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JACOBIS METHOD IS MORE ACCURATE THAN QR*

JAMES DEMMEL AND KREIMIR VESELI($

Abstract. It is shown that Jacobi’s method (with a proper stopping criterion) computes small
eigenvalues of symmetric positive definite matrices with a uniformly better relative accuracy bound
than QR, divide and conquer, traditional bisection, or any algorithm which first involves tridiago-
nalizing the matrix. Modulo an assumption based on extensive numerical tests, Jacobi’s method is
optimally accurate in the following sense: if the matrix is such that small relative errors in its entries
cause small relative errors in its eigenvalues, Jacobi will compute them with nearly this accuracy.
In other words, as long as the initial matrix has small relative errors in each component, even using
infinite precision will not improve on Jacobi (modulo factors of dimensionality). It is also shown that
the eigenvectors are computed more accurately by Jacobi than previously thought possible. Similar
results are proved for using one-sided Jacobi for the singular value decomposition of a general matrix.
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1. Introduction. Jacobi’s method and QR iteration are two of the most com-
mon algorithms for solving eigenvalue and singular value problems. Both are back-
ward stable, and so compute all eigenvalues and singular values with an absolute error
bound equal to p(n) IIHII2, where p(n) is a slowly growing function of the dimension
n of the matrix H, is the machine precision, and I[HII2 is the spectral norm of the
matrix. Thus large eigenvalues and singular values (those near IIHII.) are computed
with high relative accuracy, but tiny ones may not have any relative accuracy at all.
Indeed, it is easy to find symmetric positive definite matrices where QR returns neg-
ative eigenvalues. This error analysis does not distinguish Jacobi and QR, and so we
might expect Jacobi to compute tiny values with as little relative accuracy as QR.

In this paper we show that Jacobi (with a proper stopping criterion) computes
eigenvalues of positive definite symmetric matrices, and singular values of general
matrices with a uniformly better relative error bound than QR, or any other method
which initially tridiagonalizes (or bidiagonalizes) the matrix. This includes divide and
conquer algorithms, traditional bisection, Rayleigh quotient iteration, and so on. We
also show that Jacobi computes eigenvectors and singular vectors with better error
bounds than QR.

In fact, for the symmetric positive definite eigenproblem, we show that Jacobi
is optimally accurate in the following sense. Suppose the initial matrix entries have
small relative uncertainties, perhaps from prior computations. The eigenvalues will
then themselves have inherent uncertainties, independent of which algorithm is used
to compute them. We show that the eigenvalues computed by Jacobi have error
bounds which are nearly as small as these inherent uncertainties. In other words,
as long as the initial data is slightly uncertain, even using infinite precision cannot
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improve on Jacobi (modulo factors of n). For the singular value decomposition, we
can prove a similar, but necessarily somewhat weaker, result.

These results depend on new perturbation theorems for eigenvalues and eigen-
vectors (or singular values and singular vectors) as well as a new error analysis of
Jacobi, all of which are stronger than their classical counterparts. They also depend
on an empirical observation for which we have overwhelming numerical evidence but
somewhat weaker theoretical understanding.

First, we discuss the new perturbation theory for eigenvalues, contrasting the
standard error bounds with the new ones. Let H be a positive definite symmetric
matrix, and 5H a small perturbation of H in the sense that 15Hij/Hijl <_ U/n for all
and j. Then 115HII2 <_ rl IIHII:. Let Ai and be the ith eigenvalues of H and H + 5H,
respectively (numbered so that 1 <_ _< An). Then the standard perturbation
theory [16] states that

(1 1) IA- AI < r/IIHII2 < l[Hll2" liH-*ll2 r/(H),A A
where (H) --IIHII2" IIH-l[[2 is the condition number of H. We prove the following
stronger result: Write H DAD, where D diag (H/2) and Ai 1. By a

theorem of van der Sluis [21], [6], t(A) is less than n times minD t(/)Hi)), i.e., it
nearly minimizes the condition number of H over all possible diagonal scalings. Then
we show that

(1.2) IA- AI _< (A),

i.e., the error bound n(H) is replaced by t(A). Clearly, it is possible that t(A) <<
n(H) (and it is always true that n(A) <_ nt(H)), so the new bound is always at least
about as good as, and can be much better than, the old bound.

In the case of the singular values of a general matrix G, we similarly replace the
conventional relative error bound n(G) with n(B), where G BD, D chosen diag-
onal so the columns of B have unit two-norm. This implies n(B) n/2 minb n(G),
and, as before, it is possible that n(B) << n(G).

The effects of rounding errors in Jacobi are bounded as follows. We can weaken
the assumption of small componentwise relative error [SHj/H[ /n in the per-
turbation theory to SHj/(HHjj)1/2 /n without weakening bound (1.2). This
more general perturbation bounds the rounding errors introduced by applying one
Jacobi rotation, so that one Jacobi rotation causes relative errors in the eigenvalues
bounded by O(g)n(A). (In contrast, QR, or any algorithm that first tridiagonalizes
the matrix, only computes eigenvalues with relative error bound O()n(H).)

To bound the errors from all the Jacobi rotations, we proceed as follows. Let
Ho DoAoDo be the original matrix and let Hm DAD where H is obtained
from Hm-1 by applying a single Jacobi rotation, D is diagonal, and A has unit
diagonal. The desired error bound is proportional to n(A0), i.e., it depends only
on the original matrix. But our analysis only says that at step m we get an error
bounded by something proportional to n(A). Thus the error bound for all the Jacobi
steps is proportional to max n(A). So, for Jacobi to attain optimal accuracy,
max,, n(Am)/n(Ao) must be modest in size. In extensive random numerical tests, its
maximum value was less than 1.82. Wang [23] has recently found isolated examples
where it is almost 8. Our theoretical understanding of this behavior is incomplete
and providing it remains an open problem.
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We must finally bound the errors introduced by Jacobi’s stopping criterion. To
achieve accuracy proportional to (A), we have had to modify the standard stopping
criterion. Our modified stopping criterion has been suggested before [22], [5], [3], [20],
but without our explanation of its benefits. The standard stopping criterion may be
written thus:

if Hijl <_ tol. max ]Ha], set Hij O,
kl

whereas the new one is

if IHij[ <_ tol. (HiiHjj) 1/2, set Hij 0

(here tol is a small threshold value, usually machine precision).
Now we consider the eigenvectors and singular vectors. Here and throughout

the paper whenever we refer to an eigenvector, we assume its eigenvalue is simple.
Again, let H be a positive definite symmetric matrix with eigenvalues ,i and unit
eigenvectors vi. Let 5H be a small componentwise relative perturbation as before,
and let ,k and v’ be the eigenvalues and eigenvectors of H + 5H. Then the standard
perturbation theory [16] says that v can be chosen such that

(1.3) I1 ll < + 0(),
absgapi

where the absolute gap for eigenvalues is defined as

(1.4) absgap), min

We prove a generally stronger result, which replaces this bound with

(1.5) [iv vll _< (n 1)l/2g(A) /

relgapx +

where the relative gap for eigenvalues is defined as

(1.6) relgapx min
[Ai

The point is that if H has two or more tiny eigenvalues, their absolute gaps are
necessarily small, but their relative gaps may be large, so that the corresponding
eigenvectors are really well conditioned. We prove an analogous perturbation theorem
for singular vectors of general matrices. We also prove a perturbation theorem which
shows that even tiny components of eigenvectors and singular vectors may be well
conditioned. Again, we show that Jacobi is capable of computing the eigenvectors
and singular vectors to their inherent accuracies, but QR is not.

To illustrate, consider the symmetric positive definite matrix H DAD, where

H 1029 1020 109 A .1 1 .1
1019 109 1 .1 .1 1

D diag (102, 1010, 1).

Here (H) 1040 and (A) 1.33. Thus r/ relative perturbations in the matrix
entries only cause 4 relative perturbations in the eigenvalues according to the new
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theorem, and 3. 104 r relative perturbations according to the conventional theorem.
Also, the absolute gaps for the eigenvalues of H are absgapl,2,3 10-2, 10-20 1

whereas, the relative gaps relgapl,2,3 are all approximately 101. Thus the new

theory predicts errors in Vl and v2 of norm 2.10-1r, whereas the old theory predicts
errors of 1027. Jacobi attains these new error bounds, but QR generally does not.
For this example, QR computes two out of the three eigenvalues as negative, whereas
H is positive definite. In contrast, Jacobi computes all the eigenvalues to nearly full
machine precision. In fact, for this example we can show that Jacobi computes all
components of all eigenvectors to nearly full relative accuracy, even though they vary
by 21 orders of magnitude; again, QR does not even get the signs of many small
components correct.

One might object to this example on the grounds that by reversing the order of the
rows and columns before tridiagonalizing and applying QR, we compute the correct
eigenvalues. However, we can easily find similar matrices (see 7) where Jacobi gets
accurate eigenvalues and QR gets at least one zero or negative eigenvalue, no matter
how the rows and columns are ordered.

We also show that bisection and inverse iteration (with appropriate pivoting, and
applied to the original positive definite symmetric matrix) are capable of attaining
the same error bounds as Jacobi. Of course, bisection and inverse iteration on a dense
matrix are not competitive in speed with Jacobi, unless only one or a few eigenvalues
are desired and good starting guesses are available. We use these methods to verify
our numerical tests.

This work is an extension of work in [2], where analogous results were proven
for matrices that are called scaled diagonally dominant (s.d.d.). The positive definite
matrix H DAD is s.d.d, if IIA-III2 < 1. This work replaces the assumption that A
is diagonally dominant with mere positive definiteness, extending the results of [2] to
all positive definite symmetric matrices, as well as to the singular value decomposition
of general matrices.

This work does not contradict the results of [8] and [2], where it was shown
how a variation of QR could compute the singular values of a bidiagonal matrix or
the eigenvalues of a symmetric positive definite tridiagonal matrix with high relative
accuracy. This is because reducing a dense matrix to bidiagonal or tridiagonal form
can cause large relative errors in its singular values or eigenvalues independent of the
accuracy of the subsequent processing. In contrast, the results in this paper are for
dense matrices.

We also discuss an accelerated version of Jacobi for the symmetric positive definite
eigenproblem with an attractive speedup property: The more its accuracy exceeds
that attainable by QR or other traditional methods, the faster it converges. See also
[22] where earlier references for Jacobi methods on positive definite matrices, as well
as for one-sided methods, can be found.

We use the following terminology to distinguish among different versions of Jacobi.
"Two-sided Jacobi" refers to the original method applying Jacobi rotations to the left
and right of a symmetric matrix. "One-sided Jacobi" refers to computing the SVD
by applying Jacobi rotation from one side only. "Right-handed Jacobi" is one-sided
Jacobi applying rotations on the right, and "left-handed Jacobi" is one-sided Jacobi
applying rotations on the left.

The remainder of this paper is organized as follows. Section 2 presents the new

perturbations theorems. Section 3 discusses two-sided Jacobi for the symmetric posi-
tive definite eigenproblem. Section 4 discusses one-sided Jacobi for the singular value
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decomposition, and also presents the accelerated version of Jacobi just mentioned.
Section 5 discusses bisection and inverse iteration. Section 6 discusses bounds on

maxm ,(Am)/t(Ao). Section 7 contains numerical experiments. Section 8 presents
our conclusions and discussion of open problems.

2. Perturbation theory. In this section, we prove new perturbation theorems
for eigenvalues and eigenvectors of symmetric positive definite matrices, and for singu-
lar values and singular vectors of general matrices. In 2.1, we consider eigendecom-
positions of symmetric positive definite matrices. In 2.2, we discuss the optimality
of these bounds. In 2.3, we consider the singular value decomposition of general
matrices. In 2.4, we discuss the optimality of this second set of bounds.

2.1. Symmetric positive definite matrices. The next two lemmas were proved
in [2].

LEMMA 2.1. Let H and K be symmetric matrices with K positive definite. Let
the pencil H- AK have eigenvalues Ai. Let 5H and 5K be symmetric perturbations
and let A be the (properly ordered) eigenvalues of (H + 5H) A(K + 5K). Suppose
that

IxTbHxl <_ ?7H xT and xTKxl ?7K" xTKxl
for all vectors x and some ?7H < 1 and ?TK < 1. Then either Ai A 0 or

1-- 77H < __A < 1 -- ?TH
1 + ?TK Ai 1- ?7K

for all i.
LEMMA 2.2. Let H /kTHAHAH and AH be symmetric matrices. H and AH

need not have the same dimensions, and AH may be an arbitrary full-rank conforming
matrix. Similarly, let K- ATKAKAK and AK be symmetric positive definite matri-

ces, where K and AK need not have the same dimensions and AK may be an arbitrary
full-rank conforming matrix. Let 5H AtbAHAH be a perturbation of H such that
IxTAHX[ <_ ?HIxTAHxl for all x where ?TH < 1. Similarly, let 5K ATKbAK/kK be
a perturbation ofK such that IxTbAKXl <_ ?TKIxTAKxl for all x where ?TK < 1. Let A
be the ith eigenvalue of H AK and A the ith eigenvalue of (H + 5H) A(K + 5K).
Then either 0 or

1 ?TH < __A < i + ?7H
1 + ?7K Ai 1- ?7K

THEOREM 2.3. Let H DAD be a symmetric positive definite matrix, and
D diag (HI/2) so di 1. Let 5H DbAD be a perturbation such that IIbAII2
?7 < /min(A). Let A be the ith eigenvalue ofH and A be the ith eigenvalue ofH+bH.
Then

(2.1) -- /min(A)
(A).?7.

