � â=b̂j < 2min(expo(q̂);expo(â=b̂))��:

Proof: Let � = 2�M , � = 2expo(â=b̂), and � = 3=216. We de�ne a sequence of

approximations �i of â=b̂ by

�i =

�
x̂0 if i = 0

�i�1(2� b̂�i�1) if i > 0.

Since â and b̂ are positive, so are the �i, as well as every product computed by FPU-MUL.
By Lemmas 4.5 and 4.7, j1� b̂�ij < �2

i

for all i. Thus, b̂�i < 1+ �2
i

and 2� b̂�i < 1+ �2
i

.
We also have

â�i = (â=b̂)(b̂�i) < 2�(1 + �2
i

)

and

jâ=b̂� â�ij = (â=b̂)j1� b̂�ij < (â=b̂)�2
i

< 2��2
i

:

By Theorem 1, d̂0 = near(b̂x̂0;M) = near(b̂�0;M), hence by Lemma 2.26,

jd̂0 � b̂�0j � 2expo(b̂�0)�M � 2�M = �:

Note that our bounds for jâ=b̂j ensure that the hypothesis of Theorem 1 are satis�ed by
x = a and y = x0. Thus,

jn̂0 � â�0j � 2expo(â�0)�M � 2expo(â=b̂)+1�M = 2��;

and by Lemma 3.5 (the hypotheses of which are ensured by Lemma 4.5),

0 < 2� b̂�0 � 2� � r̂0 < 2� b̂�0:

Therefore,

n̂0r̂0 < (â�0 + 2��)(2� b̂�0) = â�1 + 2��(2� b̂�0) < â�1 + 2��(1 + �)

< â�1 + 2�� + 2�13��;

n̂0r̂0 � (â�0 � 2��)(2� b̂�0 � 2�) = â�1 � 2��(2� b̂�0)� 2�â�0 + 4�2�

> â�1 � 2��(1 + �)� 2�2�(1 + �) > â�1 � 6�� � 2�12��;

and

jn̂0r̂0 � â=b̂j � jn̂0r̂0 � â�1j+ jâ�1 � â=b̂j < 7�� + 2��2

< (7 � 2�75 + 9 � 2�31)� < 2�27�

= 2expo(â=b̂)�27:

Suppose pc = PC-32. Then � = 24 and

jn̂0r̂0 � â=b̂j < 2expo(â=b̂)�27 < 2expo(â=b̂)���2:

41

By Lemma 3.7, q̂ is (�+1)-exact, expo(n̂0r̂0) � expo(q̂), and jn̂0r̂0�q̂j � 2expo(n̂0r̂0)���1.
We may now invoke Lemma 4.8 with � = n̂0r̂0, which yields the desired inequality.

Thus, we may assume that pc 6= PC-32. Now

d̂0r̂0 < (b̂�0 + �)(2� b̂�0) = b̂�1 + �(2� b̂�0) < b̂�1 + �+ 2�14�;

d̂0r̂0 � (b̂�0 � �)(2� b̂�0 � 2�) = b̂�1 � 2�b̂�0 � �(2� b̂�0) + 2�2

> b̂�1 � 2�(1 + �)� �(1 + �) > b̂�1 � 3�� 2�13�;

and Lemma 2.26 implies

jd̂1 � d̂0r̂0j � 2expo(d̂0r̂0)�M � �;

hence

d̂1 � d̂0r̂0 + � < b̂�1 + 2�+ 2�14�

and

d̂1 � d̂0r̂0 � � > b̂�1 � 4�� 2�13�:

By Lemmas 3.5 and 3.6,

r̂1 < 2� d̂0r̂0 < (2� b̂�1) + 3�+ 2�13�

and

r̂1 � 2� d̂0r̂0 � 2� > (2� b̂�1)� 3�� 2�14� > 0:

Continuing in this manner, we have

jn̂1 � n̂0r̂0j � 2expo(n̂0r̂0)�M � 2��;

n̂1 � n̂0r̂0 + 2�� < â�1 + 4�� + 2�13��;

n̂1 � n̂0r̂0 � 2�� > â�1 � 8�� � 2�12��;

n̂1r̂1 < (â�1 + 4�� + 2�13��)((2 � b̂�1) + 3�+ 2�13�)

< â�2 + (4�� + 2�13��)(1 + �2) + 2�(1 + �2)(3�+ 2�13�)

+(4�� + 2�13��)(3� + 2�13�)

< â�2 + 10�� + 2�11��;

n̂1r̂1 > (â�1 � 8�� � 2�12��)((2 � b̂�1)� 3�+ 2�14�)

> â�2 � (8�� + 2�12��)(1 + �2)� 2�(1 + �2)(3�+ 2�14�)

> â�2 � 14�� � 2�11��;

42

and

jn̂1r̂1 � â=b̂j � jn̂1r̂1 � â�2j+ jâ�2 � â=b̂j < 15�� + 2�11�� + 2��4

< (15 � 2�75 + 81 � 2�63)� < 2�56�

= 2expo(â=b̂)�56:

Suppose pc = PC-64, and therefore � = 53. Then

jn̂1r̂1 � â=b̂j < 2expo(â=b̂)�56 < 2expo(â=b̂)���2:

The remaining hypotheses of Lemma 4.8, with n̂1r̂1 substituted for �, again follow from
Lemma 3.7, and the desired inequality follows.

