
QR-like Algorithms for Eigenvalue ProblemsDavid S. WatkinsAbstract. In the year 2000 the dominant method for solving matrix eigen-value problems is still the QR algorithm. This paper discusses the family ofGR algorithms, with emphasis on the QR algorithm. Included are historicalremarks, an outline of what GR algorithms are and why they work, and de-scriptions of the latest, highly parallelizable, versions of the QR algorithm.Now that we know how to parallelize it, the QR algorithm seems likely toretain its dominance for many years to come.1. IntroductionSince the early 1960's the standard algorithms for calculating the eigenvaluesand (optionally) eigenvectors of \small" matrices have been the QR algorithm [29]and its variants. This is still the case in the year 2000 and is likely to remain sofor many years to come. For us a small matrix is one that can be stored in theconventional way in a computer's main memory and whose complete eigenstructurecan be calculated in a matter of minutes without exploiting whatever sparsity thematrix may have had. If a matrix is small, we may operate on its entries. Inparticular, we are willing to perform similarity transformations, which will normallyobliterate any sparseness the matrix had to begin with.1If a matrix is not small, we call it large. The boundary between small andlarge matrices is admittedly vague, but there is no question that it has been movingsteadily upward since the dawn of the computer era. In the year 2000 the boundaryis around n = 1000, or perhaps a bit higher.Eigenvalue problems come in numerous guises. Whatever the form of the prob-lem, the QR algorithm is likely to be useful. For example, for generalized eigenvalueproblems Ax = �Bx, the method of choice is a variant of the QR algorithm calledQZ. Another variant of QR is used to calculate singular value decompositions(SVD) of matrices. The QR algorithm is also important for solving large eigenvalueproblems. Most algorithms for computing eigenvalues of large matrices repeatedlygenerate small auxiliary matrices whose eigensystems need to be computed as asubtask. The most popular algorithms for this subtask are the QR algorithm andits variants.1991 Mathematics Subject Classi�cation. 65F15.1However, we are not averse to seeking to preserve and exploit certain other structures (e.g.symmetry) by choosing our transforming matrices appropriately.1



2 DAVID S. WATKINSQR Past and Present. In this paper we discuss the family of GR algorithms,which includes the QR algorithm. The subject was born in the early 1950's withH. Rutishauser's quotient-di�erence algorithm [44], [45], which he formulated as amethod for calculating the poles of a meromorphic function. He then reformulatedit in terms of matrix operations and generalized it to the LR algorithm [46].2The QR algorithm was published by Kublanovskaya [38] and Francis [29] in 1961.The Francis paper is particularly noteworthy for the re�nements it includes. Thedouble-shift implicit QR algorithm laid out there is only a few details removed fromcodes that are in widespread use today.And what codes are in use today? By far the most popular tool for matrixcomputations is Matlab. If you use Matlab to compute your eigenvalues, you willuse one of its four QR-based computational kernels. Each of these is just a fewre�nements removed from codes in the public-domain software packages EISPACK[2] and LINPACK [21]. In particular, the algorithm for computing eigenvalues ofreal, nonsymmetric matrices is just the Francis double-shift QR algorithm withsome modi�cations in the shift strategy.A newer public-domain collection is LAPACK [26], which was designed toperform well on vector computers, high-performance work stations, and shared-memory parallel computers. It also has a double-shift implicit QR code, which isused on matrices (or portions of matrices) under 50 � 50. For larger matrices amultishift QR code is used.For many years the QR algorithm resisted e�orts to parallelize it. The prospectsfor a massively parallel QR algorithm for distributed memory parallel computerswere considered dim. The pessimism was partly dispelled by van de Geijn and Hud-son [48], who demonstrated the �rst successful highly parallel QR code. However,their code relies on an unorthodox distribution of the matrix over the processors,which makes it hard to use in conjunction with other codes. Subsequently G. Henry[34] wrote a successful parallel QR code that uses a standard data distribution.This is an implicit double-shift code that performs the iterations in pipeline fash-ion. This code is available in ScaLAPACK [27], a collection of matrix computationprograms for distributed-memory parallel computers.On the theoretical side, the �rst proof of convergence of the LR algorithm(without pivoting or shifts of origin) was provided by Rutishauser [46]. His proofwas heavily laden with determinants, in the style of the time. Wilkinson [61]proved convergence of the unshifted QR algorithm using matrices, not determi-nants. Wilkinson [62], [41] also proved global convergence of a shifted QR algo-rithm on symmetric, tridiagonal matrices. Della Dora [19] introduced a family ofGR algorithms and proved a general convergence theorem (unshifted case). In [59]a more general family of GR algorithms was introduced, and general convergencetheorems for shifted GR algorithms were proved.This Paper's Contents. This paper provides an overview of the family ofGR algorithms, with emphasis on the QR case. The properties of the variousQR implementations are discussed. We begin by introducing the family of GRalgorithms in Section 2. These are iterative methods that move a matrix towardupper-triangular form via similarity transformations. We discuss the convergence2Amazingly the quotient-di�erence algorithm has had a recent revival. Fernando and Parlett[28], [42] introduced new versions for �nding singular values of bidiagonal matrices and eigenvaluesof symmetric, tridiagonal matrices.



