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A PARALLEL QR FACTORIZATION ALGORITHM WITH
CONTROLLED LOCAL PIVOTING*

CHRISTIAN H. BISCHOFt

Abstract. This paper presents a new version of the Householder algorithm with column pivot-
ing for computing a QR factorization that identifies rank and range space of a given matrix. The
standard pivoting technique is not well suited for parallel computation, since it requires synchroniza-
tion at every step in order to choose the next pivot column. In contrast, a restricted pivoting scheme
that restricts the choice of pivot columns and avoids this synchronization constraint is employed.
Incremental condition estimation is used to assess the effect that the addition of a candidate pivot
column would have on the condition number of the matrix being generated. This safeguard ensures
that this local strategy selects pivot columns that make sense in the global context of the computa-
tion. The resulting algorithm is well suited for implementation on a parallel machine, in particular,
a MIMD machine with distributed memory. Simulations demonstrate that the numerical behavior
of the restricted pivoting strategy is comparable to the traditional global pivoting strategy. Imple-
mentation results of the QR factorization algorithm without pivoting and with local and traditional
pivoting on the Intel iPSC/1 and iPSC/2 hypercubes show that our scheme about halves the extra
time required for pivoting.

Key words. QR factorization, column pivoting, controlled pivoting, incremental condition
estimation, distributed architecture, parallel algorithms
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1. Introduction. An important problem in numerical linear algebra is the de-
termination of a maximal set of linearly independent columns of a matrix A. In
statistics this problem is often referred to as the subset selection problem [19], [20]. It
arises in the context of identifying redundant carriers in a linear model. Other applica-
tions are the solution of underdetermined or rank-deficient least-squares problems [6],
[20], [23] and nullspace methods in optimization [9].

In linear algebra terms this problem can be viewed as finding a basis for the range
space of A. The common way to approach this problem is via a QR factorization

(1) AP---QR

of A. Here P is an n x n permutation matrix, Q is an m m matrix orthogonal
matrix, and R is an upper triangular rn n matrix. If A is a dense matrix, Q is
usually computed by a sequence of Householder transformations

H I- 2u uT.
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Choosing

(2) u
x + sign(x1)Ilxll2 el

IIx + sign(x)Ilxl12 xl12
we can reduce a given vector x to a multiple of the canonical unit vector e, since

(I 2u uT) x sign(x) Ilxl12 ex,

The standard technique [7] for determining P can be viewed as choosing as the next
column the one that is farthest away (in the two-norm sense) from the subspace
spanned by the columns that were selected before [20, p. 168, P.6.4-5].

The hope is that in the resulting QR factorization (1) the rank of A will reveal
itself by a small trailing subblock of R: if a > if2 > > fin are the singular values
of A and we partition R into

(3) (RiCo R22R12)
with an r x r lower right-hand block R22, then it is easy to show [20, p. 19] that

(4) r_+x (m)< 11R22112.
Hence if R22 is small, A can be considered to have numerical rank n- r and the first
n- r columns of Q form an orthonormal basis for the range space of A. While we
can construct counterexamples [20, p. 167] where the column pivoting strategy fails
to reveal ill-conditioning of A, it works well in practice.

An alternative pivoting strategy has been suggested by Chan [8] and Foster [16].
It was pointed out originally in [19] that we can use the singular vector corresponding
to the smallest singular value to find a permutation P that guarantees a small run in
(3) if an(A) is small. Chan [8] and Foster [16] extend this idea to higher dimensions.
The idea is first to compute any QR factorization of A and then to "peel off" the
small singular values of R one after the other by computing an appropriate singular
vector at each step. Chan also shows how to compute upper and lower bounds (i and
(Y of a. This allows implementation of the algorithm in an adaptive fashion: it can
be terminated if the lower bounds indicate that all the small singular values have been
revealed. Let us from now on assume that A has r small singular values and that there
is a well-defined gap between an-r and an-r+l. It is shown in [19] that a well-defined
gap is necessary to make a sensible decision on the numerical rank of A. Then Chan
proves that if r is not too large, his algorithm will compute a "rank-revealing QR
factorization" in the sense that R22 in (3) is guaranteed to be small.

On a single processor the Householder QR factorization without pivoting (i.e., P
in (1) is the identity) requires O(mn2) flops, column pivoting requires an additional
n2 flops, and the rank-revealing QR algorithm requires an additional 3rn2 flops on
average [8]. So the computational complexity of these algorithms is comparable on a
single-processor machine.

The situation is quite different on a multiprocessor machine, especially if it is
based on a distributed architecture. The Householder QR algorithm without pivoting
processes the columns of A in their natural order from left to right. Hence a natural
approach to parallelizing such a scheme is to group the processors into a logical ring
and deal out columns in a round-robin fashion. The resulting pipelined algorithm
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staggers the computation across the processors and guarantees a load-balanced com-
putation. It allows simple static assignment of data to processors and is for the most
part synchronized by the flow of data between processors. The main reason for the
efficiency of this algorithm is that a given processor can still be busy finishing a pre-
vious update while another processor is generating the next Householder vector. The
introduction of column pivoting makes pipelining impossible since the order in which
columns are processed is not known a priori. Furthermore, all processors have to syn-
chronize to select the next pivot column. One can somewhat overlap the computation
of a Householder vector with its application [11], but nonetheless global pivoting in-
troduces considerable extra communication overhead and forces the program into a
lockstep mode where essentially all processors wait for a Householder vector and then
apply it at the same time. This can result in a serious loss of efficiency on MIMD
machines that previously could have profited from the pipelining.