Thus, we may assume pc = PC-80 or pc = PC-87. Continuing, we have

d̂1r̂1 < (b̂�1 + 2�+ 2�14�)((2 � b̂�1) + 3�+ 2�13�)

< b̂�2 + (2�+ 2�14�)(1 + �2) + (3�+ 2�13�)(1 + �2)

+(2�+ 2�14�)(3� + 2�13�)

< b̂�2 + 5�+ 2�12�;

d̂1r̂1 > (b̂�1 � 4�� 2�13�)((2 � b̂�1)� 3�� 2�14�)

> b̂�2 � (4�+ 2�13�)(1 + �2)� (1 + �2)(3�+ 2�14�)

> b̂�2 � 7�� 2�12�;

r̂2 < 2� d̂1r̂1 < (2� b̂�2) + 7�+ 2�12�;

r̂2 � 2� d̂1r̂1 � 2� > (2� b̂�2)� 7�� 2�12� > 0;

jn̂2 � n̂1r̂1j � 2expo(n̂1r̂1)�M � 2��;

n̂2 � n̂1r̂1 + 2�� < â�2 + 12�� + 2�11��;

n̂2 � n̂1r̂1 � 2�� > â�2 � 16�� � 2�11��;

n̂2r̂2 < (â�2 + 12�� + 2�11��)((2 � b̂�2) + 7�+ 2�12�)

< â�3 + (12�� + 2�11��)(1 + �4) + 2�(1 + �4)(7�+ 2�12�)

+(12�� + 2�11��)(7� + 2�12�)

< â�3 + 26�� + 2�9��;

and

n̂2r̂2 > (â�2 � 16�� � 2�11��)((2 � b̂�2)� 7�+ 2�12�)

> â�3 � (16�� + 2�11��)(1 + �4)� 2�(1 + �4)(7�2 + 2�12�)

> â�3 � 30�� � 2�9��:

Finally, since � � 68,

jn̂2r̂2 � â=b̂j � jn̂2r̂2 � â�3j+ jâ�3 � â=b̂j < 31�� + 2��8

< (30 � 2�75 + 81 � 2�110)� < 2�70�

� 2expo(â=b̂)���2;

and the lemma follows from Lemma 4.8, with � = n̂2r̂2. 2

43

4.4 The Operation OP-SQRT

The Newton-Raphson formula for the reciprocal square root is

�i =
�i�1

2
(3� b�2i�1):

Since the relative error of this approximation is

�����
�i � 1=

p
b̂

1=
p
b̂

����� = j
p
b̂�i � 1j < j

p
b̂�i � 1jj

p
b̂�i + 1j = jb̂�2 � 1j;

convergence is established by the following lemma, which is proved in [8]:

Lemma 4.10 Let b; x 2 Q with 0 � bx2 � 4 and let y = x
2 (3� bx2). Then

0 � 1� by2 � (1� bx2)2:

We shall use Lemma 4.10 to derive an error estimate for q in the OP-SQRT case.

Lemma 4.11 For all i 2 N, let �i be de�ned by

�i =

�
x̂0 if i = 0
�i�1
2 (3� b̂b�2i�1) if i > 0,

and let � = 3=216. Assume that q̂ > 0 and q̂ is (�+ 1)-exact, where � � 24.

Let `; h 2 Q such that 0 � ` � h and `2 � b̂ � h2. Let �; � 2 Q+ and i 2 Z+ such
that

expo(�) � expo(q̂);

jq̂ � �j � 2expo(�)���1;

jb̂�i � �j < 2bexpo(b̂)=2c�;

and

2� + 8�2
i � 2���1:

Then

h > q � 2min(expo(q̂);expo(h))��

and

` < q + 2min(expo(q̂);expo(`))��:

Proof: By Lemmas 4.6 and 4.10, 0 � 1� b̂�2i < �2
i

, where � = 3=216, and hence

(b̂�i)
2 = b̂(b̂�2i) > b̂(1� �2

i

) > 2expo(b̂)�1 > (2bexpo(b̂)=2c�1)2

and b̂�i > 2bexpo(b̂)=2c�1.