In particular, if IbHij/Hijl <_ ?7In, then 115Allu <_ and the bound (2.1) applies.
Proof. Note that for all nonzero vectors x,

xTbHx
xTHx

xTATbAAx
xTATAAx yTAy
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Lemma 2.2 yields the desired bound, using K I and 5K 0. It remains to prove
that 15Hij/Hjl <_ /n implies 115AII2 <_ . But Au 1 and A positive definite imply
that no entry of A is larger than 1 in absolute value. (Note that this means (A) is
at most n times larger than 1/,min(A).) Therefore,
and so 115AII2 _< , as desired. [:]

Proposition 2.10 in the next subsection shows that the bound of Theorem 2.3 is
nearly attained for at least one eigenvalue. However, other eigenvalues may be much
less sensitive than this most sensitive one. The next proposition provides individual
eigenvalue bounds which may be much tighter.

PROPOSITION 2.4. Let H DAD be as in Theorem 2.3, with eigenvalues
and unit eigenvectors v. Let H + 5H D(A + 5A)D have eigenvalues . Let
II(AII2 ? /min(A). Then the botnd

+ 0()(2.2) IA A[< wllDvll =

is attainable by the diagonal perturbation (hAjj
Proof. Bound (2.2) is derived from the standard first-order perturbation

theory, which says that Ai(H + 5H) Ai(H) + vTihHvi + 0(11HII22), and substitut-
ing IvhHvi IvTiDhADvil < IIDvill2llhAII2. The inequality IvTiDhADvil <
I]DvilI22115AII2 is clearly attained for the diagonal choice of 5A in the statement of
the proposition.

We may also prove a version of Lemma 2.1 in an infinite-dimensional setting [14,
VI.3].

Now we turn to eigenvectors. A weaker version of the following theorem also
appeared in [2].

THEOREM 2.5. Let H DAD be as in Theorem 2.3. Define H(e) D(A+eE)D,
where E is any matrix with unit two-norm. Let A(e) be the ith eigenvalue of H(e),
and assume that A(O) is simple so that the corresponding unit eigenvector v(e) is
well defined for sufficiently small e. Then

(?- 1)1/2 (- 1)l/2n(A)e[[Vi() Vi(0) II2 /min(A) relgap),i
+ O(e) < + O(e2)"

relgapi

Proof. Let vk(O) be abbreviated by vk. From [11] we have

TDEDvi() +

Let y Dv, so that

T
Yk Eyi(.a) () +
_ v + O(eU).

v + O(:).

The pair (Ai, yi) is an eigenpair of the pencil A- AD-2. Thus

T T,k "kYk D 2yk Yk Ayk >_/min(A)

and so IlYk]12 <- (/k//min(d)) 1/2. Letting zk Yk/IlYklI2 lets us write. z[EzVi(e) Vi -- Z ()i - i)7kXi) 1/2 Vk -- O((2),
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where [ikl IlYkll211YilI2/(,’ki) 1/2 1//min(A). Taking norms yields the
result.

Proposition 2.11 in the next subsection shows that the bound in Theorem 2.5 is
nearly attainable for all vi.

As in Corollary 3 in [2], it is possible to derive a nonasymptotic result from
Theorem 2.5.

COROLLARY 2.6. Let H
5- 115AII2//min(A) satisfies

DAD be as in Theorem 2.3. Suppose that

3.2-1/2 5
and

1 5 < relgapai.

Let vi be the ith unit eigenvector of H DAD. Then the ith unit eigenvector v of
H D(A + 5A)D can be chosen so that

(n- 1)1/25

Proof. Let H(e) D(A + . 5A/I]SAII2)D. Let A(e) be the ith eigenvalue of
H(), and abbreviate A(0) by A. Let relgap(e) denote the relative gap of the ith
eigenvalue of H(e), and relgap(a, b) ]a- bl/(ab)/. The idea is that if e is small,
then A(e) can only change by a small relative amount, and so relgap(e) can only
chnnge by a smM1 bsolute or relative amount. Note that min(A) cn decrease by as
much as 5A2. Then by Theorem 2.3, we cn bound relgap(e) below by

relgapi(e) min
A(e)- Ak() > min

]A- Akl- 5(1 --5)-(A + A)
+ 5(1

((1--5) minki relgapx(Ai, Ak)-- 1--5" (AiAk)l/2

We consider two cases, relgapx(A, Ak) 2-1/2 and relgapx(A, Ak) < 2-1/2. The first
case corresponds to Ai and Ak differing by at least a factor of 2, whence

(AA)I/
3. relgap(Ai, A).

The second case corresponds to Ai and A differing by at most a factor of 2, whence

< 3.2-/
()/

Altogether, we have

relgap(e) (1 5) 1
1 5 relgap

1 5

Now integrate the bound of Theorem 2.5 from e 0 to e [SA][2 to get the desired
result.

In complete analogy to [2], we may also prove the following proposition.
PROPOSITION 2.7. Let 1 n be the eigenvalues of H and h h

be its diagonal entries in increasing order. Then

,min(A) < A__/ </max(A).
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In other words, the diagonal entries of H can differ from the eigenvalues only by
factors bounded by a(A).

Proof. See the proof of Proposition 2 in [2].
PROPOSITION 2.8. Let H DAD with eigenvalues )i. Let di be the diagonal

entries of D. Let vi be the th eigenvector of H normalized so that its th component
v (i) 1. Then

Iv(j)l <_ (j) ((A))3/2. min jj

We also have

Ivi(j)l <_ (t(A))3/2. min
dj

In other words, the eigenvectors are scaled analogously to the diagonal of H.
Proof. See the proof of Proposition 6 in [2].
PROPOSITION 2.9. Let H(e) and v(e) be as in Theorem 2.5, and (j) be as in

Proposition 2.8. Then

Iv(e)(j) v(O)(j)l <_ (2n- 2) 1/2

/min(A) min(relgapi, 2-1/2)
e. (j) + O(e2).

In other words, each component of each eigenvector is perturbed by a small amount
relative to its upper bound of i(j) of Proposition 2.8. Thus small components of
eigenvectors may be determined with as much relative accuracy as large components.
Note that relgapi exceeds 2-1/2 only when Ai differs from its nearest neighbor by at
least a factor of 2.

Proof. See the proof of Theorem 7 in [2]. [:]

We illustrate these results with two examples. First, we consider the matrix
H DAD of the introduction:

1029 1020 109 A .1 1 .1
1019 109 1 .1 .I 1

D diag (102, 1010, 1).

To six correct figures, H’s eigenvalue matrix A and eigenvector matrix V (normalized
to have the largest entry of each eigenvector equal to 1) are

A diag (1.00000.1040, 9.90000.1019, 9.81818.10-1)

and

1.00000 1.00000 10-11
1.00000 10-11 1.00000
1.00000 10-21 9.09091 10-12

-9.09091.10-22 ]-9.09091 10-12

1.00000

We may compute that a(H) 1040 and a(A) 1.33. Thus, according to Theorem
2.3, changing each entry of H in its seventh decimal place or beyond would not change
A in the figures shown. The refined error bounds of Proposition 2.4 are essentially the
same in this case. We can further verify the assertion of Proposition 2.7 that the ratios
of the eigenvalues to the diagonal entries of H are bounded between .9 =/min(A) and
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1.2 /max(A). One may also compute that the relative gaps relgap for all three
eigenvalues are approximately 10l. Thus, according to Theorem 2.5, seventh-figure
changes in H would not change its eigenvectors by more than 10-16 in norm. In fact,
the eigenvectors are even more accurately determined than this. Let V {i(j)} be
the matrix of upper bounds of entries of V as defined in Proposition 2.8"

1.5 1.5.10-1 1.5.10-20 ]1.5.10-1 1.5 1.5 10-1

1.5.10-20 1.5.10-1 1.5 10-20

Then, according to Proposition 2.9, seventh-figure changes in H cause changes in at
most the fifth digits of all the entries of V. In other words, for this, examples of
all the eigenvalues and all the components of all the eigenvectors, are determined to
nearly full relative precision by the data. Later, we show that Jacobi can compute
them with this accuracy. In contrast, QR does not even get the signs of the two small
eigenvalues or many components of the eigenvectors correct.

The second example serves to illustrate the difference between Theorem 2.3 and
the refined bounds of Proposition 2.4. Let H DAD where D is the same as before
and

1 1-# 1-# ]1-# 1 1-#
1-# 1-# 1

where # 10-6. The eigenvalues of H are 104, 2. 1014, and 1.5. 10-6. Now
a(A) 106, so according to Theorem 2.3, an relative change in the matrix entries
causes as much as a 106r/relative change in the eigenvalues. In contrast, the refined
bounds predict a relative change of in 104o and 1067 in the two smaller eigenvalues.
Thus the largest eigenvalue is just as insensitive as predicted by standard norm-based
perturbation theory.

2.2. Optimality of the bounds for symmetric positive definite matrices.
In this section, we show that the bounds of the last section are attainable. In other
words, the only symmetric positive definite matrices whose eigenvalues are determined
to high relative accuracy by the matrix entries are those H DAD, where A is well
conditioned.

In particular, we give explicit small, componentwise, relative perturbations, which
attain the eigenvalue bounds; it suffices to choose a diagonal perturbation. We have
(necessarily) slightly weaker results for the optimality of our eigenvector bounds.

We begin by showing that the assumption 115A[[2 </min(A) of the last section is
essential to having relative error bounds at all. If this bound were violated, A + 5A
(and so H + iH) could become indefinite, implying that all relative accuracy in at
least one eigenvalue is completely lost. In contrast to standard perturbation theory,
however, which assumes a bound on IIbHll2 instead of llbAll2, one cannot say which
eigenvalue will lose relative accuracy first. In the conventional case, as IIgll2 grows, it
is the smallest eigenvalues that lose accuracy first, the larger ones remaining accurate.
As IIAII2 grows, however, any eigenvalue in the spectrum (except the very largest)
may lose its relative accuracy first. The following example illustrates this:

1020 1
1 .99 1 .99
.99 1 .99 1

10-2 1
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and D diag (101, 1, 1, 10-10). Note that Amin(A)- .01. As []5A[[2 approaches .01,
the eigenvalues near 1020, 1.99, and 10-20 retain their accuracy, but the one near .01
can lose all its relative accuracy.

We next show that the relative error bound of Theorem 2.1 can be nearly attained
for at least one eigenvalue simply by making appropriate small relative perturbations
to the diagonal of H.

PROPOSITION 2.10. Let H DAD be symmetric positive definite, with D
diag (Hlii/2) diagonal and Aii= 1. Let 5A I, 0 < / < Amin(A), and H + 5H
D(A + 5A)D. Then for some we have

A(g + 5H)
i(H)

1 + min(A
1 + nmin(A)"

Proof. We have

i(H) det(DAD) det(D) det(A) det(D2) Ai(A)

and

Ai(H + 5H) det(D(A + I)D) det(D2) det(A + I) det(D2) (Ai(A) + ).

Therefore,

H Ai(H + 5H) Ai(A) + r] r]

A(H) H A(A)
_> 1 +/min(A)’

implying that at least one factor A(H + 5H)/Ai(H) must exceed (1 + T]//min(A)) 1/n.
This last expression is approximately 1 + /(nAmin(A)), when << .min(n).

The example at the beginning of this section showed that the error bound of Theo-
rem 2.3 and the last proposition may only be attained for one eigenvalue. Proposition
2.4 of 2.1 showed that for asymptotically small I]5AII2, the maximum perturbation
in each eigenvalue may be attained only with small diagonal perturbations of A.

After we show that the rounding errors introduced by Jacobi are of the form
115AII2 O(c) in 2.3, Propositions 2.10 and 2.4 show that Jacobi (modulo the as-
sumption on maxm (nn)/(no)) computes all the eigenvalues with optimal accuracy,
provided that only the diagonal entries of H have small relative errors. The same op-
timality property is true of bisection.

Now we consider eigenvectors. Here our results are necessarily weaker, as the
following example shows. Suppose H is diagonal with distinct eigenvalues. Then
small relative perturbations to the matrix entries leave H diagonal and its eigenvalue
matrix (the identity matrix) unchanged. Therefore, the only way we can hope to
attain the bounds of Theorem 2.5 is to use perturbations 5A, which are possibly
dense, even if H is not. Furthermore, a block diagonal example like the first one in
this section shows that the attainable eigenvector perturbations do not necessarily
.grow with (A). Thus the following is the best we can prove.

PROPOSITION 2.11..Let H DAD, ii, v, 5H, 5A and let l be as in Proposition
2.4. Let v’ be the unit eigenvectors of H + 5H. Then we can choose 5A, 115AII2
r] << min(A), 80 that

+ o(2).[IVi Viii2 -- Anax(A)relgap),i
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Proof. Consider expression (2.3) for vi- v (there, 5A is written eE). By using
a Householder transformation, we can prove that there exists a symmetric 5A such
that ySAyi Ilykll211yill2115AII2 for arbitrary
I]ykll2Amx(A), we can find 5A to make y[SAy (ik)l/2]]n]2/max(n). Choosing
k so that Ak is closest to A completes the proof.

