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ON TRIDIA(ONALIZING AND DIAGONALIZING SYMMETRIC
MATRICES WITH REPEATED EIGENVALUES*

CHRISTIAN H. BISCHOFt AND XIAOBAI SUNS

Abstract. We describe a divide-and-conquer tridiagonalization approach for matrices with re-
peated eigenvalues. Our algorithm hinges on the fact that, under easily constructively verifiable
conditions, a symmetric matrix with band width b and k distinct eigenvalues must be block diagonal
with diagonal blocks of size at most bk. A slight modification of the usual orthogonal band-reduction
algorithm allows us to reveal this structure, which then leads to potential parallelism in the form
of independent diagonal blocks. Compared to the usual Householder reduction algorithm, the new
approach exhibits improved data locality, significantly more scope for parallelism, and the poten-
tial to reduce arithmetic complexity by close to 50% for matrices that have only two numerically
distinct eigenvalues. The actual improvement depends to a large extent on the number of distinct
eigenvalues and a good estimate thereof. However, at worst the algorithms behave like a succes-
sive band-reduction approach to tridiagonalization. Moreover, we provide a numerically reliable and
effective algorithm for computing the eigenvalue decomposition of a symmetric matrix with two nu-
merically distinct eigenvalues. Such matrices arise, for example, in invariant subspace decomposition
approaches to the symmetric eigenvalue problem.
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1. Introduction. Let A be an n n symmetric matrix. Our goal is to compute
an orthogonal-tridiagonal decomposition of A, AQ QT, where Q is orthogonal and
T is tridiagonal. Reduction to tridiagonal form is a standard preprocessing step in
dense eigensolvers based on QR iteration, bisection, or Cuppen’s method [16]. The
conventional tridiagonalization procedure [16, p. 419] reduces A one column at a time
through Householder transformation at a cost of 0(4n3/3) flops for the reduction
of A, and an additional 0(4n3/3) flops if the orthogonal matrix is accumulated at
the same time. This algorithm mainly employs matrix-vector multiplications and
symmetric rank-one updates, which require more memory references than matrix-
matrix operations [9, 8, 14].

The block tridiagonalization algorithm in [5, 15] combines sets of p successive
symmetric rank-one updates into one symmetric rank-p update at the cost of O(2pn2)
extra flops. As a result, this algorithm exhibits improved data locality and hence is
likely to be preferable on cache-based architectures. This block algorithm has been
incorporated into the LAPACK library of portable linear algebra codes for high-
performance architectures [i, 2]. Parallel versions for distributed memory machines
of the standard algorithm and the block algorithm are described in [12] and [13],
respectively. A different approach to tridiagonalization is the so-called successive
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band-reduction (SBR) method, which completes the tridiagonal reduction through a
sequence of band reductions [10, 7]. This approach leads to algorithms that exhibit
an even greater degree of memory locality, among other desirable features.

In this paper we show that if the number k (say) of distinct eigenvalues of
symmetric matrix A is small, then there is considerable scope for filrther savings in
tridiagonalization algorithms. As will be demonstrated, A can be cheaply reduced
to a block diagonal banded form through a slightly modified SBR approach. The
final tridiagonal form is then achieved by applying the algorithm recursively on the
subblocks on the diagonal. Compared to the conventional approach, this approach
has the following advantages.

Improved data locality. The tridiagonalization process can employ mainly matrix-
matrix operations both in the reduction of A and in the update of the transformation
matrix Q (see also [10, 7]).

Enhanced scope for parallelism. In the traditional algorithm, the scope for the
exploitation of parallelism in the reduction of A is limited to the application of the
rank-one update (for the unblocked algorithm) or the rank-p update (for the blocked
algorithm), and the scope for parallelism decreases as subproblems become smaller. In
contrast, our algorithm generates independent subproblems during the reduction of A,
which can be worked on independently, and the number of independent subproblems
increases as the iteration proceeds. Thus, there is a shift from data parallelism (up-
dates of large matrices) to functional parallelism (several independent subproblems),
but at any stage, there is plenty of parallelism to exploit.

Reduced complexity. Depending on the number of distinct eigenvalues, we may
almost halve the number of floating-point operations. In addition, the need for data
movement is reduced.

