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Abstract

This paper sketches the main research developments in the area of computational methods for eigenvalue problems
during the 20th century. The earliest of such methods dates back to work of Jacobi in the middle of the 19th century.
Since computing eigenvalues and vectors is essentially more complicated than solving linear systems, it is not surprising
that highly signi�cant developments in this area started with the introduction of electronic computers around 1950. In
the early decades of this century, however, important theoretical developments had been made from which computational
techniques could grow. Research in this area of numerical linear algebra is very active, since there is a heavy demand for
solving complicated problems associated with stability and perturbation analysis for practical applications. For standard
problems, powerful tools are available, but there still remain many open problems. It is the intention of this contribution
to sketch the main developments of this century, especially as they relate to one another, and to give an impression of
the state of the art at the turn of our century. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Sources

Numerical linear algebra is a very active �eld of research. Many problems are challenging of
themselves, and in addition, much of scienti�c computing depends critically in one way or another
on numerical linear algebra algorithms. Not only do the more classical scienti�c computational
models for physical or engineering problems depend on linear algebra kernels, but many modern
applications, such as information retrieval and image restoration, pro�t from numerical linear algebra
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results. These factors have motivated numerical linear algebra research throughout the entire 20th
century.
The �eld has blossomed, especially since the introduction of the modern computer, roughly from

the early 1950s. This is evident from the large number of scienti�c journals in which articles
in this area appear: SIAM J. on Matrix Analysis and Applications (SIMAX ), Linear Algebra
and its Applications (LAA), Numerical Linear Algebra with Applications (NLAA), are completely
devoted to this specialty. Articles on numerical linear algebra, theoretical as well as applied, regularly
appear in journals such as BIT, SIAM J. Numerical Analysis, SIAM J. on Scienti�c Computing,
J. on Computational and Applied Mathematics, J. Applied Numerical Mathematics, Numerische
Mathematik, Numerical Algorithms, Mathematics of Computation, Parallel Computing, ACM
Transactions on Mathematical Software, Computing, J. Inst. Math. Applic., SIAM Review, IMA
J. Num. Anal., and several others in more application oriented directions, such as J. Computational
Physics and engineering journals. And from, for instance, the bibliography in Golub and Van Loan’s
book [51], one can see how many papers are referenced from these and other sources. A quick glance
through the contents of the average 60 papers per year in SIMAX shows that roughly 40% of the
papers are associated with eigenvalue problem research, and it is likely that this holds more or less
for the many papers per year that focus on numerical linear algebra.
This makes any attempt to write a complete overview on the research on computational aspects

of the eigenvalue problem a hopeless task. It also serves as an excuse for the incompleteness in the
current overview. We have tried to highlight what seemed most important from our point of view.
We have included references to main sources, and we have made a personally colored selection of
references to more specialized details. Instead of trying to give an overview of all sorts of di�erent
approaches that have been followed to solve aspects of eigenproblems, we will try to emphasize the
history of those methods that, in our opinion, still play a role. Our aim is to consider the algorithmic
developments from a historical point of view and to indicate how the recent powerful techniques
are the result of many smaller steps. This will also help to show how many of the algorithms are
interrelated; we hope not to get lost in sidesteps. The reader who is interested in methods that have
played a role but that are at present no longer considered to be on the main track, is referred to
Householder’s and Wilkinson’s books [64,154]. In addition, Parlett [100] gives interesting historical
information on older methods that still have some signi�cance from a theoretical point of view.
In order to be active in this area of research, or to be informed about special aspects, then one

might be interested in our main sources:

• Wilkinson: The Algebraic Eigenvalue Problem [154].
• Householder: The Theory of Matrices in Numerical Analysis [64].
• Wilkinson and Reinsch: The Handbook [158].
• Parlett: The Symmetric Eigenvalue Problem [100].
• Stewart and Sun: Matrix Perturbation Theory [129].
• Watkins: Fundamentals of Matrix Computations [150].
• Golub and Van Loan: Matrix Computations [51].
• Chatelin: Spectral Approximation of Linear Operators [18].
• Saad: Numerical Methods for Large Eigenvalue Problems [116].
• Demmel: Applied Numerical Linear Algebra [28].
• Trefethen and Bau: Numerical Linear Algebra [137].
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• Arpack Guide (Lehoucq, Sorensen and Yang) [81].
• Dongarra et al.: Numerical Linear Algebra for High Performance Computers [31].
• Bai’s paper in Numerical Lin. Alg. with Appl. [6].
• Watkin’s paper in SIAM Review [151].
• Dongarra and Walker on Software [33].
• Wilkinson: State of the Art overview [157].
• van der Vorst and Golub: State of the Art paper [50].

By regularly examining the dedicated numerical linear algebra journals, one should be able to trace
most of the relevant and interesting papers for further investigations and research.
It should be noted that we have concentrated on algebraic eigenvalue problems in this paper. For

eigenvalue problems related to, for instance, PDEs, one may use methods that exploit the nature
of the PDE or the expected behaviour of the solution. We have not considered such specialized
techniques (of which multigrid is a good example).

2. Introduction

The eigenvalue problem for square matrices A, that is the determination of nontrivial solutions of
Ax = �x, is a central topic in numerical linear algebra. It is inherently nonlinear and this leads to
many computational problems. Computation of the eigenvalues � via the explicit construction of the
characteristic equation

det(A− �I) = 0
is, except for very special cases, not an option since the coe�cients of the characteristic equa-
tion cannot be computed from determinant evaluations in a numerically stable way. And even if
the characteristic equation could be determined accurately, then the computation of its roots, in �nite
precision, may be highly unstable since small perturbations in the coe�cients may lead to large
perturbations of the roots. The numerical computation of the associated eigenvectors and general-
ized eigenvectors is even more delicate, in particular when eigenvectors of A make small angles
with each other. In the limiting case, when the matrix is defective, A can be reduced to the Jordan
canonical form, but arbitrary small perturbations in A may yield a nondefective matrix. This leads to
many challenging numerical questions, which give rise to the central problem: how can we compute
eigenvalues and eigenvectors in an e�cient manner and how accurate are they?
In fact, this was already recognized by Jacobi, who, in 1846, computed the eigenvalues of sym-

metric matrices by rotating the matrix to a strongly diagonally dominant one. We will return to this
later, since Jacobi’s techniques are still relevant and have led to popular and powerful algorithms.
Another longstanding method that is of great signi�cance and serves as the basis for many algo-

rithms is the Power iteration. The method is based on the idea that if a given vector is repeatedly
applied to a matrix, and is properly normalized, then ultimately, it will lie in the direction of the
eigenvector associated with the eigenvalues which are largest in absolute value. The rate of con-
vergence for the Power iteration depends on the ratio of the second largest eigenvalue (in absolute
value) to the largest eigenvalue (in absolute value) and for many applications this leads to unac-
ceptably slow convergence. The method can be problematic if one wants to compute a number of
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extremal eigenvalues. The Power iteration is still in use, but most frequently as (implicit) part of
more e�cient techniques, e.g., Krylov methods, inverse iteration, QR-method.
What becomes clear is that all these methods are of an iterative nature, and this is necessarily

the case, since if there were a method of computing the eigenvalues of an nth-order matrix in a
�nite number of computations, depending only on n, then this would be in contradiction with the
fundamental theorem of Abel–Ru�ni (and also a well-known result in Galois theory) that no such
algorithm exists for the computation of the roots of a general polynomial of degree greater than
4. Hence, an algorithm for a matrix with a general structure (that is, not a diagonal matrix or a
triangular matrix or alike) is necessarily iterative and the problem is to identify iterative algorithms
which have a fast rate of convergence and lead to accurate results.
In solving an eigenvalue problem there are a number of properties that need be considered. These

greatly a�ect the choice of algorithm. We list below a number of questions that an investigator needs
to consider in solving a particular problem.

• Is the matrix real or complex?
• What special properties does the matrix have?

◦ symmetric,
◦ Hermitian,
◦ skew symmetric,
◦ unitary.

• Structure?
◦ band,
◦ sparse,
◦ structured sparseness,
◦ Toeplitz.

• Eigenvalues required?
◦ largest,
◦ smallest in magnitude,
◦ real part of eigenvalues negative,
◦ sums of intermediate eigenvalues.
As well as the standard eigenproblem, there are a variety of more complicated eigenproblems,

for instance Ax = �Bx, and more generalized eigenproblems like Ax+ �Bx+ �2Cx=0, higher-order
polynomial problems, and nonlinear eigenproblems. All these problems are considerably more com-
plicated than the standard eigenproblem, depending on the operators involved. However, as the
standard eigenproblem has become better understood, in a numerical sense, progress has been made
in the other problems and we will consider developments in solving these problems.

