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ABSTRACT. In the year 2000 the dominant method for solving matrix eigen-
value problems is still the QR algorithm. This paper discusses the family of
GR algorithms, with emphasis on the QR algorithm. Included are historical
remarks, an outline of what GR algorithms are and why they work, and de-
scriptions of the latest, highly parallelizable, versions of the QR algorithm.
Now that we know how to parallelize it, the QR algorithm seems likely to
retain its dominance for many years to come.

1. Introduction

Since the early 1960’s the standard algorithms for calculating the eigenvalues
and (optionally) eigenvectors of “small” matrices have been the QR algorithm [29]
and its variants. This is still the case in the year 2000 and is likely to remain so
for many years to come. For us a small matrix is one that can be stored in the
conventional way in a computer’s main memory and whose complete eigenstructure
can be calculated in a matter of minutes without exploiting whatever sparsity the
matrix may have had. If a matrix is small, we may operate on its entries. In
particular, we are willing to perform similarity transformations, which will normally
obliterate any sparseness the matrix had to begin with.!

If a matrix is not small, we call it large. The boundary between small and
large matrices is admittedly vague, but there is no question that it has been moving
steadily upward since the dawn of the computer era. In the year 2000 the boundary
is around n = 1000, or perhaps a bit higher.

Eigenvalue problems come in numerous guises. Whatever the form of the prob-
lem, the ) R algorithm is likely to be useful. For example, for generalized eigenvalue
problems Az = ABz, the method of choice is a variant of the QR algorithm called
@Z. Another variant of QR is used to calculate singular value decompositions
(SVD) of matrices. The QR algorithm is also important for solving large eigenvalue
problems. Most algorithms for computing eigenvalues of large matrices repeatedly
generate small auxiliary matrices whose eigensystems need to be computed as a
subtask. The most popular algorithms for this subtask are the QR algorithm and
its variants.

1991 Mathematics Subject Classification. 65F15.
!However, we are not averse to seeking to preserve and exploit certain other structures (e.g-
symmetry) by choosing our transforming matrices appropriately.
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QR Past and Present. In this paper we discuss the family of GR algorithms,
which includes the QR algorithm. The subject was born in the early 1950’s with
H. Rutishauser’s quotient-difference algorithm [44], [45], which he formulated as a
method for calculating the poles of a meromorphic function. He then reformulated
it in terms of matrix operations and generalized it to the LR algorithm [46].2
The QR algorithm was published by Kublanovskaya [38] and Francis [29] in 1961.
The Francis paper is particularly noteworthy for the refinements it includes. The
double-shift implicit @R algorithm laid out there is only a few details removed from
codes that are in widespread use today.

And what codes are in use today? By far the most popular tool for matrix
computations is Matlab. If you use Matlab to compute your eigenvalues, you will
use one of its four QR-based computational kernels. Each of these is just a few
refinements removed from codes in the public-domain software packages EISPACK
[2] and LINPACK [21]. In particular, the algorithm for computing eigenvalues of
real, nonsymmetric matrices is just the Francis double-shift QR algorithm with
some modifications in the shift strategy.

A newer public-domain collection is LAPACK [26], which was designed to
perform well on vector computers, high-performance work stations, and shared-
memory parallel computers. It also has a double-shift implicit QR code, which is
used on matrices (or portions of matrices) under 50 x 50. For larger matrices a
multishift QR code is used.

For many years the Q R algorithm resisted efforts to parallelize it. The prospects
for a massively parallel QR algorithm for distributed memory parallel computers
were considered dim. The pessimism was partly dispelled by van de Geijn and Hud-
son [48], who demonstrated the first successful highly parallel QR code. However,
their code relies on an unorthodox distribution of the matrix over the processors,
which makes it hard to use in conjunction with other codes. Subsequently G. Henry
[34] wrote a successful parallel QR code that uses a standard data distribution.
This is an implicit double-shift code that performs the iterations in pipeline fash-
ion. This code is available in ScaLAPACK [27], a collection of matrix computation
programs for distributed-memory parallel computers.

On the theoretical side, the first proof of convergence of the LR algorithm
(without pivoting or shifts of origin) was provided by Rutishauser [46]. His proof
was heavily laden with determinants, in the style of the time. Wilkinson [61]
proved convergence of the unshifted QR algorithm using matrices, not determi-
nants. Wilkinson [62], [41] also proved global convergence of a shifted QR algo-
rithm on symmetric, tridiagonal matrices. Della Dora [19] introduced a family of
GR algorithms and proved a general convergence theorem (unshifted case). In [59]
a more general family of GR algorithms was introduced, and general convergence
theorems for shifted GR algorithms were proved.