44

Since jq̂ � �j � 2expo(�)���1 � �=4, q̂ � 3
4�. Since � < 2���2,

jb̂�i � �j < 2bexpo(b̂)=2c���2 < b̂�i2
���1 � b̂�i=4;

and hence q̂ � 3
4� >

9
16 b̂�i, which implies

q̂2 >
81

256
(b̂�i)

2 >
81

256
b̂(1� �2

i

) > b̂=4:

It follows that expo(q̂) � bexpo(b̂)=2c � 1.

Since h2 � b̂ � b̂(b̂�2i) = (b̂�i)
2,

h � b̂�i � q̂ � (jq̂ � �j+ jb̂�i � �j) > q̂ � (2expo(�)���1 + 2expo(q̂)���1) � q̂ � 2expo(q̂)��:

Therefore, we may assume expo(h) < expo(q̂). But jhj > jq̂j=2, hence expo(h) =

expo(q̂) � 1. Also note that expo(h) � bexpo(b̂)=2c, for otherwise h < 2bexpo(b̂)=2c

and

b̂ � h2 < 22bexpo(b̂)=2c � 2expo(b̂):

We may further assume expo(�) = expo(q̂), for otherwise expo(�) � expo(h) and

h � b̂�i � q̂ � (jq̂ � �j+ jb̂�i � �j) > q̂ � (2expo(�)���1 + 2bexpo(b̂)=2c���2) � q̂ � 2expo(h)��:

If q̂ > 2expo(q̂), then q̂ � 2expo(q̂) + 2expo(q̂)�� by Lemma 2.13, and

h > q̂ � 2expo(q̂)�� � 2expo(q̂) = 2expo(h)+1:

Therefore, q̂ = 2expo(q̂), which implies � � q̂ and

h � b̂�i = q̂ � (q̂ � b̂�i) � q̂ � (� � b̂�i) > q̂ � 2bexpo(b̂)=2c���2 � q̂ � 2expo(h)��:

In order to derive the bound for `, we may assume expo(q̂) � expo(`), for otherwise

` < q̂ and the inequality holds trivially. Since (b̂�i)
2 > b̂(1� �2

i

),

`2 � b̂ < (b̂�i)
2=(1� �2

i

) < [b̂�i=(1� �2
i

)]2;

and hence

` < b̂�i=(1� �2
i

) < b̂�i(1 + 2�2
i

):

Recall that expo(q̂) � bexpo(b̂)=2c � 1 and q̂ > 9
16 b̂�i, hence b̂�i < 2expo(q̂)+2. Thus,

` < b̂�i(1 + 2�2
i

) < b̂�i + 8�2
i

2expo(q̂) � q̂ + jq̂ � �j+ j� � b̂�ij+ 8�2
i

2expo(q̂)

< q̂ + 2expo(q̂)���1 + 2bexpo(b̂)=2c� + 8�2
i

2expo(q̂) � q̂ + 2expo(q̂)(2���1 + 2� + 8�2
i

)

� q̂ + 2expo(q̂)(2���1 + 2���1) = q̂ + 2expo(q̂)��:2

We shall also require the following lemma, in order to invoke Lemma 3.8.

Lemma 4.12 Under the hypothesis of Lemma 4.11, jq̂2 � b̂j < 2expo(b̂)�3.

45

Proof: Since expo(b̂) � 2bexpo(b̂)=2c+ 1, b̂ < 2expo(b̂)+1 � (2bexpo(b̂)=2c+1)2: Thus,

(b̂�i)
2 = b̂(b̂�2i) � b̂ < (2bexpo(b̂)=2c+1)2

and b̂�i < 2bexpo(b̂)=2c+1. Now since

jq̂ � b̂�ij � jq̂ � �j+ jb̂�i � �j < 2expo(q̂)�� � 2bexpo(b̂)=2c+1��

and

jq̂ + b̂�ij � 2b̂�i + jq̂ � b̂�ij < 2bexpo(b̂)=2c+2 + 2bexpo(b̂)=2c+1�� < 2bexpo(b̂)=2c+3;

we have

jq̂2 � (b̂�i)
2j = jq̂ � b̂�ijjq̂ + b̂�ij < 22bexpo(b̂)=2c+4�� � b̂24��:

Thus,

jq̂2 � b̂j � jq̂2 � (b̂�i)
2j+ b̂j1� b̂�2i j < b̂25�� < 2expo(b̂)+6��:2

Lemma 4.13 Assume op = OP-SQRT, b̂ > 0, expo(b̂) � 217 � 2, and let mbits(pc) = �.