For the rank-revealing QR factorization algorithm the steps after the initial QR
factorization are hard to parallelize. For each of the r small singular values of A, the
algorithm computes an approximate singular vector via inverse iteration, which on the
average [8] requires the solution of four triangular equation systems per small singular
value. Although much progress has been made recently in solving triangular equation
systems on distributed architectures [10], [15], [21], [25], [24], this problem can by
no means be parallelized as efficiently as the initial QR factorization. In addition,
the application of the permutation deduced from the singular vector destroys the
upper triangular shape of R, which then has to be restored by a sequence of Givens
rotations. Again this is essentially a sequential process that is hard to parallelize [11].
We also need O(rn) extra storage to store these Givens rotations. Since r is not known
beforehand, this requires either problem-specific knowledge about r or, alternatively,
dynamic storage allocation. This complications does not arise in the column pivoting
scheme.

Apart from their sequential nature, an inherent difficulty in parallelizing the equa-
tion solving and QR update steps is that the computational work is of the same order
of magnitude as the amount of data it involves. That is, we have to perform O(n2)
flops using O(n2) data. Since R is distributed throughout the system, it is hard to
mask the communication overhead with the little arithmetic work to be performed.
So the post-processing of R can end up being a good part of the overall computation
time on a parallel machine.

In this paper we suggest a new parallel algorithm for computing a set of indepen-
dent columns of A using a controlled local pivoting strategy. Each processor limits its
choice of pivot columns to its local columns and thereby avoids the synchronization
overhead associated with making a global pivot choice. To make this strategy numer-
ically robust, we must decide whether a local pivot candidate is a reasonable choice
in the context of the overall factorization. In other words, given the upper triangular
matrix Ri already computed and a new column ( v determined by the local pivot

\ ]

candidate column, we must decide whether

(R v)Ri+l 0

is still of full rank. Since the smallest singular value amin(A) of a matrix A measures
the distance of A (in the two-norm sense) from the set of rank-deficient matrices [20,
p. 19] it is natural to use amin(Ri+l) to decide whether to accept the new column.
Computing (min(Ri+l) exactly is too expensive, but using incremental condition esti-
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mation [4] we can obtain a good estimate for amin(Ri+l) cheaply without reaccessing
Ri and without disrupting the overall pipelining scheme. The resulting algorithm is
well suited for a parallel machine, in particular, a MIMD machine with distributed
memory.

The outline of the paper is as follows. In the next section we briefly review the
pipelined algorithm for computing the QR factorization without column pivoting. In
3 we review the QR factorization algorithm with column pivoting. Implementation

results on the Intel iPSC/1 and iPSC/2 hypercubes show that--as expected--the
global pivoting strategy results in considerable extra overhead. Section 4 then moti-
vates the local pivoting scheme and shows how the reliability of this scheme can be
ensured by controlling the selection of pivot columns using incremental condition esti-
mation. Section 5 presents simulation results comparing the controlled local pivoting
scheme with the traditional pivoting scheme and implementation results on the Intel
iPSC/1 and iPSC/2 hypercubes. These data show that the local pivoting strategy
substantially decreases the overhead associated with column pivoting while being as
efficient in identifying the numerical rank of A. Lastly we summarize our contributions
and outline directions for further research.

2. The pipelined Householder QR factorization algorithm. To describe
the Householder QR factorization algorithm we use the primitives genhh (generate
Householder vector) and apphh (apply Householder matrix):

[u, y] genhh(x)

returns u as defined by (2) and y H(u)x.

B - apphh(u, A)

returns H(u) A.
Figure 1 describes the traditional Householder QR algorithm for computing the

QR decomposition of an m n matrix A (m _> n) without any pivoting. Here
a(i:j, k:l) refers to the submatrix of A consisting of row entries to j and column
entries k to 1. A colon (:) is used as shorthand to design a complete row or column.

fori=ltondo
[u,a(i:m, i)] genhh(a(i:m,i))
a(i:m,i+l:n) - apphh(ui ,a(i+l:m,i n))

end for

FIG. 1. The Householder QR factorization algorithm without pivoting.

A natural way to parallelize this algorithm is to distribute the columns of A to
processors in a round-robin fashion. To be precise, let us assume that we have p
processors proco,...,procp_l and that aj is the jth column of A. Then processor
proci receives columns aj where

(j 1) mod p.

This is commonly referred to as the column wrap mapping. Each processor executes
the algorithm given in simplified form in Fig. 2 (to save space we use the abbreviation
"HH" for "Householder"). The array C is local to each processor and contains the

p--1colsk columns assigned to processor proci (i=o colsk n). Pleft and Pright designate



40 C. H. BISCHOF

the left and right neighbor of prock, respectively, lent (local count) and gent (global
count) are initially zero and count the Householder vectors generated in prock and
overall, respectively.

The application and generation of Householder vectors are staggered across pro-
cessors so that the computation proceeds in what can be described as a "pipelined"
fashion. To prevent processors from being idle waiting for the next Householder vector
to arrive, new Householder vectors have to be generated as soon as possible. To that
end a processor generating a new Householder vector applies the update H(u) just
received only to column lent+l, computes and sends out the new Householder vector, and only then completes the previous update H(u) and applies the new update
H().

This algorithm has several attractive features. The wrap mapping is simple and
makes it easy to interface the QR algorithm to other algorithms. The algorithm is
also inherently load balanced since the computational work is completed in a round-
robin fashion. Most important, however, is the fact that message passing overhead
is low. On the average, each processor receives and sends every Householder vector
once, resulting in n sends and receives and a total of mn- n2/2 transmitted words
per node. By computing a new Householder vector as soon as possible, we maximize
the likelihood that a Householder vector will arrive at the next processor before it
is actually needed, thereby avoiding processor idle time. Requiring only nearest-
neighbor communication is also an important factor in decreasing communication
overhead. If the parallel machine in question allows asynchronous message passing
(i.e., a sender does not block while waiting for a message to be delivered to the
receiver), then we can hope to further decrease communication overhead. For these
reasons this pipeliniug technique has also been widely used [18], [21], [22], [25], [26],
[28] for other factorizations. If special vector hardware can be exploited, several
Householder matrices can be bundled together by using the WY factorization [5], [31]
to arrive at a block pipelined algorithm [3].