This Paper’s Contents. This paper provides an overview of the family of
GR algorithms, with emphasis on the QR case. The properties of the various
@R implementations are discussed. We begin by introducing the family of GR
algorithms in Section 2. These are iterative methods that move a matrix toward
upper-triangular form via similarity transformations. We discuss the convergence

2 Amazingly the quotient-difference algorithm has had a recent revival. Fernando and Parlett
[28], [42] introduced new versions for finding singular values of bidiagonal matrices and eigenvalues
of symmetric, tridiagonal matrices.
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of GR algorithms briefly. In Section 3 we show how to implement GR algorithms
economically as bulge-chasing procedures on Hessenberg matrices. In Sections 4
and 5 we discuss multishift and pipelined QR algorithms, respectively.

Section 6 discusses the generalized eigenvalue problem Av = ABv and GZ algo-
rithms, which are generalizations of GR algorithms. Particularly important among
the GZ algorithms are the QQZ algorithms. These are normally implemented im-
plicitly, as bulge chasing algorithms. However, in Section 7, we discuss a completely
different class of explicit QZ algorithms. These attempt to divide and conquer the
problem by splitting it apart on each iteration. They are highly parallelizable and
may play a significant role in parallel eigensystem computations in the future.

2. GR Algorithms

Let A be an n X n real or complex matrix whose eigenvalues we seek. GR
algorithms [59] are iterative methods that begin with a matrix Ay similar to A
(e.g. Ag = A) and produce a sequence (A,,) of similar matrices. All GR algorithms
have the following form. Given the iterate A,,, the next iterate A,,y; is produced
as follows. First a spectral transformation function f,, is somehow chosen. At this
point the only requirement on f,, is that the matrix f,,(A,,) be well defined. Thus
fm could be a polynomial, rational function, exponential function, or whatever.
The next step is to decompose fp,(A4nm) into a product

(2-1) fm(Am) = Gm+1Rm+1,

where G, 41 is nonsingular and R,,41 is upper triangular. There are lots of ways to
do this; the symbol G stands for general or generic. The final step of the iteration
is to use Gy,41 in a similarity transformation to produce the next iterate:

(22) Am+1 - ;L];FlAme+1'

If the f’s and G’s are chosen well (and perhaps even if they are not), the sequence
of similar matrices, all of which have the same eigenvalues, will converge rapidly to
a block upper triangular form

A A
0 Ay |’

thereby splitting the problem into two smaller eigenvalue problems with matrices
A1 and Agy. After O(n) such splittings, the eigenvalue problem has been solved.

Some variants are the RG algorithms, in which the order of factors in (2.1) is
reversed, and the GL and LG algorithms, in which lower triangular matrices are
used. All of these families have isomorphic convergence theories. In practice some
of these variants do come in handy here and there, but we will focus for the most
part on the GR case.

A particular GR algorithm is determined by how the spectral transformation
functions f,, are chosen and how the transforming matrices G,,+1 are specified.
Let us first discuss choices of G.

If each G, 41 is required to be unitary, then the symbol @ is used instead of G,
the decomposition becomes f,(An) = Qme1Rma1, and the algorithm is called a
QR algorithm. The requirement that @),,,+1 be unitary implies that the factors in
the decomposition are nearly uniquely determined. This is the most popular choice
of G. Expositions on the QR algorithm can be found in numerous books [31], [52],
[61].
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If each G,,,41 is required to be unit lower triangular, that is, lower triangular
with ones on the main diagonal, then the symbol L is used, the decomposition
becomes fm(Am) = Lmt1Rm+1, and the algorithm is called an LR algorithm.
The LR decomposition is unique if it exists, but not every matrix has an LR
decomposition. This means that the choice of f,,, must be restricted in such a
way that f,,(A,,) has an LR decomposition. The algorithm is unstable; difficulties
arise when f,,, are chosen so that f,,(A4,,) is close to a matrix that has no LR
decomposition. Stability can be improved markedly by the introduction of pivoting
(row and column interchanges). Wilkinson’s book [61] discusses LR algorithms in
detail.

Other examples are the HR [10], [11] SR [13], [14], and BR [30] algorithms.
The H stands for hyperbolic, the S for symplectic, and the B for balancing, band-
reducing, bulge-chasing algorithm.