QR-LIKE ALGORITHMS 3of GR algorithms brie
y. In Section 3 we show how to implement GR algorithmseconomically as bulge-chasing procedures on Hessenberg matrices. In Sections 4and 5 we discuss multishift and pipelined QR algorithms, respectively.Section 6 discusses the generalized eigenvalue problem Av = �Bv and GZ algo-rithms, which are generalizations of GR algorithms. Particularly important amongthe GZ algorithms are the QZ algorithms. These are normally implemented im-plicitly, as bulge chasing algorithms. However, in Section 7, we discuss a completelydi�erent class of explicit QZ algorithms. These attempt to divide and conquer theproblem by splitting it apart on each iteration. They are highly parallelizable andmay play a signi�cant role in parallel eigensystem computations in the future.2. GR AlgorithmsLet A be an n � n real or complex matrix whose eigenvalues we seek. GRalgorithms [59] are iterative methods that begin with a matrix A0 similar to A(e.g. A0 = A) and produce a sequence (Am) of similar matrices. All GR algorithmshave the following form. Given the iterate Am, the next iterate Am+1 is producedas follows. First a spectral transformation function fm is somehow chosen. At thispoint the only requirement on fm is that the matrix fm(Am) be well de�ned. Thusfm could be a polynomial, rational function, exponential function, or whatever.The next step is to decompose fm(Am) into a productfm(Am) = Gm+1Rm+1;(2.1)where Gm+1 is nonsingular and Rm+1 is upper triangular. There are lots of ways todo this; the symbol G stands for general or generic. The �nal step of the iterationis to use Gm+1 in a similarity transformation to produce the next iterate:Am+1 = G�1m+1AmGm+1:(2.2)If the f 's and G's are chosen well (and perhaps even if they are not), the sequenceof similar matrices, all of which have the same eigenvalues, will converge rapidly toa block upper triangular form � A11 A120 A22 � ;thereby splitting the problem into two smaller eigenvalue problems with matricesA11 and A22. After O(n) such splittings, the eigenvalue problem has been solved.Some variants are the RG algorithms, in which the order of factors in (2.1) isreversed, and the GL and LG algorithms, in which lower triangular matrices areused. All of these families have isomorphic convergence theories. In practice someof these variants do come in handy here and there, but we will focus for the mostpart on the GR case.A particular GR algorithm is determined by how the spectral transformationfunctions fm are chosen and how the transforming matrices Gm+1 are speci�ed.Let us �rst discuss choices of G.If each Gm+1 is required to be unitary, then the symbol Q is used instead of G,the decomposition becomes fm(Am) = Qm+1Rm+1, and the algorithm is called aQR algorithm. The requirement that Qm+1 be unitary implies that the factors inthe decomposition are nearly uniquely determined. This is the most popular choiceof G. Expositions on the QR algorithm can be found in numerous books [31], [52],[61].



4 DAVID S. WATKINSIf each Gm+1 is required to be unit lower triangular, that is, lower triangularwith ones on the main diagonal, then the symbol L is used, the decompositionbecomes fm(Am) = Lm+1Rm+1, and the algorithm is called an LR algorithm.The LR decomposition is unique if it exists, but not every matrix has an LRdecomposition. This means that the choice of fm must be restricted in such away that fm(Am) has an LR decomposition. The algorithm is unstable; di�cultiesarise when fm are chosen so that fm(Am) is close to a matrix that has no LRdecomposition. Stability can be improved markedly by the introduction of pivoting(row and column interchanges). Wilkinson's book [61] discusses LR algorithms indetail.Other examples are the HR [10], [11] SR [13], [14], and BR [30] algorithms.The H stands for hyperbolic, the S for symplectic, and the B for balancing, band-reducing, bulge-chasing algorithm.Now let us consider some ways of choosing the functions fm. We call themspectral transformation functions because it is their job to transform the spectrumof the matrix in order to accelerate convergence. We also refer to fm as the functionthat drives the mth iteration. The simplest spectral transformation functions arepolynomials, and the simplest useful polynomials have degree one. If we take f(z) =z � �, then we have f(A) = A � �I . Such a choice gives us a simple or single GRstep with shift �. The quadratic choice f(z) = (z � �)(z � �) gives a double GRstep with shifts � and �. A double step is worth two single steps. The standard QRcodes for real matrices (dating back to Francis [29]) take double steps with eitherreal � and � or complex � = ��. This keeps the computations real. The multishiftQR algorithm [3] takes f(z) = (z � �1)(z � �2) � � � (z � �p), where p can be as bigas one pleases in principle. In practice roundo� errors cause problems if p is takenmuch bigger than six.A more exotic choice would be a rational function such asf(z) = (z � �)(z � ��)(z + �)(z + ��) :This is the sort of f that is used to drive