3. The global pivoting strategy. In the one-processor setting column pivoting
can be introduced into the Householder QR factorization algorithm at little additional
cost. The resulting algorithm is shown in Fig. 3.

The vector perm is used to store the permutation matrix P. If perm(i) k,
then the kth column of A is permuted into the ith column of AP. After completing
step the values resj,j + 1,...,n are the residuals of the jth column of the
currently permuted AP with respect to the span of the first columns of AP. As a
result we can consider the numerical rank of A to be determined if reSpvt is small.
Which threshold we choose for termination depends heavily on the application, but
in general the computation will be terminated if the distance of the next pivot column
from the already chosen subspace is O(IIAII1 where e is the machine precision, resj
can be easily updated and does not have to be recomputed at every step. Roundoff
errors may make it necessary to recompute resj II(a(i m,j))ll2,j + 1,...,n
periodically [13, p. 9.17] (we suppressed this detail in Fig. 3). In practice this is rarely
the case, and so the additional cost for incorporating column pivoting into the QR
factorization is O(n2) flops in addition to the overall flop count of O(mn2) flops for
the QR factorization.

On a distributed memory machine, the determination of the pivot column intro-
duces extra overhead. If the matrix is distributed by columns as in the pipelined QR
factorization algorithm of Fig. 2, each processor can easily determine its local pivot
candidate column, but to find the overall pivot column all processors have to syn-



PARALLEL QR FACTOI:tIZATION ALGORITHM 41

processor prock

lcnt 0; {counter for HH vectors generated in prock}
gcnt - 0; {counter for HH vectors generated globally}
if (k 0) then {generate initial HH vector}

[u, c(:, 1)] .-- genhh(c(:, 1)); send u to Pright;
c(:, 2:colso) - apphh(u, c(:, 2:colso)) Icnt gcnt 1;

end if
while (lcnt < colsk) do {main loop}

receive u from Pleft; gcnt - gcnt + 1;
if (u not generated by Pright) then send u to Pright end if
if (k gcnt modp) then { my turn to generate HH vector }

lcnt - lcnt + 1;
c(gcnt m lcnt) apphh(u, c(gcnt m lcnt));

{update first column}
[, c(gcnt+ 1 :m lcnt)] genhh(c(gcnt+ 1 :m Icnt));

{ generate new HH vector }
if (gcnt + 1 < n) then send fi to Pright end if
c(gcnt: m, lcnt+ 1 :colsk) apphh(u, c(gcnt:m Icnt+ 1 :colsk));

{ complete previous HH update }
gcnt gcnt + 1;
c(gcnt m lcnt+ 1 colsk apphh(, c(gcnt m, lcnt+ 1: colsk );

{ apply new HH update }
else

c(gcnt m, lcnt+ 1: colsk apphh(u, c(gcnt m, lcnt+ 1: colsk );
{ simply apply HH update }

end if
end while

FIG. 2. The pipelined Householder QR algorithm without pivoting.

foreach E {1,..., n} do
permi - i; resi -- Ila(:,

end foreach
for 1 to n do

Let pvt {i, ..., n} be such that reSpv is maximal
if (reSpv < threshold) then
break { A has numerical rank i- 1 }

else { exchange columns pvt and }
permi ,-. permpv a(:, i) a(:, pvt) respv -- resi

[ui, a(i:m,i)] .-- genhh(a(i:m,i))
{ apply H(u) and update residuals }

a(i:m,i+l:n) .-- apphh(ui ,a(i:m,i+l:n))
foreach j e {i + 1, n} do-- /res a(i, j)2;resj

end foreach
end if

end for

FIG. 3. The QR factorization algorithm with traditional column pivoting.
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chronize. It should be noted that distributing A by rows is no quick way out either.
Although the creation of a Householder vector and its application can be somewhat
overlapped [11], the computation of the column norm in (2) requires collecting each
processor’s individual contribution necessitating O(log p) extra communication over-
head.

Assuming column wrap mapping, a simplified version of the main loop of the QR
factorization algorithm with column pivoting is shown in Fig. 4. To save space, we
omitted the code for the generation of the first Householder vector, which is performed
in an analogous fashion.

The arrays perm and glblpos encode the permutation matrix P. permi j if
local column was the jth column of A. glblposi j if local column will be column
j in AP. Hence P would permute column permi of A into position glblposi in AP.
myid of proci is i. The function find_max determines the processor that owns the
maximal column by embedding a spanning tree [29] in the hypercube. Each processor
merges packets containing a myid and respvt field for some processor (originally its
own) so that at the end the LEADER node knows who possesses the new pivot
column. Finding the overall pivot column in this fashion requires time about t log2 p
where t is the time to send a message containing two elements to a neighboring
node. The broadcast primitive also uses the spanning tree to propagate messages and
hence suffers a delay of O(log2 p). The computation is terminated if either min (m, n)
Householder vectors have been generated or the distance of the suggested new pivot
column to the subspace spanned by the already selected columns is so small that the
remaining columns can be considered linearly dependent.

