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THE CYCLIC JACOBI METHOD FOR COMPUTING THE 
PRINCIPAL VALUES OF A COMPLEX MATRIX(') 

BY 

G. E. FORSYTHE AND P. HENRICI 

1. INTRODUCTION AND SUMMARY 

1.1. Jacobi's method for computing the eigenvalues of a real symmetric 
matrix. Let A = (apq) be a real symmetric matrix of order n, and let 
X1, 2 ... * Xn be its eigenvalues. It is well known that if U is an orthogonal 
matrix such that 

(1) A = UAUT 

is diagonal (T denotes the transpose), then the main diagonal of A is made 
up of the numbers Xi in some order. If it is desired to compute the Xi numer- 
ically, this result is of no immediate use, since for n> 2 there exists no man- 
ageable expression for the general orthogonal matrix of order n. However, 
Jacobi [6] suggested the computation of the set of Xi as the limiting set of 
diagonal elements of a sequence of matrices which are generated from A re- 
cursively by plane rotations. 

For k = 0, 1, 2, * *, let ck =cf)k be a real angle and (i, j) = (ik, jk), a pair of 
integers such that 1 <ik <jk n. The matrix Uk = (upq), where 

upp= (P 5 i,l ), 

(2) uii = cos X, uij = sin 4, 
es = - sin 4, ujj = cos 4), 

all other Upq = 0, 

is clearly orthogonal. We define a sequence of matrices A k= (a(t)) by 

T.. 
Ao = A) Ak+j = UkAkUk (k = O, 1, 2, ) 

The eigenvalues of Ak are the same as those of A. Hence, if 

(3) lim Ak= A 

exists and is diagonal, or if there exist permutation matrices Pk such that 
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(4) lim PkA kPk71 = A 

exists and is diagonal, then A has on its diagonal the eigenvalues of A. Jacobi 
essentially showed that (4) holds if the matrices Uk are selected as follows: 
Choose 

(I) (ik, jk) such that I j a = max I aj |, 
v'^a 

and 

(II) C k such that a+) = 0. 

He also showed that (II) can always be realized and gave an estimate for the 
rate of convergence of the method. In [3] Goldstine, Murray, and von Neu- 
mann gave a description of Jacobi's method and studied the effect of round- 
off errors. 

1.2. Extensions of Jacobi's method. In this paper we extend and gen- 
eralize Jacobi's method in various directions. We shall first describe the results 
which we obtain in each of these directions, and then in ?1.3 synthesize them 
in the form of four theorems. While one of these extensions is in common use 
on automatic digital computers, ours is apparently the first proof of its con- 
vergence. 

The cyclic Jacobi method. Jacobi's method in its original form requires at 
each step the scanning of n(n - 1)/2 numbers for one of maximum modulus. 
For large matrices this is a relatively slow process, especially for automatic 
digital computers. It is more convenient to select the pairs (i, j) in some cyclic 
order. We here consider two cyclic orders: (i) cyclic by rows, indicated by the 
scheme 

(io, jo) = (1, 2), 

[(iki jk + 1)X if ik< n - l,jk < n, 

(IMIr) (ik+l,jk+l) = - 
(ik + 1, ik + 2), if ik < n - l, jk = n, 

1(1, 2), if ik = n-1, jk = n; 

and (ii) cyclic by columns, as follows: 

(io, jo) = (1, 2), 

(ik + lIjk), if ik < jk - 1, jk < n, 

(IIIc) (ik+li,jk+l) = (lIjk + 1), if ik = jk - 1 jk < n, 

(1, 2), if ik= n - l,jk= n. 

A modified Jacobi method, here called the cyclic Jacobi method, consisting 
of selecting (ik, jk) according to one of the rules (III) and cjk according to 
(II), is used on electronic computers (see Gregory [5]), apparently with 
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satisfactory results. Using both analysis and machine experiments, Pope and 
Tompkins [12] have studied the convergence of certain variations of the 
Jacobi method, including one in which the rotations are not performed unless 
| k| exceeds a prescribed threshold value. Givens [2] has used the rotations 
(2) in a different way to bring A in one cycle to an orthogonally congruent 
triple diagonal form, and has discussed the round-off error in detail. An at- 
tempt to prove the convergence of Ak to A and the analogous result for prin- 
cipal values stated below, based on heuristical statistical arguments, has been 
published by Kogbetliantz [7]. 

We shall exhibit examples which show that under either rule (III) con- 
vergence in the sense of (4) cannot be guaranteed if 4k is subjected solely to 
the condition (II). On the other hand it will be shown that convergence in 
the stronger sense of (3) does take place if the qSk are subjected to the further 
restriction that 

(IV) Ok J (forallk=0,1,2,...), 

where J is some closed interval independent of k and interior to the open inter- 
val (--r/2, 7r/2). It will also be shown that the conditions (II) and (IV) can 
always be realized simultaneously. 

Eigenvalues of hermitian matrices. If A is a hermitian matrix, and if U 
is a unitary matrix such that A= UA U* is diagonal (* denotes the complex 
conjugate of the transpose), then as before the main diagonal of A consists 
of the eigenvalues of A in some order. It is therefore natural to ask whether 
either the original or the cyclic Jacobi method can be extended to hermitian 
matrices by replacing the submatrices 

(: Ok sin0k) 

\-sin ok cosokJ 

of the matrices Uk defined in ?1.1 by suitably chosen 2 X 2 unitary matrices. 
This has already been done formally by Kogbetliantz [7]. Greenstadt [4] 
and Lotkin [9] have proposed other methods for the computation of the 
eigenvalues of nonsymmetric matrices which use 2 X 2 unitary transforma- 
tions. All these authors chose their unitary matrices to be of some special 
type. 