Let `; h 2 Q such that 0 � ` � h and `2 � b̂ � h2. Then q is normal, q̂ is (�+1)-exact,

` < q̂ + 2min(expo(q̂);expo(`))��;

h > q̂ � 2min(expo(q̂);expo(h))��;

and

jq̂2 � b̂j < 2expo(b̂)�3:

Proof: Let � = 2�M , � = 2bexpo(b̂)=2c, and � = 3=216. For i 2 N, let �i be de�ned

as in Lemma 4.11. Then b̂ < 4�2 and j1� b̂�2i j < �2
i

. For i > 0, b̂�2i � 1 and b̂�i < 2�,

which implies 2expo(b̂�i) � �. On the other hand,

(b̂�0)
2 = b̂(b̂�20) < 4�2(1 + �) < (2�(1 + �))2;

hence b̂�0 < 2�(1 + �) < 4�, which implies 2expo(b̂�0) � 2�.

Also note that for all i, (3� b̂�2i)=2 = 1 + (1� b̂�2i)=2 < 1 + �2
i

=2.
We proceed as in the proof of Lemma 4.9, invoking Lemmas 4.11 and4.12 in each of

several cases.
According to Lemma 4.6(c), the hypothesis of Theorem 1 is satis�ed by x = y = x̂0.

Thus,

t̂0 = near(x̂0
2;M) = x̂0

2 = �20 :

Similarly,

d̂0 = near(b̂�0;M)

46

and

n̂0 = near(b̂t̂0;M) = near(b̂�20 ;M):

Therefore, by Lemma 2.26,

jd̂0 � b̂�0j � 2expo(b̂�0)�M � 2��

and

jn̂0 � b̂�20 j � 2expo(b̂�
2

0
)�M � �:

By Lemmas 3.5 and 4.6,

(3� b̂�20)=2� 2� � r̂0 < (3� b̂�20)=2:

Thus,

d̂0r̂0 < (b̂�0 + 2��)(3� b̂�20)=2 < b̂�1 + 2��(1 + �=2) < b̂�1 + 2�� + 2�14��

and

d̂0r̂0 > (b̂�0 � 2��)((3� b̂�20)=2� 2�) > b̂�1 � 2��(1 + �=2)� 2�(1 + �)2�

> b̂�1 � 6�� � 2�12��:

Suppose pc = PC-32 and � = 24. We shall apply Lemmas 4.11 and 4.12 with � = d̂0r̂0,
i = 1, and � = 7�. Under these substitutions, we have

jb̂�i � �j < 7�� = 2bexpo(b̂)=2c�

and

2� + 8�2
i

= 14 � 2�M + 8�2 � 14 � 2�75 + 9 � 2�29 < 2�25 = 2���1:

The remaining hypotheses of Lemma 4.11 are ensured by Lemma 3.7, and the conclusion
follows.

Thus, we may assume pc 6= PC-32. Now we have t̂1 = near(r̂0
2;M), hence jt̂1�r̂02j �

�, which implies

t̂1 � (3� b̂�20)
2=4 + �

and

t̂1 � ((3� b̂�20)=2� 2�)2 � � > (3� b̂�20)
2=4� 4�(1 + �=2)� � > (3� b̂�20)

2=4� 5�� 2�13�:

Consequently,

n̂0t̂1 � (b�20 + �)((3� b̂�20)
2=4 + �) < b̂�21 + (1 + �)�+ �(1 + �=2)2 + �2

< b̂�21 + 2�+ 2�13�

and

n̂0t̂1 � (b�20 � �)((3 � b̂�20)
2=4� 5�� 2�13�)

> b̂�21 � (1 + �)(5�+ 2�13�)� �(1 + �=2)2 > b̂�21 � 6�� 2�11�:

47

Since d̂1 = near(d̂0r̂0;M), jd̂1 � d̂0r̂0j � 2expo(d̂0r̂0)�M � 2��, hence

b̂�1 � 8�� � 2�12�� < d̂1 < b̂�1 + 4�� + 2�14��:

Similarly, n̂1 = near(n̂0t̂1;M), jn̂1 � n̂0t̂1j � 2expo(n̂0 t̂1)�M � �, and

b̂�21 � 7�� 2�11� < n̂1 < b̂�21 + 3�+ 2�13�:

By Lemmas 3.5 and 3.6,

r̂1 < (3� n̂0t̂1)=2 < (3� b̂�21)=2 + 3�+ 2�10�

and

r̂1 � (3� n̂0t̂1)=2� 2� > (3� b̂�21)=2� 3�� 2�12�:

Thus,

d̂1r̂1 < (b̂�1 + 4�� + 2�14��)((3� b̂�21)=2 + 3�+ 2�10�)