As in the pipelined QR factorization algorithm without pivoting, we try to gen-
erate pivot columns as soon as possible. In the pipelined algorithm without pivoting,
the column determining the next Householder vector is known a priori, and so it is
sufficient to update just this column in order to be able to compute the next House-
holder vector. If we want to perform pivoting, we have to do more work before we can
compute the next Householder vector. To illustrate, let ( be the submatrix still left
to process in a given node, let res be the vector of residuals that the columns defin-
ing ( have with respect to the subspace already chosen, and let u be a Householder
vector that is currently being received. Since the processor housing has not seen u
previously, res does not reflect the choice of u as a pivot column yet. So in order to
be able to choose the next pivot column, we have to update res to reflect the choice
of u as pivot column. As can be seen from Fig. 3, we need the first row of H(u) to
update the residuals. Now

H(u) - 2uuT - 2uzT

where

Z Tu.
So the first row of H(u) is

(H(u)()(1, ") ((1, ")- 2u(1)zT.

Once this row has been computed, we can update the residuals, determine the lo-
cal pivot column, and propagate our local pivot choice along the spanning tree in
find_max. Nonetheless we cannot avoid the O(log n) overhead for the determination
of the pivot column or the broadcasting of the Householder vector. Furthermore, the
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processor prock

{ Initialization }
foreach {1, cols} do

perm - myid + (i- 1)p + 1; res -end foreaeh
{ generate first Householder vector and broadcast it as below }

{ main loop }
repeat

repeat
switch (message_type)

case "Householder_vector":

receive u; gcnt - gcnt + 1;
case "You_are_winner""

gcnt ,- gcnt + 1; lcnt - lcnt + 1; glblpos(lcnt) - gcnt;
[u, c(gcnt m, pvt)] genhh(c(gcnt m, pvt)
broadcast u;
Clcnt -+ Cpvt; permlcnt permpvt; reSpvt +--reSlcnt;

case "Time_to_quit""
stop

end switch
until message is received

{ determine candidate pivot column }
z - c(gcnt:m, lcnt/l :colsk)Tu;
c(gcnt, lcnt+ 1 :colsk) - c(gcnt, lcnt+ 1 :colsk) 2U(1)zT;
resi v/res c(gcnt, i) e {lent+ 1,..., cols }
Let pvt E {lcnt+l,..., colsk} be such that reSpvt is maximal.
[winner, res_of_winner] - findmax(pvt, reSpvt, LEADER);

{ complete update }
c(gcnt+ 1 m, lcnt+ 1 colsk- c(gcnt+l :m, lcnt+l :colsk) 2u(2: m--gcnt)zT;

{ LEADER notifies the winner }
if (myid LEADER) then

if ((gcnt > min(m,n)) or (res_of_winner < threshold)) then
broadcast "Time_to_quit" message.

else
send You_are_winner message to winner.

end if
end if

forever

FIG. 4. The distributed Householder QR factorization algorithm with global pivoting.
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lockstep style of execution resulting from this synchronization point makes it impos-
sible to mask the communication overhead as efficient as the pipelining technique of
Fig. 2 allowed.

TABLE 1
The Householder QR ]actorization algorithm with and

without column pivoting applied to a 500 x n matrix on a
32-node iPSC/1 hypercube.

100
200
3OO
4OO
5OO
60O
7OO
8OO
9OO

tohead
Global piv. No piv. Global piv. Nopivl

27.7 18.8 16.5 5.7
70.9 49.6 29.8 7.8
125 93.2 40.5 9.7
184 145 46.5 10.9
255 201 50.1 11.3
310 257 54:’0 li.l
369 314 53.1 11.3
437 370 54.5 1i.2
515 427 66.1 1i:5

TABLE 2
The Householder QR factorization algorithm with and

without column pivoting applied to a 500 n matrix on a
16-node iPSC/2 hypercube.

tmax
Global piv’ No piv.

n

100 5.9 4.1
200 16:5 12.8
300 30.5 2512
400 46.6 40:1
500 63.7 56.3
600 80.8 72.6
700 97.0 88.9
800 113 105
900 130 122

ohead
Global piv’ No piv.

2.7 0.7
4.9 i:2
6.6 1.6
7.9 2.0
8.7 2.2
9.3 2.2
9.0 2.3
8.7
8.8 2.4

We compared the algorithms of Figs. 2 and 4 on a 32-node Intel iPSC/1 [14] and a
16-node iPSC/2 [1] hypercube. A Gray code mapping [29] was used to embed the ring
of processors and the code was entirely written in Fortran for single precision. For
the iPSC/1, we compiled with the Ryan-McFarland compiler (Version 2.20a) using
the huge memory model and executed under the NX node operating system release
3.1.1. On the iPSC/2, we used the Green Hills compiler (Version 1.8.3a) and the
NX/2 node operating system release 2.3. For m 500 and n 100,200,...,900
we generated random matrices with singular values 1, 2,..., min (m, n) and reduced
them to triangular form using min(m, n) Householder reductions. We observed the
performance shown in Table 1 for the iPSC/1 and in Table 2 for the iPSC/2. Here
tmax is the maximal execution time of any processor in seconds and ohead is the
average time in seconds that a processor spends communicating and waiting idle.

We see that the algorithm for computing the QR factorization without pivoting
is very efficient in that only a small portion of the overall execution time is spent on
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communication. As predicted, we observe a noticeable performance degradation for
the global pivoting scheme. In particular, for smaller problems not yet dominated by
floating point work, the communication overhead increases dramatically compared to
the pipelined QR factorization algorithm. This is unpleasant, especially in light of
the fact that column pivoting costs only O(n2) extra flops.