2.3. Singular value decomposition. The results on singular values and sin-
gular vectors are analogous to the results for eigenvMues and eigenvectors in the first
subsection, so we do not include the proofs. Just as we derived perturbation bounds
for eigenvalues from a more general result for generalized eigenvMues of pencils, we
start with a perturbation bound for generalized singular values and then specialize to
standard singular values.

Let G1 and G2 be matrices with the same number of columns, G2 of full column
rank, and both arbitrary. We define the ith generalized singular value cry(G1, G2)
of the pair (G1, G2) as the square root of the ith eigenvalue of the definite pencil

GTIG1 AGT2G2 [11]. If we let G2 be the identity, r(G1, G2) is the same as the
standard singular value a(G1) of G1.

LEMMA 2.12. Let G1 and G2 be matrices with the same number of columns, G2
of full column rank, and both arbitrary. Let 5Gj be a perturbation of Gj such that

for all x and some 71j < 1. Let ri be the ith generalized singular value of (G1,
and r be the ith generalized singular value of (G1 + 5G1, G2 + 5G2). Then either

0 orO- T

1+7111--71"/1 < o% <
1+712 o-i 1--712

LEMMA 2.13. Let G and G2 be as in Lemma 2.12 Let Gj Bj/kj, where Aj
has full rank and is otherwise arbitrary. Let 5Gy 5BjAj be a perturbation of Gy

be the ithsuch that 115Bjxll2 < 71yllByxl12 for all x and some 71 < 1 Let cr and a
generalized singular values of (G, G2) and (G1 + 5G, G2 + 5G2), respectively. Then

I-0 oreither a a

1+7111-711 <r_A <
1 + 712 i i 712

THEOREM 2.14. Let G- BD be a general full-rank matrix, and let D be chosen
diagonal so that the columns of B have unit two-norm (i.e., D equals the two-norm
of the ith column of G). Let 5G 5BD be a perturbation of G such that I]5B112

be the th singular values of G and G + 5G, respectively.71 < O’min (B) Let c and (r
Then

(2.4) I’ crl < 71
cri Crmin(B)

_</,,(B) 71,

where n(B) (Ymax(B)/fYmin(B) <_ nl/2/rmin(B), and n is the number of columns of
G. In particular, if 15Gij/Gijl < 71/n, then [[5B[[2 <_ 71 and the bound (2.4) applies.

Just as the bounds of Theorem 2.3 were not attainable by all eigenvalues, neither
are the bounds of Theorem 2.14 attainable for all singular values. Analogous to
Proposition 2.4, we may derive tighter bounds for individual singular values.
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PROPOSITION 2.15. Let G BD be as in Theorem 2.14, with singular values ai,

right unit singular vectors vi, and left unit singular vectors u. Let G+SG (B+SB)D
where [(5B[[2 r] rmin(B). Then the boundhave singular values ai,

(T O"

is attainable by the perturbation 8B ui(Dvi)T/I]Dvi]]2.
Now we consider the singular vectors. For simplicity, we assume that G is square.

We use the fact that if G UEVT is the singular value decomposition of G, then

2-1/2" I VU -uV ]
is the eigenvector matrix of the symmetric matrix [11]

0 GT

Therefore, we can use perturbation theory for eigenvectors of symmetric matrices to
do perturbation theory for singular vectors of general matrices.

We also need to define the gaps for the singular vector problem. The absolute 9ap

for singular values is

0" O"kabsgap _= min

i.e., essentially the same as the absolute gap for eigenvalues. However the relative gap
for singular values,

" O"krelgaPi min
ki ri +

is somewhat different from the relative gap for eigenvalues.
The standard perturbation theorem for singular vectors is essentially the same as

for eigenvectors. Let G have right (or left) unit singular vectors vi, and let G + 5G
have right (or left) unit singular vectors v. Let r] 115GII2/IIGII2. Then

absgaPi

We improve this in the following theorem.
THEOREM 2.16. Let G BD be as in Theorem 2.14. Define G(e) (B + eE)D

where E is any matrix with unit two-norm. Let () be the ith singular value of
and assume that cry(O) is simple so that the corresponding right unit singular vector
vi(e) and left unit singular vector u() are well defined for sufficiently small . Then

relgapoi
+

COROLLARY 2.17. Let G BD be as in Theorem 2.14.
[[B[]2/O’min(B) satisfies

Suppose that

< relgap.
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Let vi and ui be the unit right and left singular vectors of G, respectively, and let v
and u be the unit right and left singular vectors of G’ (B + 5B)D, respectively.
Then

There are analogues to Propositions 2.7-2.9 of the last section, obtained by con-

sidering H GTG:
PROPOSITION 2.18. Let G BD be as in Theorem 2.14. Let (rl <_ <_ an be

the singular values of G and dl <_ <_ dn the diagonal entries of D in increasing
order. Then

o-
(min(B)

_
i <- (max(B).

PROPOSITION 2.19. Let G BD be as in Theorem 2.14 with singular values
O’1

_ _
fin. Let vi be the ith right singular vector of G, normalized so that its ith

component vi 1. Then

Ivi(j)l<_i(j) (t(B))3. min (a.. O"

We also have

d dj )Iv,(j)l _< a. min jj’-7/

PROPOSITION 2.20. Let G(e) and v(e) be as in Theorem 2.16, and i(j) be as in
Proposition 2.19. Then

Iv(e)(j) v(O)(j)l <_ 2(n- 1) 1/2
2

O’min(B) relgapai
e-(j) + O(e2).

There are analogues to all the results in this section for matrices G DB scaled
from the left instead of the right. Thus we can choose to scale either the rows or
the columns of G to have unit two-norms, whichever one minimizes the condition
number. It is natural to ask if we can do better by considering two-sided diagonal
scaling DIGD2; to date, we have been unable to formulate a reasonable perturbation
theory. To see why, note that if G is triangular, it can be made as close to the identity
matrix as desired by two-sided scaling, even though its singular values can be quite
sensitive.

2.4. Optimality of the bounds for the singular value decomposition.
The results in this section are analogous to, but necessarily weaker than, the results
of 2.2. In particular, it is no longer the case that the perturbation bounds for the
singular values can be attained by small relative perturbations in the matrix entries.

First, consider the restriction 115BII2 < amin(B). Just as in the symmetric positive
definite case, this is necessary so that B + 5B remains nonsingular. When B + 5B
becomes singular, at least one singular value necessarily loses all relative accuracy.
The same kind of block diagonal example as in 2.2 also shows that only one singular
value may have its sensitivity depend on t(B), and it might be anywhere in the
spectrum (except the very largest singular value).
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In order to prove an analogue of Proposition 2.10, we must permit perturbations
5B of B which are small in norm but may make large relative changes in tiny entries
of B (a similar perturbation was needed to prove that the bound in Proposition 2.15
was attainable).

PROPOSITION 2.21. Let G BD with D diagonal and the columns of B having
unit two-norm. Then there exists a 8B with 115BII2 r] < (Tmin(g) such that for
G + 5G (B + 5B)D we have, for at least one i,

ai(G)
> 1 + 1 +

O-min (B) n(Tmin (g)

If we restrict 5B so that ]bBij/Bijl <_ r, then such a perturbation 5B may not exist.

Proof. The proof is very similar to that of Proposition 2.10. Let X be a rank-one
matrix of minimal two-norm such that B + X is singular, and let 5B -rlX. Then,
as in Proposition 2.10, we discover that

a(G)
1 + min(B)

and so at least one term a,(G + 5G)/er,(G) exceeds (1 + /(min(B)) 1In. To see that
small componentwise relative perturbations are not sufficient, consider the matrix

G--B--- [1 1]
with e << 1. The condition number of B is approximately l/e, and relative perturba-
tions of size r/in its entries cannot change its singular values by more than a factor
of about (1 + r/) 2.

As in Proposition 2.11, our lower bound on the attainable perturbations in the
singular vectors requires a dense 5B and does not grow with (B).

PROPOSITION 2.22. Let G BD, r, ui, v; 5G 5BD; and rl be as in
and be the unit left and right singular vectors of G +Proposition 2.15. Let u v

respectively. Then we can choose 5B, 115BII2 =_ r] << ffmin(B), So that

max(llu uill2, Ilv viii2) > 2a/2ermax (B)relgap +

3. Two-sided Jacobi. In this section, we prove that two-sided Jacobi in float-
ing point arithmetic applied to a positive definite symmetric matrix computes the
eigenvalues and eigenvectors with the error bounds of 2.

In this introduction, we present the algorithm and our model of floating point
arithmetic. In 3.1, we derive error bounds for the computed eigenvalues. In 3.2, we
derive error bounds for the computed eigenvectors.

Let H0 DoAoDo be the initial matrix, and Hn D,A,D,, where H, is
obtained from Hm-1 by applying a single Jacobi rotation. Here D, is diagonal
and A, has unit diagonal as before. All the error bounds in this section contain
the factor max, (A,), whereas the perturbation bounds of 2 are proportional to
n(A0). Therefore, our claim that Jacobi solves the eigenproblem as accurately as
predicted in 2 depends on the ratio max, t(A,)/t(Ao) being modest in size. Note
that convergence of H, to diagonal form is equivalent to the convergence of A, to
the identity, or (A,) to 1. Thus we expect t(Am) to be less than (A0) eventually.
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We have overwhelming numerical evidence that maxm (Am)/a(Ao) is modest
in size; in 7, the largest value this ratio attained in random testing was 1.82. Our
theoretical understanding of why this ratio is so small is somewhat weaker; we present
our theoretical bounds on this ratio in 6.

The essential difference between our algorithm and standard two-sided Jacobi is
the stopping criterion. As stated in the introduction (and justified by Theorem 2.3),
we set Hij to zero only if Hij/(HHjj) 1/2 is small. Otherwise, our algorithm is a
simplification of the standard one introduced by Rutishauser [16]. We have chosen a

simple version of the algorithm, omitting enhancements such as delayed updates of
the diagonals and fast rotations, to make the error analysis clearer (an error analysis
of these enhancements is future work).

ALGORITHM 3.1 (Two-sided Jacobi for the symmetric positive definite eigenprob-
lem). tol is a user-defined stopping criterion. The matrix V whose columns are the
computed eigenvectors initially contains the identity.

repeat
for all pairs < j

/* compute the Jacobi rotation which diagonalizes

Hji Hjj =- c b /*

(b- a)/(2c);t-sign()/(ll + V/1 + 2)
cs 1/V’1 + t2; sn cs t
/* update the 2 2 submatrix */
Hii =a-c,t
Hjj =b+c,t
H H 0
/* update the rest of rows and columns and j */
for k 1 to n except and j

trnp Hik
Hik cs trnp- sn Hjk
Hjk sn trap + cs Hjk

H H; H H
endfor
/* update the eigenvector matrix V */
for k 1 to n

trnp Vki
Vi cs trap sn Vj
V sn trnp + cs Vj

endfor
endfor

u.ti co.vrg. ( IHI/(HH)I/ <_ to)
Our model of arithmetic is a variation on the standard one: the floating point

result fl(.) of the operation (.)is given by

(3.1)
fl(a -t- b) a(1 + el) b(1 + e2),
fl(a x b)= (a x b)(1 + e3),
fl(a/b) (a/b)(1 + g4),
fl(vd) v/-d(1 +

where I[ _< and << 1 is the machine precision. This is somewhat more general
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than the usual model, which uses fl(a +/- b) (a +/- b)(1 + El) and includes machines
like the Cray, which do not have a guard digit. This does not greatly complicate the
error analysis, but it is possible that the computed rotation angle may be off by a
factor of 2, whereas with a guard digit the rotation angle is always highly accurate.
This may adversely affect convergence, but as we see it does not affect the one-step
error analysis.

Numerically subscripted a’s denote independent quantities bounded in magnitude
by . As usual, we make approximations like (1 + i1)(1 + j2) 1 + (i + j)3 and
(1 + i1)/(1 + j) 1 + (i + j)3.

3.1. Error bounds for eigenvalues computed by two-sided Jacobi. The
next theorem and its corollary justify our accuracy claims for eigenvalues computed
by two-sided Jacobi.

THEOREM 3.1. Let Hm be the sequence of matrices generated by Algorithm 3.1
in finite precision arithmetic with precision ; that is, Hm+ is obtained from Hm by
applying a single Jacobi rotation. Then the following diagram:

floatingHm Jacohl /-/m+l

+SHin I /exact-/
Ha/

Jacobi

commutes in the following sense: The top arrow indicates that Hm+ is obtained from
Hm by applying one Jacobi rotation in floating point arithmetic. The diagonal arrow
indicates that Hm+ is obtained from H by applying one Jacobi rotation in exact
arithmetic; thus Hm+ and H are exactly similar. The vertical arrow indicates that

H Hm + 5Hm. 5H is bounded as follows. Write Hm DmSAmDm. Then

(3.2) ]]SAm]] (182(2n- 4)/ + 104).

In other words, ff ]]SAI]2 < min(Am), oe step of gacobi 8atiCe8 the a88ptios
needed for the error bounds of 2.