Now let us consider some ways of choosing the functions f,,,. We call them
spectral transformation functions because it is their job to transform the spectrum
of the matrix in order to accelerate convergence. We also refer to f,, as the function
that drives the mth iteration. The simplest spectral transformation functions are
polynomials, and the simplest useful polynomials have degree one. If we take f(z) =
z — p, then we have f(A) = A — ul. Such a choice gives us a simple or single GR
step with shift p. The quadratic choice f(z) = (z — p)(z — v) gives a double GR
step with shifts p and v. A double step is worth two single steps. The standard QR
codes for real matrices (dating back to Francis [29]) take double steps with either
real p and v or complex v = 1. This keeps the computations real. The multishift
QR algorithm [3] takes f(z) = (z — p1)(2 — p2) - - - (2 — pp), where p can be as big
as one pleases in principle. In practice roundoff errors cause problems if p is taken
much bigger than six.

A more exotic choice would be a rational function such as

oG p)
flz) = ————-
(z+ ) (z + p)
This is the sort of f that is used to drive the Hamiltonian QR algorithm of Byers
[16], [17]. The more general use of rational spectral transformation functions is
discussed in [57].
An even more exotic choice would be a characteristic function for the unit disk:

if
23) fa={0 & 451

This is a simple function to describe, but how does one calculate f(A)? For now
we just remark that there are good rational approximations. For example, if k is a
large integer, the rational function

1

2) = ——
1) zk+1
approximates the characteristic function quite well away from the circle |z| = 1.

Factors that affect the convergence rate. The convergence theory of GR
algorithms was discussed by Watkins and Elsner [59] and summarized in [55].
There are two factors affecting the convergence of the algorithm: the choice of f,,
and the choice of GG,,. Let Gm = G1G5---G,,, the product oAf the transforming

matrices for the first m steps. If the condition numbers x(G,,) grow with m,
convergence can be degraded or prevented. On the other hand, it is the role of
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the f,, to promote or accelerate convergence. For starters let’s suppose that the
same f is used on every iteration. If A\;, Ao, ..., A, are the eigenvalues of A, then
F), f(A2), ..., f(\n) are the eigenvalues of f(A). Suppose they are numbered
so that |f(A1)] > |f(A2)| > --- > |f(Ay)|. Then the ratios

=)/ FO) k=1, -1

are what determine the asymptotic convergence rate. These ratios all satisfy 0 <
pr < 1. The closer to zero they are, the better. The underlying mechanism is
subspace iteration [35, 15, 43, 51, 59].

Let us consider the effect of the kth ratio p,. Suppose p < 1, and let gy be
any number satisfying pr < pr. < 1. Partition the iterates A,, into blocks

A A

Am = m m
A gy

where Agrln) is k x k. Then, under mild assumptions, there exists a constant C' such
that
[AS™ )| < Cr(G)p™  for all m.

Thus A,, approaches block upper triangular form if k(G )p;" — 0.

If there is a bound K such that x(G,,) < K for all m, then convergence is
linear with ratio py = |f(Aes1)/f(Ae)]. Even if k(G,,) is unbounded, there still
can be convergence if the growth is not too fast.

So far we have assumed that f is held fixed. Varying f makes the convergence
analysis harder, but (with rare exceptions) it pays off in accelerated convergence.
Successful shift strategies are (with rare exceptions) able to choose f,, so that
fm(A) = f(A), where f is a function such that p, = 0 for some k. This yields
superlinear convergence. A simple shift strategy that normally yields quadratic
convergence is discussed below.

Let us reconsider choices of G in light of the convergence theory. Clearly the
objective is to make the transforming matrices as well conditioned as possible. This
is true also from the point of view of stability, since the condition numbers I{(Gm)
govern the stability of the algorithm as well. From this viewpoint the Q) R algorithms
are obviously best, as they guarantee I{z(Qm) = 1 for all m. No such guarantees
exist for any of the other GR algorithms, which explains why the QR algorithms
are by far the most popular. In certain special circumstances (e.g. Hamiltonian
problems) there exist (non-QR) GR algorithms that are very fast (O(n) work per
iteration instead of O(n?)) because they are able to exploit the structure. In those
circumstances one may be willing to trade the stability guarantee for speed. But
then one must always be alert to the danger of instability. In this paper we will
focus mainly on Q)R algorithms.

We now reconsider choices of f in light of the convergence theory. The simplest
and most common choice is the polynomial

f2)=(z=m)(z—p2) (2 — ).
The best we can do is to take the shifts p,..., ), to be eigenvalues of A . Then
f(A) has p zero eigenvalues, so

f()‘nfp+1) _
(2.4) oy T 0.
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Such a good ratio implies very rapid convergence. Indeed, after just one iteration
we get

(1) (1)
(25) A= | A A
0 A
where Ag? is p x p and has p1,...,pu, as its eigenvalues.?