4. Controlled local pivoting. The easiest way to avoid the extra overhead
associated with global pivoting is to forego global pivoting altogether and have each
processor limit its choice of pivot columns to the ones it houses. Whereas in the
pipelined algorithm without pivoting, each processor simply picks the next available
column to determine the next Householder vector, each processor now performs a
local column pivoting step to determine the next Householder vector. This allows
implementation of the algorithm in much the same fashion as in Fig. 2, and as a
result we expect to reap much the same benefits as described in 2.

The problem with the strictly local pivoting strategy is obviously its reliability
in identifying independent columns of A. As a pathological example, assume that all
columns in processor proco are nearly equal. As a result, processor proco will make
bad choices after it has generated the very first Householder vector. The resulting
upper triangular matrix R will be nearly rank-deficient but will not necessarily have
a small lower right-hand block to reveal that fact.

To guard against choosing nearly dependent pivot columns, it is natural to moni-
tor amin(R) since the smallest singular value of R is the distance of R (in the two-norm
sense) from the space of rank-deficient matrices. Computing amin(R) exactly via in-
verse iteration, for example, is too expensive since it would require us to reaccess R
(which is distributed throughout the system) several times. In fact, it is not feasi-
ble to access the previously generated R even once when we want to decide on the
suitability of a new pivot column.

Let R be the current upper triangular matrix R which is made up by the first
columns of QTAp after Householder vectors have been generated and applied.

Then we use the incremental condition estimator suggested by Bischof [4] to monitor
amin(Ri). Given a good estimate (min(Ri) 1/[Ix112 defined by a large norm solution

x to RTx d and a new column (v) the incremental condition estimator allows

us to obtain an estimate for amin(R+l) where

R+I 0

without accessing R again. Defining

v)
O V

T
X and /2XTX -- O2 1,

we have that the estimate for the smallest singular value of R+ is given by

1
(5) min(Ri+l)--IlYlI2
where

(6)

solves

RT+ Y c
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C and s are defined as the solutions of

max O(c, s)= IlYlI2
subject to c8 + s2 1.

c and s can easily be computed, and so the cost of determining (}min(Ri+l) is 3i flops
for the inner product vTx and the scaling of x by c. Numerical experiments with this
condition estimation scheme [4] show that it is reliable in producing good estimates. It
overestimates the smallest singular value of a triangular matrix only by a small factor,
and the results vary only a little with condition number, matrix size, and singular
value distribution. Applying this condition estimator to upper triangular matrices
generated by using the traditional column pivoting strategy somewhat increased its
accuracy and we can confidently expect similar behavior when applying this estimator
to matrices generated by the local pivoting strategy.

With the incremental condition estimator we now have the tool to ensure the
reliability of the local pivoting strategy. By applying the incremental condition es-
timator to its local pivot candidate, a processor can decide whether its local choice
is reasonable in the global context of the computation. Assuming that processor k
knows the current estimate x as well as Ilxl12 for the current upper triangular matrix

Rgcnt, allthatisneededfrthenextcnditinestimatrstepisthelastclumn( v)
of Rgcnt+l. But

v c(l:gcnt, j)

has already been computed, and from the definition of u and res it follows immediately
that

-sign (c(gcnt + 1, j)) resj.

So all the information for the next condition estimator step is readily at hand, and
we can compute #min(Rgcnt+l) as described above. With

being the norm of the largest column of A, we can then take.

as an estimate for the true condition number of Rgcnt+l. The scaling factor reflects
the trust we have in the accuracy of our estimates. A large ? will result in estimates
that are too pessimistic, while a small r might lead to underestimation, w overesti-
mates IIAII2 by at most a factor of v/, but heuristically it is a much more accurate
estimate.

Comparing the estimates (5) or (7) against a chosen threshold, we will then accept
or reject a candidate pivot column. If the candidate pivot column is rejected, processor
k has exhausted its supply of "reasonable" columns, and from then on it will only
apply Householder vectors generated by other processors to its remaining columns.
If, on the other hand, we accept the candidate pivot column, then processor k will
actually compute t and send t and (y, IlYlI2’) to its right neighbor. So the additional
work required for generating the ith Householder vector will on average be 3i floating
point operations and the transmission of words to a neighboring node. It is worth
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emphasizing that on average y and IlYlI2 have to be forwarded only to the processor
that will generate the next Householder vector (which in most cases will be the right
neighbor), while will eventually be known to all processors. So the propagation of
the condition estimator information will result in only a minor increase in data traffic.

This scheme continues until no processor has any acceptable pivot candidate left.
Assuming that altogether we generated n- / Householder vectors, we have at
this point computed the incomplete QR factorization

(8) AP (QI’ Q2) ( Rl10 R2

where Q1 is m , Q2 is m (m- + 1), and Q [Q, Q2] is orthogonal. R is
upper triangular of size and A is of size (m + 1) . Our controlled pivoting
strategy gives us an estimate for min(R11), and furthermore, we know that adding
any of the leftover ? columns of AP would result in a decrease of the smallest singular
value below our chosen threshold. So we have good reason to assume that / is the
dimension of the numerical null space of A.

A simplified version of the main loop of the resulting algorithm is shown in Figs. 5
and 6. We omitted the generation of the first Householder vector which is done in
the same fashion as in Fig. 6 and in order not to bury the structure of the algorithm,
we omitted the details concerning program termination. Each processor can be in
one of three states as determined by mystatus. It is ALIVE if it still houses eligible
columns; this is the initial state of every processor. Its status changes to FINISHED if
it has processed all its local columns. Since other processors might still house eligible
columns, it still must forward messages; this is its only action in this state. If a pro-
cessor is DEAD, then all its remaining columns have been found to be unacceptable,
but it still has to apply Householder vectors generated by other processors as well as
forward them.

y - cond_est(x, Ilxl12, v, /)

returns y as defined by (6). trustfactor is used to adjust for the overestimation
of the smallest singular value. Since experiments with the incremental condition
estimator [4] indicate that in general the condition estimator does not overestimate
O’min by a fDctor of more than three, we used 1/(311y112 as our estimate for amin.