3. Canonical forms

The standard approach for the numerical solution of the eigenproblem is to reduce the operators
involved to some simpler form, that yields the eigenvalues and eigenvectors directly, for instance,



G.H. Golub, H.A. van der Vorst / Journal of Computational and Applied Mathematics 123 (2000) 35–65 39

diagonal form. The idea is that the transformation be made with orthogonal operators as often as
possible, in order to reduce the e�ects of perturbations.
The easiest situation is the symmetric case: for a real symmetric matrix, there exists an orthogonal

matrix Q, so that QTAQ = D, where D is a diagonal matrix. The diagonal elements of D are the
eigenvalues of A, the columns of Q are the corresponding eigenvectors of A.
Unsymmetric matrices do not in general have an orthonormal set of eigenvectors, and may not

have a complete set of eigenvectors, but they can be transformed unitarily to Schur form:

Q∗AQ = R;

in which R is upper triangular. In fact, the symmetric case is a special case of this Schur decom-
position, since a symmetric triangular matrix is clearly diagonal. Apart from the ordering of the
eigenvalues along the diagonal of R and the sign of each column of Q, the matrix Q is unique.
Van Dooren [146] has described an algorithm for the orthogonal transformation of Q, so that the
eigenvalues appear in prescribed order along the diagonal of R. If the eigenvalues are distinct then
there exists a nonsingular matrix X (in general not orthogonal), that transforms A to diagonal form

X−1AX = D:

An unsymmetric matrix can be transformed to Jordan form by a nonsingular matrix X . This
Jordan matrix may have upper bidiagonal blocks along the diagonal. Each of these blocks has
identical eigenvalues and the upper bidiagonal elements are equal, and most often set to 1. The
numerical computation of the Jordan form is highly unstable, since a small perturbation su�ces
to obtain a matrix with di�erent eigenvalues (and possibly a complete eigenvector system). Small
angles between (some of) the eigenvectors reveal that A is close to a matrix that is similar to a
nondiagonal Jordan form. For a discussion on how to compute elementary Jordan blocks (with the
help of the singular value decomposition), see the 1976 paper by Golub and Wilkinson [52].
Just as the Jordan canonical form describes the eigenstructure of a matrix, the Kronecker form

does this for matrix pencil A − �B, even for rectangular A and B. For details on this we refer
to papers by Wilkinson [155,156,143], and K�agstr�om [66]. The latter has also developed software
for the computation of the Kronecker structure [67]. Wilkinson, in his discussion on the progress
made in the period 1976–1986 in eigenvalue computations [157], noted that the Jordan canonical
and Kronecker canonical forms were largely regarded as irrelevant by numerical analysts because
of their ill-posedness. He even stated: “Many felt that I should have ignored the Jordan canonical
form in the Algebraic Eigenvalue Problem [154] and I had misgivings about including a discussion
of it”. Since the 1970s, this has changed, and contributions have been made by many, including
Demmel, Beelen, Van Dooren, Chaitin-Chatelin, Edelman, K�agstr�om, Nichols, Kautsky, Golub, and
Wilkinson. Although serious attempts have been undertaken for the computation of the Kronecker
canonical form, by for instance K�agstr�om and Van Dooren, this still needs further research. Also the
computation of invariant subspaces of highly nonnormal matrices is still in its infancy, notwithstand-
ing useful contributions by, for instance, Chaitin-Chatelin et al. [17,12] and Lee [80]. For recent
references, see [4]. Van Dooren described, in papers published in 1981, how the Kronecker form
can be used in system control problems (input–output systems) [145,144].
Related to eigendecompositions is the singular value decomposition. Let A be a real m×n matrix,

then there exists an orthogonal m× m matrix U and an orthogonal n× n matrix V , such that
U TAV = diag(�1; : : : ; �p);
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with p = min{m; n}, and �1¿�2¿ · · ·¿�p¿0. The values �i are the singular values of A, the
columns vi of V are the right singular vectors and the columns ui of U are the left singular vectors.
The number of nonzero singular values is equal to the rank of the matrix A. The singular value
decomposition (SVD) plays an important role in numerical linear algebra, for instance in the solution
of underdetermined or overdetermined linear systems.

4. Perturbation theorems

Perturbation theorems play a very essential role in computational processes for eigenproblems. As
we have remarked, eigensolvers are essentially iterative processes and many of them rest on the
principle of reducing a matrix to a special=simpler form, either diagonal or upper triangular. One has
then to decide when a matrix is su�ciently close to the appropriate ultimate form. It is important to
know what the approximation errors imply about the desired eigen information. A modern treatment
of perturbation theory for a variety of eigenproblems is given in the book by Stewart and Sun [129].
We will restrict ourselves here to what we regard as some of the most relevant results in this area.
Many theoretical results rest on the famous Gershgorin Disc Theorem, which states that the eigen-

values of a matrix A= (aij) are located in the union of circles with centre aii and radius
∑

j 6=i |aij|.
This theorem �rst appeared in a classic paper by Gerschgorin in 1931 [44]. A very useful re�nement
shows that if a group of s discs Di is isolated from the others, then this group contains precisely
s eigenvalues. In particular, if one disc is isolated then this disc contains one eigenvalue. This
particular case is of great interest, since it can be used for stopping criteria in actual computations.
Wilkinson [154] discussed the application of Gerschgorin’s theorem to various situations. He men-

tioned the discussion of useful extensions by Taussky in her 1949 paper [131]: Varga acknowledged
Taussky’s paper in his work on solving systems of linear equations by iterative methods (cf. [148]).
An important extension, using block matrices, of the Gerschgorin Theorem was given by Feingold
and Varga [38].
The eigenvalues depend continuously on the elements of A and if the ith eigenvalue �i is distinct,

then it is even di�erentiable. In this case one can carry through a �rst-order perturbation analysis
(cf. [129, p. 185]). This leads to the observation that if a matrix A is perturbed by �A, then the
perturbation to �i is in �rst order of terms of �A given by

��i =
1
y∗
i xi
y∗
i �Axi;

where xi, and yi are the normalized right and left eigenvectors, respectively, corresponding to �i, and
y∗
i denotes the complex conjugate of yi. The factor 1=y

∗
i xi is referred to as the condition number

of the ith eigenvalue. The Bauer–Fike result (1960) [9], which is actually one of the more famous
re�nements of Gershgorin’s theorem, makes this more precise: the eigenvalues �̃j of A + �A lie in
discs Bi with centre �i, and radius n(‖�A‖2=|y∗

i xi|) (for normalized xi and yi).
The Courant–Fischer minimax theorem is the basis of many useful results. For a symmetric matrix

A with ordered eigenvalues �n6 · · ·6�26�1 it states that the eigenvalues are the stationary values
of the Rayleigh quotients:

�k = max
dim(S) = k

min
0 6= y∈S

y∗Ay
y∗y

;
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for k = 1; 2; : : : ; n. Some important consequences are the following.
For symmetric matrices, Weyl in 1912 proved an important property for symmetric perturbations

�A:

|�̃i − �i|6‖�A‖2:
In fact, Weyl gave even more detailed results in terms of the eigenvalues of A and of �A: let the
eigenvalues of �A be denoted by �n6 · · ·6�26�1, then the eigenvalues �̃i of A+ E satisfy

�k + �n6�̃k6�k + �1:

These inclusion formulas were later re�ned to, in Parlett’s terminology, a blizzard of results, in-
dependently obtained by Kahan (1957) 2 and Weinberger (1974) [153]. See Parlett’s book [100,
Chapter 10.6] for an expos�e of these results. It is interesting to note that by 1990 the theory had
evolved to such an extent that Weyl’s result and the Kato–Temple results could be left as exercises
in Stewart and Sun’s book [129, p. 210–211]. This illustrates a rich and powerful framework.
Another important property that plays a big role in iterative (projection type) algorithms, is the

interlace property. Let Ar denote the leading r × r minor of A, with eigenvalues �(r)j , then

�(r+1)r+1 6�
(r)
r 6�

(r+1)
r 6 · · ·6�(r+1)2 6�(r)1 6�

(r+1)
1 :

An important result, that underlies the powerful divide and conquer method, comes from rank-one
perturbations. If B = A+ �ccT, with ‖c‖2 = 1, and real �¿0, then the ith eigenvalue of B is in the
interval [�i, �i−1], for �60 it is in [�i+1; �i]. In either case, there exist nonnegative �1; : : : ; �n with∑

i �i = 1, such that �i(B) = �i + �i�.
Further details and results can be found in most books on the (numerical) eigenproblem; in

particular Wilkinson’s book [154] is a great source. A good overview of these results and similar
results for invariant subspaces is given in [51]. From a result formulated as the Kato–Temple theorem,
one can obtain sharp bounds for the Rayleigh quotients for symmetric matrices. This rests on work
of Temple (1933) [132] and Kato (1949) [70]; more extended work in this direction has been done
by Davis and Kahan (1970) [27] (see also [18, p. 46], [28, Chapter 5.2]). In these results the gap
for the ith eigenvalue plays an essential role: gap(i; A) ≡ minj 6=i|�j − �i|. A small gap indicates a
sensitive eigenvector. In particular, let x denote a normalized vector with Rayleigh quotient �=xTAx,
and residual r=Ax−�x. Then there is a (normalized) eigenvector qi, corresponding to �i, for which

|�i − �|6 ‖r‖22
gap(i; A)

; sin(�)6
‖r‖2

gap(i; A)
;

where � denotes the angle between x and qi. These results show the superior quality of a Rayleigh
quotient from a given subspace. It is exploited in modern iterative methods, such as the Lanczos
algorithm, but it is also essential in the QR algorithm. Related to the perturbation analysis for
Rayleigh quotients is work of Kaniel (1966) [69] for errors in the Ritz approximations computed in
the Lanczos process. For a comprehensive discussion of this, see [100, Chapter 12].

