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ON PARALLEL JACOBI ORDERINGS*

FRANKLIN T. LUKt AND HAESUN PARK#

Abstract. This paper presents a systematic description of five well-known Jacobi orderings, using the
tool of a caterpillar track. The following surprising result is obtained: under certain assumptions, the
orderings are all mathematically equivalent. Three new caterpillar-track orderings are then derived, but they,
in turn, are shown to be equivalent to the known schemes.
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1. Introduction. The matrix-based approach to signal processing is rapidly gaining
popularity (cf. the collection of papers in [3]). Four matrix operations constitute the
fundamental computing requirements [14]: matrix-matrix multiplication; the QR
decomposition; the singular value decomposition (SVD); and the generalized singular
value decomposition (GSVD). Although these operations are costly, VLSI and parallel
processing technology will soon enable us to complete the tasks in real time. A signal
processing machine, called a Systolic Linear Algebra Parallel Processor, is being built
at the Naval Ocean Systems Center in San Diego [5]. The machine will be hardwired
to implement parallel Jacobi-like methods [7], [9] for computing the SVD and the
GSVD.

The Jacobi approach is to solve a “big” n x n problem as a sequence of ‘“‘small”
2 %2 subproblems. To define the method, we specify an ‘“‘ordering” of the n(n—1)/2
distinct index pairs to denote the planes in which the transformations are to take place.
For serial computing, we refer to such a sequence of n(n—1)/2 distinct index pairs
as a “sweep.” A usual choice is the cyclic by-row ordering (n=4):

(1,2)(1,3)(1,4)(2,3)(2,4)(3, 4).

Now, if successive Jacobi transformations involve disjoint planes, e.g., (1,4)(2, 3) in
the above ordering, then these transformations can occur simultaneously. For an
efficient ““parallel” implementation, we want to perform as many noninteracting trans-
formations as possible at each time “stage.” An example is the following ordering of
Brent and Luk [1] (n=28):

stage 1 (1, 2)(3,4)(5,6)(7,8)
stage 2 (1,4)(2,6)(3,8)(5,7)
stage 3 (1, 6)(4, 8)(2,7)(3,5)
stage 4 (1, 8)(6,7)(4,5)(2,3)
stage 5 (1,7)(8, 5)(6,3)(4,2)
stage 6 (1,5)(7,3)(8,2)(6,4)
stage 7 (1,3)(5,2)(7,4)(8, 6).

For parallel computing, we refer to the set of disjoint transformations at one stage as
a “compound rotation” and define a “sweep” as the minimal sequence of compound
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ON PARALLEL JACOBI ORDERINGS 19

rotations that includes all n(n—1)/2 distinct pairs. Our goal is to seek a “good”
ordering that satisfies these three criteria:

(a) Each sweep is completed in n or fewer stages. Since at most |n/2] transforma-
tions can be done in parallel, a minimum of n stages is needed if n is odd (n —1 stages
if n is even).

(b) Only nearest-neighbor connections are required for data communication.

(c) Data movement between stages is systematic.

However, we know of only one “good” ordering, viz. [1], that completes one sweep
in n—1 stages when n is even. Many other examples (see, e.g., [12], [15], [16]) require
n stages for all values of n.

As a way of finding the relation among ‘“‘good” orderings, we use the tool of a
caterpillar track [12], which neatly illustrates the systematic manner by which the
orderings are generated. We discover that the five orderings given in [1], [4], [12],
[15], [16] can all be visualized as caterpillar-track orderings. These orderings have
been proposed for calculating the symmetric eigenvalue decomposition [1], [4], [12],
[13], [16]; the Schur decomposition [6], [15]; the SVD decomposition [1], [2], [9];
the GSVD decomposition [7]; the CS decomposition [11]; and the QR decomposition
[8]. We then consider all possible “good” caterpillar-track orderings, and derive three
new ones. However, they in turn are shown to be equivalent to the five known schemes.

This paper is organized as follows. Section 2 presents a description of five
well-known Jacobi orderings. The surprising result that (under certain assumptions)
they are all mathematically equivalent is derived in § 3. Three new caterpillar-track
orderings are presented and discussed in § 4. The last section contains concluding
remarks and Fig. 14 summarizes the equivalent relationships.

2. Various orderings. We present five different orderings of n indices for Jacobi
methods. With two exceptions, they all require n stages to complete a sweep. The
exceptions are the Brent-Luk ordering for even n (respectively, n —1) stages, and the
Chen-Irani ordering for odd n (respectively, n+1 stages). Hence the latter is not a
“good” ordering for odd n. To illustrate each ordering, we show one sweep of the
case n =6 for even n, and of the case n =5 for odd n.