The overall structure of the main loop is described in Fig. 5. Notice that a
processor checks halfway through a Householder update whether a singular vector
has arrived. In this case it completes the H(u) update only on the pivot candidate
column in order to generate a new Householder vector as soon as possible. Only
after the new Householder vector t has been sent out does it complete the H(u) and
H(t) updates. These steps are described in more detail in Fig. 6 (ignoring Part b).
Figure 6 (ignoring Part a) describes the easier case of generating a pivot column when
the previous Householder update has already been completed.

Notice that compared to the algorithm with global pivoting we maintain the
pipelined mode of operation. By generating Householder vectors as soon as possible
we attempt to keep the pipeline filled with Householder vectors and minimize proces-
sor idle time. Furthermore there are no synchronization points in this algorithm that
would add extra overhead or would prevent us from masking communication overhead.
We would also like to mention that this algorithm is naturally load-balanced due to its
pipelined nature. Load balancing is more difficult in the algorithm employing global
pivoting, since it is possible that a processor may contain all the first pivot columns
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processor prock

repeat
repeat

switch (message type)
case "Householder_vector""

{ complete enough of H(u) application to update res }
receive u; gcnt gcnt + 1; forward u to Pright.
if (mystatus FINISHED) then

z - c(gcnt’m, lcnt+ I’colsk)Tu;
(at,t+1.o) - (at,t+.o) :u(1)z;-{ check whether another message arrived in the mean time }
if I received another message containing a singular value) then

Try to generate a new Householder vector before completing
the update determined by u. See Fig. 6 and ignore part b.

else
c(gcnt+ 1, lcnt+ 1" colsk-- c(gcnt+ 1, lcnt+ l" colsk) 2u(2"m--gcnt)zT;

end if
else

break to outermost repeat-loop.
end if

case singular_vector"
receive (x,
if (mystatus ALIVE) then

determine next pivot candidate. See Fig. 6 and ignore part a.
else

forward (x, Ilxl12)to Pright.
end if

case "time_to_quit""
send time_to_quit message to Pright and quit.

end switch
until a message has been received
forever

FIG. 5. The pipelined Householder QR algorithm with controlled local pivoting: main loop.
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processor prock

{ Determine new pivot candidate and estimate &min(Rgcnt+l). }
Let pvt E {lcnt+l, colsk} be such that respvt is maximal.
y +- cond_est(x, Ilxl12, c(l: gcnt, pvt), -sign(c(gcnt+ 1, pvt))respvt)
if (llyll2/trust-factor > I/threshold) then

{ new pivot candidate is not acceptable }
send (x, Ilxl12)to Pright. mystatus +- DEAD.
c(gcnt+ 1,1cnt+l :colsk) +- c(gcnt+ 1,1cnt+l :colsk) 2u(2:m--gcnt)zT;

else
lcnt +- Icnt + 1; gcnt -- gcnt+ 1; Clcnt Cpvt;
permlcnt - permpvt reSlcnt -- reSpvt
begin of Part a

( delay H(u) update and generate new Householder vector }
z(1) z(pvt-lcnt+l);

1: 1:  z(1)u;
[t,c(gcnt: rrlcnt)] - genhh(c(gcnt: m, lcnt));
send t to Prigh; send (y, IlYlI2) to Prigh.

( complete H(u) update and then H(fi) update }
c(gcnt- 1 :m, lcnt+ 1 colsk- c(gcnt-- 1: m, lcnt/ 1 colsk 2u(2: m--gcnt)zT;
c(gcnt:m, lcnt/ 1 :colsk) (I 2ttT)c(gcnt:m, lcnt/ 1 :colsk);
end of Part a
begin of Part b

( generate new Householder vector }
In, c(gcnt: m, lcnt)] - genhh(c(gcnt: m, lcnt));
send u to Pright; send (y, IlYlI2) to Pright.

{ complete Householder update }
c(gcnt: m, lcnt+ 1: colsk) (I 2uuT)c(gcnt: m, lcnt+ 1: colsk);
end of Part b

res +- v/res2 c(gcnt, i)2, e {lcnt+ 1, ..., colsk}
end if

FIG. 6. Generation of a new Householder vector.
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and hence will be idle soon unless one redistributes columns dynamically. Our local
pivoting scheme avoids those complications. In addition, the local pivoting scheme
is--apart from the cost of startup and wind-down--insensitive to the number of pro-
cessors, since communication is only between neighbors. The cost of the reduction
and broadcast in the global scheme, on the other hand, depend on the diameter of
the system and are likely to increase as the system grows.

5. Numerical experiments. To verify the merits of our proposed controlled
local pivoting scheme, we tested its numerical reliability by comparing it with the QR
factorization with traditional column pivoting. Furthermore, we tried to assess its
computational performance on a distributed memory machine by implementing it on
the Intel iPSC/1 and iPSC/2 hypercubes.

To assess the numerical behavior of the proposed local pivoting scheme, we simu-
lated the parallel algorithm using PRO-MATLAB [27] and compared it with the tra-
ditional QR factorization algorithm with global column pivoting. Various 100 x 100
matrices were generated, and the local pivoting strategy was simulated on 8 and 32
processors.