the Hamiltonian QR algorithm of Byers[16], [17]. The more general use of rational spectral transformation functions isdiscussed in [57].An even more exotic choice would be a characteristic function for the unit disk:f(z) = � 1 if jzj < 10 if jzj > 1(2.3)This is a simple function to describe, but how does one calculate f(A)? For nowwe just remark that there are good rational approximations. For example, if k is alarge integer, the rational functionf(z) = 1zk + 1approximates the characteristic function quite well away from the circle jzj = 1.Factors that a�ect the convergence rate. The convergence theory of GRalgorithms was discussed by Watkins and Elsner [59] and summarized in [55].There are two factors a�ecting the convergence of the algorithm: the choice of fmand the choice of Gm. Let Ĝm = G1G2 � � �Gm, the product of the transformingmatrices for the �rst m steps. If the condition numbers �(Ĝm) grow with m,convergence can be degraded or prevented. On the other hand, it is the role of



QR-LIKE ALGORITHMS 5the fm to promote or accelerate convergence. For starters let's suppose that thesame f is used on every iteration. If �1; �2; : : : ; �n are the eigenvalues of A, thenf(�1); f(�2); : : : ; f(�n) are the eigenvalues of f(A). Suppose they are numberedso that jf(�1)j � jf(�2)j � � � � � jf(�n)j. Then the ratios�k = jf(�k+1)=f(�k)j k = 1; : : : ; n� 1are what determine the asymptotic convergence rate. These ratios all satisfy 0 ��k � 1. The closer to zero they are, the better. The underlying mechanism issubspace iteration [35, 15, 43, 51, 59].Let us consider the e�ect of the kth ratio �k. Suppose �k < 1, and let �̂k beany number satisfying �k < �̂k < 1. Partition the iterates Am into blocksAm = " A(m)11 A(m)12A(m)21 A(m)22 # ;where A(m)11 is k�k. Then, under mild assumptions, there exists a constant C suchthat kA(m)21 k � C�(Ĝm)�̂mk for all m:Thus Am approaches block upper triangular form if �(Ĝm)�̂mk ! 0.If there is a bound K such that �(Ĝm) � K for all m, then convergence islinear with ratio �k = jf(�k+1)=f(�k)j. Even if �(Ĝm) is unbounded, there stillcan be convergence if the growth is not too fast.So far we have assumed that f is held �xed. Varying f makes the convergenceanalysis harder, but (with rare exceptions) it pays o� in accelerated convergence.Successful shift strategies are (with rare exceptions) able to choose fm so thatfm(A) ! f(A), where f is a function such that �k = 0 for some k. This yieldssuperlinear convergence. A simple shift strategy that normally yields quadraticconvergence is discussed below.Let us reconsider choices of G in light of the convergence theory. Clearly theobjective is to make the transforming matrices as well conditioned as possible. Thisis true also from the point of view of stability, since the condition numbers �(Ĝm)govern the stability of the algorithm as well. From this viewpoint theQR algorithmsare obviously best, as they guarantee �2(Q̂m) = 1 for all m. No such guaranteesexist for any of the other GR algorithms, which explains why the QR algorithmsare by far the most popular. In certain special circumstances (e.g. Hamiltonianproblems) there exist (non-QR) GR algorithms that are very fast (O(n) work periteration instead of O(n2)) because they are able to exploit the structure. In thosecircumstances one may be willing to trade the stability guarantee for speed. Butthen one must always be alert to the danger of instability. In this paper we willfocus mainly on QR algorithms.We now reconsider choices of f in light of the convergence theory. The simplestand most common choice is the polynomialf(z) = (z � �1)(z � �2) � � � (z � �p):The best we can do is to take the shifts �1; : : : ; �p to be eigenvalues of A . Thenf(A) has p zero eigenvalues, so f(�n�p+1)f(�n�p) = 0:(2.4)



6 DAVID S. WATKINSSuch a good ratio implies very rapid convergence. Indeed, after just one iterationwe get A1 = " A(1)11 A(1)120 A(1)22 # ;(2.5)where A(1)22 is p� p and has �1; : : : ; �p as its eigenvalues.3The catch is that we do not normally have the eigenvalues available to use asshifts. However, after a few iterations we might well have some good approxima-tions, and we can use these as shifts. If all p shifts are excellent approximations toeigenvalues, then the ratio in (2.4) will be close to zero, and convergence to a formlike (2.5) will be achieved in a few iterations. Subsequent iterations can be appliedto the submatrix A11 with a new set of shifts.Normally new shifts are chosen on each iteration. The most common strategy isto take the shifts (on themth iteration) to be the eigenvalues of the lower right-handp�p submatrixA(m)22 . In other words, fm is taken to be the characteristic polynomialof A(m)22 . Global convergence is not guaranteed, but the local convergence rate isnormally quadratic and can even be cubic if the matrices satisfy certain symmetryproperties [59].A few words about global convergence are in order. The unitary circulant shiftmatrix Cn exempli�ed by the four-by-four caseC4 = 2664 11 1 1 3775is invariant under QR