(i) Modi and Pryce [12] describe a “mobile” scheme in terms of a “caterpillar
track.” There are 2n places on the track to store the n indices in every other position.
The indices move one step per stage in a counterclockwise direction, as shown in Fig.
1. Each index on the lower track is paired with the closest index to its right on the
upper track. The compound rotations for each stage are shown in Fig. 2.

For n =5 we get the track as in Fig. 3 and the corresponding compound rotations
as in Fig. 4.

(ii) Whiteside et al. [16] present an ordering in terms of a ‘‘caterpillar tractor
tread.” In this ordering, the n indices are stored on a caterpillar tractor tread of length
n that rolls along a roadbed of processors. Each processor has access to the pair of
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F1G. 1. Caterpillar-track for n = 6.
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(1,2)(3,4)(5,6)
2(1,4)(3,6)5
(2,4)(1,6)(3,5)
4(2,6)(1,5)3
(4,6)(2,5)(1,3)
6(4,5)(2,3)1
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Fi1G. 2. Caterpillar-track ordering for n =6.
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indices directly above it, on the lower and upper parts of the tread. The upper tread
of the tractor advances one step per time stage and the lower tread stays stationary
on the ground. Figure 5 gives an example for n =6. Corresponding to the tread, the
compound rotations for each time stage are exactly as those given in Fig. 2.

For n odd, the tread proceeds as in Fig. 6. Again the compound rotations are the

F1G. 3. Caterpillar track for n=>5.

(1,2)(3,4)5
2(1,4)(3,5)
(2,4)(1,5)3
4(2,5)(1,3)
(4,5)(2,3)1

n kv =

F1G. 4. Caterpillar-track ordering for n =5.

same as those in Fig. 4.

(iii) Stewart [15] introduces the “odd-even” ordering. The paired indices are
exchanged for the next stage, and pairings start with either the first or the second index
at alternate time stages. So the ordering proceeds in exactly the same fashion as the

caterpillar-track ordering portrayed in Figs. 2 and 4.
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F1G. 5. Caterpillar tractor tread for n =6.

24 45 45 53 53
52 > 3-4 -> 1
13 13 21 21 42

F1G. 6. Caterpillar tractor tread for n =5.



ON PARALLEL JACOBI ORDERINGS 21

(iv) Brent and Luk [1] present an ordering that is often used in round-robin chess
tournaments. For n even, this ordering requires only n —1 stages to complete a sweep.
See Fig. 7 for an example and Fig. 8 for the corresponding compound rotations.

Our presentation here looks different from the original description in [1] that is
illustrated in Fig. 9. However, one version is just the other applied to the inverted list
of indices (n,n—1,---,2,1). For n odd, we simply add a dummy index ¢ to return
to the even case. See Figs. 10 and 11 for illustrations.

(v) The final scheme is due to Chen and Irani [4]. They consider only the case
of an even n. Like the “odd-even” ordering, pairings of indices start with the first or
the second index at alternate time stages. However, the indices are exchanged after
every two stages, according to the permutation

0c=(2,4,1,6,3,8,5,---,n=5nn-3,n-1),
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Fi1G. 7. Round-robin exchanges for n =6.

(1,2)(3,4)(5,6)
(2,4)(1,5)(3,6)
(4,5)(2,3)(1,6)
(5,3)(4,1)(2,6)
5. (3,1)(5,2)(4,6)
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F1G. 8. Brent-Luk ordering for n =6.
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F1G. 9. Original round-robin exchanges for n =6.
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F1G. 10. Round-robin exchanges for n =5.

(1,2)(3,4)5
(2,4)(1,5)3
(4,5)(2,3)1
(5,3)(4,1)2
(3,1)(5,2)4
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F1G. 11. Brent-Luk ordering for n=5.
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whose action is better explained by the following figure:

2¢4«<6b<---<n

I T

1-3->5>:->n-1

Figure 12 presents the compound rotations. We may extend the ordering to the odd
n case by appending a dummy index ¢. See Fig. 13.

3. Equivalence. From the descriptions and examples in § 2, we see that the five
orderings are intimately related. This section is devoted to the proof of their mathemati-
cal equivalence. For any n, let us choose the same initial stage for each ordering:

(1,2)(3,4)(5,6) - - - (n—1,n) if n is even,
(1,2)(3,4)(5,6) - - - (n—2,n—1)n if n is odd.