The catch is that we do not normally have the eigenvalues available to use as
shifts. However, after a few iterations we might well have some good approxima-
tions, and we can use these as shifts. If all p shifts are excellent approximations to
eigenvalues, then the ratio in (2.4) will be close to zero, and convergence to a form
like (2.5) will be achieved in a few iterations. Subsequent iterations can be applied
to the submatrix 4,; with a new set of shifts.

Normally new shifts are chosen on each iteration. The most common strategy is
to take the shifts (on the mth iteration) to be the eigenvalues of the lower right-hand

pXxpsubmatrix Aggl). In other words, f,, is taken to be the characteristic polynomial

of Aggn). Global convergence is not guaranteed, but the local convergence rate is
normally quadratic and can even be cubic if the matrices satisfy certain symmetry
properties [59].

A few words about global convergence are in order. The unitary circulant shift
matrix C),, exemplified by the four-by-four case

Cy =
1

is invariant under () R iterations with zero shifts, as is any unitary matrix. The shift
strategy described in the previous paragraph gives zero shifts, as long as p < n.
Thus the algorithm fails to converge when applied to C,,. Even worse things can
happen; in some cases the shifts can wander chaotically [6]. The standard cure
for these problems is to use exceptional shifts (for example, random shifts) if many
iterations have passed with no progress. The point of this strategy is to knock
the matrix away from any dangerous areas. It is not foolproof [18], but it has
worked well over the years. Nevertheless, a shift strategy that is provably globally
convergent (and converges quadratically on almost all matrices) would be welcome.

The only class of matrices for which global convergence has been proved is that
of Hermitian tridiagonal matrices, provided that the Wilkinson shift strategy is
used [41]. The Wilkinson strategy takes p = 1; the lone shift is the eigenvalue of
the 2 x 2 lower right-hand submatrix that is closer to a,y,.

3. Implicit Implementations of GR Algorithms

For most of the choices of f that we have considered, the cost of calculating
f(A) is high. For this and other reasons, most implementations of GR algorithms
find a way to perform the iterations without calculating f(A) explicitly. Usually
the first column of f(A) is all that is needed. This section shows how to do it when
f is a polynomial.

3This result ignores the effect of roundoff errors. Tn practice the (2, 1) block of (2.5) will not
be exactly zero, and usually it will not be small enough to allow a safe deflation of the problem.
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If we wish to use an implicit GR algorithm, we must first transform the matrix
to a condensed form. The best known such form is upper Hessenberg, but there
are others. For example, any Hermitian matrix can be put into tridiagonal form,
and so can almost any other square matrix [61], although the stability of the trans-
formation comes into question for non-Hermitian matrices. For unitary matrices
there are several condensed forms, including the Schur parameter pencil [1], [12],
[53] and the double staircase form [8], [53]. For Hamiltonian matrices there are
both Hessenberg-like and tridiagonal-like forms [40], [13]. Implicit GR algorithms
can be built on all of these forms, but for simplicity we will restrict our attention

to upper Hessenberg form.

A matrix A is in upper Hessenberg form if a;; = 0 whenever ¢ > j + 1. Every
matrix can be transformed stably to upper Hessenberg form by a unitary similarity
transformation [61], [31], [52]. There are also various useful nonunitary reductions
to Hessenberg form, and these will play a role in what follows. The general plan
of all of these reduction algorithms is that they first introduce zeros in the first
column, then the second column, then the third column, and so on.

An upper Hessenberg matrix A is in proper upper Hessenberg form if a4 ; # 0
for j =1,... ,n— 1. If a matrix is not in proper upper Hessenberg form, we can
divide its eigenvalue problem into independent subproblems for which the matrices
are proper upper Hessenberg.

Suppose A is a proper upper Hessenberg matrix, and we wish to perform an
iteration of a multishift GR algorithm:

(3.1) f(4) = GR,

(3.2) A=G1AG,

where f is a polynomial of degree p: f(A) = (A — pu1I)--- (A — ppl). Since we
are considering only a single iteration, we have dropped the subscripts to simplify
the notation. There is no need to calculate f(A); it suffices to compute the first
column, which is

z=(A-—ml) - (A-pple.

Since A is upper Hessenberg, only the first p + 1 entries of  are nonzero, and z
can be computed in O(p?) flops. This is negligible if p < n.