2 According to Parlett [100, p. 203], who also mentions unpublished (?) results of Weinberger (1959).
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5. Jacobi’s method

For our discussion of the Jacobi method, we have used the following sources: [154, Chapter 5],
[100, Chapter 9], [51, Chapter 8.4]. The Jacobi method which was originally proposed in 1846 [65],
reduces a real symmetric matrix to diagonal form by a sequence of plane rotations. Jacobi, however,
did not use the method to full convergence, as was done in the 20th century, but combined it with an
iterative process (Gauss–Jacobi iterations) for the missing component of the desired eigenvector (for
which he took a unit vector as an initial guess). Actually, Jacobi’s technique may be viewed as a
form of preconditioning for the Gauss–Jacobi iteration that he also used to solve linear least-squares
systems. This has escaped the attention of most researchers that were active with Jacobi’s method;
the exception seems to be Bodewig [2, pp. 280–287]. The preconditioning part of the method, as an
iterative technique to diagonalize a matrix, was reinvented in 1949 by Goldstine et al. and published
in a manuscript. After Ostrowski had pointed out that this was actually a rediscovery of Jacobi’s
method, 3 the adapted manuscript was published only in 1959 [46]. 4 According to Wilkinson [154,
p. 343] Jacobi’s method was already being used independently on desk computers at the National
Physical Laboratory in 1947. From 1950 on, the method got much attention. In the classical process,
the maximal o�-diagonal element is annihilated, and this guarantees convergence. Since it is a
time-consuming process to determine the maximal element after each rotation, cyclic procedures
were suggested, (cf. [54]). Later, threshold strategies were developed in order to avoid wasting time
in trying to annihilate tiny elements [105]. Quadratic convergence for the cyclic Jacobi algorithm
was proven, under various assumptions, by Henrici (1958) [59], Sch�onhage (1961) [119], Wilkinson
(1962) [154], and van Kempen (1966) [147]. This rate of convergence sets in after a number of
sweeps (that is (n − 1)n=2 elementary rotations), but there is no rigorous bound on the number of
sweeps required to achieve a speci�ed accuracy. Brent and Luk [14] argued that this number is
proportional to log(n), which is in line with Parlett’s remark [100, p. 181] that after three or four
sweeps through all the o�-diagonal elements convergence is usually very rapid.
The success of the Jacobi method for diagonalizing a symmetric matrix by orthogonal similarity

transformations inspired many investigators to �nd a similar method for nonsymmetric matrices.
It was quickly realized that the Schur form was the appropriate decomposition. John Greenstadt,
in 1955 [53], was one of the earliest investigators to develop such a method (indeed, Greenstadt
made von Neumann aware of this canonical form). Unfortunately, these earliest attempts were not
successful. The QR method, that gained more popularity somewhat later, can be viewed, however, as
a Jacobi like method, since it can produce the Schur form via a sequence of similarity transformations
composed of rotations.
Rutishauser made an Algol60 implementation of Jacobi’s process, as a contribution to the Wilkin-

son Reinsch collection [158]. In the 1960s, the popularity of the method declined, because of the
growing popularity �rst of the Givens method and slightly later, the Householder method: these latter
two methods �rst reduced the matrix to tridiagonal form and then used an e�cient procedure for
computing the eigenvalues of the tridiagonal matrix. Interest in the Jacobi returned with the advent

3 Michele Benzi brought to our attention that this story is narrated on p. 294 in Goldstine’s book The Computer from
Pascal to von Neumann, Princeton University Press, 1972; it is also nicely covered in the Master Thesis of Anjet den
Boer [30] on the history of Jacobi’s method.

4 Parlett [100, p. 184] dates the reinvention in 1946, by Bargmann et al. [7], but this is presumably a misprint.
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of parallel computers, starting with a paper of Sameh (1971) [118], and followed by others in the
1980s. Variants of Jacobi’s method were proposed; we mention the extensions for normal matrices,
by Paardekooper in 1971 [96], and to nonnormal matrices by Eberlein, in 1970 [36]. The latter pro-
cess was also part of the Wilkinson and Reinsch collection (the Algol60 procedure eigen). In order
to improve data locality for distributed memory computers, block Jacobi methods were suggested,
see Bischof [10] for a discussion on the in
uence of the solution of the subproblems on the overall
process.
Another interesting feature of the Jacobi method is its superior behaviour with respect to accuracy.

Wilkinson analysed this and showed that the relative error in the eigenvalue approximations is
eventually reduced to the order of the condition number of A times machine precision. This was
perfected in 1992, by Demmel and Veseli�c [29], who showed that for symmetric positive-de�nite
matrices, the condition number of A could be replaced by that of the matrix symmetrically scaled
by the diagonal. If one is satis�ed with less accuracy, then for large-scale computations, Jacobi’s
method is no longer regarded as competitive, not even for modern parallel computers.

6. Power method

For our discussion of the Power method, we have borrowed material from Householder’s book
[64]. The Power method, for general square matrices, is the simplest of all the methods for solving for
eigenvalues and eigenvectors. The basic idea is to multiply the matrix A repeatedly by a well-chosen
starting vector, so that the component of that vector in the direction of the eigenvector with largest
eigenvalue in absolute value is magni�ed relative to the other components. Householder called this
Simple Iteration, and attributed the �rst treatment of it to M�untz (1913). Bodewig [2, p. 250]
attributes the power method to von Mises [149], and acknowledges M�untz for computing approximate
eigenvalues from quotients of minors of the explicitly computed matrix Ak , for increasing values
of k. For a careful analytic treatment of the Power method, Householder acknowledged work by
Ostrowski and Werner Gautschi; the reader can �nd a fairly complete treatment in Wilkinson’s book
[154] together with the proper references. The speed of convergence of the Power iteration depends
on the ratio of the second largest eigenvalue (in absolute value) to the largest eigenvalue (in absolute
value). In many applications this ratio can be close to 1 – this has motivated research to improve the
e�ciency of the Power method. It is interesting that the most e�ective variant is the inverse Power
method, in which one works with the matrix (A − �I)−1, and this variant was proposed as late as
1944 by Wielandt (Wielandt’s fractional iteration). Wielandt also proposed continuing the process
after the largest eigenvalue has converged, by working with the de
ated matrix A− �vv∗, for which
�; v is the computed eigenpair (with ‖v‖2 = 1), associated with the largest eigenvalue in magnitude.
(The de
ation procedure outlined here is for symmetric matrices. For unsymmetric matrices it is
necessary to work with at least two vectors; the choice of one of the vectors may not be unique.)
This is called implicit de
ation; another possibility is to keep the iteration vectors orthogonal to the
computed eigenvector(s): explicit de
ation. A compact description and analysis of these de
ation
techniques was given by Parlett [100]. The Power method and the Inverse Power method, in their
pure form are no longer competitive methods even for the computation of a few eigenpairs, but
they are still of interest since they are explicitly or implicitly part of most modern methods such as
the QR method, and the methods of Lanczos and Arnoldi. These methods evolved in some way or
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another from the Power method and some of the techniques that were suggested as improvements
to the Power method are still in use as acceleration techniques for modern iterative methods. One
of these ideas is to work with polynomials of A, with the purpose of damping unwanted parts of
the spectrum.
Another possibility is working with properly updated shifts � in the inverse process and, in

particular, if one takes the Rayleigh quotient with the most recent vector as a shift, then one obtains
the Rayleigh quotient iteration. According to Parlett [100, p. 71], Lord Rayleigh used in the 1870s
a less powerful technique: he did a single shift-and-invert step with a Rayleigh quotient for an
eigenvector approximation, but with a unit vector as the right-hand side. (This saves the refactoring
of the matrix (A − �I) at each iteration.) The modern RQI, in which one takes the most current
eigenvector approximation as the right-hand side, leads to very fast convergence. Ostrowski, in a
series of six papers [95], studied the convergence properties for variance of RQI for the symmetric
and unsymmetric case. He was able to establish cubic convergence in both cases under various
circumstances (in the unsymmetric case for a properly generalized Rayleigh quotient). These results
are essential for the understanding of modern iterative techniques that are based on (approximate)
shift-and-invert strategies (for example, the Jacobi–Davidson method, see below).
A step forward was to work with a set of independent vectors in order to �nd a number of

eigenvectors, instead of the de
ation procedure suggested by Wielandt. A problem with the Power
method is the determination of eigenvalues that have equal modulus, for instance, �nding a conjugate
pair of eigenvalues of a real unsymmetric matrix. It is therefore quite natural to work with a couple of
independent vectors: this was �rst suggested in 1937 by Horst [62]. The next step that seems logical,
in hindsight, is to force the vectors to be independent. This was initially done (cheaply) by Gaussian
transformations by Bauer [8] in 1957, and led to Treppeniteration. If the set of vectors is denoted
as a matrix Ls (an n by s unit lower-triangular matrix), then one forms ALs and factors the resulting
matrix, by Gaussian transformations, as Ls+1Rs+1. If the eigenvalues are distinct, then the s× s upper
triangular matrix Rs+1 converges, for increasing s, to a matrix whose eigenvalues are those of the
dominant subspace on its diagonal. Rutishauser [111] made the important observation that if we
factor A as A = LR (again L unit lower triangular), then the similar matrix L−1AL = L−1LRL = RL.
He proposed decomposing RL again, and repeating this process in an iterative fashion. This R
also converges to an upper triangular matrix, and L is a unit matrix. This is the LR method of
Rutishauser. The correspondence between Treppeniteration and LR is that if we start Treppeniteration
with a unit full matrix, then in exact arithmetic we obtain the same matrices R in the process. For an
e�cient implementation, the matrix A is �rst reduced to an upper Hessenberg matrix. The LR method
maintains this form throughout the process, and this makes LR computationally very attractive.
Rutishauser’s observation that permuting the factors of the matrix is equivalent to performing a
similarity transformation was a key step. Wilkinson [154, p. 485] commented: “In my opinion its
development (i.e. of LR) is the most signi�cant advance which has been made in connection with
the eigenvalue problem since the advent of automatic computers”. However, Bauer’s technique
could be applied to a smaller set of starting vectors and it does not modify the matrix A. For this
reason, in the words of Householder [64, p. 195], it is self-correcting. This seems to imply that
Treppeniteration leads to more accurate results.
Since orthogonal reduction techniques often evidence superior stability properties, it became ap-

parent that the LR factorization should be replaced by a QR factorization. This leads to one of
the most popular and powerful methods of our time for eigenvalue problems: the QR method for
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computing all of the eigenvalues and associated eigenvectors of a dense symmetric matrix. (In fact,
the QR method has essential enhancements that make the method really powerful; we will discuss
this in another section.)
With the number of vectors less than n, this Power method in combination with QR orthogonal-

ization is known as the Simultaneous Iteration method; Rutishauser studied this method in 1969
[112], see also [113]. Its convergence behaviour for general unsymmetric matrices was studied by
Stewart [126] in 1976. Stewart also developed a subroutine, based on simultaneous iteration, for the
computation of a dominant invariant subspace. This routine, SRRIT [127], was further improved in
1992, and made available for general use through Netlib [5].
The collection of vectors generated by the Power method de�ne Krylov subspaces of increasing

dimension. This motivated Krylov to try to determine the characteristic polynomial of a matrix by
inspecting the dependence of a full set of these vectors. This procedure may fail because the system
of equations is highly ill-conditioned but this can be repaired by orthogonalizing each new vector to
the previous vectors and applying A onto the last constructed vector. This iteration process is known
as the Lanczos method for symmetric matrices, and Arnoldi’s method for unsymmetric matrices. We
will discuss these Krylov methods below.
Our presentation might suggest that the Krylov methods have overshadowed the Simultaneous