For tests 1 to 3 we generated 50 random matrices with prescribed singular value
distributions {ai}. Random orthogonal matrices U and V were generated using the
method of Stewart [32], and then A was formed as A UEVT. For all matrices the
largest and smallest singular values were 1 and 10-9, respectively.
Break 1 Distribution: al ..... 0-99 1; al00 10-9

Break 9 Distribution: al ..... o’91 1; 0"92 ..... 0"100 10--9
Exponential Distribution: 0"1 1; 0"i ai-l(i 2,..., 100); a (1-9) 1/99

Setting the rejection threshold for the smallest singular value to 10-7 and discounting
the estimate for the smallest singular value (5) by a factor of 3 (i.e., trustfactor in
Fig. 6 equals 3), we reject a candidate pivot column in the parallel algorithm if

--dmin(Rgcn+l) <_ 10-7

For the traditional QR factorization algorithm we use the last diagonal entry of
Rgcnt+l as an estimate for 0"min(Rgcnt) and reject a candidate pivot column if

1- rgcnt+l,gcnt+l I_< 3" 10-7

Table 3 shows the condition numbers of the upper triangular matrices R generated
by controlled local pivoting and by traditional column pivoting on those matrices.
If we let 0"cutoff be the smallest singular value greater than 10-7, then the optimal
value we can theoretically achieve for (R) is topt(R) i/o’cutoff. Furthermore, let
tpar(R) be the condition number resulting from the parallel scheme and ttrad(R) the
condition number resulting from the traditional column pivoting scheme. For tpar(R)
and atrad(R) observed minimum, average, and maximum values are displayed. These
results show that guarded local pivoting is as effective as full column pivoting in gen-
erating a well-conditioned R--especially if there are more than just a few columns in
each processor. Except for the break 9 example the transition from 8 to 32 processors
had no noticeable effect. The break 9 example shows that the local pivoting strategy
can deteriorate somewhat if the matrix is highly rank-deficient and the number of
columns per processor is small. This fact is not surprising in that the pivoting choices
of each processor are very limited. Due to the high dimension of the numerical null
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TABLE 3
min/avg/max values of the condition numbers of R using local and global pivoting.

Distribution Break 1 Break 9 Exponential
avar(R ,p- 8 2.7/5.1 /8.0 6.4/13/46 7.2e6/1.1e7/1.6e7
o(n),= a: a././:a 0/s0/.ea V.e/.ae/.eV
atrad(R) 2.8 /3.7 /4.8 4.3 /5.7 /7.8 7.2e6 /1.0e7 /1.9e7
tCopt(R) 1.0 1.0 8.1e6

space, a processor may be forced to consider columns that are suboptimal but whose
choice results in a matrix Ri where rmin(Ri) is still well above the threshold.

The average values for the break 9 distribution on 32 processors in Table 3 are
also somewhat misleading in that they make the local pivoting strategy look worse
than it really is. If we ignore the one experiment where R had condition number 6.1e3
(which is still well below our rejection threshold), we obtain for the other 49 runs the
condition number distribution shown in Fig. 7. We see that in the vast majority of
cases (36 cases) the condition numbers of R were less than 50. We mention that this
is a somewhat contrived example in that with only three columns per processor the
pipelined algorithm would be dominated by startup and wind-down costs and as a
result would not perform efficiently.

This example does, however, suggest the use of a variable threshold in accepting
pivot columns if we are worried about generating as well-conditioned a matrix as
possible. Starting with a conservative threshold and relaxing it as the computation
proceeds, we shall in all likelihood prevent a processor from choosing a suboptimal
column early on. The penalty is that we might have to consider the same candidate
pivot column more than once. If we reject a candidate for the ith Householder vector,
the added cost is 2i flops (since sx in (6) need not be computed) and the transmission
of words to a neighbor. Depending on the application this extra work might be
worthwhile.

6O

, 4O

0 ,0 0 ,1 0

36

]1 ..I ,1 .1 ,1
0 100 200 300

condition number ofR

FIG. 7. Condition number distribution of R for the "break 9" distribution with p 32.

For the sharp break distributions there is a well-defined gap between the singular
values before and after the acceptance threshold, and both the local and global column
pivoting strategies identify the numerical nullspace correctly for p 8 and p 32
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TABLE 4
Frequency of accepting columns .for the exponential distribution.

No. of columns accepted 72 73 74 75 76
Local pivoting, p- 8 2 3 12 24 9
Local pivoting, p- 32 5 11 23 9 2
Global pivoting 0 2 29 18 1

in all cases. As already pointed out, the determination of numerical rank becomes
problematic if there is no well-defined gap between singular values that are considered
"large" and "small". The exponential distribution is such a problematic case. There
are 77 singular values that are larger than 10-7 but there is no well-defined break.
To be exact,

a75 1.8.10-7, 0"76 1.5" 10-7, 0"77 1.2.10-7, 0"78 1.0.10-7

The column pivoting strategy reflects this difficulty in accepting less than 77 columns;
the results are displayed in Table 4. So, for example, in 24 of the 50 runs we accepted
75 columns in the local pivoting scheme using 8 processors. These results show that
even for an ill-defined problem the guarded local pivoting scheme is reliable in that
it leans towards a small underestimate of the dimension of the numerical range space
of A.

Finally, we give an example where the local pivoting strategy actually performs
better than the global one. A well-known example (originally suggested by Kahan)
where the traditional column pivoting strategy fails is

(9) An-diag(1, s, s2,...,sn-) .., ...... +A

" 1 --c
0 0 1

where A diag (ne, (n- 1)e,..., e), c2 + s2 1 and is the machine precision An is
very ill-conditioned, but although each leading principal submatrix Ak (k <_ n) is also
ill-conditioned, there is a well-defined gap between 0"n and 0"n-1. As an example, in
single precision for n 50 and c 0.5 we have 0"49 1.2.10-3 and 0-50 3.7.10-12.
Even in floating-point arithmetic the matrix is its own QR factorization with pivoting,
but no trailing block of R is small to reveal its ill-conditioning.