COROLLARY 3.2. Assume that Algorithm 3.1 converges, and that HM i8 the final
matrix whose diagonal entries we take as the eigenvalues. Write Hm DmAmDm
with Dm diagonal and Am with ones on the diagonal for 0 m M. Let Aj be the
j th eigenvalue of Ho and A be the j th diagonal entry of HM. Then to first order in, the following error bound holds:

M. (lSe(e 4) + 104) + n. to ).
Aj OmM

Remark. In numerical experiments presented in 7, there was no evidence that
the actual error bounded in (3.3) grew with increasing n or M.

Proof of Corollary 3.2. Bound (3.3) follows by substituting the bound (3.2) and
the stopping criterion into Theorem 2.3.

Remark. A similar bound can be obtained based on the error bound in Proposition
2.4.

Proof of Theorem 3.1. The proof of the commuting diagram is a tedious compu-
tation. Write the 2 2 submatrix of Hmrn being reduced as

c b zdidj d
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where we assume without loss of generality that a _> b and c > 0. By positive
definiteness, 0 < z _< 2 ((A,)- 1)/((Am)+ 1) < 1. Let a’ and b’ be the new
values of Hii and Hjj computed by the algorithm, respectively. Let x =_ dj/di <_ 1.
We consider two cases: x <_ 2 (v/- 1)/2 .62, and x > 2.

First consider x _< 2. Systematic application of formulas (3.1) shows that

fl((b a)/(2 c))
(1 + c4)(((1 + c1)b- (1 + c2)a)/((1 + c3)2c))
(1+c4)(1+c2)(/}-a)l+ca2c

where -- (l+c1)b/(l+c2)-- (l+cb)b, ICbl <_ 2C. Thus -- (1+c)(/}-a)/(2c)
where Ic1 _<

Let t(c) denote the true value of t (i.e., without rounding error) as a function of
a,/, and c. Using (3.1) again, we can show t (1 + ct)t(c) where

Next,

b’ fl(b + ct) (1 + cs)b + (1 + c6)(1 + cT)ct

(3.4) (1 + c2)(11+c1+ c5) ( + (1 + c1)(1(1 + c2)(1+ c5)
+ c6)(1 + c7)(1 + ct)ct(c))

(1 + Cb,)(b + (1 + cct(c))ct(c)),

where Icct(c)l _< 12c and ICb, _< 3c. Since It(c)l is an increasing function of c, we can
write (1 + ct())ct(c) (1 + c)c. t((1 + Cc)C) for some Cc where ICcl <_ Ict()l <_ 12c.

Now we can define 5 (1 + c)c, and , , ds, and sn as the true values of the
untilded quantities computed without rounding error starting from a, b, and 5. cs
and sn define the exact Jacobi rotation

cs sn 1Jn- _sn cs

which transforms Hm into Hm+l in the commutative diagram in the statement of the
theorem: jTHJ, H,+.

Now we begin constructing 5H,. 5Hm is nonzero only in rows and columns and
j. First, we compute its entries outside the 2 2 (i,j) submatrix. Using (3.1) we can
show cs (1 + cs)cs and sn (1 + cs,)n, where [ccl _< 22c and Ic,] _< 30c. Now
let Hk and H}k denote the updated quantities computed by the algorithm. Then

Hk fl(cs, Hia sn, Hjk)
(1 + c10)(1 + C8)cSHik (1 + c9)(1 + Cll)8rtHjk
(1 + c10)(1 + cs)(1 + Ccs)sHik (1 + c9)(1 + Cll)(1 + Csn)8nHjk

+

Similarly,

(3.6)
Hjk fl(sn H.ik + cs Hjk)

(1 + c4)(1 + c2)(1 + Cn)snHik + (1 + c3)(1 + c15)(1 +
=_ + +



JACOBI’S METHOD IS MORE ACCURATE THAN QR 1221

Now x dj /di implies

2 2 x2b a dj d 1

2 25didy 22x

where 2 z(1 + c). Then x <_ 2 implies

i :2"
2 1 2

Also, ]] {[, so this last expression is an upper bound on [ as well. Subsitutin
this bound on n, s 1, [H dd, andH djd into (3.5) nd (3.6) yields

[e(H) 56adage2,

]e(H}k)] E 56adjdk2/(1 22).

Thus

Ha =J" Hjk + e(Hjk)

j f [ Hik T
Hjk ] + Jm" [ e(Hik

a- 11+
where laa’l _< 21a.

Now let

where IHikl <_ ll2adidk2/(1- 2) and IHjkl <_ ll2djdk2/(1- 2).
Now we construct the 2 2 submatrix A of H, at the intersection of rows and

columns i and j. We construct it of three components"
Consider the formula a’ fl(a c ) for the i, i entry of Hm+l. Applying (3.1)

systematically, we see that

a’ (1 + 18)a- (1 + a17)(1 + E16)c
(1 + s)a (1 + 17)(1 + 16)(1 + t)ct(c)

(1 + 18)a- (1 + 17)(1 + 16)(1

)()(1 + als)a- (1 + et()

where[()] 21. Since a > 0 and t() < O, we get

+
E18a

a- ]

c bb -- c [- b

From earlier discussion we see that

b +A1 Jm 0
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Next let

Thus

c b +AI+A2 Jm -(1+’)[ a-St(5)0 D +05t(5) ]
0 b’((1 +e,)/(1 +eb))

Finally, let

Aa J’ 0 b’(1-- ((l + e,)/(l + sb))) J--

where leb" I_< [a’l--Ib[ -- 24. Then

c b + 1 + 2 + 3 Jm

sn2eb,,b Ksseb,,b
Kss b, b c82 b, b

as desired. This completes the construction of 5Hm. We may bound

(3.7) [[hAmll2 < (112(2n 4)1/22
1_22 +104

le(Hk)l < 56didk2 and le(Hjk)l < 56did2,

whence

15Hikl <_ 112eddk2 and lSHjkl <_ 112edjdk2/2,

and so

(3.8) 115Atoll2 <_ (112(2n 4)1/22
+104

Finally, we note that our choice of 2 makes the upper bounds in (3.7) and (3.8) both
equal, with 1/(1- 22) 1/2 < 1.62, proving the theorem. S

Remark. The quantity 182(2n- 4) 1/2 in the theorem may be multiplied by
maXm,iCj Am,ijl, which is less than one. Thus if the Ar are strongly diagonally
dominant, the part of the error term that depends on n is suppressed.

Commutative diagrams like the one in the theorem, where performing one step
of the algorithm in floating point arithmetic is equivalent to making small relative
errors in the matrix and then performing the algorithm exactly, occur elsewhere in
numerical analysis. For example, such a diagram describes an entire sweep of the
zero-shift bidiagonal QR algorithm [8], and is the key to the high accuracy achieved
by that algorithm.

Now we consider the second case, when x > 2. The only thing that changes in
the previous analysis is our analysis of 5Hik and 5Hjk, since n is no longer small.
Instead we substitute the bounds [n < 1, Ices] < 1, ]Hk < ddk2, <_ djdk2,/c, and
IHykl <_ djdk2 into (3.5) and (3.6) to get
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3.2. Error bounds for eigenvectors computed by two-sided Jacobi. The
next two theorems justify our accuracy claims for eigenvectors computed by two-sided
Jacobi.

THEOREM 3.3. Let V Iv1,..., Vn] be the matrix of unit eigenvectors computed
by Algorithm 3.1 in finite precision arithmetic with precision . Let U [ul,..-, un]
be the true eigenvector matrix. Let F; maxm t(Am) be the largest t(Am) of any
iterate. Then the error in the computed eigenvectors is bounded in norm by

(3.9) Ilvi uill2 <
(n 1)1/2(n tol + M. (182(2n 4) 1/2 + 104))K

relgapi
+ 46M.

Proof. Let H0,..., HM be the sequence of matrices generated by the Jacobi
algorithm, where HM satisfies the stopping criterion. Let J, be the exact Jacobi
rotation which transforms H to H,+I in the commuting diagram of Theorem 3.1:
JTHJ, H,+I.

We use the approximation that relgapi is the same for all H,, even though
it changes slightly. This contributes an O(e2) term to the overall bound (which we

ignore), but could be accounted for by using the bounds of Theorem 3.1.
Initially, we compute error bounds for the columns of Jo"" JM-1, ignoring any

rounding errors occurring in computing their product. Then we incorporate these
rounding errors.

We prove by induction that the ith column vm of Vm J,"" JM-1 is a good
approximation to the true ith eigenvector Umi of Hm. In particular, we show that to
first order in ,

I1 , 0,11 <_ 1)1/2(n" tol + M. (182(2n 4) 1/2 + 104)a)R
relgapi

The basis of the induction is as follows. VM I is the eigenvector matrix for HM,
which is considered diagonal since it satisfies the stopping criterion. Thus the norm
error in VM follows from plugging the stopping criterion into Theorem 2.5:

1) 1/2 n. tol.

relgaPi

For the induction step we assume that

Ilu,+l,i vm+l,i[[2 <_ (n- 1)1/(n tol + (M rn 1). (182(2n 4) 1/2 + 104))
relgapi

and try to extend it to rn. Consider the commuting diagram of Theorem 3.1. Ac-
cordingly, the errors in V, JmVm+l considered as eigenvectors ofH are the errors
in V,+I premultiplied by Jm. This does not increase them in the two-norm, since
J, is orthogonal. Now we change Hm to Hm. This increases the norm error in
v, by an amount bounded by plugging the bound for 115A,112 into Theorem 2.5:
(n- 1)1/2(182(2n- 4) 1/2 - 104)/relgaPi. This proves the induction step.

Finally, consider the errors from accumulating the product of slightly wrong values
of Jm in floating point arithmetic. From the proof of Theorem 3.1, we see that the
relative errors in the entries of Jm are at most 30, and from the usual error analysis
of a product of 2 2 rotations, we get 32/M 46M for the norm error in the
product of M rotations. This completes the proof of bound (3.9).
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Now we consider the errors in the individual components of the computed eigen-
vectors lui(j)- vi(j)l. From Proposition 2.9, we see that we can hope to bound this
quantity by O()i(j)/min(relgapxi, 2-1/2), where

(3.10) i(j)

is a modified upper bound for the eigenvector component v(j) as in Proposition 2.8.
In other words, we may have high relative accuracy even in the tiny components of
the computed eigenvectors; this is the case in the example in the introduction and at
the end of 2.1.

We use (j) as defined in (3.10) for each H,, even though the values of ,i and
j vary slightly from step to step. This error contributes an O(2) term to the overall
bound (we are ignoring such terms), but could be incorporated using the bounds of
Corollary 3.2.

THEOREM 3.4. Let V, U, and be as in Theorem 3.3, and (j) be as in (3.10).
Then we can bound the error in the individual eigencomponents by

(3.11) lug(j)- v(j)l < p(M, n) (tol + ). . i(j)
min(relgap),i, 2-1/2)"

Here p(M, n) is a "pivot growth" factor, which is given in (3.21).
Proof. The proof is similar to that of Theorem 3.3. One difference is that we

use Proposition 2.9 instead of Theorem 2.5 to bound the errors in the eigenvectors.
Another difference, which introduces the growth factor p(M, n), is that we need to
use the scaling of the entries of J, to see how small eigenvector components have
small errors; not being able to use the orthogonality of Jm introduces p(M, n). We
can only prove an exponentially growing bound for p(M, n), although we believe it to
be much smaller.

As in the proof of Theorem 3.3, let V, Jm"" JM-1, where JTmHJm Hm+l.
Set VM I. The proof has three parts. In the first part, we show that the ith column
of V0 is a good approximation to the eigenvectors of H0 in the sense of the theorem.
In the second part, we show that the (i, j) entry of J0"" Jm is bounded by a modest
multiple of i(j). In the third part, we show that the rounding errors committed in
computing Jo"" Jm in floating point are small compared to i(j).

For the first part of the proof we use induction to prove that the ith column Vmi
of Vm is a good approximation to the true ith eigenvector Umi of Hm. This shows
that

(3.12) lug(j) voi(j)l < Po
(tol + ). . i(j)

min(relgap),i, 2-1/2)
where P0 is a constant (part of the "pivot growth" factor) we need to estimate. The
base of the induction follows from plugging the stopping criterion into the bound of
Proposition 2.9, yielding

]UMi(j) VMi(j)I < (2n 2)1/2. n tol.

min(relgapxi, 2-1/
< PM

(to1 + a). . fi(j)
min(relgapi, 2-1/2)

where PM n(2n- 2) 1/2. The induction step assumes that

lUm+l,i(j) Vm+l,i(j)l <_ Pm+l
(tol + e). . i(j)

min(relgapixi 2-1/2)
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which we try to extend to m. Consider the commuting diagram of Theorem 3.1.
Accordingly, the errors in the columns of Vm JmV,+l considered as eigenvectors
of Hm are just the errors in V,+I premultiplied by J,; let emi denote this error for
the ith column of V,. Suppose J, rotates in rows and columns k and l; then e,i is
identical to Um+l,- Vm+l# except for em(k) and em(1). We may assume without
loss of generality that k < and dk >_ dt (d2k and d are the diagonal entries of Hm).
As in the proof of Theorem 3.1, there are two cases: x =_ dt/dk <_ 2 =_ (v- 1)/2,
andx >2.