Iteration method, and for most situations this is indeed the case. Parlett, however, [100, p. 289]
described situations where Simultaneous Iteration is still competitive. For instance, if we can store
only a limited number of n-vectors in fast memory, or if the relative gap between the desired
eigenvalues and the others is great, then Simultaneous Iteration is very useful.

7. Reduction algorithms

Early computational techniques, other than Jacobi’s famous but slowly converging diagonalization
method, and the unsatisfactory Power method with its many restrictions, attempted to exploit the
fact that every matrix satis�es its characteristic equation. To this end, Krylov suggested in 1931
[73], using the vectors x; Ax; A2x; : : : ; generated by the Power method, to determine the coe�cients
of the characteristic equation. This was not successful, because, as we have learned from Wilkin-
son’s analysis [154] the roots of a polynomial may vary widely with only tiny perturbations to the
coe�cients of the polynomial. Even rounding the exact coe�cients in 
oating point arithmetic may
destroy much accuracy in many of the roots. Although Krylov’s method failed, his name is still
attached to the subspace generated by the Power method.
There is yet another reason for the failure of Krylov’s method in �nite precision arithmetic:

the vectors generated by the Power method tend to converge in the direction of the eigenvectors
associated with the dominating eigenvalues. Hence, the computed vectors for the subspace necessarily
yield a very ill-conditioned basis. Checking mutual dependence of this basis, as is required in order
to construct the characteristic polynomial, is an almost impossible task.
An early attempt to reduce the matrix A to a form that lends itself better for solving the char-

acteristic equation was suggested by Hessenberg [60]. He suggested to compute a modi�ed Krylov
basis by making a set of basis vectors for the Krylov subspace, orthogonal to a given test-set, for
instance the canonical basis vectors. This led to a reduction of A to upper Hessenberg form. This
technique is very close to the techniques by Lanczos and Arnoldi.
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In 1950, Lanczos [78] suggested building a basis for the Krylov subspace in a more stable way
by orthogonalizing the vectors as they are constructed. The idea was to immediately orthogonalize
the new vector for the Krylov subspace with respect to the already existing orthonormal basis. The
di�erence with Hessenberg’s approach is that Lanczos (and slightly later also Arnoldi) took the
Krylov vectors themselves for the test-set.
The new vector for expansion is created by applying A to the latest orthogonal basis vector. For

symmetric matrices A, this leads to a three-term recurrence relation between the basis vectors vj and
in exact arithmetic this can be formulated as

AVj = VjTj + 
jvj+1eTj+1:

Obviously, this recursion must terminate for some j6n, in which case Vj forms the basis for an
invariant subspace of A, and the eigenvalues of the tridiagonal matrix Tj are the eigenvalues of A
with respect to this invariant subspace. This algorithm is equivalent to the well-known algorithm of
the Dutch mathematician Stieltjes for generating orthogonal polynomials by a three-term recurrence
relationship. Lanczos also proposed a reduction process for unsymmetric matrices A, the so-called
two-sided Lanczos process. In this process two sets of basis vectors are constructed, one for the
Krylov subspace with A and one for a Krylov subspace with AT. By requiring biorthogonality of the
two sets, the two bases can be used for reduction of A to tridiagonal form. This form has su�ered
from many drawbacks. Not only are the reduction matrices nonorthogonal, a suspect property, but
the algorithm also su�ers from various break-down conditions. (The basic problem lies in the fact
that the measure generated by the initial vectors is not nonnegative). The symmetric variant did
not become popular in the 1950s, since it was soon recognized that rounding errors could spoil
the process dramatically. Wilkinson [154] showed that the Lanczos algorithm is highly (forward)
unstable and there seemed to be no way of stabilizing the process other than re-orthogonalizing the
generated vectors. He showed this process is comparable to the methods of Householder or Givens
(proposed in the late �fties), but the latter are more economical. He then concluded: “it is di�cult
to think of any reason why we should use Lanczos’ method in preference to Householder’s”. This
illustrates that the Lanczos method was commonly viewed as a direct reduction method at that time,
and from that point of view Wilkinson’s remarks were quite correct.
At about the same time as Lanczos, Arnoldi (1951) [1] gave a reduction algorithm for unsymmet-

ric matrices. This was basically the same algorithm as Lanczos’ algorithm for symmetric matrices,
with the di�erence that each new basis vector had to be orthogonalized with respect to all previous
basis vectors. In this way A is reduced by an orthogonal similarity transformation to upper Hessen-
berg form. Arnoldi’s method su�ers far less from numerical instability, depending on how well the
orthogonalization process is carried out. But the method is more expensive than the Householder
reduction, making it less attractive, as a direct method, for large (dense) matrices.
A very important notion was the recognition that matrices could be reduced, by orthogonal trans-

formations, in a �nite number of steps, to some special reduced form that lends itself more ef-
�ciently to further computations. In particular, a symmetric matrix can be reduced to tridiagonal
form by Jacobi-rotations, provided that these rotations are restricted to annihilate entries of A out-
side its tridiagonal part. This was suggested by Givens in 1954 [45], and in this connection the
Jacobi-rotations are also called Givens rotations. A few years later, Householder, in 1958 [63], dis-
covered that complete columns of A could be reduced to zero, outside the tridiagonal part, by the
more e�cient Householder re
ections. These are well-chosen orthogonal rank-one updates of the
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form (
I − 2

vTv
vvT

)
;

these are discussed in [139]. The Householder method has become the method of choice for the
reduction of matrices to tridiagonal form on serial computers. Thus for eigenproblems, a symmetric
matrix can be reduced by orthogonal similarity transformations to tridiagonal form and unsymmetric
matrices can be transformed to upper Hessenberg form.
By 1960, the eigenvalue problem for a symmetric tridiagonal matrix was solved by using the Sturm

sequence property for successive subdeterminants. 5 The corresponding eigenvectors were solved
by inverse iteration. The whole process is described in Givens’ papers. A complete and thorough
analysis for the Givens and Householder reductions and for the use of the Sturm sequences, is given
in Wilkinson’s book, which was the numerical linear algebra bible (Old Testament) for a long time.
As we have already shown in the section on the Power method, the QR method is, for determining

the complete set of eigenvalues and eigenvectors, a superior technique. At the time that Wilkinson’s
book appeared, the blossoming of the QR method had just begun. Wilkinson devoted much attention
to this method, but not as the method of choice for symmetric problems. We quote from Parlett [100,
p. 172]: “Yet it was not invented until 1958–1959 and was not appreciated until the mid-1960s. The
key idea came from Rutishauser with his construction of a related algorithm called LR in 1958”.
Whereas Wilkinson’s book was the reference for eigenvalue problems in the period 1960–1980,
after 1980, Parlett’s book The Symmetric Eigenvalue Problem became the main source, at least for
symmetric problems. Comparison of the two books clearly shows the progress made in this �eld.
The use of the QR (a mathematical equivalent is the QL algorithm) algorithm began with the work

of Francis, [40] who recognized in 1961–1962 that a QR iteration maps a Hessenberg matrix to a
Hessenberg matrix again, and this makes the process economical and also adds to stability since the
zero elements need not be computed. Furthermore, Francis cleverly implicitly used origin shifts, and
these can be carried out very economically for Hessenberg matrices. Kublanovskaja, in 1961 [74],
also independently discovered the same process, but did not employ the invariance of the Hessenberg
form. She deeply understood the mathematical aspects of the algorithm but was less concerned with
the important computational details. The inclusion of Wilkinson shifts eventually makes the process
very e�cient, and for these shifts it can be proved that, for symmetric matrices, the process does
not fail. The order of convergence for symmetric matrices is cubic (see, for instance, [61]), while
for unsymmetric matrices it is quadratic [51,28]. These results rest on work of Ostrowski carried
out in connection with the shift-and-inverse Power method (the RQI method, see that section). For
a treatment of modern implementations of the QR method see [51, Chapter 7] or Demmel’s book
[28, Section 4:4:5]. These implementations incorporate techniques developed in the 1990s, such
as (multiple) implicit shifts. This implicit shift technique leads to a rank-one perturbation of the
Hessenberg structure, and this perturbation can be removed in its turn by a technique that is known
as chasing the bulge: the perturbation (bulge) is chased down (and out of) the Hessenberg matrix
with (double) Givens transformations. These chasing techniques were analysed in 1991 by Watkins
and Elsner [152]. An important and complete overview of the practical QR algorithm can be found
in [151].