In contrast to this, we shall not subject the unitary matrices involved to 
any condition not imposed by the problem itself. It is easy to see that any 
2X2 unitary matrix can be represented in the form 

(elacos , e sin c 

V- eiy sin 0 eia cos fJ 

where a, f3, 'y, 5, q are real numbers with 

(5) a-3-7y+5-O (mod21r). 
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(Causey [1 ] has given an equivalent representation of 2 X 2 unitary matrices.) 
Consequently we shall consider unitary matrices Uk = (upq) which are of the 
form (2) 

upp = 1 (p i, j). 

(6) uii = eta cos X, = ei sin 

uji = - eiy sin X, ujj = ea cos , 
all other up, = 0, 

where a, 13, y, 6, 0 are real numbers satisfying (5) and depending on k- 
We shall show for Jacobi's rule (I) and for either of the cyclic orders (III) 

that the sequence of matrices 

Ao = A, Ak+j = UkAkUI? (k = O, 1, 2, ...) 

converges to a diagonal matrix for all choices of matrices Uk of the form (6) 
satisfying (II) and (IV) with respect to q5. 

It will be shown that matrices Uk with these properties always exist. 
Moreover, for Jacobi's rule (I)-but not for a cyclic order (III)- we 

shall show that there exists a sequence of permutation matrices Pk such that 
PkAkP; l converges to a diagonal matrix for all choices of matrices Uk of 
the form (6) satisfying (II) with respect to 4, and not necessarily satisfying 
(IV). 

Principal values of arbitrary matrices. In spite of certain attempts [4; 9; 1], 
there does not seem to be an obvious way of modifying Jacobi's method to 
yield the eigenvalues of a nonhermitian matrix. As Kogbetliantz [7] states, 
however, it is easy to extend Jacobi's method formally to yield the principal 
values of an arbitrary complex matrix A. By the principal values of A we 
mean the positive square roots of the eigenvalues of AA *. (These numbers are 
occasionally called the singular values of A.) The extension is based on the 
following result (see [10, Corollary 41.6]): If U and V are two unitary 
matrices such that 1 = UA V is diagonal, then, since 1111* = UAA * U*, the 
absolute values of the diagonal elements of II are the principal values of A. 

For k=O, 1, 2, * * * let Uk be a matrix of the form (6), and let Vk= (Vpq) 
be defined similarly by 

VPP = (p i,j), 

(7) vii = eit Cos A1 v, j = eitl sin , 

vji = - eit sin vjj, vj = e' cos1A, 

all other Vpq = 0; 

here (, 71, 3?, co, i are real numbers depending on k, the first four of which 
satisfy the condition 

(2) Here and below i as a superscript to e denotes (- 1)1/2, while in other contexts i is a row 
or column index. 
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(8) -j- + wc O (mod 27r). 

We now consider the sequence of matrices Ak =(a()), where 

Ao = A, Ak+1 =UkAkVk (k = O, 1, 2,* **). 

Let I Akl = (I a() I) denote the matrix of non-negative elements I a()I, and 
not the determinant of Ak. 

It will be shown that the sequence { I Ak| } converges to a diagonal matrix 
whose diagonal elements are the principal values of A, if one of the following 
two procedures is adopted: 

(i) Select (ik, jk) such that 

(It) |I(k) I2 + I a(k) = max { | 12+ |4a,)J2|, 
Poq 

and the remaining parameters of Uk and Vk such that 

(k+ 1) (k+ 1) 
(II') a = ai =0, 

and such that kk and 'Pk satisfy the conditions 

(IV,) Ok k J, 1k E J (all k =0, 1, 2, 

where J is some closed interval independent of k and interior to the open 
interval (-7r/2, 7r/2). 

(ii) Select (ik, jk) according to either (IIIr) or (IIIQ), and the remaining 
parameters such that (II') and (IV') hold. 

It will moreover be proved that there exists a sequence of permutation 
matrices Pk such that PkI AkI Pk 1 converges to a diagonal matrix whose di- 
agonal elements are the principal values of A, provided that (ik, ik) is selected 
according to (I'), and provided that the remaining parameters of Uk and Vk 
are selected to satisfy (II'). 

It will be demonstrated that the conditions given under (i) can always be 
realized. The conditions (II') and (IV'), on the other hand, cannot be realized 
simultaneously in certain cases, so that convergence of the cyclic Jacobi 
method for determining principal values in the above form cannot be guar- 
anteed. This situation will be remedied by a device to be explained next. 

Under- or overrotation. It will finally be shown that it is not necessary to 
take conditions (II) and (II') too literally. All statements made above remain 
valid if these conditions are replaced by the following weaker conditions: 
There exists a number t (0?< t < 1) independent of k such that for k = 0, 1, 2, 

(V) X a~~~~~~(k+l) 2<g a(.k) 
2 

(V) aI i t a)ij 

and 

(V') I (k+l) 12 + I a1+1) 2 < t( 2 a 1 + |ka 12), 
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respectively. The fact that the weaker conditions (V) and (V') are sufficient 
for convergence is important for several reasons. First, it can be shown that 
(in contrast to (II')) condition (V') can be realized simultaneously with 
(IV') for every t > 0. Second, the necessary rounding off of numbers in a digital 
computer means that conditions (II) and (II') can never be achieved exactly, 
while (V) and (V') certainly can. Third, the use of a t>O corresponds to an 
under- or overrotation of the (ik, jk) coordinate plane. Its use here brings out 
the analogy between rotation in the various Jacobi methods for computing 
eigenvalues or principal values and relaxation in the methods of Gauss, 
Seidel, and Southwell for the iterative solution of a system of linear algebraic 
equations. See Ostrowski [11] for a discussion of under- and overrelaxation 
for linear systems. 

1.3. Summary of the results of this paper. In the general case we are 
given an arbitrary complex matrix A of order n>2 and two sequences of 
unitary matrices { Uk} and { Vk} defined by (6) and (7). Consider the se- 
quence of matrices Ak= (a(k) defined by 

Ao =A, Ak+1 =UkAkVk (k = O, 1, 2, ). 