One particular situation where repeated eigenvalues arise is in the context of in-
variant subspace methods for eigenvalue problems [3, 19, 6, 4], where a matrix with
only two distinct predetermined eigenvalues is generated either by repeated appli-
cation of incomplete beta functions [19] or the matrix sign function [4]. In exact
arithmetic, our tridiagonalization procedure would result in a block diagonal matrix
with diagonal blocks of order no larger than 2. Hence the eigenvalue decomposition
could be computed easily by independently diagonalizing the 2 2 blocks on the di-
agonal. In the presence of roundoff errors, the computed tridiagonal matrix may not
have this desirable structure. However, we can prove that such a tridiagonal matrix
can be diagonalized as reliably as with any other method by two "clean up sweeps,"
where each sweep solves at most n/2 independent 2 2 eigenvalue problems.

The paper is organized as follows. We show in 2 that, under certain easily
constructively verifiable conditions, a banded symmetric matrix with band width b
and k distinct eigenvalues is block diagonal with diagonal blocks of order at most bk.
In 3, we present a reduction algorithm to achieve the desired banded block diagonal
structure through a slight modification of the conventional band-reduction procedure.
This approach is then employed to develop a divide-and-conquer tridiagonalization
algorithm. An inexpensive algorithm for decoupling invariant subspaces of matrices
with eigenvalue clusters at 0 and 1 is given and verified in 4. Numerical experiments
with a Matlab implementation are reported in 5. Lastly, we summarize our results.

2. The structure of band matrices with repeated eigenvalues. A tridi-
agonal matrix whose off diagonal entries are all nonzero is called unreduced. It is
well known [18, p. 66] that an unreduced tridiagonal matrix does not have multiple
eigenvalues. Consequently, if an n n tridiagonal matrix has only k n distinct
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eigenvalues, it must be block diagonal, and the largest block cannot be larger than
k k. The generalization of this fact to banded matrices underpins the algorithm we
propose, yet it is not as straightforward as it might seem.

Assuming that A is an n n symmetric matrix, we define the th row-band-width
of A, denoted by band_row(i), as

(1) band_row(i) dem.x{i--jlj=iorj<iandaij =0}, l<_i_<n.

That is, band_row(i) is the distance of the first nonzero element in row i from the ith
diagonal element. Further, we say that A is nonincreasing in row-band-width from b
if

a(b, 1) 0 and band_row(i) _< band_row(/- 1), b + 1 < _< n.

In particular, a banded matrix that is all zero below the bth subdiagonal and all
nonzero on the bth subdiagonal is nonincreasing in row-band-width from b.

With these definitions, we can now prove the following theorem.
THEOREM 2.1. Let T be a symmetric matrix with k distinct eigenvalues. If T is

block diagonal, with each diagonal block nonincreasing in band width from at most b,
then the size of the largest block cannot exceed kb.

Proof. Assume that T has a diagonal block D of size p > kb. By assumption, D is
nonincreasing in band width from b; that is, D has p-b rows with their first nonzero
elements in different columns to the left of the diagonal. Thus, for any ,, rank(D-A/)
is not less than p-b.

On the other hand, since p > kb and D has at most k distinct eigenvalues, D has
an eigenvalue # with multiplicity greater than b. Hence, rank(D-p/) is less than p-b.
The contradiction verifies the result of the theorem.

The following example shows the necessity of the "nonincreasing band-width"
restriction in Theorem 2.1.. Let

# -u 0 0 00
QT= 0 0 0 0 )0 0 # 0 c 0 0

where u2 +#2 +c2 1, 2 +72 c2, and f12 +/2 +62 1. Then Q has orthonormal
columns and A-QQ3 is symmetric with only 0 and 1 as eigenvalues. In fact,

(3) A

x x x x 0 0 0 0
x x x x 0 0 0 0
x x x 0 0 x 0 0
x x 0 x 0 x 0 0
0 0 0 0 x 0 x x
0 0 x x 0 x 0 0
0 0 0 0 x 0 x
0 0 0 0 x 0 x x

We see that A is banded with semi-band-width b= 3, but it is not block diagonal with
blocks of size at most 2b x 2b 6 x 6 since the "nonincreasing band-width condition"
is violated by a(5, 2)=a(7, 4)-0.
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3. A divide-and-conquer tridiagonalization approach. The example in the
previous section showed that the standard Householder band-reduction algorithm will
not necessarily reveal the block diagonal structure. For example, if we had applied
the standard algorithm for reduction to band width 3 to the matrix of example (3),
the matrix would have remained unchanged. Fortunately, a minor modification of the
standard algorithm enforces nonincreasing row-band-width, and hence the prerequi-
sites of Theorem 2.1.