5 This shows that working with the characteristic equation, if not explicitly constructed, is not a bad idea in some
situations.
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With respect to the relation between the QR and the Lanczos algorithms, we note the following.
Lanczos’ method focusses on one particular starting vector; QR starts with a full orthogonal basis
and keeps it orthogonal through the Power iterations; the inclusion of shifts does not destroy the
structure of the Hessenberg matrix. With Lanczos’ method, a shift only makes sense in damping
unwanted parts of the spectrum, but one cannot vary the shift during the process.
By 1970 the standard numerical eigenproblem, for dense matrices of not too large order, could

be regarded as essentially solved and research shifted to larger problems and other eigenproblems.
The next important problem to consider was the generalized eigenproblem Ax−�Bx=0. An obvious
approach is to transform this to a standard eigenproblem by inverting either A or B, or to work
with more complicated transformations, such as the Cayley Transform: (A− �B)−1(A− �B). These
approaches share the disadvantage that matrices A and B are not treated in the same way, which
is most obvious from the simple transformation B−1A. This leads to problems if B is singular or
ill-conditioned, but as Stewart (1980) has pointed out, this does not necessarily mean that the given
eigenproblem is ill-conditioned because if A is well-conditioned then the pencil B − �A may be
well behaved (small perturbations in A and B lead to small perturbations in �. In Stewart’s analysis
the matrices are treated symmetrically; in particular he suggests considering the pencil �A− �B, and
regarding multiples of (�; �), for which the determinant |�A−�B| vanishes, as generalized eigenpairs;
see [129, Chapter VI] for more details. This approach, of course, requires a di�erent reduction and
this is accomplished by the Generalized Schur Decomposition, proposed by Moler and Stewart in
1973. This says that for arbitrary square A and B there exist unitary Q and Z such that Q∗AZ = T
and Q∗BZ = S are upper triangular. For real matrices, the arithmetic can be kept real, but then the
reduced matrices are quasi-triangular (that is 2 × 2 nonzero blocks along the diagonal may occur).
Moler and Stewart [91] also proposed a stable algorithm to accomplish the reduction to (quasi)
triangular form and this is known as the QZ algorithm. Major modern software packages include
software for the QZ algorithm. For perturbation analysis, we refer to Stewart and Sun [129].
After the 1970s, the eigenproblem for dense matrices of moderate order seemed to be solved and

further improvements were not expected, especially for symmetric dense matrices. However, with
the ever increasing demand for higher e�ciency and=or better accuracy, things changed from time
to time. In 1981, Cuppen [25] proposed a divide and conquer algorithm for the solution of the
eigenproblem for symmetric tridiagonal matrices. The idea was to split the tridiagonal matrix in two
blocks, each of half the original size, plus a rank-one update. Cuppen showed how the eigenproblems
for each of the blocks could be combined for the original full problem by exploiting the rank-one
update property, which led to the solution of a secular equation. Initially, this approach was not seen
as a competitive algorithm by itself for general matrices of modest dimensions, although Cuppen
recognized that his algorithm was asymptotically (much) faster than QR. Further investigations by
others were made on account of promising parallel properties. A major problem was that the original
algorithm su�ered from instabilities, especially for the eigenvectors belonging to close eigenvalues.
Some scaling problems were recti�ed by Dongarra and Sorensen in 1987 [32], but the “right”
implementation, according to Demmel [28, Section 5:3:3] was not discovered until 1992 and published
in 1995, by Gu and Eisenstat [55]. Meanwhile, software for this algorithm found its way into
LAPACK and ScaLAPACK. As stated by Demmel again, the divide and conquer approach is now
the fastest algorithm for computing all eigenvalues and eigenvectors of a symmetric matrix of order
larger than 25; this also holds true for nonparallel computers. If the subblocks are of order greater
than 25, then they are further reduced; else, the QR algorithm is used for computing the eigenvalues
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and eigenvectors of the subblock. For a full treatment of the modern variant of the divide and
conquer method, we refer to Demmel’s book [28]. A recent discussion on parallel implementation
aspects of this method can be found in [134].
There are still niches for other methods for dense symmetric matrices. Wilkinson advocated the

bisection method for tridiagonal matrices if only a small subset of the eigenvalues is wanted. Inverse
iteration may then be used to determine the corresponding eigenvectors. For the bisection method,
based on the Sturm sequence property, the reader may �nd classical material in [154], a modern
treatment of the inverse iteration (considered suspect by many because of the ill-conditioning of the
shifted matrix) can be found in [100].

8. Iterative methods

Soon after its introduction in 1952, it was recognized that the Lanczos method was not a panacea
for eigenproblems. The method showed strange behaviour, because of rounding errors, and in an
in
uential paper by Engeli et al. in 1959 [37], it was shown by careful experiments that the theoretical
�nite termination within n steps, had no practical meaning. For a discretized biharmonic problem of
order 64, they observed that hundreds of steps where necessary in order to obtain the 64 eigenvalues
(together with extraneous other values). Wilkinson also analyzed the method and showed that it
was forward unstable, which seemed to mark more or less the end of the Lanczos method. It was
Paige, who showed in 1971 [97] that the Lanczos method could be used in a truly iterative way
in order to obtain correct eigenvalue information. The crux of his analysis is that the observed
loss of orthogonality in the Lanczos process, the source of all problems in the method, marked the
convergence of an eigenpair; and most remarkably, it did not prevent convergence of other eigenpairs.
This loss of orthogonality, by the re-introduction of components of the converged eigenvector to
the process, led to duplication of the converged eigenpair in the reduced tridiagonal matrix. The
main e�ect on the convergence of the left eigenpairs seemed to be some delay in the process in
exact computation. Paige’s analysis spurred much activity in this �eld and eventually the Lanczos
method became a powerful tool and the method of choice for large sparse symmetric matrices,
from 1980 on.
We mention the following major steps that led to improvements in the method, and to a bet-

ter understanding. Parlett and Scott [103] proposed removing the delaying e�ects on convergence
by a selective orthogonalization process for the Lanczos vectors. Also, the determination of con-
verged eigenvalues became easier to identify by e�ciently computing upper bounds for the residual
of an eigenpair. Kaniel (1966) [69] derived upper bounds for the error in an eigenvalue approxi-
mation (the so-called Ritz values, the eigenvalues of the reduced tridiagonal matrix). These upper
bounds have no direct practical implication, since they are in terms of unknown quantities asso-
ciated with the matrix, such as gaps between eigenvalues relative to the span of the eigenvalues.
However, these upper bounds are, in a general sense, rather sharp and can be used for the study of
the convergence behaviour of the Ritz values. Later, Saad (1980) [114] re�ned these upper bounds.
The convergence behaviour of Ritz values can be quite irregular; a temporary (almost) stagnation of
the process can take place (also called misconvergence). Many of these e�ects were studied carefully,
and explained, in a paper by Van der Sluis and Van der Vorst [142], through a rather complicated
model for the Ritz values. This model, however, seemed to be necessary in order to show all the
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intricate dependencies in the apparently simple Lanczos process. In their paper, it is also shown that
the convergence behaviour of the Ritz values is superlinear. No matter how irregular the rate of
convergence may seem, on average it becomes faster as the iteration proceeds. Parlett also studied
the so-called (occasional) misconvergence of the Ritz values [101]. His model is simpler, but does
not explain all e�ects, such as the possible length of the stagnation phase. An algorithm ready for
implementation was published by Parlett and Reid [102]; this algorithm computes upper bounds for
the errors in the Ritz values, and exploits the fact that we have to compute these for successive
tridiagonal matrices. We are not aware of a publicly available implementation, although we know
that the process has been implemented for local use.
Note that, strictly mathematically speaking, the Lanczos process is �nite and thus it is not correct to

use a notion such as “convergence” or even “superlinear convergence”. However, in �nite precision
and for large values of the order of the matrix, the Ritz values will become close to an eigenvalue
and for practical purposes the method behaves like a truly convergent process.
In our discussion of the Power method, we showed how the use of a set of starting vectors arose

quite naturally. This is also possible for the Lanczos (and Arnoldi) method, and this approach leads
to block and banded Lanczos (and Arnoldi) methods [47,141,108].
For unsymmetric matrices it took longer for similar methods to gain popularity. An in
uential

paper, that helped to promote Arnoldi’s method as a useful tool, was published by Saad [115]. The
Arnoldi method, for orthogonal reduction to upper Hessenberg form, was not only too expensive
if one wanted to know only a few eigenpairs, it also su�ered from poor convergence for speci�c
eigenvalue distributions. Well-known is the Saad–Schultz example [117], which is a permuted identity
matrix. The method leads to trivial approximations after the �rst n − 1 steps, and after n steps all
eigenpairs suddenly appear. This however, is at a much higher cost than for Householder’s reduction.
For this reason, the unsymmetric Lanczos process, also referred to as the two-sided Lanczos method,
received some attention. Initially, the method was notorious for its break-down possibilities, its
behaviour in �nite precision arithmetic, and the fact that the reduction operators to tridiagonal form
are nonorthogonal. Cullum and Willoughby, in 1986 [24], presented a code based on the two-sided
Lanczos method, in which they solved a number of practical problems; this included a clever trick
for identifying the spurious eigenvalues due to rounding errors. The code gained some popularity, for
instance for plasma-physics eigenvalue computations [21]. Parlett and co-workers [104] introduced
the concept of “look-ahead”, mainly in order to improve the numerical stability of the process. The
look-ahead strategy, introduced in order to prevent breakdown, was further perfected by Freund
and Nachtigal, in 1996 [41]. They published a code based on quasi-minimization of residuals, and
included look-ahead strategies, in which most of the original Lanczos problems were repaired (but
the non-orthogonal reductions were still there). Gutknecht [57] published a thorough theoretical
overview of the two-sided Lanczos algorithm and exploited its relation to Pad�e approximations. This
gave a better understanding of look-ahead strategies and the convergence behaviour of the method
(in the context of solving linear systems). Block variants of the two-sided Lanczos process were
discussed in Day’s Ph.D. thesis in 1993; for a further description of the algorithms see [3].
Almost simultaneously, there were e�orts to make the Arnoldi method more practical. We men-