The implicit GR iteration is set in motion by building a nonsingular matrix
G that has its first column proportional to z and looks like an identity matrix
except for the (p + 1) x (p + 1) submatrix in the upper left-hand corner. There
are many ways to do this; for example, G can be a Householder reflector. G is
then used to perform a similarity transformation A — G~'AG, which disturbs the
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upper Hessenberg form; the transformed matrix has a bulge, the size of which is
proportional to p, the degree of the iteration.

The rest of the iteration consists of returning the matrix to upper Hessenberg
form by any one of the standard reduction algorithms. As the columns are cleared
out one by one, new nonzero entries are added to the bottom of the bulge, so the
bulge is effectively chased from one end of the matrix to the other.

N

Hence these algorithms are called bulge-chasing algorithms. Once the bulge has
been chased off of the bottom of the matrix, the iteration is complete.

Let G denote the product of all of the transforming matrices applied during the
iteration, so that the entire similarity transformation is A = G ' AG. Watkins and
Elsner [58] showed that no matter what kind of transforming matrices are used, G
satisfies p(A) = G'R for some upper-triangular R. Thus the procedure just outlined
effects a GR iteration (3.1,3.2) implicitly. It follows that the GR convergence theory
[59] is applicable to all algorithms of this type.

Let us consider some of the possibilities. If G and all of the bulge-chasing
transformations are unitary, then G is unitary, so a QR iteration is performed. This
is by far the most popular choice. If, on the other hand, all of the transformations
are elementary lower triangular (Gaussian elimination) transformations (without
pivoting), then G is unit lower triangular, and an LR iteration is performed. For
stability one can perform a row interchange to maximize the pivot before each
elimination. This is how one implements the LR algorithm with pivoting. Unless
the matrix has some special structure that one wishes to preserve (e.g. symmetric,
Hamiltonian), there is no reason to insist that all of the transforming matrices be
of the same type. Haag and Watkins [32] have developed bulge-chasing algorithms
that mix unitary and Gaussian elimination transformations.

4. Performance of Multishift QR Algorithms

We now confine our attention to the QR algorithm, although this restriction
is by no means necessary. In principle we can perform multishift QR steps of any
degree p. What is a good choice of p in practice? Historically the first choice was
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p =1, and this is still popular. The most widely used QR codes for real symmetric
matrices and for complex non-Hermitian matrices make this choice. Another early
choice that is still popular is p = 2, which allows the use of complex shifts on real
matrices without going outside the real number field. That was Francis’s reason
for inventing the double-shift algorithm. Descendents of Francis’s code are still in
widespread use in Matlab, EISPACK, LAPACK, and elsewhere, as we have already
mentioned. For many years 1 and 2 were the only choices of p that were used. The
structure of certain types of matrices [17] causes their eigenvalues to come in sets
of four (e.g. A, A, =\, —X). For these matrices the choice p = 4 is obviously in
order. The use of large values of p was first advocated by Bai and Demmel [3]. This
seemed like an excellent idea. If one gets, say, thirty shifts from the lower right
hand 30 x 30 submatrix and uses them for a QR step of degree p = 30, then one has
to chase a 30 x 30 bulge. This is like doing 30 steps at a time, and it entails a lot
of arithmetic. Since the computations are quite regular, they can be implemented
in level-2 (or possibly level-3) BLAS [23], [22], thereby enhancing performance on
modern vector, cache-based, or parallel computers.

Unfortunately the multishift Q)R algorithm does not perform well if the degree
p is taken too large. This empirical fact is at odds with the convergence theory
and came as a complete surprise. Some experiments of Dubrulle [25] showed that
the problem lies with roundoff errors. If p shifts are chosen, they can be used to
perform either one )R iteration of degree p (chasing one big bulge) or p/2 iterations
of degree two (chasing p/2 small bulges). In principle the two procedures should
yield the same result. Dubrulle showed that in practice they do not: The code that
chases many small bulges converges rapidly as expected, while the one that chases
fewer large bulges goes nowhere. The difference is entirely due to roundoff errors.

We were able to shed some light on the problem by identifying the mechanism
by which information about the shifts is transmitted through the matrix during a
bulge chase [56]. The shifts are used only at the very beginning of the iteration,
in the computation of the vector = that is used to build the transforming matrix
that creates the bulge. The rest of the algorithm consists of chasing the bulge;
no further reference to the shifts is made. Yet good shifts are crucial to the rapid
convergence of the algorithm. In the case of multishift QR, convergence consists
of repeated deflation of (relatively) small blocks off of the bottom of the matrix.
The good shifts are supposed to accelerate these deflations. Thus the information
about the shifts must somehow be transmitted from the top to the bottom of the
matrix during the bulge chase, but how? In [56] we demonstrated that the shifts
are transmitted as eigenvalues of a certain matrix pencil associated with the bulge.
When p is large, the eigenvalues of this bulge pencil tend to be ill conditioned, so the
shift information is not represented accurately. The shifts are blurred, so to speak.
The larger p is, the worse is the blurring. When p = 30, it is so bad that the shifts
are completely lost. The algorithm functions as if random shifts had been applied.
From this perspective it is no longer a surprise that multshift Q R performs poorly
when p = 30.