Let us consider the conventional reduction approach, where the matrix is reduced
one column at a time to semi-band-width b. In each reduction, the pivot row is always
b rows below the diagonal, no matter whether the reduction of the previous column
was skipped (i.e., the transformation was an identity) or not. For example, reducing
the matrix A in (3) to semi-band-width 3, row number 4 is the pivot row for the
reduction of the second column and, since a(4 8, 2)= 0, this reduction is skipped.
We then proceed to column 3, using row 5 as pivot row, and the row-band-width
increases. If instead we employ a Householder transformation acting on a(4:8, 3) to
eliminate a(5:8, 3), keeping row 4 as pivot row, we obtain

x
x
x___
x

0
O

x x x 0 0 0 O]
/x x x 0 0 0 0

x 0 x 0 0 0
x 0 x x 0 0 0
0 x x 0 0 0
0 0 0 0 x x x
0 0 0 0 x x x
0 0 0 0 x x x

Now A is decoupled into two diagonal blocks of size at most 6 6.
This example shows that nonincreasing band width can easily be obtained if we do

not increase the pivot row when the previous reduction is skipped. For computational
purposes, we define the row-band-width with respect to a threshold -"

(4) band_row(i, -) de__f m.ax{i- J lJ or j < and [[a(i’n, J)ll > }, 1 _< < n.
3

That is, given a tolerance threshold -, a column a(i’n) is considered numerically
zero if its 2-norm is at most -. The Matlab function bred in Figure 1 shows the
conventional band-reduction algorithm augmented with

(1) a threshold criterion for the generation of a Householder vector, and
(2) a modified pivot row selection strategy, which does not change the pivot row

if a transformation is skipped.
The subroutines gen_hh, pre_hh, post_hh, and sym_hh generate a Householder

vector and apply it from the left, right, and symmetrically, respectively. Note that for
simplicity the algorithm presented here does not exploit the symmetry of A. However,
if we wish to do so, we can have sym_hh work only with a triangular part of A and omit
the post_hh (prenhh) call when working only with the lower (upper) triangle. We also
note that all the algorithms presented in this paper are available via anonymous ftp
from the pub/prism directory at ftp. super, org.

If no transformations are skipped, the procedure is identical to the conventional
band-reduction procedure; otherwise, it may terminate earlier when the reduction
reaches the last column of the first diagonal block, and the problem is decoupled.
Since we drop pivot columns whose norm is O0-), the decomposition will be accurate
up to a residual of order -.
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function [A, blockl, O] bred( A, b, tau, Q );

Given a symmetric matrix A, a bandwidth b, and a threshold tau, bred

computes an orthogonal-banded matrix decomposition,
A_input * W W * A_output + O(tau)

where O(tau) denotes a matrix with a two-norm of order tau, and

W is an orthogonal matrix.
The output matrix A_output will be a 2x2 block diagonal matrix,
where the first diagonal block A_output (1:block1,1:block1)
is banded with bandwidth nonincreasing from b, and the second block

may be empty.

m, n size(A); if (m~=n) error(’nonsquare A’); end

piv_row min(b+1,n); current pivot row

if (piv_row n) block1 n; return; end;
for j l:n-b

15 Y. matrix is decoupled, stop
if (piv_row j), break, end

% row and column sets involved in current transformation

rows (piv_row n); cole (j+l:piv_row-l);
generate HH matrix to annihilate A(piv_row+l:n,j)

20 v, beta, gamma gen_hh( A( rows, j), tau

% update jth row and column of A
A( rows, j) zeros(size(rows’)); A(piv_row, j) gamma;
A( j, rows) zeros(size(rows)) A(j, piv_row) gamma;

if the reduction is not "skipped", perform symmetric
25 update of A, update Q if required, and shift the pivot row

if beta ~= O)
if( cole~= []

A(rows, cole)= pre_hh( beta, v, A(rows, cole) );
A(cols, rows) post_hh( beta, v, A(cols, rows) );

30 end
A( rows, rows symm_hh( beta, v, A(rows, rows) );
if( Q ~= [] ), Q(:, rows) post_hh( beta, v, Q(:, rows ); end

end Y. beta

Y. increase pivot row if A(piv_row,j) is not negligible
35 if (abs(A(j,piv_row)) > tau), piv_row piv_row + I; end

end % j-loop
if (j n b)

if (ply_row j+1), block1 ply_row I; else, block1 n; end
else

40 block1 piv_row-1;
end

return; end

FIG. 1. Nonincreasing row-band-width preserving band-reduction algorithm.
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For simplicity we omitted an optimization in Figure 1--if the reduction of the
first column of A results in a band width b, say, where b < b, due to the small size
of entries a(b + 1 n, 1), we can directly pursue a reduction of the trailing block to
nonincreasing band width/ in the same fashion as shown above.