Let II be a diagonal matrix whose diagonal elements are the principal values 
of A in some preassigned fixed order. If A is hermitian, let A be the diagonal 
matrix whose diagonal elements are the eigenvalues of A in some preassigned 
fixed order. We are interested in sufficient conditions under which the follow- 
ing proposition is true: 

PROPOSITION (N). Let |Ak| =(Ia(`) I). There exists a sequence of permuta- 
tion matrices Pk such that 

Pk I Ak I Pk 1 
J2L(k -+oo). 

If A is hermitian and Vk= U*, there exists a sequence of permutation matrices 
Pk such that 

PkAkP 1 -A (k -+oo). 

We are also interested in conditions for the following stronger proposi- 
tion :(') 

PROPOSITION (P). There exists a fixed permutation matrix P (not depending 
on k) such that 

P I Ak IP-1 II (k- oo). 

If A is hermitian and Vk = U*, there exists a fixed permutation matrix P such 
that 

PAkP'--A (k -oo). 

(3) We are indebted to the referee for pointing out the distinction between Propositions 
(N) and (P), and for showing us the example (41) of ?2.4. 
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Introducing the abbreviation 

(9)PQ k = ( 2) 12+ I() 2 

we can state our main results as follows: 

THEOREM 1. (JACOBI'S METHOD GENERALIZED.) Let t be independent of k, 
with 0? t < 1. Then Proposition (N) is true if for all large k 

(kc) (k) 
(I') sts = max sPX 

and 

(vt) ~~~~~~~~(k+l) < ts (k) (VI) ~~~~~~sij ? sj 
THEOREM 2. Let J be a closed interval interior to the open interval (-7/2, 

ir/2). If, in addition to the conditions of Theorem 1, 

(IV,) Ok E J, 41k E J 

for all large k, then Proposition (P) is true. 

THEOREM 3. (THE CYCLIC JACOBI METHOD GENERALIZED.) Let t and J be 
defined as in Theorems 1 and 2. Let the sequence of pairs (ik, jk) be defined by 
one of the rules (III). Then Proposition (P) is true if (V') and (IV') hold for 
all large k. Even Proposition (N) becomes false if (IV') is omitted from the 
hypothesis. 

The proofs of these theorems will be given in ?2. We shall begin by prov- 
ing Theorem 1 and a weaker form of Theorem 3, which is obtained from 
Theorem 3 by replacing (P) by (N). Theorem 2 and the full statement of 
Theorem 3 are then a consequence of the following Theorem 4, in which no 
reference is made to any particular ordering of the pairs (ik, jk). 

THEOREM 4. Any choice of the matrices Uk and Vk (or, for hermitian A, of 
the Uk) which implies the truth of Proposition (N) and satisfies (IV') (or, in 
the case of hermitian A, (IV)), also implies the truth of Proposition (P). Proposi- 
tion (P) is not necessarily true if (IV') is not satisfied. 

In ?3, we shall derive explicit formulas for the parameters involved in 
Uk and Vk. They will enable us to discuss how the hypotheses on Uk and Vk 
can be realized in the various cases mentioned in ?1.2. 

2. PROOF OF THE THEOREMS OF ?1 

2.1. Preliminary lemmas. Following Jacobi, we take as a measure of the 
closeness of the matrix I Akj (or Ak) to a diagonal matrix the non-negative 
quantity 
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(10) S = Z |)ap, I 
Poq 

The relation 

(11) lim S(k) = 0 
k-- 

is evidently necessary for Proposition (N). The plan of our proofs is as fol- 
lows: We show in ?2.1 that the conditions of Theorem 1 imply (11). In ?2.2 
we prove that the conditions of Theorem 3 imply (11). We then proceed to 
show in ?2.3 that (11) is in fact equivalent to Proposition (N), and this 
proves Theorem 1. Theorem 4 is proved in ?2.4, whence follow Theorems 2 
and 3. In ?2.5 we show that (IV') is necessary as well as sufficient for the 
validity of Theorem 3. 

In the following discussion we shall frequently write 

(k) (k+l) I 
ap, = ap., apq = ap. 

A similar notation may be used for other quantities which depend on k. 
In view of (6), premultiplication by Uk affects only the ith and jth rows 

of Ak. Similarly, postmultiplication by Vk affects only the ith and jth col- 
umns, and elements in these rows and columns will be called affected. All 
other elements ap, are thus unaffected by the transformation; i.e. we have 

(12) apq = ap, (p X i, j; q # i,j). 

Furthermore, since Uk is unitary, premultiplication of Ak by Uk leaves the 
sum of the squares of the absolute values of the elements in each column 
invariant. Similarly, postmultiplication by Vk leaves the sum of the squares 
of the absolute values of the elements in each row invariant. Using (12), we 
can thus establish the following lemma: 

LEMMA 1. For p Xi, j, 

I ai,1 + I a1,j = I ai p2+ I 2 

I aIi1 + I a1j = I a1,i2 + I aj 12 

For brevity, we shall call the elements of the pairs (aip, ajp) and (api, apj), 
where p Xi, j, coupled during the kth transformation. 

Using (12) and Lemma 1, it follows that 

(13) S-S' = sij,-sj. 

If condition (V') is satisfied, we have 

(14) S' < S-(1-t)sij. 

If condition (I') holds, then sij > 2Sn-'(n -1)-1. Hence 
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St _< [1 -2(1 -t)n-'(n -l)-']S. 

Since 0 < 1-q = 2(1-t)n-1(n-1)-1 < 1, we have 

S(k) < qkC, 

where C is a constant and 0 < q <1. This shows that (11) is a consequence of 
the hypotheses of Theorem 1. 