tion �rstly polynomial preconditioning, discussed extensively in Saad’s book [116], which damps
unwanted parts of the spectrum, and secondly, sophisticated restarting strategies. The method be-
comes e�ective for matrices for which shift-and-invert operations can be applied for given vectors.
But the many (increasingly expensive) iterations for relevant problems were a bottleneck. A real
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breakthrough for the Arnoldi method was realized by Sorensen [125], in 1991, with the so-called
Implicit Restart Technique. This is a clever technique by which unwanted information can be �l-
tered away from the process. This leads to a reduced subspace with a basis, for which the matrix
still has a Hessenberg form, so that Arnoldi’s process can be continued with a subspace (rather than
with a single vector as with the more classical restart techniques).
The Arnoldi iteration procedure is often carried out with the shift-and-invert approach. For in-

stance, when solving the generalized eigenproblem Ax = �Bx, the method is applied to the operator
(A − �B)−1B. One step further is the Cayley transform (A − �B)−1(A − �B), which can be used
for emphasizing eigenvalues (near �) and for damping of eigenvalues (near �). Both techniques
require expensive operations with an inverted operator, but the advantage is much faster conver-
gence. Meerbergen and Roose [89] considered the use of inexact Cayley transforms, realized by a
few steps of an iterative method, for Arnoldi’s method. This technique bears a close relation to
polynomial preconditioning. Ruhe [110] considered a more general shift-and-invert transform, and
so-called Rational Krylov Subspace (RKS) Method:

(�jA− 
jB)−1(�jA− �jB);
in which the coe�cients may be di�erent for each iteration step j. It has been shown that by
generating a subspace with this operator, the given problem can be reduced to a small projected
generalized system

(�Kj; j − �Lj; j)s= 0;
where Kj;j and Lj; j are upper Hessenberg matrices of dimension j. This small system may be solved
by the QZ algorithm in order to obtain approximate values for an eigenpair. The parameters in RKS
can be chosen to obtain faster convergence to interior eigenvalues. For a comparison of RKS and
Arnoldi, see [110,109].
In 1975, Davidson, a chemist, suggested an iterative method that had the idea of projection on

a subspace in common with the Arnoldi method, but with the subspace chosen di�erently. Moti-
vated by the observation that the matrices in his relevant applications were (strongly) diagonally
dominant, Davidson computed the Ritz pairs (the eigenpairs of the projected matrix), computed the
residual r = (A − �I)z for a pair of interest (�; z), and proposed expanding the subspace with the
vector (DA−�I)−1r (after proper orthogonalization with respect to the current subspace). The matrix
DA denotes the diagonal of the matrix A. For diagonally dominant matrices this approximates, in
some sense, inverse iteration with Rayleigh quotient shifts. The Davidson method [26] became quite
popular for certain applications. Although other approximations were suggested (see, e.g., [93]),
its convergence behaviour for nondiagonal dominant matrices, or for poor initial starting vectors,
was far from guaranteed. It was also puzzling that the “optimal” expansion (A − �I)−1r, optimal
from the inverse iteration point of view, led to the vector z, so that the method stagnated. As a
consequence, Davidson’s method was not able to �nd the eigenvalues of a diagonal matrix, a very
unsatisfactory situation. The method was not very well understood by numerical analysts and as a
consequence we �nd very little reference to it in the numerical analysis literature. Only after 1990,
is there some serious analysis [20], almost simultaneously with a successful improvement of the
method.
In 1996, Sleijpen and van der Vorst [121] suggested restricting the expansion of the current

subspace to vectors from the space orthogonal to z, which restored a largely forgotten technique
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used by Jacobi (in 1846). Jacobi took an appropriate unit vector for z, and attempted to �nd the
missing component to make it an eigenvector from the space spanned by the remaining n− 1 unit
vectors. He did this by solving a correction equation for the matrix shifted by � and then restricted the
correction to the subspace orthogonal to the chosen unit vector. This correction equation was solved
by Gauss–Jacobi iterations and after each two iterations, Jacobi updated the value for �. Sleijpen and
van der Vorst suggested updating z as well and using the update vector for a subspace. This new
Jacobi–Davidson method combined Davidson’s idea of taking a di�erent subspace with Jacobi’s idea
of restricting the search of an update to z⊥. We refer to Sleijpen and van der Vorst [121] for details.
A variant of the technique, in which the correction is approximately solved with one single invert step
with a preconditioner, was suggested by Olsen et al. in 1990 [94]. An exact solution of the correction
equation, or an approximate solution of high accuracy, leads to cubic convergence for a properly
selected sequence of �’s if A is symmetric, and to quadratic convergence in the unsymmetric case.
In the following years, it became clear how to e�ciently implement the method with preconditioning
[122] and how it could be applied to various other eigenproblems, amongst which are generalized
eigenprobelms [39] and quadratic eigenproblems [123]. Thus, the transformation of these generalized
eigenproblems to standard forms can be avoided. The Jacobi–Davidson method is attractive for large
sparse eigenproblems for which shift-and-invert operations are too expensive, and for more unusual
eigenproblems. The problem of identifying e�ective preconditioners for the correction matrix for
larger classes of matrices is still largely open.
It is well-known that subspace methods lead to eigenvalue approximations that tend to converge

towards exterior eigenvalues and that approximations for interior eigenvalues are di�cult to obtain.
In principle, it is easy to obtain these by working with A−1, but this may be expensive. It is also
possible to obtain eigenvalue approximations that converge (slowly) to the eigenvalues of A closest
to the origin, from the subspaces generated by A. We explain this for the Arnoldi process. The
Arnoldi process leads to

AVm = Vm+1Hm+1;m;

where Hm+1;m is an upper Hessenberg matrix with m+ 1 rows and m columns. This means that we
have a basis for the space with basis vectors Avj and, using the above relation, this basis can be
easily transformed into an orthogonal basis. This orthogonal basis can be used for the projection of
A−1, and multiplication by the inverse can be avoided, since all basis vectors have a factor A in
common. The exterior eigenvalues of the projected A−1, that is the inverses of interior eigenvalues
of A, converge (slowly) to the exterior eigenvalues of A−1. This way of approximating interior
eigenvalues has received some attention in the 1990s. In [98], these eigenvalue approximations,
in connection with the related Lanczos process, were called Harmonic Ritz values, and some nice
relations for Harmonic Ritz values for symmetric inde�nite matrices are given in that paper. Harmonic
Ritz values had already been studied from a di�erent viewpoint by other authors. Freund [42] studied
them as the zeros of the GMRES and MINRES iteration polynomials. Morgan [92] had observed
that the Harmonic Ritz values and vectors are very suitable for restarting purposes if one wants to
compute interior eigenvalues with subspaces of restricted dimension. In [121,120], the Harmonic Ritz
values are considered in connection with the Jacobi–Davidson process for the selection of proper
shifts.
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9. Related topics

9.1. The singular value decomposition

The singular value decomposition plays an essential role in many situations in which we want to
decide between relevant and less relevant information. In addition to traditional applications such
as regularization of linear least-squares problems, and the determination of the numerical rank of a
matrix, there are applications to the reduction of information for images and information retrieval
from large data bases. A headline contribution to the SIAM News by Berry and Dongarra, summer
1999, showed that the SVD can even help to reduce work in the organization of a conference.
Interesting and unusual applications are also shown in a paper by Moler and Morrison [90]. A
modern treatment of the numerical aspects of the SVD can be found in Golub and Van Loan’s
textbook [51] and we have taken most of our information from that source. Demmel [28] gives a
good treatment of the important implementational aspects of the SVD.
Since the square of the singular values and the right singular vectors are the eigenpairs for the

matrix ATA (for the left singular vectors this holds with AAT), it is not surprising that the numerical
treatment of the SVD has many relationships to algorithms for symmetric eigenproblems. This is
most visible in Demmel’s book, where the discussion on modern SVD algorithms almost parallels
the symmetric eigenvalue problem discussion [28, p. 211 and 241]. We note here that working
directly with either ATA or AAT is not satisfactory for stability and complexity reasons, and this
makes separate treatment of the numerical SVD necessary.
The origins of the singular value decomposition go back to the late 19th century, with work of

Beltrami in 1873. Stewart [128] gave a historic overview of the SVD. The important numerical
developments on the SVD started with work of Golub and Kahan in 1965 [49]. This led �rst to
a contribution to the famous ACM-collection as Algorithm 358 [15] and later to the basis of the
EISPACK and LAPACK routines in the Wilkinson–Reinsch collection [158, pp. 1334–1351]. The
key trick in the numerical computation of the SVD is, instead of tridiagonalizing ATA, to bidiagonal-
ize the matrix A. Then, with the bidiagonal reduced forms obtained by orthogonal transformations,
one can make variants of QR, divide and conquer, and bisection techniques. The choice between
these techniques can be made as above for the symmetric eigenproblem. In particular, for matrices
of order larger than 25, the divide and conquer approach is currently regarded as the fastest option
[28, p. 241].