< b̂�2 + 2�(3�+ 2�10�) + (4�� + 2�14��)(1 + �2=2)

+(3�+ 2�10�)(4�� + 2�14��)

< b̂�2 + 10�� + 2�8��

and

d̂1r̂1 > (b̂�1 � 8�� � 2�12��)((3� b̂�21)=2� 3�+ 2�12�)

> b̂�2 � 2�(3�+ 2�12�)� (8�� + 2�12��)(1 + �2=2)

+(3�+ 2�10�)(4�� + 2�14��)

> b̂�2 � 14�� � 2�10��:

Suppose pc = PC-64 and � = 53. We shall again invoke Lemmas 4.11 and 4.12, now
with � = d̂1r̂1, i = 2, and � = 15�. Thus

jb̂�i � �j < 15�� = 2bexpo(b̂)=2c�

and

2� + 8�2
i

= 30 � 2�M + 8�4 � 30 � 2�75 + 81 � 2�61 < 2�54 = 2���1:

The remaining hyptheses of Lemma 4.11 are again ensured by Lemma 3.7.
Thus, we may assume pc 6= PC-80 or pc 6= PC-87. Continuing in the same manner,

we have

jt̂2 � r̂1
2j � 2expo(r̂1

2)�M � �;

t̂2 < (3� b̂�21)
2=4 + 2(1 + �2=2)2(3�+ 2�10�) + (3�+ 2�10�)2 + �

< (3� b̂�21)
2=4 + 7�+ 2�8�;

t̂2 > (3� b̂�21)
2=4� 2(1 + �2=2)2(3�+ 2�12�)� �

> (3� b̂�21)
2=4� 7�+ 2�10�;

48

jd̂2 � d̂1r̂1j � 2expo(d̂1r̂1)�M � 2��;

b̂�2 � 16�� � 2�10�� < d̂2 < b̂�2 + 12�� + 2�8��;

n̂1t̂2 < (b̂�21 + 3�+ 2�13�)((3� b̂�21)
2=4 + 7�+ 2�8�)

< b̂�22 + (7�+ 2�8�) + (1 + �2=2)2(3�+ 2�13�)

+(3�+ 2�13�)(7�+ 2�8�)

< b̂�21 + 10�+ 2�7�;

n̂1t̂2 > (b̂�21 � 7�� 2�11�)((3� b̂�21)
2=4� 7�+ 2�10�)

> b̂�22 � (7�+ 2�10�)� (1 + �2=2)2(7�+ 2�11�)

> b̂�21 � 14�� 2�9�;

r̂2 < (3� n̂1 t̂2)=2 < (3� b̂�22)=2 + 7�+ 2�10�;

r̂2 � (3� n̂1t̂2)=2� 2� > (3� b̂�22)=2� 7�� 2�8�;

d̂2r̂2 < (b̂�2 + 12�� + 2�8��)((3 � b̂�22)=2 + 7�+ 2�10�)

< b̂�3 + 2�(7�+ 2�10�) + (1 + �4=2)(12�� + 2�8��)

+(12�� + 2�8��)(7� + 2�10�)

< b̂�3 + 26�� + 2�7��;

and

d̂2r̂2 > (b̂�2 � 16�� � 2�10��)((3 � b̂�22)=2� 7�+ 2�8�)

> b̂�3 � 2�(7�+ 2�8�)� (1 + �4=2)(16�� + 2�10��)

> b̂�3 � 30�� � 2�6��:

Finally, we apply Lemmas 4.11 and 4.12 with � = d̂2r̂2, i = 3, and � = 31�. Thus,

jb̂�i � �j < 31�� = 2bexpo(b̂)=2c�;

and since � � 68,

2� + 8�2
i

= 62 � 2�M + 8�8 � 62 � 2�75 + 2�112 < 2�69 � 2���1:

The proof is completed by invoking Lemmas 3.7 and 4.11. 2

4.5 Final Rounding

The remaining analysis pertains to the latter part of FPU-DIV-SQRT, in which the
approximation q is adjusted to produce the correctly rounded result.

The signi�cance of the variables q-guard and q-lsb is given by the following:

49

Lemma 4.14 Assume that q is normal and q̂ is (�+ 1)-exact, where � = mbits(pc).

(a) q-guard = 0, q̂ is �-exact;
(b) q-lsb = 0, trunc(q̂; �) is (�� 1)-exact.