If condition (I') is not assumed to hold, we can still conclude from (V') 
and (14) that 0 <S' < S, and therefore that limk_.O S(k) exists. We shall show 
that this limit is zero under the hypotheses of Theorem 3. Again from (14), 
sij < (1 t)-1(S-S'). From the existence of lim 3(k) it follows that limk s(i 
-0. We call the elements a(k) and a(,) where (i, j) = (ik, jk), the rotated ele- 
ments of Ak, and state our conclusion in the following form: 

LEMMA 2. If condition (V') is satisfied, the rotated elements of Ak tend to zero 
as k oo . 

We note that this statement does not depend on the order in which the 
pairs (ik, Jk) are selected. If Theorem 3 is not true, this can only be because 
the bulk of the quantity S is pushed around in the matrix A ahead of the 
rotated elements. Our next lemma shows that under condition (IV') an al- 
most complete transfer of the contribution to S between two coupled ele- 
ments is not possible in one transformation. 

LEMMA 3. Suppose that e>0, that p i, j and that 

(15) aipI < Ia2 ajpI < E. 

If Uk and Vk satisfy (IV'), then 

(16) 
|aipj 

<Ce, 
|a2j 

<Ce, 

where C is a constant which depends only on the interval J. Similar statements 
hold if the roles of aip and ajp are interchanged, and also for two coupled elements 
(api, ap,). 

Proof. By definition of Ak+l, for p 5, j, 

aip = eia cos oai, + eif' sin oaj, 

aj= - eit sin oaip + e"8 cos oaj, 

From the second of these relations we obtain, since (IV') implies that 
cos 4#0, 

(17) ajp = e7i8(ajip + e't sin 4ajp)(cos 4)-1. 

Inserting this into the first relation and using (5), we get 
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(18) aap 
= ela(ai, + e-it sin oaJp)(cos 4)-1. 

Introducing the abbreviations c = mino: cos X5, s - maxorj I sin 'k I' we find 
from (17) and (18) that 

|ajpI < 6(1 + s)c-1, j a'j I E(1 + s)c-1. 

Hence (16) has been proved with 

(19) C = (1 + s)cQ 

The remaining assertions of the lemma can be proved similarly and yield 
the same value of C. 

2.2. Sufficiency of (V') and (IV') for (11). In this section we shall combine 
the lemmas of ?2.1 with the special orderings of the pairs given by the rules 
(III) to obtain Lemma 4, which will be the principal tool for the proof of (11). 

We introduce some terminology. For 1 <p <q ? n we shall define the sub- 
matrix M.3 as follows: 

(k) (1k) 

MPq = (az,,j, where p ! l q and p 5 m ! q. 
An index k will be said to be associated with a pair (p, q), written k =I(p, q), 
if (ik, ik) = (p, q). Fix one of the rules (III). A set of indices (k1, k2, , * * km) 
will be called cocyclic, if it is contained in one of the intervals [IN, (1+ 1)N-1 ], 
where l=0, 1, 2, * - *, and N=n(n-1)/2 is the number of rotations neces- 
sary to make up a full cycle under the fixed rule (III). For 1<p<q<n we 
define 

(k) Ek) 2 
(20) Spq =l alinI. 

ps Zsq;psmsq;lom 

We note that 

(21) (kp) (k) 

and 
(22) sA~~~~~~~~~k) 5 (k) 

(22) S1 S 

LEMMA 4. Assume (IV') and (V') hold. Let one of the rules (III) be adopted 
for the selection of (ik, jk), and let e > 0 be given. Let ko be such that s.(j) < e for all 
k > ko, and let h, r, s be three cocyclic indices associated with the pairs (p, q), 
(p, q+1), (p+1, q+1), respectively (1<p<q<n). Assume h>ko. Then the 
inequalities 

(23) ~~~ ~ ~~(A) (s) (23) Sp,q < C-, S;l 1,q+ 1 < e 

imply 

(24) S;,q+l < De( 
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where D =Dq p depends only on q-p and on the constant C of Lemma 3. 

Proof. We shall give the proof for the rule (III,); the proof for the rule 
(III,) is analogous. All indices occurring in the proof will be cocyclic with h. 

We first consider the history of the off-diagonal elements of M(t) for 
h_<k <r. During the rotations with indices associated with (p, q), (p+1, q), 

(q -1, q) the elements of Mt are either unaffected or rotated or 
coupled among themselves. Hence, by Lemma 1, if k=I(1, q+1), 

(k) 

Spq <e. 

During the rotations of the elements in the positions (1, q+1), (2, q+1), 
(p-1, q+1) the elements of M2t) are unaffected. Therefore 

(25) Spq < (, 

and to prove the assertion of the lemma we have only to show that the 
squared moduli of the elements which are in M2(,)+ but not in M(t) are of the 
order of magnitude of e. This is clear for the elements a,(, +1 and a,(t)l,p, be- 
cause we have by assumption 

(26) Sp"q+i < 
E. 

After the rotation with index r the elements am,,q+, (p <m < q) are less than 
e1/2 in modulus, by (23). They are coupled with the elements amp (p <m ?q) 
which belong to M(r) and which by (25) are less than e1/2 in modulus before 
the rotation. Thus, by Lemma 3, 

I(r)i I<C1/2 
(27) | am,q+l <Ce (forallmwithp < m < q), 

where C is given by (19). Similarly we can prove 

(28) l a j+,,. I < Ce (for all m with p < m : q). 

Combining (25), (26), (27), and (28), we get 

(r) (r) (r) (r 
Sp,q+i SP Q + Sp,q+i + E Sm,q+i m-p+1 

< [2 + 2(q - p)C2]C. 

Hence Lemma 4 has been proved with 

(29) D = Dq_p = 2[1 + (q - p)C2]. 