iterations with zero shifts, as is any unitary matrix. The shiftstrategy described in the previous paragraph gives zero shifts, as long as p < n.Thus the algorithm fails to converge when applied to Cn. Even worse things canhappen; in some cases the shifts can wander chaotically [6]. The standard curefor these problems is to use exceptional shifts (for example, random shifts) if manyiterations have passed with no progress. The point of this strategy is to knockthe matrix away from any dangerous areas. It is not foolproof [18], but it hasworked well over the years. Nevertheless, a shift strategy that is provably globallyconvergent (and converges quadratically on almost all matrices) would be welcome.The only class of matrices for which global convergence has been proved is thatof Hermitian tridiagonal matrices, provided that the Wilkinson shift strategy isused [41]. The Wilkinson strategy takes p = 1; the lone shift is the eigenvalue ofthe 2� 2 lower right-hand submatrix that is closer to ann.3. Implicit Implementations of GR AlgorithmsFor most of the choices of f that we have considered, the cost of calculatingf(A) is high. For this and other reasons, most implementations of GR algorithms�nd a way to perform the iterations without calculating f(A) explicitly. Usuallythe �rst column of f(A) is all that is needed. This section shows how to do it whenf is a polynomial.3This result ignores the e�ect of roundo� errors. In practice the (2; 1) block of (2.5) will notbe exactly zero, and usually it will not be small enough to allow a safe de
ation of the problem.



QR-LIKE ALGORITHMS 7If we wish to use an implicit GR algorithm, we must �rst transform the matrixto a condensed form. The best known such form is upper Hessenberg, but thereare others. For example, any Hermitian matrix can be put into tridiagonal form,and so can almost any other square matrix [61], although the stability of the trans-formation comes into question for non-Hermitian matrices. For unitary matricesthere are several condensed forms, including the Schur parameter pencil [1], [12],[53] and the double staircase form [8], [53]. For Hamiltonian matrices there areboth Hessenberg-like and tridiagonal-like forms [40], [13]. Implicit GR algorithmscan be built on all of these forms, but for simplicity we will restrict our attentionto upper Hessenberg form. @@@@@@@@@A matrix A is in upper Hessenberg form if aij = 0 whenever i > j + 1. Everymatrix can be transformed stably to upper Hessenberg form by a unitary similaritytransformation [61], [31], [52]. There are also various useful nonunitary reductionsto Hessenberg form, and these will play a role in what follows. The general planof all of these reduction algorithms is that they �rst introduce zeros in the �rstcolumn, then the second column, then the third column, and so on.An upper Hessenberg matrix A is in proper upper Hessenberg form if aj+1;j 6= 0for j = 1; : : : ; n � 1. If a matrix is not in proper upper Hessenberg form, we candivide its eigenvalue problem into independent subproblems for which the matricesare proper upper Hessenberg.Suppose A is a proper upper Hessenberg matrix, and we wish to perform aniteration of a multishift GR algorithm:f(A) = GR;(3.1) Â = G�1AG;(3.2)where f is a polynomial of degree p: f(A) = (A � �1I) � � � (A � �pI). Since weare considering only a single iteration, we have dropped the subscripts to simplifythe notation. There is no need to calculate f(A); it su�ces to compute the �rstcolumn, which is x = (A� �1I) � � � (A� �pI)e1:Since A is upper Hessenberg, only the �rst p + 1 entries of x are nonzero, and xcan be computed in O(p3) 
ops. This is negligible if p� n.The implicit GR iteration is set in motion by building a nonsingular matrix~G that has its �rst column proportional to x and looks like an identity matrixexcept for the (p + 1) � (p + 1) submatrix in the upper left-hand corner. Thereare many ways to do this; for example, ~G can be a Householder re
ector. ~G isthen used to perform a similarity transformation A! ~G�1A ~G, which disturbs the



8 DAVID S. WATKINSupper Hessenberg form; the transformed matrix has a bulge, the size of which isproportional to p, the degree of the iteration.@@@@@@@The rest of the iteration consists of returning the matrix to upper Hessenbergform by any one of the standard reduction algorithms. As the columns are clearedout one by one, new nonzero entries are added to the bottom of the bulge, so thebulge is e�ectively chased from one end of the matrix to the other.