If the parameter b is chosen such that kb < n, where k is the number of distinct
eigenvalues of A, Theorem 2.1 predicts a decoupling of the problem with the leading
block being of size no larger than kb. In particular, if b is chosen such that kb=n/2,
we can expect bred to generate two decoupled subproblems of about the same size.
We can then recursively divide the problem until the transformed matrix becomes
tridiagonal (i.e., b-1). Figure 2 is a serial implementation of tridiagonalization based
on this approach. Note that the various subproblems can be dealt with independently
and simultaneously. The subroutine blk_diag, which is called in tri_sbr, is shown
in Figure 3 and reduces a matrix to block diagonal form with a given band width.

For example, if we reduce a 12 12 matrix A with only two eigenvalues to band
width 3, then no diagonal block can be larger than 6 6. So, if a(4, 1), a(5,2),
and a(6, 3) are all nonzero after the reductions in the first three columns have been
completed, then the next three columns must already be reduced, and the (partially
reduced) matrix A is of the form

x x x x 0 0 0 0 0 0 0 0
x x x x x 0 0 0 0 0 0 0
x x x x x x 0 0 0 0 0 0
x x x x x x 0 0 0 0 0 0
0 x x x x x 0 0 0 0 0 0
0 0 x x x x 0 0 0 0 0 0
0 0 0 0 0 0 x x x x x x
0 0 0 0 0 0 x x x x x x
0 0 0 0 0 0 x x x x x x
0 0 0 0 0 0 x x x x x x
0 0 0 0 0 0 x x x x x x
0 0 0 0 0 0 x x x x x x

As a result, we do not need to perform the reductions that would otherwise
have occurred in columns 4 through 6. Compared to the conventional approach, the
complexity of the algorithm for the case k 2 is 0(0.55 n3) for the reduction of A and
O(1.25n3) for the update of Q, as compared to O(4n3/3) for both these operations
in the usual approach. The savings for Q are minor since updates at later stages
still involve vectors of length n, whereas only diagonal subblocks are affected in A.
In addition, we can work in parallel on independent problems. If the estimate k of
the number of distinct eigenvalues is inaccurate, the algorithm becomes either the
standard eigenvalue algorithm (for k > n/2) or the SBR tridiagonalization procedure
suggested in [10], but in either case, it will return numerically accurate results.

4. Invariant subspace splitting. The computational cost and the degree of
parallelism in the algorithm depend on k, the number of distinct eigenvalues. One
particularly intriguing case is matrices that have only two eigenvalues. It is intriguing
because they arise in eigensolvers based on variant subspace decompositions [3, 19, 4].
We may assume without loss of generality that the eigenvalues are at 1 and 0 (any
other two eigenvalues can be mapped to 0 and 1 by shifting and scaling). The following
corollary is a special case of Theorem 2.1.



TRIDIAGONALIZING AND DIAGONALIZING SYMMETRIC MATRICES 875

function [A, Q] tri_sbr( A, k, tau, Q

produces an orthogonal-tridiagonal decomposition of
a symmetric matrix A such that

5 A_old, *A_new + 0(tau)
where A_new is tridiagonal and is orthogonal.

The number k is a guess at the number of numerically distinct

eigenvalues of A.
I0

Matrices are successively reduced to smaller bandwidth in an

attempt to exploit the divide-and-conquer nature becoming
apparent in the successive bandreduction algorithm when the number
k chosen is a good guess at the actual number of numerically distinct

15 eigenvalues.

[m, n] size(A); if( m ~= n error(’non-square A’); end

b max(floor(n/(2*k)), 1 );

[A, block1, Q] bred( A, b, tau, Q );

if (blockl n) , If problem didn’t decouple, just reduce to
20 Y, tridiagonal form

[A,blkvec,Q] blk_diag(A,l,tau,Q); return;
else
if( b > I first subproblem is not tridiagonal yet

sub l:blockl; V eye(blockl);
25 A(sub,sub), V tri_sbr( A( sub, sub), k, tau, V

O(:,sub) =O(:,sub) * V;
end;
if( n-blockl > 9. Y, second subproblem is nontrivial

sub (blocki+l) :n; V eye(n-blockl)
30 A(sub, sub), V tri_sbr( A(sub, sub), k, tau, V );

Q(:,sub) (:,sub) * V;
end

end

return;
35 end

FIG. 2. Divide-and-conquer tridiagonalization.

COROLLARY 4.1. Let A be a matrix with two distinct eigenvalues, and let A
QTTQ be a tridiagonalization of A. Then T is block diagonal with diagonal blocks of
size at most 2 2.