Proof of (11). Let 5>0 be given and choose h such that h=I(1, 2), while 
sl) <(DjD2 ... Dn-2)-15 for all k >h. Then the hypothesis of Lemma 4 is 
satisfied for q - p =1 and e = (D1D2 ... Dn42)-15. We use induction with 
respect to q - p. Assume that for some positive integer I <n 
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(30) k)< (DID1+1 ... Dn_2) a (for all p such that 1 < p < 1), 

and for all k=I(p, p+l) cocyclic with h. By Lemma 4 it then follows that 

) 
< (DI+, ... Dn_2) a (for all p such that 1 < p < n --1), 

and for all r=I(p, p+l+1) cocyclic with h. But this is (30) with I replaced 
by I+1. Since (30) is true for I= 1, it follows that S(I') <5, where s=I(1, n). 
By (22) this is equivalent to S(S) <8. Since 8 was arbitrary, this establishes 
that the hypotheses of Theorem 3 imply (11). 

2.3. Proof that (11) implies (N). We shall establish the following lemma, 
in which again no reference is made to any particular property of the matrices 
Uk and Vk. 

LEMMA 5. Any choice of the matrices Uk and Vk (or, if A =A*, of Uk) which 
implies that 

(I11) S(k) _>0 (k ->oo) 

also implies Proposition (N). 

We shall base our proof on relation (31), which is deducible from the 
maximum-minimum property of the eigenvalues of hermitian matrices, but 
which we shall prove from a theorem established by Wielandt (after its 
publication by Lidski1 [8]). For any nXn matrix Z= (zp,), define lizil 
= ( EJ_ I ZpqJ 2)1/2. Let B, C, D be three hermitian matrices of order n with 
their respective eigenvalues arranged in decreasing order as vectors,f= {,B}, 
y= {=yp }, a = {I p I (p =1, *. *, n). Suppose B-C=D. Then it was proved 
by Wielandt [13, p. 110] that there exists a matrix M with the properties 
of a doubly stochastic matrix: 

n n 
mpq>0 Empq = Empq=1, 

p=1 q= 

such that 

Hence, for any p, 

n n 
| - yP | _X mp,J | s1 < E mp, max j eq| 

q=a q-1 

=~~~ ma 6q (5 )1I2IDI 

The last equality is a consequence of the analogue of (1) for hermitian ma- 
trices. Hence, dropping the assumption that the eigenvalues of B and C are 
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ordered monotonically, we see that there exists a permutation { ', . .', } 
of the set {I, , n} such that 

(31) 1 IP- WPI < JIB-C|| (p = 1,. ., n). 

To prove Lemma S in the hermitian case, we set B = (Spa( ) and C=A k. 

Then 

ffC - BJl = (S(k)) 12. 

Writing 

(32) (S(k))112 = Ek, 

and using the fact that the eigenvalues of Ak are the same as those of A, we 
find that 

(33) |a(k) 
_ 

Xpp (k) I < E, (p = I) .. 
* * n; k = O,y, ly ).. 

The notation vp(k) indicates that the permutation vp may depend on k. 
Since Ek->O, (33) establishes Lemma 5 for A =A*. 

To prove the lemma in the nonhermitian case, we write 

(34) Ak = Dk + Ek, 

where Dk = (p,ap(c)). This makes 

(35) ||Ekff = Ek. 

We apply (31) with B=DkDL and C=AkA*. We have 

ffC -BI = ffEkDk* + DkEk* + EkEk*l _ < ffEkff(2ffDkff + ffEkff) 

and, in view of (34), 

|| Dkll < |A Ak + ||EkJl E 

Hence, since 

|| Akl = ||A|| (k = 1, 2, ... )I 

ffC - B|| < Ek(2 || A|| + 3Sk). 

Also, the eigenvalues of C are the squares of the principal values of A. It 
follows that there exists a sequence of permutations 

vp(k) (p ly ..,~n; k= ly 2 ... 

such that 

(36) JJ| (a) 12p I 
2 

(k) I < Ek(2 
|| 

All + 3Ek). 

Since ek-*>O, (36) establishes Proposition (N). 
At this stage we have proved Theorem 1 and also a weakened form of 

Theorem 3, obtained from Theorem 3 by substituting (N) for (P). 
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2.4. Proof of Theorem 4. We now prove Theorem 4, starting with the case 
A =A *. If the eigenvalues of A are all identical, there is nothing left to prove. 
If not, set 

d = min j - X 

and define ek by (32). Let ko be such that ek<d/2 for all k>ko. Then for 
k > ko every diagonal element a(t) of Ak is by (33) closest to exactly one num- 
ber of the set {I X. We call this number the eigennumber affiliated with a,(). 
(The term eigennumber serves to emphasize that we no longer distinguish 
between identical eigenvalues.) 

The proof of Theorem 4 for A =A* will be complete if we establish the 
following lemma: 

LEMMA 6. No diagonal element of Ak can change its affiliation if k is suffi- 
ciently large. 

Proof. Since the set { v,(k) } is a permutation of the set {I, * * , n} for 
each k, if any one element changes its affiliation, at least one other element 
must do likewise. On the other hand, an element can change its affiliation 
at any particular step only if it is affected at that step. Since exactly two 
diagonal elements are affected at each step, it follows that a change of 
affiliation can take only the form of an exchange of affiliation between two 
elements affiliated with two different eigennumbers. Again omitting the index 
k, we let aii and a,1 be two such elements, and let them be affiliated with the 
eigennumbers,u and v, respectively. By (33) 

(37) 1 aii -aji| _< I|A- PI+2ek. 

By (6), the element aii transforms according to 

ai = ai cos2 + ajj sin2 4 + Re [aijeI(a-)] sin 2g. 
Hence 

(38) aii - a = (as; - ay) sin2 4-Re [ai,ei(a-P)] sin 24. 

Using the facts that, in view of (IV), sin2 4) ?s2<1, where s is independent 
of k, and that Iai,I ?ek, we get, using (38), 

(39) jaii-a$| ?s2(fM-v| +26k)+ek. 