The multishift idea has not been abandoned. The main workhorse in LAPACK
[26] for solving nonsymmetric eigenvalue problems is a multishift QR code. In
principle this code can be operated at any value of p, but p = 6 has been chosen
for general use. At this value the shift blurring is slight enough that it does not
seriously degrade convergence, and a net performance gain is realized through the
use of Level 2 BLAS.
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FIGURE 1. Pipelined QR steps

5. Pipelined QR Algorithm

Through Dubrulle’s experiments it became clear that one can perform a QR
iteration of degree 30, say, by chasing fifteen bulges of degree 2. This works well
because the shifts are not blurred at all when p = 2. Once we have set one bulge
in motion, we can start the next bulge as soon as we please; there is no need to
wait for completion of the first bulge chase. Once we have set the second bulge in
motion, we can start the third, and so on. In this way we can chase all fifteen (or
however many) bulges simultaneously in pipeline fashion.

Imagine a matrix that is really large and is divided up over many processors of
a distributed memory parallel computer. If the bulges are spread evenly, as shown
in the figure, a good many processors can be kept busy simultaneously.

The idea of pipelining ) R steps is not new. For example, it has been considered
by Heller and Ipsen [33], Stewart [47], van de Geijn [49], [50], and Kaufman [37],
but the idea did not catch on right away because nobody thought of changing the
shift strategy. For bulges of degree two, the standard strategy is to take as shifts
the two eigenvalues of the lower right-hand 2 x 2 submatrix. The entries of this
submatrix are among the last to be computed in a QR step, for the bulge is chased
from top to bottom. If one wishes to start a new step before the bulge for the
current step has reached the bottom of the matrix, one is forced to use old shifts
because the new ones are not available yet. If one wants to keep a steady stream
of, say, fifteen bulges running in the pipeline, one is obliged to use shifts that are
fifteen iterations out of date, so to speak. The use of such “stale” shifts degrades
the convergence rate significantly.

But now we are advocating a different strategy [54]: Choose some even number
p (e.g. 30) and get p shifts by computing the eigenvalues of the lower right-hand
p X p matrix. Now we have enough shifts to chase p/2 bulges in pipeline fashion
without resorting to out-of-date shifts. This strategy works well. It is used in
ScaLAPACK’s parallel QR code [34] for nonsymmetric eigenvalue problems.

Numerous improvements are possible. For example, the arithmetic could be
performed more efficiently if the bulges were chased in (slightly blurred) packets of
six instead of two. Another possibility is to chase tight clusters of small bulges, as
in recent work of Braman, Byers, and Mathias [9]. As a cluster of bulges is chased
through a segment of the matrix, the many small transforming matrices generated
from the bulge chases can be accumulated in a larger orthogonal matrix, which can
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then be applied using level 3 BLAS [22]. A price is paid for this: the total number of
flops per iteration is roughly doubled. The payoffs are that operations implemented
in level 3 BLAS are easily parallelized and allow modern cache-based processors
to operate at near top speed. Another innovation of [9] is the introduction of a
more aggressive deflation strategy (and accompanying shift strategy) that allows
the algorithm to terminate in fewer iterations. These innovations appear to have a
good chance for widespread acceptance in time.

6. Generalized Eigenvalue Problem

Matrix eigenvalue problems frequently present themselves as generalized eigen-
value problems involving a matrix pair (A, B), which is also commonly presented as
a matriz pencil A — AB. A nonzero vector v is an eigenvector of the matrix pencil
with associated eigenvalue X if

Av = ABw.

v is an eigenvector with eigenvalue oc if Bv = 0. The generalized eigenvalue problem
reduces to the standard eigenvalue problem in the case B = I. In analogy with the
standard eigenvalue problem we easily see that A is a finite eigenvalue of the pencil if
and only if det(A — AB) = 0. In contrast with the standard eigenvalue problem, the
characteristic polynomial det(A — AB) can have degree less than n. This happens
whenever B is a singular matrix. A pencil is singular if its characteristic polynomial
is identically zero. In this case every A is an eigenvalue. A pencil that is not singular
is called regular.