DeriNITION. Consider the two sequences S; and S, of compound rotations gener-
ated in one sweep of the orderings O, and O,. We say that O, and O, are “‘identical”
if §;=2,, and that they are *‘stage-equivalent” if S, is a permutation of S,. Note that
two stage-equivalent orderings may not share the same numerical properties.

Since the caterpillar track makes it easy to visualize the orderings geometrically,
we centralize our discussion on this theoretical machine. Modi and Pryce [12] have
given the following result.

LeEmMMA 1. The caterpillar track generates the same compound rotation and completes
one sweep in every n stages. 0

Consequently, when proving stage-equivalence of some ordering to the caterpillar-
track ordering, we need only consider any n consecutive stages of the track. We say
that two stages are “equal” if they correspond to the same compound rotation.

LemMMA 2. The caterpillar-track ordering is identical to the odd-even ordering.

Proof. Suppose that n is even (the proof is similar for odd n). We use induction
on the stage number. By assumption, the first stages are identical. Suppose that we get

(1,2)(3,4)(5,6)
1(2,3)(4,5)6
(2,4)(1,6)(3,5)
2(4,1)(6,3)5
(4,6)(2,5)(1,3)
6. 4(6,2)(5,1)3

R

F1G. 12. Chen-Irani ordering for n = 6.

(1,2)3,4)(5, 6)
1(2,3)(4,5)¢
(2,4)(1, $)(3,5)
2(4,1)(¢,3)5
(4, 4)(2,5)(1,3)
6. 4(¢,2)(5,1)3
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F1G. 13. Chen-Irani ordering for n=35.
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the same (2k+1)st stages:

e ye e e <,
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Then the (2k+2)nd and (2k+3)rd stages are the following:
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LemMMA 3. The caterpillar tractor tread ordering is identical to the odd-even ordering.

Proof. The proof is similar to that of Lemma 2. 0

We now generalize the concept of a caterpillar track.

DEFINITION. An (o, e) caterpillar track is a caterpillar track that moves o steps
at every odd time stage and e steps at every even time stage, both in the counterclockwise
direction.

Thus, the original caterpillar track is a (1, 1) caterpillar track. It can be shown
that if —2= o0, e=3, then we can implement the (o, e) caterpillar-track ordering on a
multiprocessor array with only nearest-neighbor connections. In this section we discuss
two specific choices: (o, €) = (2, 2), and (—1, 3). What follow are two obvious properties.

Fact 1. The (2,2) caterpillar track repeats itself in every n stages, and its ith
stage equals the (2i —1)st stage of the (1, 1) caterpillar track, for i=1,2,---, n.

Fact 2. Consider the (—1, 3) caterpillar track. Its ith stage equals the ith stage
of the (1, 1) caterpillar track when i is odd, and equals the (i —2)nd stage of the (1, 1)
track when i is even.

Note by Lemma 1 that stages n+2, n+4,---,2n—1 of the (1,1) track equal
stages 2,4, - - -, n—1 of the (1, 1) track, respectively. If n and i are both even, then
the index i —2+n is even and stage i of the (—1, 3) track equals stage i —2+n of the
(1, 1) track. From these observations and Facts 1 and 2, we get the following two lemmas.

LEMMA 4. For any odd n, the (2, 2) caterpillar-track ordering is stage-equivalent to

the (1, 1) caterpillar-track ordering. 0
LEMMA 5. For any even n, the (—1, 3) caterpillar-track ordering is stage-equivalent
to the (1, 1) caterpillar-track ordering. ]

Let us relate the (2,2) and (-1, 3) tracks to the two remaining orderings.

LEMMA 6. For any odd n, the (2,2) caterpillar track generates the same ordering
as the Brent-Luk scheme.

Proof. We use induction for the proof. Stages 1 are the same by assumption.
Suppose that the kth stages are equal, i.e.,

CE Ay C Ay Ay < A4« <a,; ¢
l (R N
a=>>a>c > > - ->a, a,~>as~>:->a, ,~>a,

Then the (k+1)st stages become the following:

R PR R P R o PR Ay Qo<+ "< a, ¢
d ) ! N o
Q> 204> > >0 >4, a=>a,> >0, 470, >

LEMMA 7. For any even n, the (—1, 3) caterpillar track generates the same ordering
as the Chen-Irani scheme.
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Proof. We use induction on the stage number. Stages 1 are equal by assumption.
Assume that the (2k+ 1)st stages are equal, i.e.,

Ce Gyt eauet e 0 «a,

‘l/ T (ala az)(ag,, a4) T (an—-la an)'
a2 a3 > >a, >

Then the (2k+2)nd and (2k +3)rd stages of the two schemes are the following:

A€ Uy Q, ¢
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c2>A3> > As> > 0 > Qa,

! l
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A,=> > a>* > >0, 3>

We summarize our results in a theorem.