If a' were affiliated with P, it would have to satisfy 

ai- vi :! kl 

This would imply 

(40) laii - aii I >-I A - V I 
- 6k - ek+l1 
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For k sufficiently large, this inequality is incompatible with (39). Hence ai, 
cannot change its affiliation. Lemma 6 and Theorem 4 for A =A* are thus 
proved. 

To prove Theorem 4 in the general case, let Ck=AkA*, as in ?2.3. We 
have 

Ck+1 = UkAkVkVkA k*Uk = UkAkA:kUk* = UkCkUk*. 

The sequence of matrices {Ck} can thus be thought of as generated by a 
Jacobi process for the hermitian matrix Co = AA * and defined by the sequence 
of matrices Uk. Since the sequence { Ak } satisfies Proposition (N), the se- 
quence { Ck} satisfies the hermitian property (N). The angles 4k of Uk 

satisfy (IV') and hence (IV). The sequence { Ck } is thus generated by a her- 
mitian Jacobi process satisfying (N) and (IV). By the statement of Theorem 
4 for hermitian matrices, which has been proved above, { Ck} converges to 
a diagonal matrix. The diagonal elements of this matrix are the squares of 
the principal values of A in some order. Thus 

cpp= E ap, |-r, (k-+ oo; p = 1, * * 
q=1 

where {vp} is some fixed permutation of {1, * * , n}. But 

n (k) 12 2 

q- 1;q0'P 

Hence 

l aPp |7r% (k -oo; p = 1, n). 

This completes the proof of the first sentence of Theorem 4. 
To prove that (IV') is necessary for the validity of Theorem 4, let 

/1 0\ 
Ao 7)' 

and choose 

,04 = T2 (k=O,1,. . 

Then 

/-1 0 
Ak 

0 1 (k = 1, 3 5,) 
.. 

while Ak=Ao (k=2, 4, * * . 
The following example(4) shows that it is impossible to replace the inter- 

(4) See footnote 3. 
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val J in condition (IV') even by the open interval (-ir/2, 7r/2). Let { ek } be 
a sequence of positive angles which converge to zero monotonically, with 
eo<ir/2. Put 

Ao = cos E0 -sin EO\ 

(-sin co -cos c0 

and choose 

(cos kk sin fk 
Uk = 

-Sin 'Ok COSOf 

where kk=( 1)k(7-Ek -k+l)/2. It is easily verified that 

(41) A ~~~~~(( 1) k COS 'Ek -silnf) 
(41) Ak=(22:k )I1:) 

Obviously, the sequence {Ak} satisfies (11), and the angles 4k all lie in 
(- r/2, ir/2). Yet the sequence { Ak } does not converge to a diagonal matrix. 

This completes the proof of Theorem 4. As we remarked above, out of 
Theorem 4 now follows the truth of Theorem 2 and of the suffitiency part of 
Theorem 3. 

2.5. Necessity of condition (IV') for Theorem 3. To prove that condition 
(IV') is necessary for the convergence of the cyclic Jacobi method even in 
the weaker sense of Proposition (N), we shall exhibit a real symmetric matrix 
for which (11) fails to hold, if the angles Ok are only subjected to (II). Obvi- 
ously the order of such a matrix must be at least 3. We shall achieve diver- 
gence by constructing a matrix for which afl) = 0 for all k and by then select- 
ing 4k = r/2. This interchanges the two affected elements in the main di- 
agonal and does not destroy the zero in the .(i, j)-position. If the ordering 
(IIIr) is adopted, a matrix with the desired features is given by 

2 0 11 

(42) A =Ao= 0 3 01. 
I 0 4 

It is easily verified that 

'3 0 0l 4-1 0 4 0 1 

Al =? 2 -1i] A2= -1 2 0 A3= 0 3 0, 

to-1 4 0 0 3j 1 0 2j 

'3 0 0 2-1 02 0 3 0 12 

A4= 0 4 -1} Ar= -1 4 0 } A6= 0 3 0. 

0 _1 j 0 0 3j [I 0 A 
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Thus Aa=Ao and hence Ak+6=Ak for all k, so that the sequence {Ak} can 
never converge to a diagonal matrix. 

REMARK. From the point of view of numerical computation it might seem 
unfair to perform a nonzero rotation when the element to be annihilated is 
already zero. Actually, we have also constructed examples of matrices where 
the cyclic Jacobi method fails even if Ok is selected such that (II) holds and 
0 k <7r/2. This will be the case for any matrix of the form 

a e 1 

Ao =e a+ c 0 
1 0 a+ 2c 

where a is arbitrary, c> O is sufficiently large and e (> 0) is sufficiently small. 
(We have proved that (11) fails for c> 4 and e < 1.) This example also shows 
that it is not possible to replace the interval J in condition (IV) by the open 
interval (-7r/2, 7r/2). 

3. REALIZATION OF THE CONDITIONS OF THEOREMS 1 TO 4 

In this section we shall justify the statements made in ?1.2 concerning 
the existence of unitary matrices Uk and Vk satisfying the conditions of 
Theorems 1, 2, 3, and 4, both for an arbitrary complex matrix A and for 
A =A* (in the latter case we assume Vk = U*). Throughout this section we 
put 

(k) , (k+l) 

apq = apq, apq= ap= 

and omit the subscript k on the parameters a, fl, 'y, 8, c, and t, 7, ?, W, st. 
We shall also write 

ap = r.qeiepq, 

where rpq and OP. are real and r,,>?O. 
3.1. Eigenvalues of hermitian matrices. We assume that A=A* and 

V*= U* for all k. The latter condition implies 

and 

where all congruences are taken modulo 2r. 

THEOREM 5. Let A =A * and Ak+l = UkA Ut*. In order that condition (II) be 
satisfied it is necessary and sufficient that the parameters of Uk satisfy the follow- 
ing relations:(6) 

(5) Condition (43) should be disregarded when rij =0. Condition (44) and all subsequent 
tangent equations should be disregarded when they take the form tan u=O/O. 
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(43) Aa-Oij (mod 7r), 
(44) tan 245 ? 2rij(ai -ajj)-l. 