@@@@ @R@@@@Hence these algorithms are called bulge-chasing algorithms. Once the bulge hasbeen chased o� of the bottom of the matrix, the iteration is complete.Let G denote the product of all of the transforming matrices applied during theiteration, so that the entire similarity transformation is Â = G�1AG. Watkins andElsner [58] showed that no matter what kind of transforming matrices are used, Gsatis�es p(A) = GR for some upper-triangular R. Thus the procedure just outlinede�ects a GR iteration (3.1,3.2) implicitly. It follows that the GR convergence theory[59] is applicable to all algorithms of this type.Let us consider some of the possibilities. If ~G and all of the bulge-chasingtransformations are unitary, then G is unitary, so a QR iteration is performed. Thisis by far the most popular choice. If, on the other hand, all of the transformationsare elementary lower triangular (Gaussian elimination) transformations (withoutpivoting), then G is unit lower triangular, and an LR iteration is performed. Forstability one can perform a row interchange to maximize the pivot before eachelimination. This is how one implements the LR algorithm with pivoting. Unlessthe matrix has some special structure that one wishes to preserve (e.g. symmetric,Hamiltonian), there is no reason to insist that all of the transforming matrices beof the same type. Haag and Watkins [32] have developed bulge-chasing algorithmsthat mix unitary and Gaussian elimination transformations.4. Performance of Multishift QR AlgorithmsWe now con�ne our attention to the QR algorithm, although this restrictionis by no means necessary. In principle we can perform multishift QR steps of anydegree p. What is a good choice of p in practice? Historically the �rst choice was



QR-LIKE ALGORITHMS 9p = 1, and this is still popular. The most widely used QR codes for real symmetricmatrices and for complex non-Hermitian matrices make this choice. Another earlychoice that is still popular is p = 2, which allows the use of complex shifts on realmatrices without going outside the real number �eld. That was Francis's reasonfor inventing the double-shift algorithm. Descendents of Francis's code are still inwidespread use in Matlab, EISPACK, LAPACK, and elsewhere, as we have alreadymentioned. For many years 1 and 2 were the only choices of p that were used. Thestructure of certain types of matrices [17] causes their eigenvalues to come in setsof four (e.g. �, �, ��, ��). For these matrices the choice p = 4 is obviously inorder. The use of large values of p was �rst advocated by Bai and Demmel [3]. Thisseemed like an excellent idea. If one gets, say, thirty shifts from the lower righthand 30�30 submatrix and uses them for a QR step of degree p = 30, then one hasto chase a 30� 30 bulge. This is like doing 30 steps at a time, and it entails a lotof arithmetic. Since the computations are quite regular, they can be implementedin level-2 (or possibly level-3) BLAS [23], [22], thereby enhancing performance onmodern vector, cache-based, or parallel computers.Unfortunately the multishift QR algorithm does not perform well if the degreep is taken too large. This empirical fact is at odds with the convergence theoryand came as a complete surprise. Some experiments of Dubrulle [25] showed thatthe problem lies with roundo� errors. If p shifts are chosen, they can be used toperform either one QR iteration of degree p (chasing one big bulge) or p=2 iterationsof degree two (chasing p=2 small bulges). In principle the two procedures shouldyield the same result. Dubrulle showed that in practice they do not: The code thatchases many small bulges converges rapidly as expected, while the one that chasesfewer large bulges goes nowhere. The di�erence is entirely due to roundo� errors.We were able to shed some light on the problem by identifying the mechanismby which information about the shifts is transmitted through the matrix during abulge chase [56]. The shifts are used only at the very beginning of the iteration,in the computation of the vector x that is used to build the transforming matrixthat creates the bulge. The rest of the algorithm consists of chasing the bulge;no further reference to the shifts is made. Yet good shifts are crucial to the rapidconvergence of the algorithm. In the case of multishift QR, convergence consistsof repeated de
ation of (relatively) small blocks o� of the bottom of the matrix.The good shifts are supposed to accelerate these de
ations. Thus the informationabout the shifts must somehow be transmitted from the top to the bottom of thematrix during the bulge chase, but how? In [56] we demonstrated that the shiftsare transmitted as eigenvalues of a certain matrix pencil associated with the bulge.When p is large, the eigenvalues of this bulge pencil tend to be ill conditioned, so theshift information is not represented accurately. The shifts are blurred, so to speak.The larger p is, the worse is the blurring. When p = 30, it is so bad that the shiftsare completely lost. The algorithm functions as if random shifts had been applied.From this perspective it is no longer a surprise that multshift QR performs poorlywhen p = 30.The multishift idea has not been abandoned. The main workhorse in LAPACK[26] for solving nonsymmetric eigenvalue problems is a multishift QR code. Inprinciple this code can be operated at any value of p, but p = 6 has been chosenfor general use. At this value the shift blurring is slight enough that it does notseriously degrade convergence, and a net performance gain is realized through theuse of Level 2 BLAS.