The QZ algorithm of Moler and Stewart [39] is a generalization of the QR algo-
rithm that can be used to solve generalized eigenvalue problems for regular pencils.
This is just one of a whole family of GZ algorithms [60]. A good implementation
of a GZ algorithm will perform well, regardless of whether the B matrix is singular
or not. However, it is much easier to explain how GZ algorithms work when B is
nonsingular, so we shall make that assumption. One iteration of a GZ algorithm
transforms a pencil A — AB to a strictly equivalent pencil A — AB as follows: a
spectral transformation function f is chosen, then GR decompositions of f(AB™!)
and f(B~!A) are computed:

(6.1) f(AB™") =GR,  f(B'A)=ZS.

G and Z are nonsingular, and R and S are upper triangular. The nonsingular
matrices G and Z are used to effect the equivalence transformation:

(6.2) A=G'Az, B=G'BZ

It B = I, then we may take G = Z in (6.1), in which case the GZ iteration
reduces to a GR iteration.
Recombining the equations (6.2) we see immediately that

(6.3) AB'=G ' (AB™')G, and B 'A=27"'(B'A)Z

Equations (6.1) and (6.3) together show that an iteration of the GZ algorithm
effects GR iterations on AB~! and B~!A simultaneously. It follows then from the
G R convergence theory that if we iterate this process with good choices of spectral
transformation functions, both AB~! and B~ A will normally converge rapidly to
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block upper triangular form. It is shown in [60] that the A and B matrices converge
individually (at the same rate as AB~! and B~ A) to block triangular form

An A _y| Bu Bn
0 A22 0 B22 ’

thus breaking the problem into two smaller problems involving the pencils A;; —
ABll and A22 — /\BQQ.

These iterations are expensive unless can find an economical way to perform
the equivalence transformation (6.2) without explicitly calculating B~! (which may
not exist), much less f(AB!) or f(B~!A). This is done by performing an initial
transformation to a condensed form, usually Hessenberg-triangular form. By this
we mean that A is made upper Hessenberg and B upper triangular. (Thus AB~!
and B~ ! A are both upper Hessenberg.) Then the GZ step is effected by a process
that chases bulges through A and B. The bulges are first formed by a transforma-
tion (G; whose first column is proportional to the first column of f(AB~!). This
can be computed cheaply if f is a polynomial of degree p < n, since AB~! is upper
Hessenberg. It can be done without explicitly assembling B!, and it has a reason-
able interpretation even if B~! does not exist. Once the bulges have been formed,
the rest of the iteration consists of a sequence of transformations that return the
pencil to Hessenberg-triangular form by a process that chases the bulges from top
to bottom of the matrices. It is similar to the G R bulge-chasing process, but there
are extra details. See [60], [31], or the original Moler-Stewart paper [39].

The type of GZ iteration that the bulge chase effects depends on what kinds of
transformations are used to do the chasing. For example, if all transformations are
unitary, a QZ step results. If Gaussian elimination transformations (with pivoting)
are used, an iteration of the LZ algorithm [36] results. Other examples are the SZ
algorithm for symplectic butterfly pencils [7], and the HZ algorithm for pencils
of the form T'— AD, where T is symmetric and D is diagonal with £1 entries on
the main diagonal. This is a reformulation of the SR algorithm for matrices of the
form DT (= D~'T).

Surely the most heavily used GZ code is the one in Matlab. This is a single-
shift (p = 1) implicit QZ algorithm that uses complex arithmetic. The original QZ
algorithm of Moler and Stewart [39] used p = 2 for real matrices, following Francis.
The QZ codes in LAPACK use either p = 1 or p = 2, depending on whether the
shifts are real or complex.

As far as we know, no parallel QZ code has been written so far. The various
approaches that have been tried for () R can also be applied to ) Z. For example, one
can take p > 2 and chase larger bulges [60], but this is more difficult to implement
than in the QR case. Shift blurring is also a problem if p is too large. The idea
of chasing many small bulges in pipeline fashion should work as well for Q7 as it
does for QR.