9.2. Nonlinear eigenproblems and related problems

Standard and generalized eigenproblems arise, for instance, in the study of conservative mechan-
ical systems, governed by Lagrange’s equations of small free motion. According to Rogers [106],
Rayleigh (in 1873) could not apply his technique for nonconservative systems (systems with a
damping term). The well-known technique for the numerical solution of the resulting quadratic
eigenproblem is to rewrite it as a generalized eigenproblem [43,77]. That is

�2Mx + �Cx + Kx = 0

is equivalent to

Az = �Bz
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with

A=
[
0 I

−K −C
]
; B=

[
I 0
0 M

]
; z =

[
x
�x

]
:

Of course, algorithms and theory for the generalized eigenproblem can be used directly, but the
unsatisfactory aspect of this is that we have to double the dimension of our spaces. Also, if the
generalized eigenproblem is solved approximately by some iteration technique, then it is not straight
forward to reduce the information from the double-dimensioned space to the original space. Du�n
[34] seemed to be the �rst to generalize the Rayleigh–Ritz principle for the quadratic eigenproblem
for symmetric K; C, and M , and A positive de�nite. Since then, the quadratic eigenproblem, and
higher-order polynomial problems, have received attention in the numerical literature. Rogers [106],
in 1964, considered a more general quadratic eigenproblem and used minimax principles for the
investigation of such problems. In the late 1960s and early 1970s algorithms that avoid the lin-
earization step appeared. We mention the work of Lancaster [77], Kublanovskaja [75,76], and Ruhe
[107]. The suggested algorithms are mostly variants of Newton’s method. More recently, in 1995,
Guo et al. [56] described several iterative methods, that can be regarded as a �xed point iteration
combined with the Lanczos method and a (simpli�ed) Newton iteration. A backward error analysis
for more general polynomial eigenproblems was given by Tisseur (1998 [133]), and a perturbation
analysis for quadratic problems was published by Sun in 1999 [130]. In a paper that appeared in
1996, Sleijpen et al. [120] showed that the Jacobi–Davidson method could be applied in order to
reduce a given polynomial problem in an n-dimensional space to a similar problem in a much lower
m-dimensional space. The problem in the lower dimensional space can then be attacked by any of
the previously mentioned approaches. For a quadratic equation from an accoustic problem, it was
shown how this approach led successfully and e�ciently to the desired eigenpair, for matrices of
the order of about 240,000 [123]. For higher polynomial eigenproblems there has not been much
experience to date. Bai [6] mentioned the need for algorithms for �fth-order polynomial eigenprob-
lems in a review paper that appeared in 1995. Quite recently, in 1998, Heeg [58] showed how the
Jacobi–Davidson approach could be successfully applied to fourth-order polynomial eigenproblems
with complex matrices in the study of instabilities of attachment-line 
ows for airfoils.
Other than these polynomial eigenproblems, there is a wide variety of problems that are associated

with the determination of invariant subspaces. Since the standard and generalized eigenproblems
became more familiar and more or less routinely solvable, the more di�cult problems received
more attention. Among these problems we mention the following; the Procrustes problem: minimize
‖AY − YB‖F for given A and B over the manifold Y ∗Y = I ; the determination of a nearest Jordan
structure, and the problem of determining a simultaneous Schur decomposition for a set of perturbed
matrices (under the assumption that the unperturbed matrices have a simultaneous Schur form). A
nice overview of such problems, as well as software for the numerical solution is described by
Edelman and Lippert [83].

9.3. Pseudospectra

Eigenvalues are often used as a source of information on stability or convergence, and the question
arises as to the validity of the information gained from these values. For example, during the 1990s
it was realized (see, e.g., [138]) that eigenvalues alone do not govern the instability and transition to
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turbulence of high Reynolds number 
uid 
ows as had previously been thought. Many authors have
studied the problem of sensitivity of the eigenvalues with respect to perturbations, see for instance
[154,129,19]. These studies are usually related to perturbations caused by rounding errors, and not
so much by the relevance of the eigenvalues due to the particular representation of a given problem,
for instance the choice of basis.
Around 1987, Trefethen [140] began to emphasize this aspect of eigencomputations. He propagated

the idea of inspecting the pseudospectra of a matrix as a relatively simple means for determining
the signi�cance of a particular part of the spectrum, without getting involved in complicated matters
such as angles between eigenvectors or eigenspaces. 6 The de�nition of the pseudospectrum ��(A)
for a matrix A is directly related to perturbations:

��(A) ≡ {z ∈ C: z ∈ �(A+ E) for some E with ‖E‖6�}:
The pseudospectra are usually shown graphically as a set of level curves for various values of
�. The level curves, or contour integrals, are more apparent from the original de�nition of the
�-pseudospectrum, in terms of the norm of the resolvent (zI − A)−1:

��(A) ≡ {z ∈ C: ‖(zI − A)−1‖¿�−1}
with the convention ‖(zI − A)−1‖=∞ for z ∈ �(A).
For symmetric matrices, the pseudospectra of A is a collection of discs around the eigenvalues of

A (note that the perturbation E need not be symmetric). For unsymmetric matrices the pseudospectra
can be any collection of curves around the set of eigenvalues of A. These level curves may give
information that is hidden by the information provided by the eigenvalues themselves. For instance,
when studying stability of integration methods for systems of ODEs, or in bifurcation problems,
the eigenvalues may be in a proper region, for instance, in the left-half plane, while the level
curves, even for small values of �, may intersect with the right-half plane. This suggests that it
may be necessary to ask further questions about the problem. On the other hand, the pseudospectra
may not tell the full story. For instance, the sensitivity problems may be due to a single pair of
ill-conditioned eigenvectors for which the more global level curves are too pessimistic. It may be the
case that it is not realistic to assume equal perturbations for all matrix entries, but nevertheless the
pseudospectra focus attention on critical places in the spectrum. A nice introduction to the relevance
of pseudospectra is given in [135], where the pseudospectra are actually computed and discussed for
a number of matrices.
Due to the nature of computing pseudospectra, this useful tool is often restricted to matrices of

relatively moderate size and one has to be careful in generalizing the insights gained from smaller
problems to larger problems which are similar. More recently, tools have become available for
computing the pseudospectrum of large sparse matrices. Carpraux et al. [16] proposed an algorithm
for computing the smallest singular value of zI − A, that is based on Davidson’s method using ILU
preconditioning. Lui [84] (see also [13]) suggested using the Lanczos method in combination with
continuation techniques. This is a plausible approach, since we need to do the computation for many
values of z, well-distributed over the region of interest, in order to obtain a complete picture of
the pseudospectra. We know that currently such tools are being used for the analysis of instability
problems of large sets of ODEs, related to climate modelling, but results have not yet been published.

6 The notion had been de�ned by others earlier, the earliest of them, according to Trefethen, being Landau [79].
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Valuable information on pseudospectra can also be derived from the Arnoldi iteration obtained, for
instance, with ARPACK [81]. For an up-to-date overview on pseudospectra results, see Trefethen’s
1999 paper [136].

9.4. Homotopy methods

The subspace methods that we have discussed above are often applied in combination with shift-
and-invert operations. This means that if one wants to compute eigenvalues close to a value �,
then the methods are applied to (A− �I)−1. As we have seen, the Jacobi–Davidson method can be
interpreted as an inexact shift-and-invert method, since the invert step is usually approximated by a
few steps of some convenient preconditioned inner iteration method.
Another method related to these inexact shift-and-invert approaches is the homotopy approach

which has received some attention in the 1990s. The idea is to compute some of the eigenvalues
of a perturbed matrix A + E, when the eigenvalues of A are known, or can be relatively easily
computed. In order to this we use the homotopy H (t) = A + tE; 06t61. If eigenpairs of H (t0)
are known, then they are used as approximations for those of H (t0 + �t). These approximations
are improved by a convenient subspace iteration (cf. [85]). Rayleigh quotient iterations are used for
symmetric A and E (see references in [85] for earlier work on homotopy for eigenproblems). For
the Rayleigh quotient iteration one needs to solve systems like (H (t0 +�t)− �I)y= x, where (�; x)
represents the current approximation for an eigenpair of H (t0 + �t). In the context of large sparse
matrices, it may be undesirable to do this with a direct solver, and in [85] the system is solved with
SYMMLQ [99]. Of course, one could restrict oneself to only a few steps with SYMMLQ, and then
try to accelerate the inexact Rayleigh quotient steps, as is done in the Jacobi–Davidson method. This
indicates relations between these di�erent approaches, but as far as we know, these relations have not
yet been explored. In [85], it is observed that SYMMLQ may have di�culty in converging for the
nearly singular system (H (t0+�t)−�I)y=x, and it is suggested that the situation would be improved
by applying the Rayleigh quotient iteration to the approximately de
ated matrix H (t0 + �t) + xxT.
(The term approximately de
ated is used to indicate that x is only an approximation to the desired
eigenvector.) Note that similar de
ation procedures are incorporated in the Jacobi–Davidson process.
The whole procedure is repeated for successive increments �t, until the �nal value t=1 is reached.
In [85] an elegant approach is followed for the selection of the step size �t.
The homotopy approach lends itself quite naturally to situations where the matrix A varies in time,

or where it varies as a linearization of a nonlinear operator, as in bifurcation problems. Another
example of an interesting problem is the Schr�odinger eigenvalue problem [85]

−�u+ fu= �u
in the unit square in two dimensions with homogeneous Dirichlet boundary conditions. With the
usual �nite di�erence approximations on a uniform grid, this leads to the discrete Laplacian for
−�u, for which we know the eigensystem.
In [159], the homotopy approach is used for symmetric generalized eigenproblems, very much

along the lines sketched above. The application to real unsymmetric eigenproblems is considered in [86].
In [82], the homotopy approach is suggested as a means of realizing a divide and conquer method

for unsymmetric eigenproblems, as an alternative for the solution of the secular equation for sym-
metric problems (which cannot be used for unsymmetric problems).
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9.5. Miscellaneous