10 DAVID S. WATKINS@@ @@ @@ @@ @@@Figure 1. Pipelined QR steps5. Pipelined QR AlgorithmThrough Dubrulle's experiments it became clear that one can perform a QRiteration of degree 30, say, by chasing �fteen bulges of degree 2. This works wellbecause the shifts are not blurred at all when p = 2. Once we have set one bulgein motion, we can start the next bulge as soon as we please; there is no need towait for completion of the �rst bulge chase. Once we have set the second bulge inmotion, we can start the third, and so on. In this way we can chase all �fteen (orhowever many) bulges simultaneously in pipeline fashion.Imagine a matrix that is really large and is divided up over many processors ofa distributed memory parallel computer. If the bulges are spread evenly, as shownin the �gure, a good many processors can be kept busy simultaneously.The idea of pipelining QR steps is not new. For example, it has been consideredby Heller and Ipsen [33], Stewart [47], van de Geijn [49], [50], and Kaufman [37],but the idea did not catch on right away because nobody thought of changing theshift strategy. For bulges of degree two, the standard strategy is to take as shiftsthe two eigenvalues of the lower right-hand 2 � 2 submatrix. The entries of thissubmatrix are among the last to be computed in a QR step, for the bulge is chasedfrom top to bottom. If one wishes to start a new step before the bulge for thecurrent step has reached the bottom of the matrix, one is forced to use old shiftsbecause the new ones are not available yet. If one wants to keep a steady streamof, say, �fteen bulges running in the pipeline, one is obliged to use shifts that are�fteen iterations out of date, so to speak. The use of such \stale" shifts degradesthe convergence rate signi�cantly.But now we are advocating a di�erent strategy [54]: Choose some even numberp (e.g. 30) and get p shifts by computing the eigenvalues of the lower right-handp � p matrix. Now we have enough shifts to chase p=2 bulges in pipeline fashionwithout resorting to out-of-date shifts. This strategy works well. It is used inScaLAPACK's parallel QR code [34] for nonsymmetric eigenvalue problems.Numerous improvements are possible. For example, the arithmetic could beperformed more e�ciently if the bulges were chased in (slightly blurred) packets ofsix instead of two. Another possibility is to chase tight clusters of small bulges, asin recent work of Braman, Byers, and Mathias [9]. As a cluster of bulges is chasedthrough a segment of the matrix, the many small transforming matrices generatedfrom the bulge chases can be accumulated in a larger orthogonal matrix, which can



QR-LIKE ALGORITHMS 11then be applied using level 3 BLAS [22]. A price is paid for this: the total number of
ops per iteration is roughly doubled. The payo�s are that operations implementedin level 3 BLAS are easily parallelized and allow modern cache-based processorsto operate at near top speed. Another innovation of [9] is the introduction of amore aggressive de
ation strategy (and accompanying shift strategy) that allowsthe algorithm to terminate in fewer iterations. These innovations appear to have agood chance for widespread acceptance in time.6. Generalized Eigenvalue ProblemMatrix eigenvalue problems frequently present themselves as generalized eigen-value problems involving a matrix pair (A;B), which is also commonly presented asa matrix pencil A� �B. A nonzero vector v is an eigenvector of the matrix pencilwith associated eigenvalue � if Av = �Bv:v is an eigenvector with eigenvalue1 if Bv = 0. The generalized eigenvalue problemreduces to the standard eigenvalue problem in the case B = I . In analogy with thestandard eigenvalue problem we easily see that � is a �nite eigenvalue of the pencil ifand only if det(A��B) = 0. In contrast with the standard eigenvalue problem, thecharacteristic polynomial det(A � �B) can have degree less than n. This happenswhenever B is a singular matrix. A pencil is singular if its characteristic polynomialis identically zero. In this case every � is an eigenvalue. A pencil that is not singularis called regular.The QZ algorithm of Moler and Stewart [39] is a generalization of the QR algo-rithm that can be used to solve generalized eigenvalue problems for regular pencils.This is just one of a whole family of GZ algorithms [60]. A good implementationof a GZ algorithm will perform well, regardless of whether the B matrix is singularor not. However, it is much easier to explain