The upper or lower sign is to be chosen according to whether ,B-a differs from 
O,j by an even or an odd multiple of ir, respectively. 

Proof. Direct computation yields, if Uk is any matrix of the form (6), 

, -, 
a= ai= cos 4 sin 0(ei(t-)ajj - ei(a-0)aii) + cos2 oei(a-)aij - sin- ,-0ai 

Hence, using (5), 

ei((-4a) = sin 24(a1j - aii)/2 + cos2 4)ei(a-#)aij - sin2 qe7i(a-?a,j 

= sin 24(aij - aii)/2 + Re [ei(ai)ajjI cos 24 + i Im [ei(at)ai;]. 

If (II) is satisfied, the expression on the right side of the last equation is 
zero. Putting its real and imaginary parts equal to zero yields the necessity 
of (43) and (44). Their sufficiency is obvious from (45). 

If A is a real symmetric matrix, an obvious solution of (43) is a =,=y = 
-0. It follows that in this case Uk may be taken to be a real orthogonal 
matrix. Equation (44) then takes the form given by Jacobi, 

(46) tan 2) = 2ai(aii - a)-1. 

Returning to hermitian A, we note that, since the function tan 24) takes 
on all real values in each closed interval of length r/2, 4 can be selected to 
satisfy (IV), provided the length of J is at least r/2. It follows that for a 
hermitian matrix A conditions (IV) and (V) can always be realized with t = 0. 

By the above it is trivial that for A =A * conditions (IV) and (V) can be 
realized for every t >0. Conversely, we shall now show that even if (44) is 
not completely satisfied (V) may still hold with some t < 1. 

We assume that (43) holds and define p by 

(47) tan 2p = ? 2rij(ai - aj)-1, -7r/4 ! p 6 7r/4, 

with the sign convention of Theorem 5. We then have 

THEOREM 6. Let A =A* and Vk= Uk*. If (43) holds and if 

(48) 4 = (1 - p)p, 

where - 1 <p < 1, then condition (V) is satisfied with 

t = sin2 (per/2). 

Proof. We shall make use of the following two facts, both of which are 
easily verified: 

(i) If-l<p<land 
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fp (x 0), 

g(x) = (sin px/sin x (O < l xi 67r/2), 

then 

(49) max I g(x) = sin (p7r/2) |. 
j21 St/2 

(ii) If a, b are real, and 

tan 4 = b/a, 

then 

(50) (a2 + b2) sin2 4, = b2. 

Turning to the proof of Theorem 6, we find from (43), (45), and (47) that 

i a 12 =[(a,, - aidj2/4 + r2] sin2 (24 - 2p). 

Then by (49) and (50) 

I a, 12 = [(ajj - aii)2/4 + r20 sin" 2pp 

_ sin2 (pwr/2)[(ajj- ai) 2/4 + r2 ] sin 2p 
2 2 

- sin2 (pir/2)r,,. 

This completes the proof of Theorem 6. 
3.2. Principal values of arbitrary complex matrices. We shall now formu- 

late and prove two theorems which are analogous to those of ?3.1 when A is 
an arbitrary complex matrix and Uk and Vk are not related. It is convenient 
to perform some preliminary computations before stating the analogue of 
Theorem 6. 

If Uk and Vk are arbitrary matrices of the forms (6) and (7), we find for 
the rotated elements of Ak+1 the following expressions: 

aii = ei(a+) cos 4 cos #aii - ei(a+) cos , sin #ai, 

+ ei('+D sin 4 cos #a, - ei(#+) sin 4, sin #,ajj; 

aij = ei(a+q) cos 4 sin #aii + ei(a+w) cos 4 cos #ai, 

+ ei(#+4) sin 4 sin #aji + ei(8) sin 4 cos yajj; 

aj= - ei(Y+) sin 4, cos 4,/aii + ei(7+r) sin 4 sin #ai, 

+ ei(5+) cos 4 cos #a,i - ei(+ cos 4 sin #a,,; 

a,> = - ei(7+v) sin 4 sin #a,i - e;('Y+-) sin 4 cos 4/ai1 

+ ei(5+a) cos 4, sin #aji + ei(s+w) cos 4 cos ^6ajj. 

Multiplying the third equation by eA, where X is a real number to be 
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determined later, and adding it to the second equation, we obtain 

a., + a = al,(ei(a+ ) cos 4 sin it - ei(y+t+x) sin 4 cos A) 

+ aij(ei(a+w) cos 4 cos + +ei(y+t+x) sin 4) sin 1) 
(51) 

+ aji(ei(#+7) sin 
4 

sin 
t 

+ ei(8+W+X) cos 
4 

cos t) 

+ ajj(ei(#+w) sin 4 cos t-ei(8+t+X) cos 4) sin ) 

We now select X =a a-y- + . Since 

(52) a-,B-y + 3 - - P + c a O (mod 27r), 

our choice of X implies that 

X - 8 - - + c (mod 27r). 

It follows that (51) can be written in the form 

(53) ai,j + eaji = C sin (q5- i) + D cos -y) 

where lel = 1 and 
C = ajjei(0+w) -aiei(a+7 

D = aijei(a+w) + ajiei(ft+). 

Similarly, we obtain 

(55) aiJ-eaj% = E sin (4 + ) + F cos( +), 

where 

(56) E = ajjei(f+w) + aiiei(a+1), 

F = aijei(a+w)-ajieiC8+1). 