Proof: (a) Let m = get-man(q). Then m is (�+ 1)-exact, i.e,

m2��expo(m) = m2�+1�M 2 Z

and

q-guard = m[M � �� 1] = rem(bm2�+1�Mc; 2) = rem(m2�+1�M ; 2):

But

m is �-exact, m2��M 2 Z, m2�+1�M is even, q-guard = 0:

(b) q-lsb = m[M��] = rem(bm2��Mc; 2) and trunc(m;�) = bm2��Mc2M��. Thus,

trunc(m;�) is (�� 1)-exact , bm2��Mc2M��2(��1)�1�(M�1) = bm2��Mc=2 2 Z
, bm2��Mc is even
, q-lsb = 0:2

The correctness proof for division will be based on the following:

Lemma 4.15 Let � = mbits(pc). Suppose q is normal, q̂ is (� + 1)-exact, sign = 0,

and 21�217 < q̂ < 22
17

(2� 21��). Let x 2 Q such that

(a) jx� q̂j < 2min(expo(q̂);expo(x))��;
(b) if rem-neg = 1, then q̂ > x;
(c) if rem-pos = 1, then q̂ < x;
(d) if rem-zero = 1, then q̂ = x.

Then z is normal and rnd(x; rc; pc) = ẑ.

Proof: Note that the hypothesis implies that ẑ > 0 and x > 0.

Case 1: rc = RC-NEG or rc = RC-CHOP

In this case, rnd(x; rc; pc) = trunc(x; �).

Subcase 1.1: q-guard = 0 and rem-neg = 1
By Lemma 4.14, q̂ is �-exact. Also, x < q̂. By Lemma 2.24,

get-man(q) & (2M � 2M��) = trunc(get-man(q); �) = get-man(q):

If get-man(q) = 2M�1, then q̂ = 2expo(q̂), where by hypothesis, expo(q̂) > 1 � 217. In
this case, ẑ = (2 � 21��)2expo(q̂)�1 and expo(ẑ) = expo(q̂) � 1. In all other cases, q̂ �
2expo(q̂)+21+expo(q̂)��, ẑ = q̂�21+expo(q̂)��, ẑ � 2expo(q̂), and expo(ẑ) = expo(q̂). In any
case, ẑ + 21+expo(ẑ)�� = q̂. Since trunc(x; �) � x < q̂, trunc(x; �) � ẑ by Lemma 2.13.
Also, trunc(x; �) � ẑ, for otherwise we would have x < ẑ, expo(x) � expo(ẑ), and

x > q̂ � 2expo(x)�� > q̂ � 21+expo(ẑ)�� = ẑ:

Subcase 1.2: q-guard = 1

50

In this case, q̂ is not �-exact, and ẑ = trunc(q̂; �). By Lemma 2.27, ẑ = q̂�2expo(q̂)��.
Therefore,

trunc(x; �) � x < q̂ + 2expo(q̂)�� = ẑ + 2expo(q̂)+1�� = ẑ + 2expo(ẑ)+1��;

and hence trunc(x; �) � ẑ. But since x > q̂�2expo(q̂)�� = ẑ, trunc(x; �) � trunc(ẑ; �) =
ẑ.

Subcase 1.3: q-guard = rem-neg = 0
q̂ is �-exact, x � q̂, and ẑ = trunc(q̂; �) = q̂.
In this case,

trunc(x; �) � x < q̂ + 2expo(q̂)�� = ẑ + 2expo(ẑ)�� < ẑ + 2expo(ẑ)+1��;

which implies trunc(x; �) � ẑ. But x � q̂ = ẑ implies trunc(x; �) � ẑ.

Case 2: rc = RC-POS

In this case, rnd(x; rc; pc) = away(x; �).

Subcase 2.1: q-guard = 1
Here, q̂ is (�+1)-exact but not �-exact. By the same reasoning as used in Subcase 1.1,

we may show that

ẑ = trunc(q̂; �) + 2expo(q̂)+1��:

But then by Lemma 2.27,

ẑ = q̂ � 2expo(q̂)�� + 2expo(q̂)+1�� = q̂ + 2expo(q̂)�� = away(q̂; �):

Since x < q̂ + 2expo(q̂)�� = ẑ, away(x; �) � away(ẑ; �) = ẑ. But x > q̂ � 2expo(q̂)�� =
trunc(q̂; �), hence away(x; �) � trunc(q̂; �) + 2expo(q̂)+1�� = ẑ.

Subcase 2.2: q-guard = 0 and rem-pos = 1.
In this case, q̂ is �-exact, q̂ < x, and

ẑ = trunc(q̂; �) + 2expo(q̂)+1�� = q̂ + 2expo(q̂)+1��:

Since x < ẑ, away(x; �) � away(ẑ; �) = ẑ. But away(x; �) � x > q̂, so away(x; �) �
q̂ + 2expo(q̂)+1�� = ẑ.