THEOREM 1. The (1,1) caterpillar track, the caterpillar tractor tread, and the
odd-even orderings are all identical. For n odd, the three orderings are stage-equivalent
to the Brent- Luk ordering, while for n even, they are stage-equivalent to the Chen-Irani
ordering. O

4. New orderings. First, we give the conditions under which an (o, e) caterpillar
track generates a Jacobi ordering.

THEOREM 2. In order that an (o, e) caterpillar track generate all the distinct index
pairs, the three parameters must satisfy either one of the following two relations:

ged(n,0+e)=1, or
ged(n,0+e)=2 and o is odd.

The track then completes a sweep in at most 2n stages.

Proof. We assume that the first stages are the same. Then stage (2i+1) of the
(0, e) track equals stage 1+ (o+e)i of the regular track, for i=0,1, -, n—1. But if
n and o + e are relatively prime, then the set S={(o+e)imod n, fori=1,2,---,n—1}
equals the set {1,2,---, n—1}. Now if gcd (n, 0+ e) =2, then the set S equals only
{2,4, -+, n—2}. Thus, we need an odd o so that we can use the set of even stages of
the (o, e) track. If ged (n, o+ e) =3, then this patchwork fails and not all index pairs
can be generated. 0

CorOLLARY. The (0, 0) and (1, 1) caterpillar-track orderings are stage-equivalent if

ged (n,0)=1. 0

We now consider only those orderings that satisfy —2=o0, e=3, a condition
imposed by the nearest-neighbor communication restriction. We are particularly inter-
ested in caterpillar tracks that complete one sweep in n stages. Clearly, there is no
need to discuss the cases where 0 =0, e=0, or 0+e=0.

(i) o+e=1, 3, 5. According to Theorem 2, the ordering generates all possible
pairs in at most 2n stages so long as gcd (n, 0+ e) =1. The caterpillar track finishes
one sweep in n stages when n = 2|o|. For example, the (2, —1) caterpillar track requires
more than n stages when n >4 because its fifth stage equals its second stage.
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(ii) o+ e =2. The three possibilities are: (1, 1), (—1, 3), and (3, —1). The first two
are described in detail in the previous sections, and the third ordering is obviously
stage-equivalent to the second when n is even.

(iii) o+ e =4. The three choices are: (2,2), (1, 3), and (3, 1). The first choice is
the Brent-Luk ordering, and the other two satisfy the conditions of Theorem 2 for any
n that is not a multiple of 4.

(iv) o+ e =6. From the corollary, the (3, 3) caterpillar track completes one sweep
in n stages for any n that is not a multiple of 3.

We present the equivalence properties of the three new orderings in the next two
lemmas. Their proofs are like those in the previous section.

LemMmAa 8. The (1,3), (3,1), and (1,1) caterpillar-track orderings are stage-
equivalent if

nmod4=2. ]

LEMMA 9. The (3,3) and (1, 1) caterpillar-track orderings are stage-equivalent if
n is not a multiple of 3. 0

5. Concluding remarks. In this paper, we study five well-known parallel Jacobi
orderings and derive three new ones via the tool of a caterpillar track. We show that
all eight orderings are either identical or stage-equivalent, and that they constitute all
possible ‘“good” orderings that can be generated by a caterpillar track. Figure 14
summarizes the equivalence relations from which the convergence of various Jacobi
SVD methods can be derived [10].

Cat. Tractor Tread

1

Odd-even

(1, 3), (3, 1) Cat. Tracks (1, 1) Cat. Track (-1, 3) Cat. Track

(3, 3) Cat. Track (2,2) Cat. Track Chen-Irani

Brent-Luk

Identical by Lemma 3.

Identical by Lemma 2.

Stage-equivalent by Lemma 8 when n mod 4 =2.
Stage-equivalent by Lemma 5 when n is even.
Stage-equivalent by Lemma 9 when n mod 3 # 0.
Stage-equivalent by Lemma 4 when n is odd.
Identical by Lemma 7 when n is even.

Identical by Lemma 6 when n is odd.

PN AW =

Fi1G. 14. Relationships among the orderings.
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