In the first case, x <_ 2, we know (as in the proof of Theorem 3.1) that s-n, the sine
in the rotation Jm, is bounded in magnitude by x/(1-22). Write Inl <_ Cm(ikt/ikk) 1/2

1/2 frominstead, where Cm is a modest constant. We can do this because d .,r

Proposition 2.7. This lets us bound

(3.13)

Now consider case 2, x > 2. Now Ak and At are reasonably close together. Thus
we may bound Is-nl simply by 1 in the derivation (3.13). This leads to the same bound
with a possibly different Cm; we take the final c, as the maximum of these two values.
This bounds the error in the columns of V, considered as eigenvectors of H.

Now we change H to H,. This increases the bound for lUmi(j)- Vmi(j)l by an
amount bounded by plugging the bound for IlhAmll2 from Theorem 3.1 into Propo-
sition 2.9" (2n 2)1/2(182(2n 4) 1/2 + 104). . . i(j)/min(relgapi, 2-1/2). This
completes the induction with

(3.14)
lu.(j) v.(j)l

<_ ((1 + c.)p.+l + (2n- 2)1/2(182(2n- 4) 1/2 + 104)).

Pm
(tol + v). . i(j)

min(relgapxi, 2-1/2)"

(tol + ). . V(j)
min(relgapi, 2-1/2

Here
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(1 + Cm)Pm+l + (2n 2)1/2(182(2n 4) 1/2 + 104) PM n(2n 2) 1/2

Pm satisfies an exponential error bound, but it is clear from the derivation that linear
growth is far more likely than exponential growth. This completes the first part of
the proof.

In the second part of the proof we show that the (i, j) entry of V, Jo"" Jm is
bounded by a modest multiple of i(j). To do this we prove by induction that

(3.16) Im(j)l <_ -,(j),

where Vm [,1,’", mn] and -m is a constant (part of the "pivot growth" factor)
we need to estimate. The base of the induction is for m -1, i.e., the null product,
which we set equal to the identity matrix. This clearly satisfies (3.16) with ’-1 1.
Now we assume that (3.16) is true for rn- 1 and try to extend it to m. Suppose Jm
rotates in rows and columns k and./. Postmultiplying l)m-1 by Jm only changes it
in columns k and 1. Assume as before that k < and x- d/dk <_ 1. There are two
cases, as before: x _< 2 and x > 2.

First, consider the case x <_ 2. We may bound the (j, k) and (j, l) entries of Vm
as follows"

(3.17)

Tra--la;3/2 min

1 cm X-)x 1/2
cm

a/2(1 + c)

x min

[rn-1,j (]g), )m--l,j(l)] --8n

,kk 1/2 j

1/2 I
jj ,min

-,-1 (1 + Cm)[;k(j), t(j)]------ -,[k (j), t (j)].

1/2

1/2

In the second case, x > 2, we get a similar bound. Here ,kk At, and we can simply
bound Inl _< 1. This yields a slightly different Cm; for the final Cm, we again take the
maximum of the two. This ends the second part of the proof with

(3.18) -m (1 + Cm)Tm-1, 7"--1 1.

Even though this only yields an exponential upper bound for TM, it is clear from the
derivation that linear growth is far more likely than exponential growth.

In the third and final part of the proof, we show that the rounding errors in the
(i, j) entry of the computed approximation to 1,-1 is bounded by O()Vi(j). Let
be the actual rotation which only approximates J,. From the proof of Theorem 3.1,
we have that cs Ks(1 +cs) with ]cs[ _< 22, and sn n(1 + sn) with [sn[ _< 30.
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Let I, fl(,-i * m) be the actually computed eigenvector matrix after the

rnth Jacobi rotation. The final computed eigenvector matrix is V VM-1. We use
induction to prove that

(3.19) I)m,i(j) rn,i(j)l <_ Xmei(j),

where [,..-, n] and X is constant (part of the "pivot growth" factor)
we need to estimate. The basis is again for m -1 when V-1 -1 I and
X- 0. Now we assume that (3.19) is true for m- 1 and try to extend it to m.
As before, we assume that J rotates in rows and columns k and with k < and

x d/d 1. Write i v vi. The (j, k) and (j, l) entries of V are

[,j(k), ,j (/)]- [m_,j(k)ds(1 + )(1 + )(1 + 2)
m-l,j(1)(1 + sn)(1 + 3)(1 + 4),

m-l,j()n(1 + sn)(1 + a5)(1 + 6)
+ _l,j(1)s(1 + )(1 + 7)(1 + s)]

+
+
32lfn6m_,j(k) + 24128m-l,j(1)]

+ [(1 + 249)8m-l,j(k)+ (1 + 3210)nm-1,j(1),
(1 + 32)nm-1,j(k)+ (1 + 242)dsm-l,j(1)]

so that [m,j(k), m,j(1)] I1 +
AS before, there are two cases: x 2 and x > 2. Consider the case x 2. Using

In Cm(At/A)/2, dsl 1, and I_l,i(j)l 7_1i(j), we get

IIl e7_3/2(24 + 32Cm)
Aj 1/2 Ak 1/2 1/2 1/2

x min
eTm-l(24 + a2cm)[k(j), k(1)],

and

Ihl < Xm-l(1 -t-Crn)[k(j), k(/)].

Taken together, we get

(3.20) X. (1 + Cm)Xm_ -[- STm_ (24 + 32Cm) )-1 O.

In the second case, x > 2, we get a similar bound with a possibly different c,. Again,
we take the maximum of the two. This completes the third part of the proof.

Finally, combining (3.19) and (3.12) we get

(3.21) Ivy(j)- u(j)l < (po + XM-1) (tol + e). . i(j)
min(relgap,xi 2-1/2)

proving the theorem with p(M, n) po + XM-I.
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4. One-sided Jacobi. In this section we prove that one-sided Jacobi in floating
point arithmetic applied on the right of a general matrix computes the singular values
and singular vectors with the error bounds of 2. Here we present our algorithm;
the model of arithmetic was presented in 3. In 4.1 we derive error bounds for the
computed singular values. In 4.2 we derive error bounds for the computed singu-
lar vectors. In 4.3, we present two algorithms for the symmetric positive definite
eigenproblem H, which do either left-handed or right-handed Jacobi on the Cholesky
factor L of H. The second of these algorithms cannot compute eigenvectors quite as
accurately as the first, but it may be much faster than either the first algorithm or
two-sided Jacobi.

Let Go BoDo be the initial matrix, and Gm BmDm, where Gm is obtained
from Gin-1 by applying a single Jacobi rotation. Here Dm is diagonal and B has
columns of unit two-norm. All the error bounds in this section contain the fac-
tor max (B), whereas the perturbation bounds in 2 are proportional to (B0).
Therefore, as in 3, our claim that Jacobi computes the singular value decomposi-
tion (SVD) as accurately as predicted in 2 depends on the ratio max (Bm)/(Bo)
being modest. In exact arithmetic, right-handed Jacobi on G BD is identical to
two-sided Jacobi on H GTG DBTBD DAD, so the question of the growth of
(B) (A)1/a is essentially identical to the question of the growth of (A) in
the case of two-sided Jacobi.

ALGORITHM 4.1 (Right-handed Jacobi for the singular value problem). tol is a
user-defined stopping criterion. The matrix V whose columns are the computed right
singular vectors initially contains the identity.

repeat
for all pairs < j

/.compute [a c]c b
the (i, j) submatrix of GTG */

n 2

b=E 2
k=l Gkj

C- =1 aki * Gkj

/* cmpute the Jacbi rtatin which diagnalizes [ ac c],/b
+ +

cs --1/l + t; sn cs , t
/* update columns and j of G *//
for k- 1 to n

trap-
Gk cs trap sn Gkj
Gky sn trap + cs Gkj

endfor
/* update the mtrix V of right singular vectors *//
for k 1 to n

trap- Vk
Vk cs tmp sn Ykj
Ykj 8n $ trap + cs Ykj

endfor
endfor

until convergence (all c]/ tol)
/* the computed singular values are the norms of the columns of the final G */
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/* the computed left singular vectors are the normalized columns of the final
G */

4.1. Error bounds for singular values computed by right-handed Ja-
cobi. The next theorem and its corollary justify our accuracy claims for singular
values computed by right-handed Jacobi. The proofs are analogous to those in 3;
details may be found in [10].

THEOREM 4.1. Let Gm be the sequence of matrices generated by the right-handed
Jacobi algorithm in finite precision arithmetic with precision ; that is Gm+l is ob-
tained from Gm by applying a single Jacobi rotation. Then the following diagram:

floatinGm Jacobi {Jm+l

exact--((m
/ rotation

commutes in the same way as in Theorem 3.1. The diagonal arrow indicates that
Gm+l is obtained from Gm by applying one Givens (not necessarily Jacobi) rotation
in exact arithmetic. Gm is bounded as follows. Write 5Gm 5BmDm, where Dm is
diagonal such that Bm in Gm BmDm has unit columns. Then

(4.1) [lBml[2

In other words, one step of Jacobi satisfies the assumptions needed for the error bounds
of2.

COROLLARY 4.2. Assume that Algorithm 4.1 converges, and that GM is the final
matrix which satisfies the stopping criterion. For 0 < m <_ M, write G, BmD,
with Dm diagonal and Bm with unit columns. Let aj be the jth singular value of Go
and a the j th computed singular value. Then to first order in the following error
bound holds:

(4.2)
lay

(72. M + n2 + n. tol). max a(Bk) + He.
aj 0<<M

Remark. A similar bound can be obtained based on the error bound in Proposition
2.15.

4.2. Error bounds for singular vectors computed by right-handed Ja-
cobi. The next two theorems justify our accuracy claims for singular vectors com-
puted by right-handed Jacobi.

THEOREM 4.3. Let V [vl,..., Vn] be the matrix of unit right singular vectors
and U [u, Un] be the matrix of unit left singular vectors computed by Algorithm
4.1 in finite precision arithmetic with precision . Let VT [VT,’’’, VTn] and UT
[UT, UTn] be the matrices of true unit right and left singular vectors, respectively.
Let =_ max, a(B,) be the largest a(B,) of any iterate. Then the error in the
computed singular vectors is bounded in norm by

max(llUTi till2, llVTi

(4.3) < (n-.5) 1/2. . (72M. + n. tol + n2. )
relgapi

+ (9M + n +
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Then consider the errors in the individual components of the computed right
singular vectors IVTi(j)- vi(j)l. From Proposition 2.20, we see that we can hope to
bound this quantity by O(e)2i(j)/relgapi, where

(4.4) (j) 3 min (a--, ).
We use (j) as defined in (4.4) for each Gin, even though the values of ai and aj

vary slightly from step to step. This error contributes an O(s2) term to the overall
bound (which we ignore) but could be incorporated using the bounds of Corollary
4.2.

THEOREM 4.4. Let V, VT, and be as in Theorem 4.3, and (j) be as in (4.4).
Then we can bound the error in the individual components of v by

(4.5) IVTi(j) vi(j)l < q(M, n) (tol + e). 2. i(j)
relgap

where q(M, n) has a bound similar to that of p(M, n) in Theorem 3.4.

4.3. Using Cholesky followed by one-sided Jacobi for the symmetric
positive definite eigenproblem. In this subsection we consider two algorithms for
the symmetric positive definite eigenproblem H, both based on performing Cholesky
on H, and using one-sided Jacobi to compute the SVD of the Cholesky factor L.
The first algorithm (Algorithm 4.2) does left-handed Jacobi on L, returning its left
singular vectors as the eigenvectors of H and the squares of its singular values as the
eigenvalues of H. The second algorithm (Algorithm 4.4), originally proposed in [22],
does Cholesky with complete pivoting (which is equivalent to diagonal pivoting) and
then right-handed Jacobi on L, again returning its left singular vectors and squares
of its singular values.

The first algorithm, left-handed Jacobi, is about as accurate as two-sided Jacobi,
but permits purely column oriented access to the data following the initial Cholesky
decomposition; this can have speed advantages on machines with memory hierarchies.
The second algorithm, right-handed Jacobi with pivoting, is less accurate than the first
because it will not always compute tiny eigenvector components with the accuracy
of Theorem 3.4, although it does compute the eigenvalues as accurately, and the
eigenvectors with the same norm error bound. However, it can be several times faster
than either the first algorithm or two-sided Jacobi.

ALGORITHM 4.2 (Left-handed Jacobi on L without pivoting for the symmetric
positive definite eigenproblem H).

1. Form the Cholesky factor L of H: H LLT.
2. Compute the singular values a and left singular vectors v of L using left-

handed Jacobi.
2 The eigenvectors of H are v3. The eigenvalues A of H are A a,.

We show that this method is as accurate as using two-sided Jacobi directly on H.
The proof involves a new error analysis of Cholesky decomposition, so we begin by
restating Cholesky’s algorithm in order to establish notation for our error analysis.