For this matrix both the local and global pivoting schemes select the columns
in their natural order and fail. However, the condition estimator integrated into the
parallel scheme detects the ill-conditioning of the leading principal submatrices Ak

in fact we observed that it never overestimates the smallest singular value by a
factor of more than 1.5. So at least failure does not go unnoticed. Now let -50 be
the same matrix as A50 except that the order of columns has been reversed. For the
global column pivoting scheme this permutation is without consequences and it fails.

’8The parallel scheme on or 32 processors, on the other hand, correctly identifies the
numerical null space of A50. While this is an exceptional occurrence resulting from the
special structure of An, it is nonetheless surprising since intuitively we would expect
the global pivoting strategy always to perform better than the local one.
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To assess the computational performance of the proposed scheme, we implemented
it on a 32-node iPSC/1 and 16-node iPSC/2 hypercube. When running the code on
the problems used for Tables 1 and 2 and using the same notation we observed the
performance shown in Table 5.

TABLE 5

Performance of the Householder QR factorization al-
gorithm with controlled local pivoting.

n
100
200
300
400
5o0
600
700
8oo
900

32-node iPSC/1
tmax tohead
25.1 13.0
60.2 17.2
108 20.6
165 24.0
227 28.1
280 23.6
336 21.0
392 19.3
454 20.0

16-node iPSC/2
tmax tohead
4.8 1.4
13.9 2.0
26.9 2.6
42.4 3.1
59.4 3.8
75.2 3.2
91.6 3.1
108 3.O
125 2.9

Comparing these figures with those of Tables 1 and 2 we see that the local piv-
oting strategy does indeed result in a significant decrease in execution time. These
gains would be even more pronounced on a bigger system as our pipelined strategy is
essentially insensitive to the number of processors, whereas the broadcast and reduc-
tion operations needed in the global pivoting algorithm become more expensive. We
also see that the local pivoting algorithm is efficient in that does not require signifi-
cantly more flops than the QR factorization without pivoting and the communication
overhead is in general a small portion of the overall execution time.

The advantages of local pivoting are even more apparent if we consider how much
more local and standard pivoting cost us in comparison with the QR factorization
without pivoting. Let tnmaPV(n) be the maximal execution time of the pipelined QR
factorization algorithm without pivoting on a 500 100, n problem (t.glbalpiv (n) and,m&x

tlmCaaxlpiv(n) analogous). Figure 8 displays

t.strategy t.nopiv
.strategy (/t) -max
Vtotal (n) vmax

/nopiv * 100
max (?)

for

strategy- {globalpiv, nopiv}
.strategyand varying n. Itotal (n) measures how much more time (in percent) the implemen-

tation of the two pivoting strategies costs compared to the QR factorization without
pivoting. The dashed line represents the standard column pivoting strategy; the
dash-dotted line represents controlled local column pivoting. Figure 9 displays

-:strategy 7nopiv

-comm (n)= * 100
nopiv
ohead[n)

and shows the percentage increase in communication overhead due to pivoting.
These figures show that the extra running time required to implement local piv-

oting is on the average about half that required to implement global pivoting. This is
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m 500 pivoting strategy: global local -.50
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20 ::.’.:#.’. ....... :.’..’..’..’.:.:.:........ -:................ ; . ..... :.:. ’--10 :.’. ........’:::::::::-.-: :-:.:.i’_’ ,
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1 2 3 4 5 6 7 8 9

extra time on iPSC/1
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FIG. 8. Extra time required for pivoting with respect to QR factorization without pivoting.
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FIG. 9. Extra communication overhead for pivoting with respect to QR factorization without pivoting.
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not surprising since--as shown in Figure 9--local pivoting increases the communica-
tion overhead only by about a factor of two, whereas the traditional column pivoting
strategy can increase communication overhead almost fivefold. In addition, the extra
communication overhead for the local pivoting strategy essentially stays flat with n
whereas it grows with n for the global pivoting regime on the iPSC/1. So the lo-
cal pivoting strategy is indeed superior to the traditional global pivoting strategy on
MIMD machines which can profit from the pipelining scheme and for which global
broadcast/gather operations are expensive.

6. Conclusions. We presented a new version of the Householder algorithm with
column pivoting for computing a QR factorization which identifies rank and range
space of a given matrix. To arrive at an algorithm that is better suited for parallel
computation than the traditional regime, we employed a restricted pivoting scheme
that restricted the choice of pivot columns to ones in local memory. The resulting
algorithm is much better suited for a parallel machine, in particular, a MIMD machine
with distributed memory. This is borne out by the implementation results on the Intel
iPSC/1 and iPSC/2 hypercubes where the local pivoting scheme about halves the
extra time required for pivoting compared to the traditional column pivoting scheme.
Simulations also showed that the numerical properties of the suggested local pivoting
scheme are comparable to those of the global pivoting strategy.

The key idea that made this algorithm work was the use of incremental condition
estimation to restrict the choice of pivot column without giving up numerical reliabil-
ity. Incremental condition estimation allowed us to "back up" when we were about to
make a bad choice. Restricting pivot choices then resulted in an algorithm that dis-
played a much higher degree of locality of reference. We showed the resulting benefits
for a MIMD machine, but obviously locality of reference is also crucial in achieving
good performance on parallel machines with shared memory or one-processor ma-
chines employing a memory hierarchy. As a result, we believe restricted pivoting
strategies to be advantageous in those environments as well. We are currently explor-
ing this issue in the context of a block algorithm [2], [12], [17], [30] for computing the
QR factorization with column pivoting on a shared memory machine with a memory
hierarchy.
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