Corollary 4.1 implies that one can determine the range space, T4(A), and the null
space, Af(A), in essence via a tridiagonalizing of A. Let AQ=QT be the orthogonal-
tridiagonal decomposition of A. For a 1 1 diagonal block T(j,j),

Q(:,j) en(A) if T(j, j) l, and Q(:,j)Af(A) if T(j, j) 0.



876 CHRISTIAN H. BISCHOF AND XIAOBAI SUN

function A, blkvec, 0 blk_diag( A, b, tau, 0

, Given a symmetric matrix A, a desired bandwidth b, and a threshold tau,
A, bvec, Q blk_diag( A, b, tau, {

5 produces an orthogonal-block-diagonal decomposition
A_input * W W * A_output + O(tau)

where O(tau) denotes a matrix whose norm is of order ray, and, W is an orthogonal matrix.

I0 A_output will be a block diagonal matrix with each block banded with

@ nonincreasing bandwidth b. The i-th diagonal block starts, at (blkvec (i), blkvec (i)).

If Q is not the empty matrix on input, Q is postmultiplied by W,
15 i.e.,, O_output _input W.

[m, n] size(A); if( m ~= n error( ’non-square A’); end

2O

j I; blkvec [];
while( j < n

blkvec [ blkvec j ]; rows j:n; cols j:n;
[A(rows, cols), dj, Q(:,cols) bred(A(rows,cols), b, tau, (:,cols)
j =j +dj;

end

return; end

FIG. 3. Reduction to block diagonal form.

Since the eigenvalues of A and T are the same, a 22 diagonal block T(j:j+I,j:j+I)
must have eigenvalues 0 and 1. Because the trace is the sum of the eigenvalues and
the off diagonal entry is nonzero, we have

T(j:j+I,j:j+I)= ( 1
-# 7

where # 0 and 0 < 7 < 1. Since

we conclude that

Q(" j:j+l)(# ETi(A) and

0 # 7
0 7 -#

One can see that the separation of the range and null subspaces of A, and in fact
its eigenvalue decomposition, can be effected by diagonMizing (potentially in parallel)
the 2 2 subproblems still occurring in the block tridiagonM decomposition.

In the presence of rounding errors, a computed tridiagonM matrix may not, how-
ever, exhibit the block structure we could expect from Corollary 4.1 due to pertur-
bations in the eigenvMues. That is, A(T) C {I-v, v] U [1 u, 1 + v]}, and a repeated
eigenvMue numerically manifests itself as an eigenvalue cluster.
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Example 4.2. The matrix

/ 1
el

el
e2
1 e3
e3 0

e4

e4

1 (n--1

where ej O(vf), has eigenvalues A(T) C {[-/],/]] U [1 -/], 1 +/]]} with/] O(e).
Hence, it seems as if for numerically relevant computations, we now would be

faced with computing the eigenvalue decomposition of a tridiagonal matrix. This is
not the case, however. By exploiting the special structure of the tridiagonal matrix,
we can diagonalize it in two "sweeps" which compute the eigendecomposition of all
"even" or "odd" 2 x 2 blocks on the diagonal (simultaneously), respectively. As we
show in what follows, the fill-ins generated by these sweeps are of the same order as
the perturbation in the eigenvMues and hence can be considered negligible.

LEMMA 4.3. Let T be a symmetric tridiagonal matrix with

A(T) C [-/],/]] U [1 -/], 1 +/]1,
defwhere/] max.x(T){min(l--ll, IAI)} << 1. Then IIT2-TII2

_ , where

(5) def /]2

Proof. Let Q be orthogonal and E diag(E1, E0) be diagonal, respectively, such
that

Then IlElle , and

T=Q( I+E1 )QTEo

The next lemma gives bounds on the elements of the Givens rotation we will
choose to diagonalize a 2 2 block and minimize the size of fill-ins.

LEMMA 4.4. Let G c s) be a Givens rotation that diagonalizes a 2 2
--8 C

symmetric matrix (1 Assume that without loss of generality > 0 and define02
a>_Oby

(6) (7
2 def 01 O2 /2

2 +

Then s and c can be chosen such that

and < c < 1o <_ I1 _<
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Proof. Let c cos(0) and s sin(). Since we want to eliminate the off diagonal
elements in G( al GTf .) we obtain

O (c2 s’)/3 + 2cs ( a2
If we choose

=/3cs(20)-(a2-al)sin(20)’2

(7) cos(20)
20-

with 0- as defined in (6), then

82 1 cos(20) /32
20"(0" %. [0 --0/21/2

and

1 + cos(20) 0- + la a2[/2
c2

2 20

as claimed.
In the following theorem we now show that, employing these Givens rotations,

we can limit the size of the fill-in entries generated when applying these rotations to
a tridiagonal matrix with eigenvalue clusters around 0 and 1.