ALGORITHM 4.3 (Cholesky decomposition H LLT for an n n symmetric
positive definite matrix H).

for i--lton
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Lii (Hii i- 2 /2k= Lik)
for j=i+lton

Ek--1 LjkLik)/Lii
endfor

endfor

LEMMA 4.5 (see [10]). Let L be the Cholesky factor of H computed using Algo-
rithm 4.3 in finite precision arithmetic with precision . Then LLT H + E where

IEI <_ (n + 5)(H,H)/.
THEOREM 4.6. Let L be the Cholesky factor of H DAD computed in floating

point arithmetic using Algorithm 4.3. Let ai and VLi be the exact singular values and
right singular vectors of LT, and Ai and VHi be the eigenvalues and eigenvectors of
H. Let i(j) be as in Proposition 2.8. Then

2I a _< (n2 + 5n). . a(A),

IIVLi VHill2 <_ (n2 + 5n)(n 1)1/2. a(A) + O(2),
relgap),i

Ic(J) ()1 -< ( +)( )/" e" ,(A). ()
min(relgap)i, 2-/) + O(e)"

Proof. Plug the bound of Lemma 4.5 into Theorem 2.3, Theorem 2.5, and Propo-
sition 2.9. [:]

Theorem 4.6 implies that the errors introduced by Cholesky are as small as those
introduced by two-sided Jacobi. Write H DAD and LA D-L. Since IIA-
LALTA]I2

_
(n2 + 5n), a(A) (t(LA))2 (unless both are very large). Since the

columns of L have nearly unit two-norm, the accuracy of left-handed Jacobi applied
to L is governed by t(LA). Thus Cholesky followed by left-handed Jacobi on L
results in a problem whose condition number t(LA) is approximately the square root
of the condition number of the original problem a(A). Corollary 4.2 and Theorems
4.3 and 4.4 guarantee that the computed eigenvalues and eigenvectors are accurate.
In exact arithmetic, left-handed Jacobi on L is the same as two-sided Jacobi on
DAD H LLT D(LAL)D, so the question of how much a(LA) can grow during
subsequent Jacobi rotations is essentially identical to the question of the growth of
t(Am) during two-sided Jacobi. The second algorithm follows.

ALGORITHM 4.4 (Right-handed Jacobi on L with pivoting for the symmetric
positive definite eigenproblem H).

1. Form the Cholesky factor L of H using complete pivoting. Then there is a
permutation matrix P such that pTHp LLT.

2. Compute the singular values ai and left singular vectors vi of L using right-
handed Jacobi.

2 The eigenvectors of H are Pvi.3. The eigenvalues Ai of H are hi ors.
Even if we did not do complete pivoting, Theorem 4.6 would guarantee that the

squares of the true singular values of L would be accurate eigenvalues of H, and
that the true left singular vectors of L would be accurate eigenvectors of pTHp.
Since we are computing left singular vectors of L, Theorem 4.4 does not apply, but
from Corollary 4.2, we know that the computed eigenvalues are accurate, and from
Theorem 4.3 we know that the computed eigenvectors are accurate in a norm sense.
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Numerical experiments in 7 bear out the fact that tiny eigenvector components may
not always be computed as accurately by Algorithm 4.4 as by Algorithm 4.2.

Note that Algorithm 4.4 is mathematically equivalent to doing two-sided Jacobi
on LTL, so we in effect take a single step of the symmetric LR algorithm [22] before
beginning Jacobi, thus giving Jacobi a "head start." (An analogous head start is
attained by preceding left-handed Jacobi for the SVD with a QR decomposition with
column pivoting [12].) Writing LTL H1 DIAIDI, we see it is tc(A), which
governs the accuracy of step 2 of the algorithm, as well as its speed, since it is (A1)
that must be driven to 1. We discuss this in more detail in 6, where we show that
(A) can be much smaller than (A), where H DAD is the original problem.

There are two other algorithmic variations one might consider: Cholesky with
pivoting followed by left-handed Jacobi on L, and Cholesky without pivoting followed
by right-handed Jacobi on L. We can measure the quality of both algorithms as we
did in the last paragraph: We find symmetric positive definite matrices H2 and H3
such that the algorithms are mathematically equivalent to doing two-sided Jacobi on

H2 and H3, respectively. Then their accuracies and running times depend on n(A2)
and (A3) where Hi DiAiDi. One may show that t(A2) (A), so there is
no advantage to pivoting and left-handed Jacobi, and also that (A3) can greatly
exceed (A), so that right-handed Jacobi without pivoting can be harmful. We do
not consider these algorithmic variations further.

5. Bisection and inverse iteration. Here we show that bisection and inverse
iteration applied to the symmetric positive definite matrix H DAD can compute the
eigenvalues and eigenvectors within the accuracy bounds section of 2. Let inertia(H)
denote the triple (n, z, p) of the number n of negative eigenvalues of H, the number z
of zero eigenvalues of H, and the number p of positive eigenvalues of H. These results
are simple extensions of Algorithms 3 and 5 in [2], and detailed proofs may be found
there and in [10].

ALGORITHM 5.1 (Stably computing the inertia of H- xI DAD xI).
1. Permute the rows and columns of A- xD-2 (which has the same inertia as

H- xI) and partition it as

All xD2

A21

so that if 1 xd-2 is a diagonal entry of All xD2, then xd-2 _> 2n + 1, where n
is the dimension of H.

2. Compute X A22 xD2 A2(AI xD2)-IA12, using Cholesky to
compute (AI xD2)-A12.

3. Compute inertia(X) (neg, zero, pos) using a stable pivoting scheme such
as in [4].

4. The inertia of H xI is (neg + dim(Al), zero, pos).

We need to partition A- xD-2 as above in order to make the proof convenient,
but it may not be necessary algorithmically [10].

THEOREM 5.1. Let be the machine precision in which Algorithm 5.1 is carried
out, where we assume that neither overflow nor underflow occur. Then Algorithm
5.1 computes the exact inertia of D(A + 5A)D- xI, where 115AII2 0(). Thus
Algorithm 5.1 can be used in a bisection algorithm to find all the eigenvalues of H to
the accuracy of Theorem 2.3 or Proposition 2.4.
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ALGORITHM 5.2 (Inverse iteration for computing the eigenvector x of a symmetric
positive definite matrix H DAD corresponding to eigenvalue z). tol is a user-
specified stopping criterion.

1. We assume that eigenvalue z has been computed accurately, for example,
using Algorithm 5.1.

2. Choose a starting vector Y0; set i 0.
3. Compute the symmetric indefinite factorization LDLT of P(A- zD-2)PT

[4], where P is the same permutation as in Algorithm 5.1, step 1.
4. Repeat
i=i+1
Solve (A- zD-2)i yi-1 for using the LDLT factorization of step 3.

y r.
until (r <_ tol)

5. x D-ly

THEOREM 5.2. Suppose that Algorithm 5.2 terminates with x as the computed
eigenvector of H- DAD. Then there is a diagonal matrix with ii 1 + O(tol)
and a matrix 5A with IIbAII2 O(tol), such that Jx is the exact eigenvector of
D(A + 5A)D. Thus the error in x is bounded by Theorem 2.5, Corollary 2.6, and
Proposition 2.9.

6. Upper bounds for maxm tc(Am)/tc(Ao). As stated in 3 and 4, our claims
about the accuracy to which Jacobi can solve the eigenproblem depend on the ratio
maxm t(Am)/t(Ao) being modest. Here H0 DoAoDo is the initial matrix, and
H, DmA,D, is the sequence produced by Jacobi (Hm+l is obtained from Hm by
applying a single Jacobi rotation, D, is diagonal, and Am has ones on the diagonal).
The reason is that the error bounds for Jacobi are proportional to maxm t(Am), and
the error bounds of 2 are proportional to a(A0).

In this section, we present several results explaining why maxm a(A,)/a(Ao)
should not be expected to grow very much. Recall that convergence of Hm to diagonal
form is equivalent to the convergence of Am to the identity matrix, or of t(Am) to 1.
Thus we expect t(Am) < a(A0) eventually. The best situation would be monotonic
convergence, but this is, unfortunately, not always the case.

We have not been able to completely explain the extremely good numerical results
of 7, that maxm t(Am)/t(Ao) never exceeded 1.82, and averaged 1.20 in random
experiments. (Wang [23] has found a sequence Hn of matrices of dimension n where
this ratio grows slowly with n, reaching 8 for n 50. Changing the sweep strategy
eliminated this growth.) A complete theoretical explanation of this remains an open
question.

We only speak in terms of two-sided Jacobi in this section. This is no loss of
generality because, in exact arithmetic, right-handed Jacobi on G is equivalent to
two-sided Jacobi on GTG.

Our first result shows that t(Am)/t(Ao) cannot be too large if Am is obtained
from A0 by a sequence of Jacobi rotations in pairwise disjoint rows and columns. The
second result gives a cheaply computable guaranteed upper bound on
max, (Am)/(Ao) in terms of the Hadamard measure of A0. This bound is gen-
erally quite pessimistic unless the dimension of A is modest and (A0) is small--at
most a few hundred. The third and fourth results will be for right-handed Jacobi with
pivoting (Algorithm 4.4). The third result shows that the wider the range of numbers
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on the diagonal of H, the smaller n(A1) is for that algorithm. This in turn makes it
converge faster. The fourth, rather surprising, result is that n(A1) is bounded by a
constant, depending only on the dimension n, not on A0. These last two results lead
us to recommend right-handed Jacobi with pivoting Jacobi as the algorithm of choice
(unless it is important to get small eigenvector components to high accuracy; see the
discussion in 4.3).

PROPOSITION 6.1. Let Ho be n n. Let Hm be obtained from Ho by applying rn
Jacobi rotations in pairwise nonoverlapping rows and columns (this means m <_ n/2).
Write Hm DmAmDm as before. Then

(6.1) t(A) < 1 + maxl<k<m ]Ao,2-,.1 < min(n(Ao) 2n).a(Ao) 1 max<t<m [Ao,2c-,2tl

Also,

(6.2) (Ai+l) < min(a(Ao) 8).
t(Ai)

Furthermore, the spectrum of Am is independent of Do, even though the entries of
Am depend on Do. More precisely, the spectrum of Am coincides with the spectrum
of the pencil Ao )Ao, where Ao coincides with Ao on every rotated element and is
the identity otherwise.

Proof. We begin by deriving a matrix pencil depending only on A0 whose eigen-
values are the same as Am. This proves that the eigenvalues of Am depend only on

A0. We assume without loss of generality that the m Jacobi rotations are in rows and
columns (1,2), (3,4),-.., (2m- 1, 2rn). This lets us write jTHoJ Hm, where J is
block diagonal with the 2 2 Jacobi rotations (and possibly ones) on its diagonal.
Rewrite this as

Am (Dn1JTD0)A0(DOJDI) ZTAoZ,
where Z has the same block diagonal structure as J. Let A be a block diagonal
matrix with the same block structure as Z and J, where A is identical to A0 within
its 2 2 blocks, and has ones on its diagonal when J does. Since Hm,12 Hm,34

0, also Am,2 Am,23 0. Thus Am has 2 2 identity matrices on its
diagonal matching the block structure of Z, J, and A. Thus Am ZTAoZ implies
Z-TZ-1 Ao Therefore, the eigenvalues of Am ZTAoZ are identical to those of
the pencil Ao )Z-TZ-1 Ao )Ao

Now we apply the minimax theorem to bound/rnin(Am) below by

xTAox minllxl]=., xTAox(6.3) /min(Am) min >
x0 xTArox maxllxll=l xTAox

/min (A0)
1 + maxl<k<m ]Ao,2k-l,2k]"

We may bound l+max<k<m [Ao,2k-,2[ from above by both/kmax(Ao) and 2, yielding

(6.4) /min (Am)

_
Amin(A0)

min(2,/kmax (A0))

Now we bound /max(Am) from above. First, by the minimax theorem we may
write

xTAox/max(Am) max
xO xTAox

maxll xTAox ,max(A0)
minllll= xTAox 1 max<k<m IAo,2k_,2kl’
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which, when combined with (6.4), yields

n(A.) <_ (n(Ao)),
proving half of (6.1). For the other half, note that 1 _< Amax(A) <_ n for all i, so that
)max(Am)/)max(Ao) n. Now combine this with (6.4).

Now we show Amax(A+l) <_ 4Amax(A), which, when combined with (6.4), yields
(6.2). It suffices to show Amax(A1) <_ 4Amax(A0). Write

All Ale 1A0 A21 A2e

where AI is 2 2. Then by the minimax theorem, there exists a conformally parti-
tioned unit vector xT [XlT, x2T] where

TA
/kmx(A1) xT1AllXl q- 2xT1A12x2 q- x2 22X2

xAx + xT x
Write xTlXl (0 1), xT2x2 1--, xT1AllXl "FI, and xT2A22x2 ’2(1--),
so that

/max(A1) n q- 2xTIAlexe + ’(1 --)

The maximum of this last expression over all 0 _< < 1 is

2 + 2-2 <_ 2 + 2,kmax(A22) <_ 4/kmax(Ao).