how GZ algorithms work when B isnonsingular, so we shall make that assumption. One iteration of a GZ algorithmtransforms a pencil A � �B to a strictly equivalent pencil Â � �B̂ as follows: aspectral transformation function f is chosen, then GR decompositions of f(AB�1)and f(B�1A) are computed:f(AB�1) = GR; f(B�1A) = ZS:(6.1)G and Z are nonsingular, and R and S are upper triangular. The nonsingularmatrices G and Z are used to e�ect the equivalence transformation:Â = G�1AZ; B̂ = G�1BZ:(6.2)If B = I , then we may take G = Z in (6.1), in which case the GZ iterationreduces to a GR iteration.Recombining the equations (6.2) we see immediately thatÂB̂�1 = G�1 �AB�1�G; and B̂�1Â = Z�1 �B�1A�Z:(6.3)Equations (6.1) and (6.3) together show that an iteration of the GZ algorithme�ects GR iterations on AB�1 and B�1A simultaneously. It follows then from theGR convergence theory that if we iterate this process with good choices of spectraltransformation functions, both AB�1 and B�1A will normally converge rapidly to



12 DAVID S. WATKINSblock upper triangular form. It is shown in [60] that the A and B matrices convergeindividually (at the same rate as AB�1 and B�1A) to block triangular form� A11 A120 A22 �� � � B11 B120 B22 � ;thus breaking the problem into two smaller problems involving the pencils A11 ��B11 and A22 � �B22.These iterations are expensive unless can �nd an economical way to performthe equivalence transformation (6.2) without explicitly calculating B�1 (which maynot exist), much less f(AB�1) or f(B�1A). This is done by performing an initialtransformation to a condensed form, usually Hessenberg-triangular form. By thiswe mean that A is made upper Hessenberg and B upper triangular. (Thus AB�1and B�1A are both upper Hessenberg.) Then the GZ step is e�ected by a processthat chases bulges through A and B. The bulges are �rst formed by a transforma-tion G1 whose �rst column is proportional to the �rst column of f(AB�1). Thiscan be computed cheaply if f is a polynomial of degree p� n, since AB�1 is upperHessenberg. It can be done without explicitly assembling B�1, and it has a reason-able interpretation even if B�1 does not exist. Once the bulges have been formed,the rest of the iteration consists of a sequence of transformations that return thepencil to Hessenberg-triangular form by a process that chases the bulges from topto bottom of the matrices. It is similar to the GR bulge-chasing process, but thereare extra details. See [60], [31], or the original Moler-Stewart paper [39].The type of GZ iteration that the bulge chase e�ects depends on what kinds oftransformations are used to do the chasing. For example, if all transformations areunitary, a QZ step results. If Gaussian elimination transformations (with pivoting)are used, an iteration of the LZ algorithm [36] results. Other examples are the SZalgorithm for symplectic butter
y pencils [7], and the HZ algorithm for pencilsof the form T � �D, where T is symmetric and D is diagonal with �1 entries onthe main diagonal. This is a reformulation of the SR algorithm for matrices of theform DT (= D�1T ).Surely the most heavily used GZ code is the one in Matlab. This is a single-shift (p = 1) implicit QZ algorithm that uses complex arithmetic. The original QZalgorithm of Moler and Stewart [39] used p = 2 for real matrices, following Francis.The QZ codes in LAPACK use either p = 1 or p = 2, depending on whether theshifts are real or complex.As far as we know, no parallel QZ code has been written so far. The variousapproaches that have been tried forQR can also be applied toQZ. For example, onecan take p > 2 and chase larger bulges [60], but this is more di�cult to implementthan in the QR case. Shift blurring is also a problem if p is too large. The ideaof chasing many small bulges in pipeline fashion should work as well for QZ as itdoes for QR.Once the QZ algorithm is �nished, the pencil will have been reduced to uppertriangular form or nearly triangular form. For simplicity let us suppose the formis triangular. Then the eigenvalues are the quotients of the main diagonal entries:�i = aii=bii. If aii 6= 0 and bii = 0 for some i, this signi�es an in�nite eigenvalue.If aii = 0 and bii = 0 for some i, the pencil is singular. In that case the otherajj=bjj signify nothing, as they can take on any values whatsoever [63]. Singularpencils have �ne structure that can be determined by the staircase algorithm ofVan Dooren [24]. See also the code GUPTRI of Demmel and K�agstr�om [20].