Subcase 2.3: q-guard = rem-pos = 0
q̂ is �-exact, x � q̂, and ẑ = trunc(q̂; �) = q̂. Thus,

away(x; �) � away(q̂; �) = q̂ = ẑ:

Since x > q � 2expo(x)��, away(x; �) � near(x; �) � q̂ by Lemma 2.28.

Case 3: rc = RC-NEAR and q-guard = 0
Here, q̂ is �-exact, rnd(x; rc; pc) = near(x; �), and ẑ = trunc(q̂; �) = q̂.
Since x < q̂ + 2expo(q̂)�� implies near(x; �) � q̂ = ẑ by Lemma 2.28(b). But since

x > q̂ � 2expo(x)��, near(x; �) � q̂ by Lemma 2.28(c).

Case 4: rc = RC-NEAR and q-guard = 1
In this case, q̂ is (� + 1)-exact but not �-exact. Let a = q � 2expo(q̂)�� and b =

q + 2expo(q̂)��. By Lemma 2.27, a = trunc(q̂; �) and b = away(q̂; �).

51

Subcase 4.1: rem-pos = 1
In this case, ẑ = b and q̂ < x. Since x < q̂ + 2expo(q̂)�� = b,

near(x; �) � near(b; �) = b = ẑ:

But x > q = b� 2expo(q̂)�� � b� 2expo(x)��, hence near(x; �) � b.

Subcase 4.2: rem-neg = 1
In this case, ẑ = trunc(q̂; �) = a and x < q̂, hence near(x; �) � a = ẑ by Lemma 2.28,

and x > q � 2expo(q̂)�� = a implies near(x; �) � near(a; �) = a.

Subcase 4.3: rem-zero = 1
Here, x = q̂, hence near(x; �) = near(q̂; �). We shall show near(q̂; �) = ẑ. Note

that by Lemma 2.29, near(q̂; �) is (�� 1)-exact.
If q-lsb = 1, then ẑ = b and a = trunc(q̂; �) is not (� � 1)-exact by Lemma 4.14.

Thus, near(q̂; �) 6= a, which implies near(q̂; �) = b = ẑ.
If q-lsb = 0, then ẑ = a, a is (� � 1)-exact by Lemma 4.14. It follows that b is not

(�� 1)-exact, and hence near(q̂; �) = a. 2

We may now state the correctness theorem for division. Note that the bound on
expo(b̂) is required by Lemma 4.4 and is therefore unavoidable. The other constraint

states that expo(â=b̂) may not assume either of the limiting values 1�217 and 217. This
is acceptable since the hardware would never be expected to return a value with either
of those exponents. In particular, IEEE compliance only involves exponents that are
accommodated by the 80-bit (64; 15) format.

Theorem 2 Assume op = OP-DIV, rc is a rounding control speci�er, pc is an external
precision control speci�er, and a and b are normal encodings such that expo(b̂) � 217�2
and 2� 217 � expo(â=b̂) � 217 � 1. Then z is a normal encoding and

ẑ = rnd(â=b̂; rc; pc):

Proof: By the same reasoning that was used in the proof of Theorem 1, we may
assume that â > 0 and b̂ > 0. We need only show that the hypotheses of Lemma 4.15
are satis�ed by x = â=b̂.

First note that our hypothesis regarding expo(â=b̂) yields the bounds on jâ=b̂j that
are required by Lemma 4.9, which implies that q̂ is (�+ 1)-exact and

jq̂ � â=b̂j < 2min(expo(q̂);expo(â=b̂))��:

This in turn implies the bounds on q̂ that are required by Lemma 4.15, as well as q̂ > 0,
and hence get-sign(q) = sign = 0:

Next, we apply Lemma 3.8 with x = b, y = q, d = a, and z = rem, which implies
that

jâ=b̂j > jq̂j , jb̂q̂j < jâj , get-man(rem)[M � 2] = 1, rem-pos = 1

and

â=b̂ = q̂ , b̂q̂ = â, get-man(rem)[M � 2 : 0] = inexact = 0, rem-zero = 1:

52

But since exactly one of rem-pos, rem-zero, and rem-neg is nonzero, it follows that

jâ=b̂j < jq̂j , rem-neg = 1;

and all hypotheses of Lemma 4.15 are satis�ed. 2

In order to prove our correctness result for square root, a modi�cation of Lemma 4.16
will be required:

Lemma 4.16 Let � = mbits(pc). Suppose q is normal, q̂ is (� + 1)-exact, sign = 0,

and 21�217 < q̂ < 22
17

(2� 21��). Let `; h 2 Q such that

(a) `� 2min(expo(q̂);expo(`))�� < q̂ < h+ 2min(expo(q̂);expo(h))��;
(b) if rem-neg = 1, then q̂ > `;
(c) if rem-pos = 1, then q̂ < h;
(d) if rem-zero = 1, then ` � q̂ � h.