Our second bound is based on the Hadamard measure of a symmetric positive
definite matrix H:

7-t(H) det(H)

PROPOSITION 6.2. The Hadamard measure 1-l(H) has the following properties:
1. (H) <_ 1 an_d (H) 1 if and only if H is diago_nal.
2. TI(H) 1-l(DHD) for any nonsingular diagonal D.
3. Let H DAD with D diagonal and A with unit diagonal. Then

/-/(H) det(A)
,kmin (A)_

where e exp(1).
4. Let H’ be obtained from H by applying a Jacobi rotation (in exact arithmetic)

in rows and columns and j. Then

7-t(H) >1-I(H’)
1 Ai

5. Let H0,..., Hm,"" be a sequence of symmetric positive definite matrices ob-
tained from Jacobi’s method in exact arithmetic. Let Hm DmAmD, with Dm
diagonal and Am with unit diagonal. Then

mmaxn(A’)-< det(Ao) 7-t(Ho)
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Proof. 1. Write the Cholesky decomposition H LLT. Then

Hll Hnn H Li2k -> Li2 det(H).
i=1 k=l i=1

2. det(D2) factors out of the numerator and denominator of 7-t(/H/).
3. From part 2 above T/(H) -/(A) det(A), so it suffices to show Amin(A) _>

det(A)/e. Let 0 < A1 <_"" <_ An be the eigenvalues of A. Since A1 det(A)/I]n__2 A,
nwe need to show l-[i=2 A -< e. Now Ei=2 A -< tr(A) n. Since ab >_ (a + x)(b- x)

for alla_> b_> x_> 0, we see that n1-Ii=2 A is greatest when all A n/(n 1) in
nwhich case I-Ii--2 )i ((n- 1)/n)n-1

_
e.

4. From Proposition 6.1 we have

T/(H’) det(AA’-1) det(A)/(1 A2j) T/(H)/(1 A2j),
where A I except for Aj A} Aij.

5. This is directly implied by parts 3 and 4.
Thus part 5 of this proposition gives us a guaranteed upper bound on

maXm t(Am) at a cost of about n3/6 flops, compared to 2n3 flops per Jacobi sweep
(4n3 if accumulating eigenvectors). If we use the algorithm in 4.3, where we must
do Cholesky anyway, this upper bound comes nearly for free.

Basically, this upper bound is only useful as long as (A0) is quite small and A0
has low dimension; otherwise, it is much too large to be useful.

Our third and fourth bounds are for right-handed Jacobi with pivoting (Algorithm
4.4). Recall that this algorithm begins by doing Cholesky with complete pivoting on

H0 to get PHoPT LLT, where P is a permutation matrix. Then it does right-
handed Jacobi on L, which is equivalent (in exact arithmetic) to two-sided Jacobi on
LTL. Therefore, Algorithm 4.4 essentially starts with LTL- HI DAD.

Our third result, which we state rather informally, is that the larger the range of
numbers on the diagonal D2 of H, the smaller is (A) (this effect was also observed
in [22]). We argue as follows. Let L DLA be the factor obtained from complete
pivoting. Here, LA has rows of unit two-norm. Since Algorithm 4.4 does right-
handed Jacobi on L, its performance depends on the condition number of DLAD,
where D is chosen diagonal to make the columns of DLAD unit vectors. From van
der Sluis’s theorem [21], we know the condition number of DLAD can be at most
n times DLAD-1, so it suffices to examine (DLAD-1). The effect of complete
pivoting is essentially to reorder D so that D >_ Di+l,i+, and to keep LA, as
large as possible. Now (DLAD-) LA,ii is unchanged, and the subdiagonal entry
(DLAD-1)j LA,jDDj is multiplied by the factor DDj, which is between
0 and 1. The more Djj exceeds D, the smaller this factor, and the more nearly
diagonal DLAD- becomes. Since complete pivoting tries to keep the diagonal of LA
large, this improves the condition number.

Our fourth result shows that, surprisingly, max,> t(A,) is bounded indepen-
dent of H0.

PROPOSITION 6.3. Let PHoPT LLT be the Cholesky decomposition of the
n n matrix Ho obtained with complete pivoting. Let H1 LTL DIAID1. Let
Hm DmA,Dm, m > 1, be obtained from two-sided Jacobi applied to HI. Then

1. TI(HI) >_ TI(Ho).
2. TI(H) >_ l/n!. This bound is attainable.

_< _<
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Proof. 1. Since det(H1) det(H0), it suffices to show that 1-Ii H0,i _> rI HI,.
2Assume without loss of generality that P I. Then Ho,i k=l Lik and Hl,i

n J 2k= L. Complete pivoting is equivalent to the fact that Li >_ -k= Ljk for all

j > i. We wish to prove Hi=I 2 nn -k=l Lk -- 1-Ii=l -k= L2ki We systematically use the
fact that ab >_ (a + x)(b- x) for a _> b _> x _> 0. We illustrate the general procedure
in the case of n 3"

(L121)(L221 + L222)(L321 + L]2 + L3) >_ (LI + L1)(L22)(L]l + L]2 + L3)
>_ (L121 + LI + LI)(L2)(L]2 + L]3)
_> (L121 + L221 + L]1)(L222 + L]2)(L]3).

2. We have
n 2 n 2 n

1 1det(L) 2 I-[:1 L ]-[ Li -> II--(H1) n n 2 =L n!rI=l (LTL)i 1-[=1 (’k= nki) .= =1

To see that this bound is attainable, let H LLT where Li #(-1)/2 and Lj
(1 #)1/2#(-1)/2. Now let # > 0 become small.

3. The result follows from part 2 and Proposition 6.2, part 5. [:]

The example in part 2 of the proposition for which the Hadamard bound is at-
tainable unfortunately has the property that the resulting upper bound in part 3 is
a gross overestimate. While the upper bound grows as e. n. n!, t(A1) only grows
like n3/2. However, (A0) grows like #-n/2, which can be arbitrarily larger than the
bound in part 3. The choice # 0.5 provides an example in which the upper bound
in part 3 can arbitrarily exceed both (A0) and maxm>_l (A) for large n.

Nonetheless, in numerical experiments the upper bound e. n/Tl(H1) on

maxm>l (Am) never exceeded 40. We also always observed that (A1) _< (A0)
in all cases, although this is not true in general [23].

Recently, Slapnihar [17] has improved the e. n-n! bound to O(4n) and has shown
that this improved bound is attainable; see also related results in [13].

7. Numerical experiments. In this section we present the results of numerical
experiments. Briefly, we tested every error bound of every algorithm presented in this
paper, and verified that they held in all examples. In fact, the performance is better
than we were able to explain theoretically, both because we could observe little or
no growth in actual errors for increasing dimension, and because of the surprisingly
small values attained by max, (A,)/(Ao) (see 6).

These tests were performed using FORTRAN on a SUN 4/260. The arithmetic
was IEEE standard double precision [1], with a machine precision of 2-53 10-16

and over/underflow threshold 10+3s.
There were essentially four algorithms tested: two-sided Jacobi (Algorithm 3.1),

one-sided Jacobi (Algorithms 4.1 and 4.2), right-handed Jacobi with pivoting (Algo-
rithm 4.4), and bisection/inverse iteration (Algorithms 5.1 and 5.2). All were used
with the stopping criterion tol 10-14.

Since we claim that these algorithms are more accurate than any other, we tested
their accuracy as follows. We considered only symmetric positive definite eigenprob-
lems, and solved every one using every algorithm. The different answers were com-
pared to see if they agreed to the predicted accuracy (which they did). They were
also compared to the EISPACK routines tred2/tql2 [18], which implement tridiago-
nalization followed by QR iteration. Small eigenvalues computed by EISPACK were
often negative, indicating total loss of relative accuracy.
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For example, the matrix

1040 1019 1019 ]H 1019 1020 109
1019 109 1

has all its eigenvalues computed to high relative accuracy by Jacobi, whereas QR
computes at least one negative or zero eigenvalue, no matter how the rows and columns
are ordered. This shows that QR cannot be made to deliver high relative accuracy
on appropriately graded matrices, as suggested in [18].

The remainder of this section is or,,anized as follows: Section 7.1 discusses test
matrix generation. Section 7.2 discusses the accuracy of the computed eigenvalues.
Section 7.3 discusses the accuracy of the computed eigenvectors. Section 7.4 discusses
the the growth of maxm (Am)/(Ao). Section 7.5 discusses convergence rates; here
the speed advantage of right-handed Jacobi with pivoting is apparent.

7.1. Test matrix generation. We generated several categories of random test
matrices according to three parameters: the dimension n, tA, and tD. First, we
describe the algorithm used to generate a random matrix from these parameters and
then the sets of parameters used.

We tested matrices of dimensions n 4, 8, 16, and 50. Since testing involved
solving an n n eigenproblem after each Jacobi rotation (to evaluate t(Am)) and there
are O(n2) Jacobi rotations required for convergence, testing costs O(n5) operations
per matrix.

Given A, we generated a random symmetric positive definite matrix with unit
diagonal and approximate condition number A as follows. We began by generating
a diagonal matrix T with diagonal entries in a geometric series from 1 down to 1/A.
Then we generated an orthogonal matrix U uniformly distributed with respect to Haar
measure [19], and formed UTUT. Finally, we computed another diagonal matrix K
so that A0 KUTUTK had unit diagonal. This last transformation can decrease
the condition number of UTUT, but usually not by much. For 4 4 matrices, it
decreased it by as much as a factor of 500, for 8 8 matrices by a factor of 20, for
16 16 matrices by a factor of 5, and for 50 50 matrices by a factor of 1.5. (This
decreasing variability is at least partly due to the fact that we ran fewer tests on
the larger matrices.) For a more complete discussion of the test matrix generation
software, see [9].

Given D, we generated a random diagonal matrix Do with diagonal entries whose
logarithms were uniformly distributed between 0 and log D. This means the diagonal
entries themselves were distributed from 1 to tD. The uniform distribution of the
logarithm essentially means that every decade is equally likely, and so matrices Do
are generated with entries of widely varying magnitudes.

The resulting random matrix was then H0 DoAoDo.
We generated random matrices with five possible different values of A: 10, 102,

104, 10s, and 1012; six possible different values of D: 105, 1010, 102, 103, 105,
and 10100; and four different dimensions n 4, 8, 16, and 50. This makes a total of
5 6 4 120 different classes of matrices. In each class of dimension n 4 matrices,
we generated 100 random matrices, in each class of n 8, we generated 50 random
matrices, in each class of n 16, we generated 10 random matrices, and in each class

This was using version 3.5h of Matlab on a SUN 4/260. Later versions of Matlab may get
different results. For more analysis, see [7] and [15].
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of n 50, we generated one random matrix. This makes a total of 4830 different test
matrices.

The matrices had, in some cases, eigenvalues ranging over 200 orders of magnitude
(when nD 10100). The relative gaps relgap ranged from .028 to 2.1042.

7.2. Accuracy of the computed eigenvalues. There are two accuracy
bounds for eigenvalues from 2 which we tested. The first one is based on Theo-
rem 2.3 (or Theorem 2.14 together with Theorem 4.6), which says that if A and/k’
are approximations of hi computed by two of our algorithms, then

n(Ao)A

should be O(tol), where tol- 10-14 is our stopping criterion. For two-sided Jacobi
and one-sided Jacobi, (1 never exceeded 2.10-15. For two-sided Jacobi and right-
handed Jacobi with pivoting, Q1 also never exceeded 2.10-15. Every matrix had an
eigenvalue for which Q1 exceeded 4.10-is, showing that the bound of Theorem 2.3
is attainable, as predicted by Proposition 2.10.

In the case of bisection, we did not run a bisection algorithm to convergence for
each eigenvalue, but rather took the eigenvalues A computed by two-sided Jacobi,
made intervals [(1- tol. (A0)), (1 + tol. (A0))] from each one, and used bi-
section to verify that each interval contained one eigenvalue (overlapping intervals
were merged and the counting modified in the obvious way). All intervals successfully
passed this test.

The second accuracy bound is from Proposition 2.4 (or Proposition 2.15 together
with Theorem 4.6), which predicts that

should be O(tol). Here vi is the unit eigenvector computed by two-sided Jacobi. For
two-sided Jacobi and one-sided Jacobi, Q2 never exceeded 2.10-14. For two-sided
Jacobi and right-handed Jacobi with pivoting, Q2 never exceeded 9.10-15. Every
matrix had an eigenvalue for which Q2 exceeded 5.10-16, showing that the bound of
Proposition 2.4 is attainable, as it predicts.

In the case of bisection, we again made intervals [A-tol-IIDovi 1122, A +tol. IIDovi I1]
from each eigenvalue A and verified that each interval contained the proper number
of eigenvalues.

Finally, we verified a slightly weakened version of Proposition 2.7, that

,min (A0) tol < - < /max (A0) + tol
hi

for the eigenvalues computed by two-sided Jacobi. Here hi is the ith smallest
diagonal entry of H0. Adding and subtracting tol to the upper and lower bounds
takes into account the errors in computing .

7.3. Accuracy of the computed eigenvectors. There is one bound on the
magnitude of the components of the eigenvectors, and two accuracy bounds, one for
the norm error and one for the componentwise error.

We begin with a few details about our implementation of inverse iteration. We
used the eigenvalues computed by two-sided Jacobi, and the vector of all ones as a

starting vector. Convergence always occurred after just one iteration.
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The componentwise bound on the magnitude of the eigenvectors is based on
Proposition 2.8, which says that the components of the normalized eigenvector
should be bounded by

((/i/1/2 (/Jl 1/2)Ivi(j)l <_ i(j)- ((A0))a/2. min

This was verified for the eigenvectors computed by all four algorithms. We note that
since this bound is proportional to (A0)a/2, it becomes weaker as (A0) becomes
larger, and indeed becomes vacuous for matrices with (A0) large and eigenvalues in
a narrow range.