Once the QZ algorithm is finished, the pencil will have been reduced to upper
triangular form or nearly triangular form. For simplicity let us suppose the form
is triangular. Then the eigenvalues are the quotients of the main diagonal entries:
Ai = aii /by If a;; # 0 and b; = 0 for some 4, this signifies an infinite eigenvalue.
If a;; = 0 and b; = 0 for some i, the pencil is singular. In that case the other
a;;/bj; signify nothing, as they can take on any values whatsoever [63]. Singular
pencils have fine structure that can be determined by the staircase algorithm of
Van Dooren [24]. See also the code GUPTRI of Demmel and Kagstrom [20].
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7. Divide-and-Conquer Algorithms

To round out the paper we consider a completely different class of algorithm
that has been under development in recent years [5, 4]. They are not usually viewed
as GZ algorithms, but that is what they are. They are explicit GZ algorithms;
that is, they actual compute f(AB~') and f(B~'A) and their GR decompositions
explicitly. They require more computation than a conventional implicit GZ algo-
rithm does, but the computations are of types that can be implemented using level
3 BLAS. They also have a divide-and-conquer aspect. Thus algorithms of this type
have a chance of becoming the algorithms of choice for parallel solution of extremely
large, dense eigenvalue problems.

Let D be a subset of the complex plane (e.g. a disk) that contains some, say
k, of the eigenvalues of the pencil A — AB. Ideally k ~ n/2. Let f = xp, the
characteristic function of D. Thus f(z) is 1 if z € D and 0 otherwise. If we then
perform a GZ iteration (6.1,6.2) driven by this f, the resulting pencil normally has
the form

; P R S SP Bi1  Bia
(71) A—/\B—{ ! Aw}—x[ ! 322}7

where A;; — ABj; is k x k and carries the eigenvalues that lie within D. Thus in
one (expensive) iteration we divide the problem into two subproblems, which are
of about equal size if k ~ n/2. A few such divisions suffice to conquer the problem.

It is easy to see why the split occurs. Let S; and S, be the invariant subspaces
of B~'A and AB™!, respectively, associated with the eigenvalues that lie in D.
Then (S4, S;) is a deflating pair for the pencil, i.e. AS; C S, and BS; C S;.. Since
f is the characteristic function of D, f(B~1A) and f(AB™!) are spectral projectors
onto Sy and S,, respectively. When a decomposition f(AB~!) = GR is performed,
the upper-triangular matrix R normally has the form

| Rin Ry
e[,

where Ry; is k x k and nonsingular, because f(AB™!) has rank k. We can be sure
of obtaining an this form if we introduce column pivoting in the GR decomposition:
f(AB~') = GRII, where R has the desired form and IT is a permutation matrix.
This guarantees that the first £ columns of G form a basis for S,., the range of
f(AB~1). If we likewise introduce pivoting into the decomposition of f(B~1A4), we
can guarantee that the first k£ columns of Z are a basis of §5. Thus if we replace
(6.1) by

(7.2) f(AB™') = GRI,  f(B 'A)=ZSP,

where I and P are suitable permutation matrices, then the transformation (6.2)
will result in the form (7.1), because S; and S, are deflating subspaces.

This type of GZ algorithm yields a deflation on each iteration. In order to
implement it, we need to be able to calculate f(AB~!) and f(B~'A) for various
types of regions D. Various iterative methods have been put forward. The main
method discussed in [4] can be applied to an arbitrary disk D. The size and location
of the disk are determined by a preliminary transformation. Therefore we can take
D to be the unit disk without loss of generality. The iterative method described
in [4] has the effect that if one stops after j iterations, one uses instead of f the
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rational approximation

fj(z) = 1—%%

Even for modest values of j this approximation is excellent, except very near the
unit circle.

The matrices f;(AB~!) and f;(B~'A) are computed without ever forming
B~!; the algorithm operates directly on A and B. The major operations in the
iteration are QR decompositions and matrix-matrix multiplications, which can be
done in level 3 BLAS. In the decomposition (7.2) the matrices G and Z are taken
to be unitary for stability, so this is actually a @ Z algorithm. The algorithm works
even if B is singular. See [4] for many more details.

Since the iterations that compute f;(AB~') and f;(B~'A) are expensive, one
prefers not to perform too many of them. Difficulties arise when there is an eigen-
value on or very near the circle that divides D from its complement. The iterations
may fail to converge or converge too slowly. The remedy is to move the disk and
restart the iterations. Once the projectors and their Q R decompositions have been
computed, the transformation (6.2) does not deliver exactly the form (7.1). The
(2,1) block will not quite be zero in practice, because of roundoff errors and because
the projectors have been calculated only approximately. If || Aoy || or || B2: || is too
big, the iteration must be rejected. Again the remedy is to move the disk and try
again. Because the iterations are so expensive, one cannot afford to waste too many
of them.

An experimental divide-and-conquer code (that uses a different iteration from
the one discussed here) is available as a prototype code from ScaLAPACK.
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