QR-LIKE ALGORITHMS 137. Divide-and-Conquer AlgorithmsTo round out the paper we consider a completely di�erent class of algorithmthat has been under development in recent years [5, 4]. They are not usually viewedas GZ algorithms, but that is what they are. They are explicit GZ algorithms;that is, they actual compute f(AB�1) and f(B�1A) and their GR decompositionsexplicitly. They require more computation than a conventional implicit GZ algo-rithm does, but the computations are of types that can be implemented using level3 BLAS. They also have a divide-and-conquer aspect. Thus algorithms of this typehave a chance of becoming the algorithms of choice for parallel solution of extremelylarge, dense eigenvalue problems.Let D be a subset of the complex plane (e.g. a disk) that contains some, sayk, of the eigenvalues of the pencil A � �B. Ideally k � n=2. Let f = �D, thecharacteristic function of D. Thus f(z) is 1 if z 2 D and 0 otherwise. If we thenperform a GZ iteration (6.1,6.2) driven by this f , the resulting pencil normally hasthe form Â� �B̂ = � A11 A120 A22 �� � � B11 B120 B22 � ;(7.1)where A11 � �B11 is k � k and carries the eigenvalues that lie within D. Thus inone (expensive) iteration we divide the problem into two subproblems, which areof about equal size if k � n=2. A few such divisions su�ce to conquer the problem.It is easy to see why the split occurs. Let Sd and Sr be the invariant subspacesof B�1A and AB�1, respectively, associated with the eigenvalues that lie in D.Then (Sd;Sr) is a de
ating pair for the pencil, i.e. ASd � Sr and BSd � Sr. Sincef is the characteristic function of D, f(B�1A) and f(AB�1) are spectral projectorsonto Sd and Sr, respectively. When a decomposition f(AB�1) = GR is performed,the upper-triangular matrix R normally has the formR = � R11 R120 0 � ;where R11 is k� k and nonsingular, because f(AB�1) has rank k. We can be sureof obtaining an this form if we introduce column pivoting in the GR decomposition:f(AB�1) = GR�, where R has the desired form and � is a permutation matrix.This guarantees that the �rst k columns of G form a basis for Sr, the range off(AB�1). If we likewise introduce pivoting into the decomposition of f(B�1A), wecan guarantee that the �rst k columns of Z are a basis of Sd. Thus if we replace(6.1) by f(AB�1) = GR�; f(B�1A) = ZSP;(7.2)where � and P are suitable permutation matrices, then the transformation (6.2)will result in the form (7.1), because Sd and Sr are de
ating subspaces.This type of GZ algorithm yields a de
ation on each iteration. In order toimplement it, we need to be able to calculate f(AB�1) and f(B�1A) for varioustypes of regions D. Various iterative methods have been put forward. The mainmethod discussed in [4] can be applied to an arbitrary diskD. The size and locationof the disk are determined by a preliminary transformation. Therefore we can takeD to be the unit disk without loss of generality. The iterative method describedin [4] has the e�ect that if one stops after j iterations, one uses instead of f the



14 DAVID S. WATKINSrational approximation fj(z) = 11 + z2j :Even for modest values of j this approximation is excellent, except very near theunit circle.The matrices fj(AB�1) and fj(B�1A) are computed without ever formingB�1; the algorithm operates directly on A and B. The major operations in theiteration are QR decompositions and matrix-matrix multiplications, which can bedone in level 3 BLAS. In the decomposition (7.2) the matrices G and Z are takento be unitary for stability, so this is actually a QZ algorithm. The algorithm workseven if B is singular. See [4] for many more details.Since the iterations that compute fj(AB�1) and fj(B�1A) are expensive, oneprefers not to perform too many of them. Di�culties arise when there is an eigen-value on or very near the circle that divides D from its complement. The iterationsmay fail to converge or converge too slowly. The remedy is to move the disk andrestart the iterations. Once the projectors and their QR decompositions have beencomputed, the transformation (6.2) does not deliver exactly the form (7.1). The(2; 1) block will not quite be zero in practice, because of roundo� errors and becausethe projectors have been calculated only approximately. If kA21 k or kB21 k is toobig, the iteration must be rejected. Again the remedy is to move the disk and tryagain. Because the iterations are so expensive, one cannot a�ord to waste too manyof them.An experimental divide-and-conquer code (that uses a di�erent iteration fromthe one discussed here) is available as a prototype code from ScaLAPACK.References[1] G. S. Ammar, W. B. Gragg, and L. Reichel, On the eigenproblem for orthogonal matrices,in Proc. 25th IEEE Conference on Decision and Control, Athens, New York, 1986, IEEE,pp. 1063{1066.[2] B. T. Smith et. al.,Matrix Eigensystem Routines|EISPACK Guide, Springer-Verlag, NewYork, Second ed., 1976.[3] Z. Bai and J. Demmel, On a block implementation of the Hessenberg multishift QR iteration,Internat. J. High Speed Comput., 1 (1989), pp. 97{112.[4] Z. Bai, J. Demmel, and M. Gu, Inverse free parallel spectral divide and conquer algorithmsfor nonsymmetric eigenproblems, Numer. Math., 76 (1997), pp. 279{308.[5] Z. Bai et. al., The spectral decomposition of nonsymmetric matrices on distributed memoryparallel computers, Tech. Rep. CS-95-273, University of Tennessee, 1995.[6] S. Batterson and J. Smillie, Rayleigh quotient iteration for nonsymmetric matrices, Math.Comp., 55 (1990), pp. 169{178.[7] P. Benner, H. F. bender, and D. S. Watkins, Two connections between the SR and HReigenvalue algorithms, Linear Algebra Appl., 272 (1998), pp. 17{32.[8] B. Bohnhorst, Ein Lanczos-�ahnliches Verfahren zur L�osung des unit�aren Eigenwertprob-lems, PhD thesis, University of Bielefeld, 1993.[9] K. Braman, R. Byers, and R. Mathias, The multi-shift QR algorithm: aggressive de
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