THEOREM 4.5. Let T and be as in Lemma 4.3. Let G diag(I, c s) I) be
--8 c

the Givens rotation that diagonalizes one 2 2 diagonal block of T; i.e.,

where we assume that > 0 without loss of generality. If > x/ff and c and s are
chosen as suggested in Lemma 4.4, then

Proof. Comparing corresponding entries in T2 and T and invoking Lemma 4.3,
we know that there exist 5, _e, and eo, Il, I_el, leo[ < p, such that

Using these identities, we have

2 OZ10/2
2

(1 -(o1%-o2))%-
(_ + ) (/ +)
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and hence we can express a2 defined as in (6) as

2 + (/2 0/10/2

1(e2o) +_

Thus,

Now let " _> 1 be chosen such that/ > 7. Then

+ (Z_Z)

a2> 1 5(1)
2

Equations (11) together with s < Z imply that--;

Using (12) it is now easy to show that T > V implies < T and hence the result
of the theorem.

As a consequence of Theorem 4.5, we are then able to compute the eigenvalue
decomposition of a 2 x 2 diagonal block in a tridiagonal matrix T with eigenvalue
clusters at 0 and 1 such that the generated fill-in is negligible compared to the eigen-
value perturbation. Thus, the diagonMization of T can be done by two sweeps of
(potentially concurrent) 2 x 2 eigenvalue problems, as shown in Figure 4. In the first
sweep, we diagonalize an "odd-even" 2 x 2 problem if the off diagonal entry is not
too small, and set the fill entries to zero, or otherwise just zero the off diagonal entry.
In the second sweep, we diagonMize the "even-odd" blocks. Since no more rotations
follow, there is no need to zero out fill-in entries.

Theorem 4.5 shows that the Frobenius norm of the fill-in matrix introduced by the
algorithm rr_d+/-ag shown in Figure 4 is bounded by 3v/, which is of the same order
as the perturbation in eigenvalues. The subroutine d+/-ag2, which is not shown here,
computes the diagonalizing rotations as outlined in Lemma 4.4. Hence, Algorithm
rr_d+/-ag is as numerically reliable as any other approach for diagonalizing T, albeit
much cheaper due to its exploitation of the special structure of T.

5. Numerical experiments. In this section we report on some numerical ex-
periments with the algorithms presented in this paper. All experiments were per-
forned with Matlab Version 4.2a on a Sun Sparcstation iPX. For the reader wishing
to experiment on his or her own, the Matlab files employed to generate these results
can be retrieved via anonymous ftp from the pub/prism directory at ftp. super, org.

First, we apply the band-reduction algorithm bred of Figure 1 recursively to the
trailing subblock of a 200 200 matrix with two eigenvalue clusters of size 50, each
at A {-1,-2, 0, 1}. The radius of each cluster is e 1.0e3, where e is the machine
precision. The drop threshold tau in bred is set to x/ e 1.0e3, and at each step the
band width is chosen so as to decouple the problem in the middle. The succession
of matrices generated is shown in Figure 5. The caption of each picture shows the
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function [Q, D] rr_diag( A, Q, tau. Given a tridiagonal matrix A with eigenvalues 1 and O, with

lambda(A) contained in [1-tau, l+tau] or [-tau,tau]
5 . rr_diag computes an approximate eigendecomposition

D=Q’ *A*Q. where
@ D Q’. A * _Frobenius = sqrt(T*n),tau.(l+tau)

[m,n] size(A) if( m~=n error( ’non-square A’) end
I0 drop_threshold sqrt (7)*tau*(l+tau)

15

2O

for j l:2:floor(n/2),2 % diagonalize all (odd-even)
k j:j+1; % diagonal 2x2 matrices

if (abs(A(j+l,j)) > drop_threshold)
[G A(k,k)] diag2(A(k,k) );
if( j+2 <= n
A(j+2,k) A(j+2,k)*G; A(k,j+2) G’,A(k,j+2);
A(j+2,j) O; A(j,j+2) O; % zero out negligible fill-ins

end
if( j-I >= i

A(j-l,k) A(j-i,k),G; A(k,j-i) G’,A(k,j-i);
A(j-I,j+I) O; A(j+I,j-I) O;

end
Q(:,k) (:, k),G;

end
25 end

for j 2:2:floor((n-1)/2)*2
k j:j+l;