The norm error bounds are based on Theorem 2.5 (or Theorem 2.16 together
andwith Theorem 4.6), which predicts that if v vi are approximations of the unit

eigenvector vi computed by two of our algorithms, then

Q3 [Iv vTll 
((Ao)/relgapxi) + 1

should be O(tol). (We add the 1 in the denominator because a single roundoff error
in the largest entry can cause a norm error of e; see Theorem a.3 or Theorem 4.3.)

For two-sided Jacobi and one-sided Jacobi, Qa never exceeded 3.10-16. For
two-sided Jacobi and right-handed Jacobi with pivoting, Qa also never exceeded 2.
10-14. For two-sided Jacobi and inverse iteration, Qa never exceeded 8.10-14. Every
matrix had an eigenvector for which Qa exceeded 10-is for every pair of algorithms
compared, showing that the bound of Theorem 2.5 is nearly attainable, as predicted
by Proposition 2.11.

The second accuracy bound is based on Proposition 2.9 (or Proposition 2.20 and
Theorem 4.6), which predicts that

Q4
[v(j) v’(j)l min(relgapxi, 2-/2)

should be O(tol). For two-sided Jacobi and one-sided Jacobi, Q4 never exceeded
3-10-17. For two-sided Jacobi and inverse iteration, Qa never exceeded 3. 10-15.
For two-sided Jacobi and right-handed Jacobi with pivoting, Q4 was as large as .02,
which is consistent with the fact that right-handed Jacobi with pivoting computes the
eigenvectors as left singular vectors of L, for which we only have a normwise error
bound (Theorem 4.3). For the other algorithm, Q4 was only 10.3o for matrices with
(A0) 10e; this reflects the factor (Ao)/ in the denominator of Q4, a weakness
of Proposition 2.8. In other words, the componentwise error bounds are generally
only interesting for small to medium (A0).

7.4. Growth of max (A)/(Ao). In computing

Q maxa(Am)/e;(Ao),

we note that a single computation requiring M Jacobi rotations supplied us not just
with one value of Qs, but rather M- 1" Since every Ai can be thought of as starting
a new eigenvalue computation, we may also measure max,_>i (A,)/(Ai) for all
< M. Thus, all told, our 4830 different matrices represent over 900,000 data points

of Qs.
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TABLE 1
Hadamard upper bound Q6 on maxm a(Am)/a(Ao).

10 10 104 10s 1012
4 5.8 13 590 6.3.106 6.1.1010
8 21 410 1.1.107 9.1.1017
16 200 2.7.105 1.8.1015 x
50 6.4.105 8.0.1016 cx) cx

The largest value of Q5 encountered was 1.82. This was for an 8 8 matrix
with a(A0) 1.4.1012, and eigenvalues ranging over 133 orders of magnitude. 141
Jacobi rotations (a little over 5 sweeps) were required for convergence, plus 28 more
steps (one more sweep) where no work is done to recognize convergence. In Fig. 1, a
plot is shown of a(Ai)- 1 versus i. We plot a(Ai)- 1 instead of t(Ai) in order to
see the quadratic convergence of a(Ai) to 1. The graph appears nearly monotonic,
except for a slight rise near i 20. This is seen more clearly in Fig. 2, which plots
max,_>i a(A,)/a(Ai) versus i. Here the maximal nonmonotonicity of the curve near
i- 20 is apparent.

Recently, Wang [23] found a family of examples where Q5 was as large as 8 for
matrices up to dimension 50. These matrices have 1 on the diagonal and 1-e on the
offdiagonal, where e is small. However, by using a different pivoting strategy than
cyclic-by-rows, namely, the parallel pivoting discussed in Proposition 6.1, this growth
could be eliminated.

Now we consider the Hadamard-based upper bound on Q5 from Proposition 6.2"
e.n

Q <_ Q-
7-t(H0). a(A0)"

Table 1 gives the maximum values of this upper bound for different values of dimen-
sion n and gA g(A0). Recall that the true value of Q5 never exceeds 1.82. As
Proposition 6.2 suggests, this upper bound should not depend on Do and indeed the
values observed depended very little on Do.

As can be seen, the Hadamard-based bound is of little use except for very small
matrices of modest a(A0), c means the value overflowed.

Now we consider right-handed Jacobi with pivoting. Let us recall the notation of
6" Let PHoPT LLT be Cholesky with complete pivoting, and let LTL H1
DIA1D1. As suggested in that section, we expect both a(A1) to be smaller than
(Ao), and the Hadamard-based upper bound

Q5 _< Q7 max 1,
7-[(H1) (A0)

on Q5 to be much smaller than the one for two-sided Jacobi.
First, a(At)/a(Ao) never exceeded . In fact, a(Ai) never exceeded 40 for any

matrix. This is quite remarkable. This means that all essential rounding errors
occurred during the initial Cholesky decomposition. Finally, the Hadamard-based
upper bound Q on Qs never exceeded 29. (Recently, Wang [23] found an example
where a(A1)/a(Ao) slightly exceeded 1; in his example, a(A0) was close to 1.)

7.5. Convergence rates. We begin with a few details on how we counted the
number of Jacobi rotations required for convergence. In all algorithms (two-sided
Jacobi, one-sided Jacobi, and right-handed Jacobi with pivoting), we stopped when
the last n(n- 1)/2 stopping tests IHijl. (HiiHjj) -/2 <_ tol succeeded; this means
every off-diagonal entry of H satisfies the stopping criterion. In the case of two-sided
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FIG. 1. a(Ai)- 1 versus i.
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FIG. 2. maxm>i a(Am)/a(Ai) versus i.

Jacobi, this means the last n(n- 1)/2 Jacobi rotations involved almost no work. For
the two one-sided Jacobis, however, evaluating the stopping criterion costs three inner
products, so the last n(n- 1)/2 rotations involve a significant amount of work, even if
no rotations are performed. This must be kept in mind when comparing the number
of rotations for two-sided and one-sided Jacobi.

We used the same standard cyclic pivot sequence for all the algorithms: (1,2),
(1,3),..., (1,n), (2,3),..., (2,n), (3,4),..., (n- 1,n).

We begin by comparing two-sided Jacobi and one-sided Jacobi. In exact arith-
metic, these two algorithms are identical. In practice, they usually took the same
number of steps, although one-sided Jacobi did vary from 20 percent faster to 50 per-
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TABLE 2
Average number of sweeps for two-sided Jacobi (TsJ) and right-handed Jacobi with pivoting

(RhJwP).

Dimension n

A D 4 8 16 50
TsJ RhJwP TsJ RhJwP TsJ RhJwP TsJ RhJwP

10 105 3.7 3.0
101 3.5 2.5
1020 3.1 2.2
1030 3.0 2.1
1050 2.8 1.9
101 2.7 1.7

102 105 3.8 3.0
101 3.5 2.5
1020 3.2 2.2
1030 3.0 2.0
1050 2.9 1.9
10l 2.8 1.6

104 105 4.0 2.9
101 3.7 2.5
1020 3.2 2.2
1030 3.1 2.1
1050 2.9 1.9
10l 2.7 1.7

108 105 3.9 2.7
101 3.6 2.3
1020 3.3 2.1
103o 3.1 2.1
1050 2.9 1.9
10l 2.9 1.7

1012 105 3.8 2.5
101 3.6 2.2
1020 3.4 2.1
1030 3.1 2.0
1050 2.9 1.9
10l 2.8 1.6

4.9 3.7
4.6 3.3
4.5 2.8
4.6 2.5
4.4 2.3
4.5 2.0
5.2
5.1
4.9
4.8
4.8
4.7
5.8
5.6
5.3
5.2
5.2
4.9

6.4
6.3
5.7
5.5
5.3
5.1

3.8
3.3
2.9
2.6
2.2
2.0
3.6
3.3
2.9
2.6
2.4
2.2

3.5
3.2
2.8
2.6
2.3
2.0

6.8 3.1
6.4 3.0
6.0 2.7
5.8 2.5
5.6 2.3
5.2 2.0

5.7 4.4
5.6 4.1
5.5 3.6
5.5 3.4
5.5 3.1
5.6 2.6
6.4
6.2
6.2
5.8
6.1
6.0

7.5
7.2
7.2
6.8
6.6
6.9

9.7
9.4
8.9
8.6
8.5
8.7

4.5
4.1
3.9
3.3
3.0
2.7
4.5
4.1
3.7
3.1
3.0
2.4

4.1
3.8
3.5
3.4
3.1
2.6

10.6 4.0
10.3 3.9
9.8 3.5

10.2 3.3
9.3 3.2
8.7 2.7

6.4 5.0
6.4 5.0
6.0 4.0
6.3 4.0
5.8 4.0
5.8 3.0
7.5
7.4
7.1
6.8
6.5
6.8
9.2
9.3
8.5
8.2
8.5
8.0

13.5
12.4
11.7
12.0
11.6
11.6

6.0
5.0
4.0
4.1
4.0
3.4

6.0
5.0
4.9
4.0
4.6
3.9

6.0
5.0
4.7
4.0
4.0
4.0

16.5 6.0
15.6 5.0
15.3 5.0
15.2 4.0
13.7 3.9
15.2 3.0

cent slower than two-sided Jacobi on some examples. Hereafter, we will only compare
two-sided Jacobi to right-handed Jacobi with pivoting.

The most interesting phenomenon was the speedup experienced by right-handed
Jacobi with pivoting with respect to two-sided Jacobi. In Table 2 we present the raw
data on the number of sweeps required for convergence.

There are a number of interesting trends exhibited in this table. First, RhJwP
(right-handed Jacobi with pivoting) never takes more than six sweeps to converge
for any matrix, whereas TsJ (two-sided Jacobi) takes up to 16.5. In fact, RhJwP is
almost always faster than TsJ (in one example it took 5 percent longer), and can be
up to five times faster (3.0 sweeps versus 15.2 sweeps for ;A 1012, D 10100, and
n 50). Second, the number of sweeps increases with increasing tA for TsJ, but not
for RhJwP. Third, the number of sweeps increases with increasing dimension for both
TsJ and RhJwP, but much more modestly for RhJwP (from two to three up to six)
than for TsJ (from three to four up to fifteen). Thus the running time for RhJwP is
much less dependent on the problem size or sensitivity (as measured by tA) than TsJ.
Fourth, the number of sweeps decreases as gD increases, both for TsJ and RhJwP,
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but much more markedly for RhJwP (up to a factor of 2) than for TsJ (usually just
one sweep).

8. Conclusions. In this paper we have developed new perturbation theory for
the eigenvalues and eigenvectors of symmetric positive definite matrices, as well as
for eigenvalues of symmetric positive definite pencils. This theory assumes that the
perturbations are scaled analogously to the way the matrix is scaled, letting us derive
much tighter bounds than in the classical theory. In particular, we get relative error
bounds for the eigenvalues and individual components of the eigenvectors, which are
(nearly) attainable. The bound for symmetric positive definite pencils may be applied
to matrices arising in finite element modeling.

Second, we have shown both through formal error analysis and numerical experi-
went that Jacobi’s method (with a proper stopping criterion) computes the eigenval-
ues and eigenvectors with these error bounds. We also show that bisection and inverse
iteration (applied to the original matrix) attain these bounds. In contrast, methods
based on tridiagonalization (such as QR, divide and conquer, traditional bisection,
etc.) fail to attain these bounds. In particular, QR can fail to attain these bounds
whether or not preceded by tridiagonalization.

We have similar perturbation theorems for the singular value decomposition of
a general matrix and the generalized singular values of a pair of matrices, and sire-
ilar error analyses and numerical experiments for one-sided Jacobi applied to this
problem. We may also use one-sided Jacobi to solve the symmetric positive definite
eigenproblem.

We have discussed an accelerated version of Jacobi for the symmetric positive
definite eigenproblem, which has the property that the more its accuracy exceeds
that of QR (or other conventional algorithms), the faster it converges. However, it
cannot compute tiny components of eigenvectors as accurately as the other versions
of Jacobi, although it computes the eigenvectors with the same norm error bounds.
Unless getting the tiny eigenvector components is important, we recommend this
accelerated version of Jacobi for the symmetric positive definite eigenproblem.

The quantity max, (An)/t(Ao) was seen to be central in the analysis of Jacobi’s
accuracy. Numerical experiments show it to be much smaller in practice than we can
explain. For the accelerated version of Jacobi we provide an inexpensive estimator
of max, t(A,)/t(Ao), which works very well in practice. Explaining the excellent
behavior of max, (A,)/(Ao) is an important open problem.

The error analyses of Jacobi dealt only with the simplest implementations. It
would be worthwhile to extend these analyses to cover various enhancements intro-
duced by VeseliS, Hari, Rutishauser, and others. These include delayed updates of the
diagonal entries and an alternate formula for updating the off-diagonal entries [16],
[22], as well as block Jacobi methods.

In future work, we plan to extend these results to the symmetric positive definite
generalized eigenproblem, as well as indefinite matrices. Any extension requires an
appropriate perturbation theory; therefore, we do not expect to be able to extend
the result to all indefinite matrices, since there is no guaranteed way to compute the
zero eigenvalues of a singular matrix to "high relative accuracy" without computing
them exactly, a feat requiring high precision arithmetic. A class of indefinite matrices
for which a suitable perturbation theory exists are the scaled diagonally dominant
matrices [2]. The perturbation theory also already exists (at least for eigenvalues) for
the symmetric positive definite generalized eigenproblem.
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