Using the abbreviations 

EAp = Oip- , OpA = Opi - 0pi 

RTp = riprjp, RpT = rp,7pj (p = ) 

we now can state the following result: 

THEOREM 5'. In order that the unitary matrices Uk and Vk satisfy condition 
(II'), it is necessary and sufficient that their parameters obey the following rela- 
tions: 

R,j sin E(A. + Rrj sin 0aj 
tan (a-) = -_ 

Rri cos e,a. + Rrj cos ,a 
(57) R11 sin E(@A + Rj] sin Eja 

tan (,- w) =- 
RiT cos eiA + R. cos 
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(58) tan (4 -#) = - D/C, tan (Q + ^) = F/E 

where C, D, E, F are defined in (54) and (56). 

Proof. We assume that condition (II') is satisfied. Then the left sides of 
(53) and (55) are zero. The condition that the numbers sin (q5?qV) and 
cos (4 ? +V) be real is then equivalent to the condition that CD and ET be 
real. Expressing the fact that Im (CD5+ EF) =0, we readily obtain the equa- 
tions (57). Conversely, if conditions (57) are met, CD and EF are real num- 
bers. If (II') holds, then the equations (53) and (55) imply (58). Conversely, 
if (58) holds, then a' and aj are zero. This completes the proof of Theorem 5'. 

If the matrix A is real, an obvious solution of (57) is ax=3=w=w=O. We 
then may also take Py = = = = 0. It follows that in this case Uk and Vk 

may be assumed to be real orthogonal matrices. The equations (58) then take 
the form 

tan (4 - 6) = (aji + aij)/(aii - ajj), 

tan (40 + #) = (aji - aij)/(asi + ajj). 

When A is real and symmetric, we may take Vk= Ut*, so that q5 = -VI. Note 
that the first condition (59) then reduces to (46). 

Returning to the general case, we shall now show that the conditions 
(II') and (IV') cannot always be realized simultaneously. By (58) the values 
of q ? ,P are determined modulo -r. Let 

k- = x + nir, + +&=:K + mr, 

where m and n are integers to be chosen suitably. It follows that 

k= (K +x)/2 + (m + n)7r/2, 
= (K-x)/2 + (m - n)7r/2. 

We can select k=m+n such that qfEJ. There are values of K+X for which 
there is only one possible choice of k. It follows that 

0 = (KK- X)/2 + kr/2 - mr. 

Without changing c+X, we can adjust K-X so that there is no n for which 
+J. 

The next theorem implies the fact that for any t>0 the conditions (IV') 
and (V') can be realized simultaneously. 

We define a and r by 

tanT= - D/C, tana= - F/E, 

()r/2 < r _ r/2, -7r/2 < a < 7r/2. 

THEOREM 6'. If (47) holds and if 



22 G. E. FORSYTHE AND P. HENRICI [January 

(61) = (1-p)(a + r)/2, = (1 -p)(a-r)/2, 

where -1 < p < 1, then condition (V') holds with 

(62) t = sin2 (p7r/2). 

Proof. From (53) and (55) we have, using the fact that CD and E7i are 
real, 

s's = | atj2 + | 11i| 

- { |aj + Ea1 i+ aX;-Ea,1f2J/2 

- {(l C12 + j D 12) sin2 pr + (j E 12 + j F12) sin2 p} /2. 

As in the proof of Theorem 6 we find that 

(I C12 + j D 12) sin2 pr ? sin2 (pr/2) I D 12, 

(I E 12 + j F 12) sin 2 pa ? sin2 (p7r/2) I F12. 

It follows that 

s < sin2 (p7r/2)(I D 12 + I FP 2)/2 = sin2 (pr/2)sj;, 

proving the theorem. 
For 0 <p <1, 4i and i,1 as given by (61) are the arithmetic means of the 

number pairs (1 -p)o, (1 -p)r, and (1 -p)o, - (1 -p)r, respectively, both of 
which are contained in the interval J= [-(1-p)7r/2, (1-p)7r/2]. This 
interval meets the requirements of condition (IV'). Since for every tE(0, 1) 
there exists a pE (0, 1) such that (62) holds, it follows that the conditions 

(IV') and (V') can be realized simultaneously for every tE (0, 1). 
Professor M. R. Hestenes has remarked to us that for an arbitrary com- 

plex matrix A it is possible to choose the parameters of the Uk and the Vk so 
that the limit matrix II of ?1.2 has only non-negative elements in its prin- 
cipal diagonal-i.e., the principal values of A in some order. With such 
choices the matrices j Aj of Proposition (P) can be replaced by Ak, and we 
can assert that 

PAkPl- II (k -oo). 

To prove Professor Hestenes' remark, refer to the formulas for ast and 

aj at the start of ?3.2. Observe that a, and aj can be made non-negative by 
changing a, #,y, a to a +gu, , +Mu, 7 + v, a + v, respectively, for some real numbers 
,u, P. Since these changes do not alter conditions (5), (57), (58), (60), (61), 
they have no effect on X5, {, X, nor on (II'), (IV'), (V'). Thus Theorem 3 con- 
tinues to hold. But, since after the first cycle all a({ remain non-negative, the 
limit matrix II is non-negative. 

4. OPEN QUESTIONS 

One obvious problem which arises in connection with the results of the 
present paper is to find the rate of convergence of the cyclic Jacobi method. 
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For the generalized Jacobi method described in Theorem 1 the rate of con- 
vergence is easily bounded by use of (14). Other questions are suggested by 
the strong resemblance which several aspects of the Jacobi method bear to 
relaxation methods for solving systems of linear equations. Ostrowski's work 
[11] on relaxation methods suggests, among others, the following question. 
Does the convergence of the Jacobi method under the conditions (II) (or 
(V)) and (IV) persist if (III) is replaced by any cyclic order of the couples 
(i, j) in which all couples actually occur? How about an order which is subject 
only to the condition that each couple (i, j) occurs infinitely often in the 
sequence (ik, jk)? Young's work [14] on the successive overrelaxation method 
raises the question whether the convergence of the cyclic Jacobi method can 
be improved, at least for certain matrices A, by systematic use of over- or 
underrelaxation (p <0 or p>0 in Theorem 6). 
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