% diagonalize all (even-odd)
% diagonal 2x2 matrices

if (abs(A(j+l,j)) > drop_threshold)
[G A(k,k)] diag2(A(k,k) );

30 if( j+2 <= n
A(j+2,k) A(j+2,k)*G; A(k,j+2) G’,A(k,j+2);

% no more need to zero fill-ins

end
if( j-1 >= i

35 A(j-l,k) A(j-I,k)*G; A(k,j-l) G’,A(k,j-I);
end
Q(:,k) Q(:, k),G;

end
end

40 D diag(diag(A))
return; end

FIG. 4. Diagonalization of a tridiagonal matrix with eigenvalue clusters at 0 and 1.

current matrix size being worked on and the band width to which it is to be reduced.
At each step, we compute the residual

We observe that 5 7.2e-13, which, given a machine precision e 2.2e-16, is consis-
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Fc. 5. Band .reduction applied to trailing subblock of a 200 200 matrix with four distinct
eigenvalue clusters.

tent with our theory.
The same experiment, employing a ,natrix with 100 eigenvalues at 0 and 1 each

and using the same eigenvalue perturbation and drop threshold, is shown in Figure 6.
Note that it is suftEcient to reduce the matrix to half th.e band width chosen in Figure 5
to achieve decoupling. We observe that (5 2.7e-ta. We also note that in both cases,
the first, third, and fourth splits occurred at row (and column) 100, 176, and 1.88,
respectively. The second split occurred at row 152 for Figure 5 and at row 150 for
Figure 6.

T_o test the behavior of our rank-revealing tridiagonalization (RRDG), we compare
it with the standard eigenvalue decomposition (EIG) and the QR factorization with
cohlmn pivoting (QR); the results are presented in Table 1 and Table 2. Our test
matrices are

1. tridiagonal matrices with eigenvalue clusters of radius p generated by insert-
ing random off diagonal perturbations of the order x/ in the matrix shown
in Example 4.2, and
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FIG. 6. Band reduction applied to trailing szbblock of a 200 200 matrix with two distinct
eigenvalue clusters.

2. matrices generated by symmetrically multiplying the matrices from
Example 4.2 with orthogonal matrices generated via the QR factorization
of a random matrix.

In the first case, we call rr_diag, listed in Figure 4. In the second case, we precede
the call to rr_diag by a call to tri_sbr, as shown in Figure 2. The drop threshold for
the divide-and-conquer tridiagonalization is set to x/p e, which is the same threshold
as that employed in the two final diagonalization sweeps..For each of p 1, 10,100,
we run 50 test cases each with matrix sizes 125, 250, and 375. RRDG and EIG both
compute an eigenvalue deco.mposition QrAQ D with D diagonal. We compute
/) d__f round(D), i.e., round, each diagonal entry to the nearest integer, and we report
both the relative eigenvalue residual IIQA [/)QII/x/ (in Table 1) as well as the
relative orthogonality residual IIQQ- IIl/x/ (in Table 2). Note th.at /2 is an
estimate of IIAII. In the case of the QR factorization with pivoting, which, computes
AP QR for a permutation matrix P and an upper triangular matrix R, we compute
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TABLE 1
Relative residual in subspace splitting.

Tridiagonal Matrices

RRDGmax EIGmax QRmax

5.3e--16
5.0e--16
4.9e--16

1.6e--15
1.6e--15
1.5e--15

1.7e--15
3.8e--15
5.6e--15

p=10
3.5e--15
3.3e--15
3.4e--15

4.2e--15
4.9e--15
4.5e--15

p= 100

2.2e--15
5.1e--15
4.3e-15

3.3e--14
3.2e--14
3.2e--14

p--
3.3e-13
3.2e--13
3.2e--13

3.3e--14 2.7e--15
32e--14 6.8e--15
4.4e--14 6.6e--15

1500
’3.3e--13
3.2e--13
3.2e-13

2.5e--15
4.1e--15
6.2e--15

Full Matrices

n RRDGmax EIGmax’ QRmax
p=l

125 5.3e--14 1.7e’--’14 1.4e’14
250 1.5e--13 3.3e--14 3.7e--14
375 2.4e--14 3.8e--14 5.5e--14

’p i0
1.25 5.0e--15 6.0e--15 1.6e--14
250 5.5e--15 3.0e--14 4.0e--14
375 6.1e--15 4.1e--14 4.8e--14

p-- 100
125 4.6e--14 3.5e’-- 14 ii4e--’ii
250 4.5e--14 5.2e--14 3.9e--14
375 4.2e--14 3.2e--14 4.9e--14

p i000
125 4.6e--13 3.5e--13 1.6e--14
250 4.4e--13 3.4e--13 3.6e--14
375 4.2e--13 3.2e--13 4.2e--14

TABLE 2
Relative residual in orthogonality.