Then z is normal and rnd(`; rc; pc) � ẑ � rnd(h; rc; pc).

Proof: We shall prove the �rst inequality; the proof of the second is similar.

Case 1: rem-neg = 1
Since ` < q̂, we may �nd x such that ` < x < q̂ and x > q̂ � 2min(expo(q̂);expo(x))��.

Then rnd(`; rc; pc) � rnd(x; rc; pc), but by Lemma 4.15, rnd(x; rc; pc) = ẑ.

Case 2: rem-pos = 1
Choose x so that q̂ < x < q+2min(expo(q̂);expo(x))�� and x > `. Then rnd(`; rc; pc) �

rnd(x; rc; pc), but by Lemma 4.15, rnd(x; rc; pc) = ẑ.

Case 3: rem-zero = 1
Let x = q̂. Then ` � x, hence rnd(`; rc; pc) � rnd(x; rc; pc), but by Lemma 4.15,

rnd(x; rc; pc) = ẑ. 2

Theorem 3 Assume op = OP-SQRT, rc is a rounding control speci�er, pc is an external
precision control speci�er, and b is a normal encoding such that expo(b̂) � 217 � 2. Let

`; h 2 Q such that 0 � ` � h and `2 � b̂ � h2. Then z is a normal encoding and

rnd(`; rc; pc) � ẑ � rnd(h; rc; pc):

Proof: It su�ces to show that the hypotheses of Lemmas 4.16 are satis�ed. First,
by Lemma 4.13, q̂ is (�+ 1)-exact,

` < q̂ + 2min(expo(q̂);expo(`))��;

and

h > q̂ � 2min(expo(q̂);expo(h))��:

Substituting 2bexpo(b̂)=2c for ` in the same lemma, we have

q̂ > 2bexpo(b̂)=2c � 2bexpo(b̂)=2c�� > 2bexpo(b̂)=2c�1 > 0;

hence

get-sign(q) = 0 = sign:

53

Similarly, substituting 2bexpo(b̂)=2c+1 for h yields

q̂ < 2bexpo(b̂)=2c+1 + 2bexpo(b̂)=2c+1�� < 2bexpo(b̂)=2c+2:

Thus,

22�217 < 2bexpo(b̂)=2c�1 � q̂ < 2bexpo(b̂)=2c+2 < 22
17

:

Finally, we apply Lemma 3.8 with x = y = q, d = b, and z = rem, which yields the
following:

(1) if rem-neg = 1, then q̂2 > b̂ � `2, hence q̂ > `;

(2) if rem-pos = 1, then q̂2 < b̂ � h2, hence q̂ < h;

(3) if rem-zero = 1, then q̂2 = b̂, hence ` � q̂ � h.

Thus, all hypotheses of Lemmas 4.16 are satis�ed. 2

References

[1] Anderson, S.F., Earle, J.G., Goldschmidt, R.E., and Powers, D.M., \The IBM Sys-
tem/360 Model 91 Floating Point Execution Unit", IBM Journal of Research and
Development, 11:34-53, January, 1967.

[2] Boyer, R.S., and Moore, J, A Computational Logic Handbook, Academic Press,
Boston, MA, 1988.

[3] Bryant, R.E., \Veri�cation of Arithmetic Functions with Binary Moment Diagrams",
Technical Report CMU-CS-94-160, School of Computer Science, Carnegie-Mellon
University, 1994.

[4] Clarke, E.M. and Zhao, X., \Word Level Symbolic Model Checking: A New Ap-
proach for Verifying Arithmetic Circuits", Technical Report CMU-CS-95-161, School
of Computer Science, Carnegie-Mellon University, 1995.

[5] Institute of Electrical and Electronic Engineers, \IEEE Standard for Binary Floating
Point Arithmetic", Std. 754-1985, New York, NY, 1985.

[6] Moore, J, Lynch, T., and Kaufmann, M., \A Mechanically Checked Proof of the
Correctness of the Kernel of the AMD5K86 Floating Point Division Algorithm".
http://devil.ece.utexas.edu/~lynch/divide/divide.html

[7] Oberman, S.F., \Division and Square Root for the AMD-K7 FPU", Advanced Micro
Devices, Milpitas, CA, March, 1997.

[8] Russino�, D.M., \A Mechanically Checked Proof of IEEE Compliance of the AMD-
K5 Floating Point Square Root Microcode", to appear in Formal Methods in System
Design, 1998.
http://www.onr.com/user/russ/david/fsqrt.html.

[9] Steele, G.L., Jr., Common Lisp The Language, 2nd edition, Digital Press, 1990.

54