Subspace methods such as Simultaneous Iteration, RQI, Lanczos, Arnoldi, and Davidson for large
sparse systems are in general more powerful in combination with shift-and-invert techniques. This
requires the solution of large sparse linear systems, since these methods only need operations with, for
instance, (A−�I) in order to compute matrix vector products (A−�I)−1v. This has led to the question
of how accurately these operations have to be carried out in order to maintain a reasonable rate of
convergence. For instance, for the Power method, this approximation technique, or preconditioning,
can be described as follows for the standard eigenproblem Ax=�x. For each iteration one computes,
for the current iteration vector x(i) the Rayleigh quotient �(i) =x(i)∗Ax(i)=x(i)∗x(i). Instead of computing
x(i+1) with Ax(i), the defect r = Ax(i) − �(i)x(i) is computed and this defect is multiplied by the
preconditioner K . The new vector x(i+1) is then computed as a normalized linear combination of xi

and Kr. Note the resemblance to Davidson’s approach.
The convergence of this basic algorithm, including its use for the generalized eigenproblem, has

been studied quite extensively in the Russian literature, starting in about 1980 in the work of
D’yakonov [35] and others. Knyazev [72] gave an excellent overview of the work in the Russian
literature on preconditioned eigensolvers. The study of these preconditioned iteration techniques is
relevant also to the understanding of inexact, or preconditioned, forms of shift-and-invert Lanczos
(proposed by Morgan and Scott [93]), inexact Arnoldi (work by Meerbergen [87]) and Davidson vari-
ants, including the Jacobi–Davidson method. A presentation of various iteration techniques including
preconditioning was given by Knyazev in [71]. Smit [124, Chapter 4] studied the e�ect of approxi-
mate inverses on the convergence of the RQI method. For a discussion on inexact Krylov methods,
see Meerbergen and Morgan [88]. Preconditioning in relation to the Jacobi–Davidson method is dis-
cussed in [122]. Note that in all these algorithms, the preconditioner is used for the computation of
a promising new direction vector; the given eigenproblem is untouched. This is di�erent from the
situation with linear solution methods, where preconditioning is used to transform the given system
to one that can be handled more e�ciently.

10. Software

The history of reliable high-quality software for numerical linear algebra started with the book
edited by Wilkinson and Reinsch, the Handbook for Automatic Computation, Vol. 2, Linear Al-
gebra, published in 1971. This book contained a number of articles that had appeared previously
in Numerische Mathematik, which described state-of-the-art algorithms for the solution of linear
systems and eigenproblems. All these articles contained implementations in Algol60. Most of these
algorithms are still alive albeit in other languages. Algol60 was a computer language that gained
some popularity in academia, mostly in Europe, but it was not as fast as Fortran on most machines
and it did not gain a foothold in the slowly emerging large industrial codes (the majority of which
were written in Fortran or even in assembler language). For this reason, groups in the USA started
the development of two in
uential software packages LINPACK and EISPACK in the early 1970s.
These packages started as transcriptions of the major part of the Wilkinson and Reinsch collection:
LINPACK covered the numerical solution of linear systems; EISPACK concentrated on eigenvalue
problems. The most prominent omissions from these packages were iterative solution methods: the
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conjugate gradient method was not included in LINPACK and the Jacobi method was not included
in EISPACK. At that time the Lanczos and Arnoldi methods were not even considered as candidates,
because they were viewed either as direct methods, and in that sense not competitive with the then
available methods, or as iterative methods that could not be safely automated [68]. The Lanczos
method was only considered, in that time, as a safe iterative method provided one did complete
re-orthogonalization (cf. [48]).
The “Wilkinson and Reinsch” procedures can also be viewed as prototypes for eigenvalue routines

in the bigger software packages NAG and IMSL, and in the widely available software package
MATLAB. EISPACK was replaced in 1995 by LAPACK, in the words of Golub and Van Loan
(1996): “LAPACK stands on the shoulders of two other packages (viz: LINPACK and EISPACK)
that are milestones in the history of software development”. A more recent development along these
lines in ScaLAPACK [11] which aims to provide close to optimal software for modern parallel
computers.
We have already mentioned MATLAB in passing; the impact of this computing environment in

the scienti�c computing world has been tremendous. MATLAB provides state-of-the-art software for
all sorts of numerical linear algebra computations and has become the de facto standard for coding
and testing in the 1990s. Its impact on the development of this �eld can hardly be overestimated.
As already indicated, in 1970 there were few robust and well-understood iterative methods avail-

able, and mainly for that reason, these methods were not included in the packages constructed
then. They are still not available in their successors, with the exception of MATLAB (since 1998,
MATLAB has had iterative methods for eigenproblems available). It was soon clear that the pow-
erful “direct” methods, based on reduction to some special form, had their limitations for the large
sparse matrices that occur in the modelling of realistic stability problems, and there was a heavy
demand for methods that could, at least partially, handle big problems. Cullum and Willoughby �lled
this gap, in 1985, with their software based on the two-sided Lanczos procedure [22–24]. Of course,
they realized the intricacies of the Lanczos method, and they advocated the use of iterated Rayleigh
quotient steps for improvement of the information of the Lanczos output. They also provided soft-
ware for this updating step (their software was available some years before 1985, but its publication
in book form took place in that year).
Freund and Nachtigal proposed in 1992, a variant of the two-sided Lanczos process that improved

convergence properties using a quasi minimization step; they also included sophisticated look-ahead
facilities. The QMR method could also be used for eigenvalue computations, and they provided
software through Netlib for this purpose, see QMRPACK [41]. Algorithms and software for adaptive
block-variants of the two-sided Lanczos algorithm (ABLE) have been described by Bai et al. [3].
Because of the improvements made to the Arnoldi method, in particular the implicit restart tech-

nique, it became feasible to exploit the attractive orthogonal reduction properties in an e�cient
manner. This was realized in the ARPACK software, for which the User’s guide was published, by
Lehoucq et al. in 1998 [81]. The package was in existence and available to users a few years earlier.
At present, ARPACK seems to be the default choice for large sparse eigenproblems, provided that
either it is possible to implement shift-and-invert operations e�ciently, or that unwanted parts of
the spectrum can be damped by a �xed (polynomial) preconditioner. The parallel implementation
of ARPACK is referred to as P ARPACK, it is portable across a wide range of distributed memory
platforms. The parallelism is mainly in the matrix vector products and the user has full control over
this trough the reverse communication principle. For more details, see [81,31].
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K�agstr�om et al. have provided software for the generalized upper staircase Schur form. The soft-
ware, called GUPTRI, can be used for the analysis of singular pencils A−�B. This reduction admits
more general cases than the QZ decomposition, for instance A and B may be singular. This software
has been described in [4]. See also this reference for pointers to recent work by K�agstr�om.
For a thorough overview of modern algorithms, software and pointers to sources for further in-

formation see [4].

11. Epilogue

For symmetric matrices, the eigenproblem is relatively simple, due to the existence of a complete
orthogonal eigensystem, and the fact that all eigenvalues are real. These properties are exploited in
the most e�cient numerical methods, and the symmetric eigenproblem may be considered as solved:
for small matrices n625 we have the QR method, one of the most elegant numerical techniques
produced in the �eld of numerical analysis; for larger matrices (but smaller than a few thousand),
we have a combination of divide and conquer with QR techniques. For the largest matrices, there is
the Lanczos method, which in its pure form is strikingly simple but which conceals so many nice
and attractive properties. All methods have a relatively long history. The theoretical aspects of the
computations (convergence and perturbation theory) are relatively well understood.
For unsymmetric matrices the picture is less rosy. Unfortunately, it is not always possible to

diagonalize an unsymmetric matrix, and even if it is known that all eigenvalues are distinct, then it
may be numerically undesirable to do this. The most stable methods seem to be based on the Schur
factorization, that is for each n× n matrix A, there exists an orthogonal Q, so that

Q∗AQ = R;

in which R is upper triangular. Apart from permutations and signs, the matrix Q is unique. The Schur
factorization reveals much of the eigenstructure of A: its diagonal elements are the eigenvalues of
A and the o�-diagonal elements of R indicate how small the angles between eigenvectors may be.
For matrices not too large, QR is the method of choice, but for larger matrices the picture is less
clear. Modern variants of the Arnoldi method seem to be the �rst choice at the moment, and, if
approximations are available, the Jacobi–Davidson method may be attractive. There is still a lot to
investigate: if the matrix is nonnormal, that is, if the eigenvectors do not form a unitary set, then
what kind of meaningful information can we extract from a given matrix (invariant subspaces, angles
between subspaces, distance to Jordan canonical form), and how can we compute this as accurately
as possible? Much has been done, but even more remains to be done.
There are even more open problems as eigenproblems become more complicated: generalized

eigenproblems, polynomial eigenproblems, nonlinear eigenproblems, etc.
Looking back over the past century, we see that the solution of the eigenproblem has given up

some of its mysteries through the work of many devoted and highly talented researchers. Novices
in the �eld should be aware that the modern algorithms, even the apparently simple ones, are the
result of many independent “small” steps. The fact that many of these steps can now be regarded
as “small” illustrates how theory has kept up the pace with computational practice, so that new
developments can �nd their place in an expanding but still elegant framework. Astonishingly much
has been achieved, both computationally and theoretically, in a concerted e�ort, but much more
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remains to be unravelled. It is our �rm belief that eigenproblem research will remain a lively and
useful area of research for a long time to come. We hope that this overview will help to motivate
young researchers to make their contributions to solving pieces of the gigantic puzzles that remain.
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