Tridiagonal Matrices Full Matrices

RRDGmax EIGmax QRmax
p=l

2.3e--16’ 1.2e--15
2.2e--16 1.3e--15
2.1e--16 1.2e--15

p=10
3.oe 16 2.8e-15
2.8e-16 3.0e-15
2.8e-16 2.8e-15

p= 100
3.4e-16 1.1e-14
3.2e-16 2.0e-14
3.1e-16 1.9e-14

p ’-- iooo

l.le--15
1.3e--15
1.3e--15

l.le--15
1.4e--15
1.6e--15

1.3e--15
1.4e--15
1.7e--15

3.2e--16 1.0e--14 1.2e’i5
3.1e--16 2.3e--14 1.4e--15
3.2e--16 3.3e--14 1.6e--15

n

125
250
375

125
250
375

125
250
375

25O
375

aRDGmax EIGmax QRmax

2.1e--15
3.0e--15
3.6e--15

p
1.2e--14
2.4e--14
2.7e--14

p--10

1.7ei5
2.4e--15
2.8e--15

1.4e-- 15
1.9e--15
3.4e--15

l.le--14
2.1e--14
2.9e--14

1.7e--15
2.3e--15
2.9e--15

p= i00
1.4e-15 1.1e-14 1.7e--15
1.9e-15 2.2e-14 2.4e-15
2.3e-15 2.6e-14 2.9e-15

p 1000
1.4e-15 1.3e’-14
1.9e-15 2.4e-14
2.3e-15 3.3e-14

1.8e--15
2.4e--15
2.9e--15

the rank

def
r max Ir.[ > -VYp e

and de2 (T , A * Q. We then report

IlIA(l , 1" ’)IIF -IIAIIFIIx/I2,

which should be small since Q(1 r, :) is a basis for the range space of A. For each
case, we report the worst residual.

We see that the divide-and-conquer tridiagonalization, followed by the two clean
up sweeps over the resulting tridiagonal matrix, performs just as well as a full-fledged
eigenvalue decomposition. In both cases, the residual in the subspace splitting is of
O(pe), as expected. The residual for QR factorization does not include the perturba-
tion at the eigenvalue 1 as the other two approaches do and therefore is smaller in all
cases. In any case, the computed orthogonal matrices are orthogonal up to machine
precision. The Q computed by the e+/-g function in Matlab is slightly less orthogonal
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since eig involves more transformations and as a result accumulates more rounding
errors. Note that all three approaches are worse for a full matrix in the case p I.
This is due to the fact that the roundoff errors in the orthogonal reductions are of the
same order of machine precision. When p is bigger, the roundoff errors are dominated
by the perturbation in the eigenvalues, and hence RRDG and EIG behave about the
same for tridiagonal and full matrices.

6. Conclusions. This paper introduced an algorithm for reducing a symmet-
ric matrix with repeated eigenvalues to tridiagonal form. The algorithm progresses
through a series of band reductions, each band-reduction stage forcing a decoupling
of the band matrix into independent subblocks. Compared to the usual Householder
tridiagonalization procedure, this approach can save up to 50% of the floating-point
operations. We also developed a robust and inexpensive numerical procedure for di-
agonalizing the resulting tridiagonal matrix in the case where the matrix has only two
eigenvalue clusters around 0 and 1. This case arises in eigenvalue decomposition algo-
rithms based on invariant subspace approaches. Taken together, these two algorithms
allow for a very efficient diagonalization of such matrices.

The algorithm can be generalized immediately to the reduction of unsymmetric
matrices to Hessenberg form. The same irreducibility argument underlying Theo-
rem 2.1 goes through for Hessenberg matrices. We also note that in exact arithmetic,
conjugate transposed eigenvalue pairs would end up in the same block. However,
since one triangle of a Hessenberg matrix is still full, the potential for computational
savings is greatly reduced.

We mention that, apart from its divide-and-conquer nature and the resulting po-
tential for parallelism, as well as its reduced operation count, our divide-and-conquer
algorithm has another attractive feature. Since our algorithm, at least in the early
stages, reduces matrices to banded form with a relatively wide band, it is easy to
block the Householder transformations using the WY representation [11] or the com-
pact W representation [20], as has been described, for example, in [17]. In this
fashion, one can easily capitalize on the favorable memory transfer characteristics of
block algorithms.
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